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Abstract

Conversational query clarification enables
users to refine their search queries through inter-
active dialogue, improving search effectiveness.
Traditional approaches rely on text-based clar-
ifying questions, which often fail to capture
complex user preferences, particularly those
involving visual attributes. While recent work
has explored single-turn multi-modal clarifica-
tion with images alongside text, such methods
do not fully support the progressive nature of
user intent refinement over multiple turns. Mo-
tivated by this, we introduce the Multi-turn
Multi-modal Clarifying Questions (MMCQ)
task, which combines text and visual modalities
to refine user queries in a multi-turn conversa-
tion. To facilitate this task, we create a large-
scale dataset named ClariMM comprising over
13k multi-turn interactions and 33k question-
answer pairs containing multi-modal clarifying
questions. We propose Mario, a retrieval frame-
work that employs a two-phase ranking strat-
egy: initial retrieval with BM25, followed by a
multi-modal generative re-ranking model that
integrates textual and visual information from
conversational history. Our experiments show
that multi-turn multi-modal clarification outper-
forms uni-modal and single-turn approaches,
improving MRR by 12.88%. The gains are
most significant in longer interactions, demon-
strating the value of progressive refinement for
complex queries.

1 Introduction

Conversational search (CS) enables users and sys-
tems to collaboratively refine queries through dia-
logue (Radlinski and Craswell, 2017), addressing
limitations of traditional keyword-matching sys-
tems where single queries often fail to capture
complete information needs (Aliannejadi et al.,
2019; Zamani et al., 2020). Query clarification
has emerged as a key mechanism for improving
search accuracy by helping users refine ambiguous

Information Need: Looking for a sofa for my living room

E i @ Are you looking for a modern or traditional sofa? Single-turn E H
i : J
i

-‘ interaction | E
1
5 ” ‘ u

[ ]
[ Probably modern, but | want something clean and simple. } -

' I
I LTI T T T T T !

|
E @ Great! What material do you prefer: leather or fabric?
|

Y =

: 7 ; =

|

H

H

|

3 - N [ ] H

Leather, but I’'m not a fan of textured designs, something } - '
|

|

H

|

Multi-turn |
interaction |
1

[clean and smooth would be nice.

|
E @ Do you want a tufted design or a smooth finish? ’

===, L\
_— ==
[The right one looks very nice to me. F &

Figure 1: An example conversation comparing the multi-
modal query clarification under single-turn and multi-
turn scenarios.

or incomplete queries (Hancock et al., 2019; Rao
and II1, 2018).

Current approaches to query clarification, while
showing promise, still face limitations in address-
ing complex information needs. Traditional sys-
tems rely predominantly on text-only clarifying
questions (Aliannejadi et al., 2021; Zamani et al.,
2020), proving insufficient when users need to un-
derstand or express preferences about visual char-
acteristics. This limitation is particularly evident
in domains such as healthcare (symptom identifi-
cation), e-commerce (product selection), and tech-
nical support (problem diagnosis), where visual
context is crucial for precise understanding (Siro
et al., 2025).

Recent work (Yuan et al., 2024) introduces the
incorporation of visual content into clarifying ques-
tions, enabling systems to present images alongside
text within a single interaction. However, restrict-
ing the interaction to a single turn hinders accurate
intent inference, making it challenging to fully cap-
ture user needs. For example, in Figure 1, when
searching for a sofa, users need to progressively



refine their preferences from general style (mod-
ern vs. traditional) to specific materials (leather vs.
fabric) and finally to detailed attributes (tufted vs.
smooth). Such natural progression in preference ar-
ticulation cannot be achieved in a single turn with-
out overwhelming users with numerous options.
While existing multi-turn approaches (Aliannejadi
et al., 2020) support dialogue flow, they lack the
crucial visual context for grounding language un-
derstanding.

To address these limitations, we introduce the
novel task of Multi-turn Multi-modal Clarifying
Questions (MMCQ) within open-domain CS sys-
tems. MMCQ enables systems to gradually refine
user intent over multiple turns, where each inter-
action builds on the previous one by incorporating
both textual questions and relevant images. This
step-by-step process enhances the depth and accu-
racy of the clarification process, leading to more
precise disambiguation of user intent and improved
retrieval performance. To facilitate research in this
direction, we create a new dataset named ClariMM
that builds upon existing single-turn multi-modal
clarification data (Yuan et al., 2024), comprising
over 13k instances of multi-turn interactions with
over 14k images and 33k question-answering pairs.

Furthermore, we propose a novel ranking model,
called Mario(Multi-turn Multi-modal Query Clar-
ification), devising a two-phase ranking method to
rank documents based on multi-modal conversa-
tional history. Mario adopts the BM25 method for
initial retrieval, followed by a multi-modal gener-
ative model with a constrained generation mecha-
nism to refine and re-rank the results. Specifically,
our model leverages a pretrained multi-modal large
language model (LLM) to generate the keywords
sequence of relevant documents by integrating tex-
tual and visual information from the conversational
interaction history.

