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Abstract
Denoising diffusion probabilistic models (DDPMs)
have recently achieved leading performances in
many generative tasks. However, the inherited it-
erative sampling process costs hindered their ap-
plications to speech synthesis. This paper pro-
poses FastDiff, a fast conditional diffusion model
for high-quality speech synthesis. FastDiff em-
ploys a stack of time-aware location-variable con-
volutions of diverse receptive field patterns to ef-
ficiently model long-term time dependencies with
adaptive conditions. A noise schedule predictor is
also adopted to reduce the sampling steps without
sacrificing the generation quality. Based on FastD-
iff, we design an end-to-end text-to-speech synthe-
sizer, FastDiff-TTS, which generates high-fidelity
speech waveforms without any intermediate feature
(e.g., Mel-spectrogram). Our evaluation of Fast-
Diff demonstrates the state-of-the-art results with
higher-quality (MOS 4.28) speech samples. Also,
FastDiff enables a sampling speed of 58x faster
than real-time on a V100 GPU, making diffusion
models practically applicable to speech synthesis
deployment for the first time. We further show that
FastDiff generalized well to the mel-spectrogram
inversion of unseen speakers, and FastDiff-TTS
outperformed other competing methods in end-to-
end text-to-speech synthesis.1

1 Introduction
With the recent development of deep generative models,
speech synthesis has seen an extraordinary progress. Among
the conventional speech synthesis methods, WaveNets [Oord
et al., 2016] were demonstrated to generate high-fidelity
audio samples in an autoregressive manner yet suffering
from prohibitively expensive computational costs. In con-
trast, non-autoregressive approaches such as flow-based and
GAN-based models [Prenger et al., 2019; Jang et al., 2021;
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Kong et al., 2020a; Huang et al., 2021] were also proposed
to generate speech audios with satisfactory speed. However,
these models were still criticized for other problems, e.g., the
limited sample quality or sample diversity [Xiao et al., 2021].

In speech synthesis, our goal is mainly two-fold:

• High-quality: generating high-quality speech is a chal-
lenging problem especially when the sampling rate of an
audio is high. It is vital to reconstruct details at different
timescales for waveforms of highly variable patterns.

• Fast: high generation speed is essential when consider-
ing real-time speech synthesis. This poses a challenge
for all high-quality neural synthesizers.

As a blossoming class of generative models, denoising
diffusion probabilistic models (DDPMs) [Ho et al., 2020;
Song et al., 2020a; Lam et al., 2022; Liu et al., 2022] has
emerged to prove its capability to achieve leading perfor-
mances in both image and audio syntheses [Dhariwal and
Nichol, 2021; San-Roman et al., 2021; Kong et al., 2020b;
Chen et al., 2020; Lam et al., 2022]. However, current devel-
opment of DDPMs in speech synthesis was hampered by two
major challenges:

• Different from other existing generative models, diffu-
sion models are not trained to directly minimize the dif-
ference between the generated audio and the reference
audio, but to de-noise a noisy sample given an optimal
gradient. This in practice could lead to overly de-noised
speech after a large number of sampling steps, in which
natural voice characteristics including breathiness and
vocal fold closure are removed.

• While DDPMs inherently are gradient-based models, a
guarantee of high sample quality typically comes at a
cost of hundreds to thousands of de-noising steps. When
reducing the sampling steps, an apparent degradation in
quality due to perceivable background noise is observed.

In this work, we propose FastDiff, a fast conditional dif-
fusion model for high-quality speech synthesis. To improve
audio quality, FastDiff adopts a stack of time-aware location-
variable convolutions of diverse receptive field patterns to ef-
ficiently model long-term time dependencies with adaptive
conditions. To accelerate the inference procedure, FastDiff
also includes a noise schedule predictor, which derives a short
and effective noise schedule and significantly reduces the de-
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noising steps. Based on FastDiff, we also introduce an end-to-
end phoneme-to-waveform synthesizer FastDiff-TTS, which
simplifies the text-to-speech generation pipeline and does not
require intermediate features or specialized loss functions to
enjoy low inference latency.