We compare the performance of Mario against a
range of models, from traditional retrieval methods
to several open-sourced LLMs, and analyze the im-
pact of multi-modal vs. uni-modal approaches. Our
experiments on ClariMM show that incorporating
images in multi-turn scenarios improves MRR by
up to 12.88% with Mario. Additionally, a compari-
son between ClariMM and its single-turn counter-
part shows that multi-turn interactions consistently
outperform single-turn approaches across all re-
trieval metrics in the multi-modal setting. Further
analysis highlights Mario’s superiority, particularly
in longer interactions, demonstrating the benefits

of multi-turn multi-modal clarification for CS.
In summary, our contributions are as follows:

* We introduce MMCQ, a novel task in mixed-
initiative CS, enabling query refinement
through multi-turn interactions that integrate
textual and visual cues.

* We propose a large-scale dataset called
ClariMM to support multi-modal interactive
search!. We then propose Mario for effective
multi-modal document retrieval in this setting.

* We demonstrate the effectiveness of our model
on retrieval performance by comparing it with
its uni-modal and single-turn counterparts.

2 Related Work

Conversational question clarification. Query
clarification improves search by refining user
queries with additional context (Wang et al.,
2023b), addressing ambiguities in various tasks in-
cluding entity disambiguation (Coden et al., 2015),
voice-based interactions (Kiesel et al., 2018), ques-
tion answering (Nakano et al., 2022) and recom-
mendation (Zou et al., 2020). In mixed-initiative
search systems, where the conversational initiative
alternates between users and agents, targeted clar-
ifying questions have been shown to improve re-
trieval performance and user satisfaction (Rahmani
et al., 2024; Siro et al., 2024a). For instance, Alian-
nejadi et al. (2020) introduced the ClariQ bench-
mark, which employs clarifying questions to disam-
biguate vague queries. Building on these founda-
tions, Yuan et al. (2024) advanced the field further
by developing Melon, a system that integrates vi-
sual inputs into the clarification process, thereby
helping users refine their queries more effectively.
Despite these advances, challenges remain in ef-
fectively merging multi-modality with multi-turn
conversational interactions.

Generative Retrieval. Generative retrieval is a
paradigm in information retrieval that uses gen-
erative models to bypass the traditional "index-
retrieve-then-rank" architecture and directly gen-
erate document identifiers in an end-to-end man-
ner. Instead of relying on dense embeddings and
nearest-neighbor search, models like GENRE (Cao
et al., 2021), DSI (Chen et al., 2023b), and Cor-
pusBrain (Chen et al., 2022) frame retrieval as

'We will release the dataset right after the paper acceptance



a sequence generation task, where relevant docu-
ment identifiers are produced token-by-token. Gen-
erative retrieval has proven effective across var-
ious knowledge-intensive tasks, including entity
linking (Cao et al., 2021) and question answering
(Braslavski et al., 2017). Models like GENRE treat
retrieval as a generation task by predicting entity
names, while DSI and DSI-QG extend this idea
to document retrieval using synthetic identifiers.
Recent methods such as UGR (Chen et al., 2023a)
and CorpusBrain further enhance the framework
with prompt-based learning and corpus-level pre-
training. Based on this, our work focuses on asking
multi-modal clarifying questions in a multi-turn CS
system and investigates whether it results in better
retrieval performance.

3 Dataset Construction

We describe how we build ClariMM, our multi-turn
multi-modal clarification dataset.

3.1 Data Collection

Our dataset builds upon Melon (Yuan et al., 2024),
a single-turn dataset containing clarifying ques-
tions with images. We use Melon’s topics and
facets (user information needs), which originate
from TREC Web Track 2009-2012 (Clarke et al.,
2009, 2012), and the corresponding documents for
each facet.

Multi-turn conversation synthesis. We construct
multi-turn conversations by systematically com-
bining QA pairs from Melon that share the same
topic. For each topic, we exhaustively generate all
possible combinations of single-turn QAs to cre-
ate two-, three-, and four-turn conversations. Each
turn retains its corresponding images from Melon,
ensuring the diversity in clarification patterns.

Data sampling. The synthesis process gener-
ates extremely large subsets for two-, three-, and
four-turn conversations, with the two-turn subset
alone exceeding 1 million conversations. This vast
dataset poses challenges for post-processing and
analysis while also containing redundant and un-
natural conversations. To address this issue, we
randomly sample 10,000 conversations from each
subset. This selection balances dataset size while
maintaining diversity and relevance.

Data refinement. To enhance the naturalness of
synthetic data and ensure more realistic conversa-
tions, we develop an automated refinement method

Algorithm 1 Multi-turn Conversation Refinement

Input: Conversation d with 7" turns, hidden intention F'
Output: Refined conversation ¢

1: ¢ + {} // Initialize refined conversation

2: fort =1toT do

3: if t == 1 then

4: Ay < Ouniia(Qr, At, F) 1/ Qu, Ay denote the
question-answer pair at turn ¢, © denotes the prompting
strategy

5 elseif ¢ < T then

6 At — 6partial(Qt, At, F)

7 else

8: At <« Gﬁm,[(Qt, At, F)

9

0

1

end if

¢ cU{(Qr, A}
. end for

using GPT-40 (Algorithm 1). While manual re-
finement would be ideal for ensuring conversation
quality, it is impractical given our dataset scale.
Our automated approach significantly reduces the
required effort while maintaining high-quality dia-
logue refinement.

At the start of the conversation, we prompt GPT-
4o to act as a user, interpreting the multi-modal
conversational history and refining its responses
without revealing the user’s intent based on the
given facet. This approach encourages a natural
extension of the interaction, requiring additional
exchanges to fully clarify the user’s needs. As
the conversation progresses, we iteratively refine
responses to gradually unveil the hidden intent, ef-
fectively simulating the natural flow of the clarifica-
tion phase. We apply this method to the filtered 30k
dialogues, ensuring that the generated dialogues re-
main coherent and engaging while gradually reveal-
ing the hidden intent, preventing it from being dis-
closed too early. The detailed annotation pipeline
and all prompts used are provided in Appendix A.

3.2 Quality Control

To validate the quality of our synthetic dataset, we
conducted a human evaluation assessing four key
metrics: relevance, coherence, diversity, and in-
tent reveal. These metrics were chosen to evaluate
critical aspects of our dataset construction process
(detailed definition of the metrics see Appendix
B). Given our dataset’s scale, we randomly sam-
pled 10% of the topics for annotation. Two of
the authors independently evaluated 178 conver-
sations using a 5-point Likert scale (1: poor to
5: excellent). Our human evaluation results (Ta-
ble 1) demonstrate the effectiveness of our con-
struction approach. Relevance scores show con-
sistent improvement from Turn 1 (3.62, 0=1.29)



Metric Mean Std Dev Median
Relevance (Turn 1)  3.62 1.29 3.00
Relevance (Turn 2) 3.56 1.24 3.00
Relevance (Turn 3) 3.78 1.09 3.00
Relevance (Turn4) 4.11 0.97 4.00
Coherence 3.36 1.10 3.00
Diversity 4.01 0.97 4.00
Intent reveal 4.65 0.87 5.00

Table 1: Human evaluation scores for relevance, coher-
ence, diversity, and intent reveal.

Metric Value
# topics 298
# facets 1,070
# all questions 4,969
# images 14,869
# answers 33,477

7,782 (59.36%)
3,391 (25.86%)
1,935 (14.78%)

# 2-Turn Conversations
# 3-Turn Conversations
# 4-Turn Conversations

Table 2: Statistics of the ClariMM dataset.

to Turn 4 (4.11, 0=0.97), validating our GPT-40
refinement strategy for maintaining topical focus.
While coherence (3.36, 0=1.10) indicates some
minor inconsistencies, the strong diversity score
(4.01, 0=0.97) confirms that our sampling strat-
egy captured varied aspects of topics without rep-
etition. Most notably, the high intent completion
score (4.65, 0=0.87) validates our approach of grad-
ually revealing user intent across turns (additional
evaluation see Appendix E). These results prove
that our data generation pipeline successfully pro-
duces well-structured and semantically rich multi-
turn conversations, making ClariMM a valuable re-
source for training multi-turn multi-modal retrieval
systems.

3.3 Dataset Statistics

Table 2 provides an overview of the basic statis-
tics of ClariMM. The dataset comprises a total of
298 search topics and 1070 facets. It consists of
4,969 clarifying questions accompanied by 14,869
images, resulting in an average of 2.99 images
per question. Additionally, the dataset includes
33,477 answers and every question has its corre-
sponding answers. Overall, the dataset consists
of over 7k two-turn conversations, 3k three-turn
conversations, and 1k four-turn conversations.

4 Our Method

4.1 Problem Formulation

Following Yuan et al. (2024), we consider a set
of topics denoted as T' = {t1,t2,...,tx}, serve

as user queries. Each topic ¢; is associated with
a set of facets, defined as F; = {f, f2,..., fI"},
where n; represents the number of facets for ¢;.
Each facet f; captures a distinct aspect of ¢;, speci-
fying a particular user information need. Given a
topic ¢ and an information need (facet) f, the user
engages in a conversation C' consisting of k turns.
Each conversation comprises a sequence of multi-
modal clarifying questions Q = {q1,¢2,...,qxk}
and their corresponding text-only answers A =
{a1,as,...,ax}. Each question g; consists of text
and may optionally include some images. At the
end of each conversation, a set of documents D
are retrieved and ranked based on the conversa-
tion. The goal is to identify the hidden facet (i.e.,
user needs) f and learn a retrieval function R(-)
that maps the conversation context and topic to a
ranked list of documents, such that R(C,t) — D.

4.2 Framework Overview

As shown in Figure 2, we propose a framework
called Mario to retrieve relevant documents given
the multi-modal conversational history (details see
Section 4.3). The process begins with the system
receiving the user’s query as input. It then refines
the query by incorporating the conversation his-
tory to generate an inferred query. Next, BM25 is
applied for the first-phase retrieval, retrieving the
top 100 most relevant documents. Then, we intro-
duce a multi-modal generative re-ranking model
that incorporates the inferred query to refine and
re-rank the initial results. Inspired by (Yuan et al.,
2024; Geigle et al., 2022), we train the model to
generate keywords for the top relevant documents,
leveraging both textual and visual information. By
incorporating multi-modal information, the model
effectively re-ranks the retrieved documents to en-
hance relevance.