Experimental results demonstrated that FastDiff achieved
a higher MOS score than the best publicly available models
and outperformed the strong WaveNet vocoder (MOS: 4.28
vs. 4.20). FastDiff further enjoys an effective sampling pro-
cess and only needs 4 iterations to synthesize high-fidelity
speech, 58x faster than real-time on a V100 GPU without en-
gineered kernels. To the best of our knowledge, FastDiff is
the first diffusion model with a sampling speed comparable
to previous for the first time applicable to interactive, real-
world speech synthesis applications at a low computational
cost. FastDiff-TTS successfully simplify the text-to-speech
generation pipeline and outperform competing architectures.

2 Background: Denoising Diffusion
Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) [Ho et
al., 2020; Song et al., 2020a; Lam et al., 2022] are likelihood-
based generative models that have recently succeeded to ad-
vance the state-of-the-art results in benchmark generative
tasks [Dhariwal and Nichol, 2021] and have proved its ca-
pability to produce high-quality samples. The basic idea of
DDPMs is to train a gradient neural network for reversing a
diffusion process. Given i.i.d. samples {x0 ∈ RD} from
an unknown data distribution pdata(x0), DDPMs try to ap-
proximate pdata(x0) by a marginal distribution pθ(x0) =∫
· · ·

∫
p(xT )

∏T
t=1 pθ(xt−1|xt)dx1 . . . dxT .

In data distribution as q(x0), the diffusion process is de-
fined by a fixed Markov chain from data x0 to the latent vari-
able xT . For a small positive constant βt, a small Gaussian
noise is added from xt to the distribution of xt−1 under the
function of q(xt|xt−1). The whole process gradually con-
verts data x0 to whitened latents xT according to the fixed
noise schedule β1, · · · , βT . The reverse process is a Markov
chain from xT to x0 parameterized by a shared θ, which aims
to recover samples from Gaussian noises though eliminating
the Gaussian noise added in the diffusion process in each it-
eration.

It has been demonstrated that diffusion probabilistic mod-
els [Dhariwal and Nichol, 2021; Xiao et al., 2021] can learn
diverse data distribution in multiple domains, such as images
and time series. While the main issue with the proposed neu-
ral diffusion process is that it requires up to thousands of iter-
ative steps to reconstruct the target distribution during reverse
sampling. In this work, we offer a fast conditional diffusion
model to reduce reverse iterations and improve computational
efficiency.

3 FastDiff
This section presents our proposed FastDiff, a fast condi-
tional diffusion model for high-quality speech synthesis. We
first describe the motivation of the design in FastDiff. Sec-
ondly, we introduce the iterative refinement model θ for high-

quality speech synthesis and the noise predictor ϕ for accel-
erated sampling. Furthermore, we describe the training and
inference procedures in detail. At last, we extend FastDiff to
FastDiff-TTS for fully end-to-end text-to-speech syntheses.

3.1 Motivation
While denoising diffusion probabilistic models have shown
high potential in synthesizing high-quality speech samples
[Chen et al., 2020; Kong et al., 2020b; Liu et al., 2021],
several challenges remain for industrial deployment: 1) Dif-
ferent from the traditional generative models, diffusion mod-
els catch dynamic dependencies from noisy audio instead of
clean ones, which introduce more variation information (i.e,
noise levels) in addition to the spectrogram fluctuation. 2)
With limited receptive field patterns, a distinct degradation
could emerge when reducing the reverse iterations, making
diffusion models difficult to get accelerated. As a result, hun-
dred or thousand orders of iterations prevent existing diffu-
sion models from real-world deployment.

In FastDiff, we propose two key components to com-
plement the above issues: 1) FastDiff adopts a time-aware
location-variable convolution to catch the details of noisy
samples at dynamic dependencies. The convolution opera-
tions are conditioned on dynamic variations in speech includ-
ing diffusion steps and spectrogram fluctuations, equipping
the model with diverse receptive field patterns and promot-
ing the robustness of diffusion models during reverse accel-
eration. 2) To accelerate the inference procedure, FastDiff
adopts a noise schedule predictor to reduce the number of
reverse iterations, frees diffusion models from hundreds or
thousands of refinement iterations. This makes FastDiff for
the first time applicable to interactive, real-world applications
at a low computational cost.