4.3 Multi-modal Two-phase Retrieval

4.3.1 First-phase Retrieval

In the first phase of our retrieval process, we em-
ploy BM25 (Robertson and Zaragoza, 2009) to
retrieve an initial set of relevant documents from
the document base given the query ¢ and conversa-
tional history context C'. Since C' is lengthy and
might contain noise, we extract an inferred query
® from C' using GPT-40 (prompts see Appendix
D). Given the inferred query ®, the set of retrieved
documents is obtained as:

Dinitia = BM25(t, @, D), ey
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Figure 2: Overview of the Mario two-phase retrieval framework.

where D is the initial document set and D;,,;zia1
is the first-ranked result. The retrieved documents
are then passed to subsequent stages for further
refinement and re-ranking using multi-modal infor-
mation with generative models.

4.3.2 Multi-modal Re-ranking

To integrate multi-modal information, we propose
a generative re-ranking model based on a multi-
modal LLM.

Image and text encoding. Our model encodes
the input image I using the SigLIP (Zhai et al.,
2023) vision encoder fimg to extract image fea-
ture z: z = fimg(l). The image feature is then
projected into the LLM’s embedding space using
a learned projection matrix W and concatenated
with the text embedding 7, where 7 is obtained
from the text embedder fiept: T = freat(t, ). The
final output e is then computed as:

e = fLLM([WZ; 7']) 5 (2)

where fi1m is the LLM responsible for generating
the final re-ranking output.

Keyword extraction. Following previous work
in generative retrieval (Tang et al., 2024; Li et al.,
2023), we train the multi-modal LLM to generate a
ranked sequence of document IDs. Each document
d is identified by a unique keyword-based ID de-
noted as K4, ensuring efficient retrieval and seman-
tic relevance. Specifically, we extract five represen-
tative keywords per document using YAKE (Cam-

pos et al., 2020). These keywords serve as compact
semantic descriptors that capture each document’s
core information.

Model training. We train the model to generate
a ranked sequence of document IDs based on the
multi-modal input x, refining the initial BM25 rank-
ing Dipitial. To improve the model’s ability to dis-
tinguish between good and bad ranking results, we
train it to generate keywords for relevant and ir-
relevant documents sequentially, with individual
documents separated by a [SEP] token. Relevant
and irrelevant samples are identified based on their
overlap with the ground-truth labels in Djpjtiq. For
the loss function, we use a combination of the posi-
tive sample’s language modeling loss and Margin
Ranking Loss:

L= ;CE?VQ[ + )\rank : crank ) (3 )

Here Apank is the weighting factor, and the ranking
loss is defined as:

Lrank = max(0,m + LEY — £135), @)

where m is the margin, L7} and L[} are the lan-
guage modeling loss for the relevant and irrelevant
samples respectively. See detailed explanation in
Appendix G.

Inference. During inference, to prevent the model
from generating arbitrary tokens, we employ a
constrained generation technique (Post and Vilar,



2018) to ensure that only valid keywords are se-
lected and generated. That is, we restrict the model
vocabulary to a predefined set of allowed keywords
from D101 Specifically, at each decoding step ¢,
let the current partial sequence be y;. We define
the allowed set of tokens Ay as:

{veV ]Iz eT,st yos ©v = prefix(z)}, (5)

where V is the vocabulary, 7 is the trie encoding
for all valid keyword sequences, and & denotes
sequence concatenation. By masking the probabil-
ity distribution for the next token to consider only
those in A;, we ensure that the generated output
adheres strictly to the allowed keywords (For de-
tailed explanation of the constrained generation see
Appendix F).

5 Experiments

5.1 Experimental Setup

We split ClariMM’s facets into 80% for training,
10% for validation, and 10% for testing, and cre-
ate the corresponding datasets accordingly. As a
result, the training set consists of 9,688 conver-
sations and 856 facets, while the validation and
testing set each contains 672 conversations and 107
facets. To create the single-turn comparison set,
we use the inferred query as input and the first turn
of each conversation as input. We choose LLaVA-
OneVision-7b as the base model for Mario. For
retrieval evaluation, we employ Mean Reciprocal
Rank (MRR), Precision (P@k), and Normalized
Discounted Cumulative Gain (nDCG@Xk) where
k € {1,3,5}. The ground truth relevance doc-
uments are sourced from the TREC Web Track
2009-2012 (Clarke et al., 2009, 2012). All hyper-
parameters are detailed in Appendix C. We report
the performance of Oracle image selection. Our ex-
periments are conducted using the PyTorch frame-
work, with training and evaluation performed on
one NVIDIA V100 and two NVIDIA A100 GPUs.

5.2 Compared Methods

We first adopt several uni-modal baselines by re-
moving image information from the model input to
simulate a text-only interaction.

BM25 (Robertson and Zaragoza, 2009) ranks doc-
uments based solely on the text input, without
any re-ranking.