3.2 Time-Aware Location-Variable Convolution
In comparison with traditional convolution networks,
location-variable convolution [Zeng et al., 2021] shows ef-
ficiency in modeling the long-term dependency of audio and
gets neural network free from a significant number of dilated
convolution layers. Inspired by this, we introduce the Time-
Aware Location-Variable Convolution, which is sensitive to
time steps in diffusion probabilistic models. At time step t,
we follow [Vaswani et al., 2017] to embed the step index into
an 128-dimensional positional encoding (PE) vector et:

et =
[
sin

(
10

0×4
63 t

)
, · · · , sin

(
10

63×4
63 t

)
,

cos
(
10

0×4
63 t

)
, · · · , cos

(
10

63×4
63 t

)]
,

In time-aware location-variable convolution, FastDiff re-
quires multiple predicted variation-sensitive kernels to per-
form convolutional operations on the associated intervals of
input sequence. These kernels should be time-aware and sen-
sitive to variations of noisy audio including diffusion steps
and acoustic features (i.e., Mel-spectrogram). Therefore, we
propose a time-aware location-variable convolution (LVC)
module, which is coupled with a kernel predictor as shown
in Figure 1(b) and Figure 1(c). We describe the overall calcu-
lations below.
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Figure 1: The overall architecture for FastDiff and FastDiff-TTS. The refinement model θ in FastDiff takes noisy audio xt as input and
computes ϵθ(xt|c, t) conditioned on diffusion time index t and Mel-spectrogram c. We use LReLU to denote the leaky rectified linear unit,
LVC to denote the location-variable convolution, FC to denote the fully-connected layer, and PE to denote the positional encoding operation.

For the q-th time-aware LVC layer, we split the input xt ∈
RD using a M -length window with 3q dilations to produce K
segments with each xk

t ∈ RM :

{x1
t , . . . ,x

K
t } = split(xt;M, q) (1)

Next, we perform convolutional operations on the associ-
ated intervals of input sequence using the kernels generated
by a kernel predictor α:

{Ft,Gt} = α(t, c) (2)

zk
t = tanh(Ft ∗ xk

t )⊙ σ(Gt ∗ xk
t ) (3)

zt = concat({z1
t , . . . ,z

K
t }), (4)

where Ft,Gt denote the filter and the gate kernels for xi
t,

respectively, ∗ denotes the 1d convolution, ⊙ denotes the
element-wise product and concat(·) denotes the concatena-
tion between vectors. Since the time-aware kernels are adap-
tive to the noise-level and dependent to the acoustic features,
FastDiff is capable of precisely estimating de-noising gradi-
ent with a superior speed given a noisy signal input.

3.3 Accelerated Sampling
Noise Predictor
To avoid sampling with hundreds to thousands steps, FastDiff
adopts the noise scheduling algorithm in the bilateral denois-
ing diffusion models (BDDMs) [Lam et al., 2022] to predict a
sampling noise schedule much shorter than the noise schedule
used in training. This scheduling method has been revealed
to be superior than other sampling acceleration methods, e.g.,
the grid search algorithm in WaveGrad [Chen et al., 2020]
and the fast sampling algorithm in DiffWave [Kong et al.,
2020b]. The noise predictor iteratively derives a continuous
noise schedule β̂ ∈ RTm . We attach the learning objective
and corresponding likelihood in Appendix A.

Schedule Alignment
In FastDiff, similar to DDPMs, during training we use T =
1000 discrete time steps. Therefore, when needed to con-
dition on t during sampling, we also need to approximate
Tm discrete time indices by aligning the Tm-step sampling

noise schedule β̂ to the T -step training noise schedule β, with
N << T . We have attached the detailed algorithms in Ap-
pendix C.