Bert (Devlin et al., 2019) re-ranks the BM25 re-
sults with Bert model. We adopt the imple-
mentation from MacAvaney et al. (2019).

TS (Raffel et al., 2019) is trained to perform re-
ranking by generating keyword sequences of
relevant documents given a query. We use the
T5-base version in our experiment.

Qwen-2 (Yang et al., 2024) ranks documents sim-
ilar to T5, but uses Qwen-2-7b as the base
model.

We also compare our method with several multi-
modal baselines:

VisualBert (Li et al., 2019) is a multi-modal
model with Bert structure and is trained with
pairwise softmax loss for re-ranking.

VLTS5 (Cho et al., 2021) takes multi-modal input
and is trained to output the keyword of the
documents with constrained generation.

5.3 Experimental Results

We report the performance of multiple baselines on
multi-turn and single-turn settings in Table 3 and
4. We observe that language-model-based rankers
such as TS5 and Bert outperform the traditional lexi-
cal method, BM25. We further analyze the impact
of incorporating images in the document retrieval
task. Our findings indicate that using images en-
hances retrieval performance, particularly in multi-
turn conversations, compared to models that rely
solely on text. For instance, in the multi-turn case,
VLTS5 achieves a P@1 of 42.34%, outperforming
its uni-modal counterpart TS5, which records a P@1
of 41.30%. These results highlight the advantage
of multi-modal information in capturing a more
comprehensive user intent over longer conversa-
tional histories. However, this benefit diminishes
in the single-turn scenario, where we see a 1.47%
decrease in P@1 comparing Bert with VisualBert.
This is because images are more likely to be mis-
leading and have a negative impact in the first turn,
as the model benefits less from visual information
when contextual cues are limited. Results further
show that all models perform notably better in
multi-turn conversations than in single-turn ones,
as added context helps capture user intent more ef-
fectively. Notably, Mario consistently outperforms
the other baselines in the multi-turn and single-
turn settings, achieving the highest scores across
key metrics and emphasizing its superior ability to
leverage contextual cues.



Img. MRR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5
BM25 X 50.74 39.62 36.16 36.03 25.80 23.39 24.56
Bert X 56.36  46.08 4150 41.37 35.70 33.82 34.01
T5 X 52.15 4130 3764 38.63 41.30 38.82 39.39
Qwen-2 X 4648 42.26 39.72 39.23 40.08 37.96 36.88
VisualBert v 56.50 46.57 4624 44.02 35.33 36.65 36.28
VLTS5 v 53.22 4234  38.83 3943 42.34 39.90 40.26
Mario v 59.36 48.10 47.09 4548 46.90 45.77 43.98

Table 3: Experimental results (%) on multi-turn conversations.

Img. MRR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5
BM25 X 42.94 32.07 30.81 30.37 20.39 20.15 21.02
Bert X 4934  39.22 3742  36.27 29.66 29.42 29.13
T5 X 41.37 28.08 28.97  28.88 28.08 29.16 31.92
Qwen-2 X 4430  40.56 37.68 35.97 38.40 35.94 33.68
VisualBert v 45.95 37.75 33,50 32.55 28.43 25.83 25.20
VLTS5 v 43.18 3046 28.92 28.94 30.46 29.69 30.42
Mario v 53.24 46.54 4348 40.02 41.85 39.56 38.68

Table 4: Experimental results (%) on single-turn conversations.
6 Extensive analysis 60 2aum
50 4-turn

6.1 Impact on different turns

We further report the retrieval performance under
the different number of turns for VLTS, VisualBert,
and Mario in Figure 3. As shown in the figure,
VLTS5 indicates only a modest improvement from
38.59 (two-turn) to 41.30 (four-turn), indicating
limited gains from the additional turns. Visual-
Bert’s performance even declines as the conversa-
tion length increases, starting at 45.58 for two-turn
data and dropping to 40.19 for four-turn data. This
suggests that VisualBert struggles to leverage the
increasing context effectively in longer conversa-
tions. In contrast, Mario demonstrates consistent
and substantial improvements with each additional
turn, with P@5 increasing from 43.60 (two-turn)
to 48.12 (four-turn). This significant gain confirms
that Mario excels in multi-turn conversational re-
trieval and outperforms VLTS5 and VisualBert in
longer interactions. This highlights the model’s
ability to effectively capture the evolving intent and
incorporate context across turns making it particu-
larly well-suited for handling long conversations.