3.4 Training, Noise Scheduling and Sampling

All illustrated in Algorithm 1, we separately parameterize
FastDiff by two modules: 1) a iterative refinement model
θ that minimizes a variational bound of the score function,
and 2) a noise predictor ϕ that optimizes the noise schedule
for a tighter evidence lower bound. For inference, we first
derive the tighter and more efficient noise schedules β̂ via
an one-shot noise scheduling procedure, which makes Fast-
Diff achieve orders of magnitude faster at sampling. It has
been demonstrated [Lam et al., 2022] that the noise sched-
ule searched for as few as 1 sample could be robust enough
to maintain a high-quality generation among all samples in
testing set. Secondly, we map the continuous noise sched-
ules to discrete time indexes Tm using schedule alignment.
Finally, FastDiff iteratively refines gaussian noise to generate
high-quality samples with computational efficiency. The de-
tailed information on training, noise scheduling and inference
procedures has been presented in Appendix C.3.

3.5 FastDiff-TTS

Existing text-to-speech methods usually adopt a two-stage
pipeline: 1) A text-to-spectrogram generation module (a.k.a.
acoustic model) aims to generate prosodic attributes accord-
ing to variance prediction; 2) A conditional waveform gen-
eration module (a.k.a. vocoder) adds the phase informa-
tion and synthesizes a detailed waveform. To further sim-
plify the text-to-speech synthesis pipeline, we propose a fully
end-to-end model FastDiff-TTS, which does not require in-
termediate features or specialized loss functions. FastDiff-
TTS is designed to be a fully differentiable and efficient ar-
chitecture that directly produces waveforms from contexts
(e.g. phonemes) without needing to generate acoustic fea-
tures (e.g., Mel-spectrograms) explicitly.



Algorithm 1 Training refinement network θ

1: Input: Pre-defined noise schedule β
2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I), and t ∼

Unif({1, · · · , T})
4: xt = αtx0 +

√
1− α2

t ϵ

5: Take gradient descent steps on ∇θ ∥ϵ− ϵθ (xt|c, t)∥22
6: until refinement model θ converged

Algorithm 2 Training noise predictor ϕ

1: Input: Pre-defined discrete β, trained refinement net-
work θ, hyperparameter τ .

2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I), and t ∼

Unif({τ, · · · , T − τ})
4: xt = αtx0 +

√
1− α2

t ϵ

5: β̂t = min
{
1− α2

t , 1−
α2

t+τ

α2
t

}
ϕ(xt)

6: Take gradient descent steps on

∇ϕ

{
δ2t

2(δ2t−β̂t)

∥∥∥ϵ− β̂t

δ2t
ϵθ (xt|c, t)

∥∥∥2
2

}
7: until noise predictor ϕ converged

Architecture
The architecture design of FastDiff-TTS refers to a convec-
tional non-autoregressive text-to-speech model – FastSpeech
2 [Ren et al., 2020] as the backbone. The architecture of
FastDiff-TTS is illustrated in Figure 1(d). In FastDiff-TTS,
the encoder first converts the phoneme embedding sequence
into the phoneme hidden sequence. Then, the duration pre-
dictor expands the encoder output to match the length of
the desired waveform output. Given the aligned sequence,
the variance adaptor adds pitch information into the hid-
den sequence. Note that it is difficult to use the full audio
corresponding to the full text sequence for training due to
the typically high sampling rate for high-fidelity waveform
(i.e., 24,000 samples per second) and the limited GPU mem-
ory. Therefore, we sample a small segment to synthesize the
waveform before passing to the FastDiff model. Finally, the
FastDiff model decodes the adapted hidden sequence into a
speech waveform as in the vocoder task.