6.2 Impact on different topics

We further evaluate the performance of various
models on seen and unseen topics to evaluate their
robustness and generalization capabilities. We re-

40

n

®3
20

10

VisualBert VLTS5
Models

Mario

Figure 3: P@5 scores under different turn counts in
ClariMM.

split the ClariMM dataset into training, unseen, and
seen testing sets. The unseen testing set consists
of 10% of all topics, entirely excluded from the
training process. In contrast, the seen testing set
includes topics that are also present in the training
set. As shown in Table 6, Bert-based models (i.e.,
VisualBert & Bert) and our model demonstrate a
relatively consistent performance across both seen
and unseen topics, with minimal differences in eval-
uation metrics. T5-based models (i.e., VLTS & T5),
however, show a more significant decline between
the seen and unseen sets, which suggests greater
sensitivity to new topic distributions. Furthermore,
we observe that the impact of using images in the
unseen topics is more noticeable than in the seen
topics. We can see a 4.8% increase in MRR when



Idx Topic Facet Turn Num Inferred Query Image Image Effect
; ; +0.2
multi-turn Looking for giant teddy
bears
1 Teddy bears Find giant teddy bears
PO
. Exploring options related © 0
single-turn to teddy bears @
o'V
” Places to buy +0.8
multi-turn radio-controlled planes
2 Hobby Stores Wh‘ere can I buy
radio-controlled planes?
+0.2
single-turn  Finding a new hobby
multi-turn Understanding symptoms b +02
of Wilson’s disease »
3 Wilson’s Disease :xblat afe (t;.le syrr(l)ptoms of
Hison's disease: Understanding the 04
single-turn  condition of Wilson’s
disease

Table 5: Case study on Mario. A positive Image Effect indicates an increase in performance after adding the image,

while a negative effect indicates a performance drop.

Seen Unseen
Method  —ro R —P@5 MRR P@5
Bert 5455 4031 5150 34.00
T5 5312 3423 3855 24.16
VisualBert 53.53 39.46  51.85 35.17
VLTS5 5531 3446 4335 2549
Mario 58.68 46.17 5779 43.23

Table 6: Comparison between seen and unseen topics.

comparing T5 and VLTS5 on unseen data, however,
this difference is smaller (2.29%) on the seen do-
main. This suggests that incorporating visual infor-
mation provides a greater advantage when dealing
with unfamiliar topics.

6.3 Case study

To demonstrate the effect of adding images to the
multi-turn and single-turn conversations, we per-
form a case study in Table 5. In most cases, in-
cluding images provides valuable contextual in-
formation that enhances the model’s performance.
Notably, adding images in multi-turn conversations
tends to have a more significant positive effect com-
pared to single-turn cases. For example, in case
2, adding an image in the multi-turn setting im-
proves the P@5 score by 0.8, whereas adding an
image in the single-turn scenario only boosts P@5
by 0.2. However, there are instances where images
can negatively impact performance. In case 3, the

inferred query from the single-turn conversation
focuses on understanding the condition of Wilson’s
disease. Unfortunately, due to the insufficiency
of the inferred query, the returned image fails to
align with the user’s hidden intent, as it includes
treatment-related information. The user is primar-
ily interested in learning about the symptoms of
this disease, not its treatment, and this image leads
to a negative impact on the P@5 score. By con-
trast, in the multi-turn scenario, the image displays
symptoms, thereby providing valuable information
that enhances the model’s performance.

7 Conclusion

We investigate the novel task of asking multi-
modal clarifying questions in multi-turn CS sys-
tems. To enable research in this domain, we intro-
duce a large-scale dataset named ClariMM, which
contains over 13k multi-turn multi-modal interac-
tions and 33k question-answer pairs, accompanied
by 14k images. We also propose a multi-modal
query clarification framework named Mario, which
adopts a two-phase retrieval strategy by combining
initial BM25 ranking with a multi-modal genera-
tive re-ranking model. We further compare Mario
with state-of-the-art models. Experimental results
show that multi-turn multi-modal interactions sig-
nificantly help users refine their queries, leading to
improved retrieval performance.



Limitations

Several limitations remain for future work. First,
we synthetically developed our dataset from Melon,
which, despite our best efforts to refine it for real-
ism, may not fully capture the spontaneity and com-
plexity of true user interactions. Future work could
address this limitation by leveraging techniques
like data augmentation or reinforcement learning
from human feedback (RLHF) to bridge the gap be-
tween synthetic and natural interactions. Addition-
ally, it remains an open question how much images
truly enhance the user experience in the MMCQ
task. Since the effectiveness of visual information
can depend heavily on its contextual relevance and
the specific user intent, our current approach might
not optimally handle ambiguous or noisy visual in-
puts. Future work should explore methods to better
integrate and disambiguate visual data to maximize
their contribution to the overall user experience.

Moreover, our work primarily focuses on the re-
trieval task and does not explicitly address query
reformulation. While inferred queries are used as
part of the retrieval pipeline, an investigation into
multi-modal query reformulation remains unex-
plored. We consider this a crucial future direction
that could enhance the quality of conversational
systems.

Ethical Statement

All images and user topics in our dataset are
sourced from publicly available datasets, ensuring
that no private or sensitive information is included.
The collection and use of these resources strictly
comply with the terms of use and licensing agree-
ments set by the original dataset providers. We
have diligently verified that all materials originate
from public sources, conducting our research with
the highest regard for data privacy and ethical in-
tegrity.
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A Dataset Creation and Prompts

We use a multi-step refinement process, as shown in
Figure 4, to address the unnaturalness of synthetic
data. We first prompt GPT-40 to determine if two
QA convey similar information in a single conver-
sation, then we remove entries identified as having
duplicate QA structures using Prompt A in Table
8. This step helps detect and remove redundant or
highly similar QAs.

Next, we prompt GPT-40 to analyze each conver-
sation turn and identify whether the hidden facet
intention is revealed prematurely using prompt B
in Table 8. This prompt assesses whether the hid-
den facet intention is revealed too early. It judges
whether a provided answer can be interpreted as
the same as the facet intention. For instance, if the
conversation has four turns and the hidden inten-
tion is revealed in the second turn, we extract those
two turns and add them to the two-turn dataset.

As illustrated in the figure, the four-turn data
undergoes the most rigorous filtering process com-
pared to the two-turn and three-turn data, which
explains its lower count in Table 2. Consequently,
the amount of available data decreases as the num-
ber of turns increases because, in most cases, the
intention is revealed prematurely.

Finally, we introduce an additional refinement
step using Algorithm 1 to ensure the conversational
flow is as realistic as possible. In this algorithm, we
employ three prompts, Oipitial, Opartial, and Ofpal,
using 2-shot learning. In Table 8, we show that
these prompts iteratively refine responses to gradu-
ally unveil the hidden intent to effectively simulate
the natural progression of the clarification phase.
The entire refinement process is performed only
once before training.

This approach is aligned with other recent efforts
in the community where high-quality synthetic
datasets are constructed using LL.Ms like AGENT-
CQ (Siro et al., 2024b), Self-Instruct (Wang et al.,
2023a), CONVERSER (Huang et al., 2023) and
DiaSynth (Suresh et al., 2025).

B Quality Control Metric

The following metrics were used to assess the qual-
ity of ClariMM during human evaluation: Rele-
vance: Each turn’s alignment with the original
topic (assessed per turn); Coherence: Logical
flow between combined QA pairs (assessed per
dialogue); Diversity: Variation in responses and
avoidance of redundancy (assessed per dialogue);
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and Intent reveal: Effectiveness of progressive in-
tent revelation (assessed per dialogue). Average
Image Relevance: The alignment of each turn’s
images with the question and answer. We take the
average score for 3 images per turn.

C Hyperparameter Settings

Our code is based on PyTorch (Paszke et al., 2019)
and Huggingface Transformers (Wolf et al., 2020).
For Llava-OneVision, we use the 7b pretrained
version, le-4 as the learning rate and 2 for the
batch size. For the loss function, we set the margin
to 2.0 and A4, to 0.75. For generation, we set the
number of beams to 10. For first-phase document
retrieval, we retrieved the top 100 documents using
BM25.

D Inferred Query Extraction

To capture the user’s intent from a multi-turn con-
versation, we employ a summarization step using
GPT-40 that focuses on what the user is actually
interested in. It compresses the conversation into a
short “inferred query” discarding irrelevant details
such as off-topic remarks. By isolating only the
essential user request, the system can more effec-
tively guide subsequent retrieval, ensuring that the
user’s primary goal remains at the forefront. This
step is performed only once on the dataset before
training to generate inferred queries, which are then
used during training.

Prompt

Extract the user’s intent based on the conversation.
Only mention what they are interested in.
Conversation: {conversation }

Table 7: Prompts used for dataset creation.

E Additional Quality Control

Two other authors independently evaluated 30 sam-
ples from the dataset to further assess its quality.
Table 9 shows the human evaluation scores. As
shown, the results are consistent with our origi-
nal findings, demonstrating strong performance in
relevance, diversity, and intent reveal across turns.

Metric Mean Std Dev Median
Relevance (Turn 1) 3.5 0.63 3.00
Relevance (Turn 2) 3.17 0.65 3.00
Relevance (Turn 3) 3.67 0.71 4.00
Relevance (Turn4) 3.97 0.72 4.00
Coherence 3.83 0.95 4.00
Diversity 3.37 0.91 4.00
Intent reveal 4.53 0.63 5.00

Table 9: Additional human evaluation scores for rele-
vance, coherence, diversity, and intent reveal.

To assess the multi-modal grounding quality of
our dataset, they also evaluated the relevance of the
images presented in each conversational turn. Since
each turn included three images, we report the av-
erage image relevance per turn. Ratings were col-
lected on a 5-point scale, similar to before, across
30 data samples. Table 10 summarizes the mean,
standard deviation, and median of the average im-
age relevance scores for each turn. The helpfulness
of images is studied in section 6.3.

Metric Mean Std Dev Median
Avg Image Relevance (Turn 1)  4.50 0.33 4.50
Avg Image Relevance (Turn 2) 4.13 0.21 4.00
Avg Image Relevance (Turn 3) 4.89 0.18 5.00
Avg Image Relevance (Turn4)  5.00 0.00 5.00

Table 10: Human evaluation scores for average image
relevance.

F Constrained Generation

In our framework, each document is uniquely repre-
sented by a sequence of five keywords, which serve
as its compact semantic identifier. During infer-
ence, the model must generate this exact sequence
to successfully retrieve the corresponding docu-
ment from our document pool. If unconstrained
generation were used, the model could either mix
keywords from different documents, producing se-
quences that don’t correspond to any real document
from the pool, or generate tokens outside the key-
word vocabulary, which would result in invalid or
out-of-scope outputs. To prevent these issues, we
employ constrained generation via a TRIE-based
decoding mechanism, which ensures that only valid
keyword sequences (those corresponding to actual
documents in the collection) are generated. This
guarantees that the model’s outputs remain seman-
tically meaningful and retrievable, which is critical
for the effectiveness of the re-ranking step.