Training Loss
FastDiff-TTS does not require specialized loss functions and
adversarial training to improve sample quality as suggested
by the previous works [Ren et al., 2020; Donahue et al., 2020;
Kim et al., 2021]. This, to a large extend, simplifies the text-
to-speech generation. The final training loss consists of the
following terms: 1) a duration prediction loss Ldur: the mean
squared error between the predicted and the ground-truth
word-level duration in log-scale, 2) a diffusion loss Ldiff: the
mean squared error between the estimated and gaussian noise,
and 3) a pitch reconstruction loss Lpitch: the mean squared
error between the predicted and the ground-truth pitch se-
quences. We empirically found that the pitch reconstruction
loss Lpitch is helpful for handling the one-to-many mapping

Algorithm 3 Sampling

1: Input: Searched β̂ in noise scheduling process.
2: Compute discrete steps Tm sequences via schedule align-

ment in Section 3.3.
3: Sample xTm

∼ N (0, I)
4: for t = Tm, · · · , 1 do
5: Sample xt−1 ∼ pθ(xt−1|xt; β̂)
6: end for
7: return x0
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Figure 2: Conditional Diffusion Model for Speech Synthesis

issue in text-to-speech generation.

4 Related Works
Text-to-speech (TTS) systems aim to synthesize raw speech
waveforms from given text. In recent years, Neural network
based TTS [Ren et al., 2020; Kim et al., 2020; Liu et al.,
2021] has made huge progress and attracted a lot of attention
in the machine learning and speech community.

Neural vocoder plays the most important role in the recent
success of speech synthesis, which require diverse receptive
field patterns to catch audio dependencies: 1) autoregressive
model WaveNet [Oord et al., 2016] requires causal convo-
lutions layers and large filters to increase the receptive field
while suffering from slow inference speed. 2) Flow-based
generative models [Prenger et al., 2019] fully utilize mod-
ern parallel computing processors to broaden corresponding
receptive fields and speed-up sampling, while they usually
achieve a limited sample quality. 3) Generative adversarial
networks (GANs) [Jang et al., 2021; Kong et al., 2020a] are
one of the most dominant deep generative models in audio
generation. UnivNet [Jang et al., 2021] has demonstrated its
success in using local-variable convolution on different wave-
form intervals, and HIFI-GAN [Kong et al., 2020a] proposes
multi-receptive field fusion (MRF) to model the periodic pat-
terns matters. However, GAN-based models are often diffi-
cult to train, collapsing [Creswell et al., 2018] without care-
fully selected hyperparameters and regularizers, and showing
less sample diversity. 4) Recently proposed diffusion models
Diffwave [Kong et al., 2020b] and WaveGrad [Chen et al.,
2020] could generate high-quality speech samples, while suf-
fering from a distinct degradation when reducing reverse it-
erations, making diffusion models difficult to get accelerated.
Different from vocoders mentioned above, FastDiff improves
the robustness of conditional diffusion model by catching the
details of noisy samples at dynamic dependencies, and re-
duces reverse iterations with predicted noise schedule. The
proposed conditional diffuion model allows the high-quality
speech synthesis with computational efficiency.



Another important line of work covers directly waveform
generation from text: FastSpeech 2s [Ren et al., 2020] and
VITS [Kim et al., 2021] adopt adversarial training process
and spectral losses for improving audio quality, while they
do not take full advantage of end-to-end training. Recently
proposed WaveGrad 2 [Chen et al., 2021] estimates the gra-
dient of the log conditional density of the waveform given a
phoneme sequence, but suffers from a large model footprint
and slow inference. Unlike all of the aforementioned meth-
ods, as highlighted in section 3.5, FastDiff-TTS is a fully
differentiable and efficient architecture that produces wave-
forms directly without generating middle features (e.g., spec-
trograms) explicitly. In additional, our diffuion probabilistic
model gets free from hundred or thousands of iterations and
enjoy computational efficiency.