Our approach aligns with prior work in gener-
ative retrieval, such as GenRE (Cao et al., 2021)
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Figure 4: Dataset creation pipeline.
Type | Prompt Content
Prompt A I will provide you with two pairs of questions and answers. Determine if these two question-answer pairs
contain similar information. Output "yes" or "no" and explain why.
Question 1: {questionl} Answer 1: {answerl}, Question 2: {question2} Answer 2: {answer2}
Prompt B I will provide you a pair of question-answer and a facet (user’s hidden intention).
Judge whether the answer aligns with the facet intention. If yes, generate: "intention reached".
Facet intention: facet_intention, Question: question, Answer: answer
Prompt Ojpiia | Examples:
Example 1:

Facet: How to fix a car engine.

Question: Do you want to buy a car? Answer: No, I am not looking to buy a car.

Example 2:

Facet: Find coffee shops near me.

Question: Would you like to make a cup of coffee? Answer: No, thank you, I want to buy one.

I provided you with some examples above. Now, modify the following answer so that it is connected to the question
and doesn’t reveal the hidden intention of the facet like in the examples. Ensure your answer doesn’t violate the facet.
Prompt:

Imagine you are a user answering an agent question. Modify this answer without revealing any hidden intention

of the facet and without violating the facet.

Facet: {facet}, Question 1: {questionl}, Answer 1: {answerl }, {examples}

Prompt @parlial

Examples:

Example 1:

Facet: The user wants to buy a red car.

Question: Are you looking for a specific color? Answer: I am considering a color, but I haven’t decided fully yet.
Example 2:

Facet: I’'m looking for the car-part.com website.

Question: Do you want to sell used car parts? Answer: For now, I am mainly focused on finding a website.

I provided you with some examples above. Now, modify the following answer to reveal only a partial abstract of the
hidden intention (facet) and hint at the user’s interests without revealing the full intention

Prompt:

Imagine you are a user answering an agent question. Modify the following answer to reveal

only a partial abstract of the hidden intention (facet). Do NOT reveal the full hidden intention.

Facet: {facet} Question 3: {question2} Answer 3: {answer2} {examples}

Prompt Ofipy

Examples:

Example 1:

Facet: The user wants to buy a red car.

Question: Are you looking for a specific color? Answer: Yes, I am looking for a red car to buy.

Example 2:

Facet: I'm looking for the car-part.com website.

Question: Do you want to sell used car parts? Answer: No, I am just looking for the car-part.com website.

I provided you with some examples above. Now, modify the following answer to fully reveal the hidden intention
in a clear and direct manner, and ensure that the answer reflects the facet without ambiguity.

Prompt:

Imagine you are a user answering an agent question. Modify the following answer to fully reveal the hidden facet.
Ensure that the answer clearly reflects the facet.

Facet: {facet}, Question 3: {question3}, Answer 3: {answer3}, {examples}

Table 8: Prompts used for dataset creation.
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and CorpusBrain (Chen et al., 2022), and we use
constrained generation to tightly couple generation
and retrieval. These works emphasize that without
such mechanisms, generation-based retrieval risks
semantic drift and retrieval failures. By integrating
constraints, we ensure that the generation process
remains grounded in the structure of the document
collection.

G Loss Function

To train our generative retriever effectively, we
adopt a hybrid loss function that combines a stan-
dard language modeling loss with a margin-based
ranking loss. This combination encourages the
model not only to generate correct outputs but also
to assign higher confidence to relevant targets com-
pared to irrelevant ones.
The total loss is defined as:

L= ﬁE(I)\jl + )\rank ' Erank ) (6)

where L} is the language modeling loss for the
positive (i.e., relevant) sample, L,k is a margin-
based ranking loss, and Ak is a hyperparameter
controlling the strength of the ranking component.

Language Modeling Loss. We formulate the
generation task as conditional language modeling.
The loss is computed as:

T
Liv=—) log Py | y<i,z)  (7)
t=1

where x denotes the input, y, is the ¢-th token of the
target sequence, y; is the prefix sequence before
step t, and 6 represents model parameters. This
objective guides the model to produce the correct
sequence token-by-token, such as a document iden-
tifier, keyword, or entity name relevant to the input.

Margin Ranking Loss. To improve the model’s
discriminative ability, we add a ranking loss that
enforces a margin between the losses of relevant
and irrelevant targets:

Lrank = max(0,m + LIy — £115) (8)

Here, £}y is the language modeling loss on a neg-
ative (irrelevant) target, and m is a fixed margin.
This encourages the model to generate lower loss
(i.e., higher confidence) for positive samples com-
pared to negative ones by at least m. If the margin
is not met, a penalty is applied. This design im-
proves ranking fidelity among retrieved candidates.
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