5 Experiments
5.1 Setup
Dataset
For a fair and reproducible comparison against other compet-
ing methods, we used the benchmark LJSpeech dataset [Ito,
2017]. LJSpeech consists of 13,100 audio clips of 22050
Hz from a Female speaker with about 24 hours in total. To
evaluate the generalization ability of our model over unseen
speakers in multi-speaker scenarios, we also used the VCTK
dataset [Yamagishi et al., 2019], which was downsampled to
22050 Hz to match the sampling rate with the LJSpeech dat-
set. VCTK consists of approximately 44,200 audio clips ut-
tered by 109 native English speakers with various accents.
For both datasets, we used 80-band Mel-spectrograms as the
condition for the vocoding task. The FFT size, window size,
and hop size were, respectively, set to 1024, 1024, and 256.

Model Configurations
FastDiff mainly consists of the refinement model θ and
noise schedule predictor ϕ. The refinement model θ com-
prises three Diffusion-UBlock and DBlock with the upsam-
ple or downsample rate of [8, 8, 4], respectively. We adopt a
lightweight GALR network effective in separating the added
gaussian noise from audio as the noise schedule predictor ϕ.
For end-to-end text-to-speech generation, FastDiff-TTS fol-
lows the basic structure in FastSpeech 2 [Ren et al., 2020],
which consists of 4 feed-forward transformer blocks in the
phoneme encoder. More details have been attached in the
Appendix B.

Training and Evaluation
The complete training pipeline has been illustrated in Al-
gorithm 1: FastDiff was trained with constant learning rate
lr = 2 × 10−4. The refinement model θ and noise predictor
ϕ were trained for 1M and 10K steps until convergence, re-
spectively. FastDiff-TTS was trained until 500k steps using
the AdamW optimizer with β1 = 0.9, β2 = 0.98, ϵ = 10−9.
Both models were trained on 4 NVIDIA V100 GPUs using
random short audio clips of 16,000 samples from each utter-
ance with a batch size of 16 each GPU. More details have
been attached in the Appendix C.

We crowd-sourced 5-scale MOS tests via Amazon Me-
chanical Turk to evaluate the audio quality. The MOS scores

were recorded with 95% confidence intervals (CI). Raters lis-
tened to the test samples randomly, where they were allowed
to evaluate each audio sample once. We further include addi-
tional objective evaluation metrics including STOI and PESQ
to test sample quality. To evaluate the sampling speed, we
implemented real-time factor (RTF) accessment on a single
NVIDIA V100 GPU. In addition, we employed two met-
rics NDB and JSD to explore the diversity of generated mel-
spectrograms. More information about both objective and
subjective evaluation has been attached in Appendix D.

5.2 Comparsion with other models
We compared our FastDiff in audio quality, diversity,
and sampling speed with competing models, including 1)
WaveNet [Oord et al., 2016], the autoregressive genera-
tive model for raw audio. 2) WaveGlow [Prenger et al.,
2019], non-autoregressive flow-based model. 3) HIFI-GAN
V1 [Kong et al., 2020a] and UnivNet [Jang et al., 2021],
the most dominant and popular GAN-based models. 4)
Diffwave [Kong et al., 2020b] and WaveGrad [Chen et
al., 2020], recently proposed diffusion probabilistic models
which achieve state-of-the-art in speech synthesis. For easy
comparison, the results are compiled and presented in Ta-
ble 1, and we have the following observations:

In terms of audio quality, FastDiff achieved the highest
MOS with a gap of 0.24 compared to the ground truth au-
dio, and it matched the performance of the autoregressive
WaveNet baseline and outperformed the non-autoregressive
baselines. For objective evaluation, FastDiff also demon-
strated a large improvement in PESQ and STOI. For infer-
ence speed, with the efficient noise schedules searched by
noise predictor, FastDiff could generate high-quality speech
samples within as few as 4 reverse steps, significantly reduc-
ing the inference time compared with competing diffusion ar-
chitectures. To the best of our knowledge, FastDiff makes
diffusion models for the first time applicable to interactive,
high-quality real-world speech synthesis at a low computa-
tional cost. In terms of sample diversity, we can see that Fast-
Diff still witnessed a gap from autoregressive WaveNet, but
it achieve a higher variety for generated speeches than non-
autoregressive baselines. More detailed evaluation on sample
diversity has been attached in Appendix F.

5.3 Ablation study
We conducted ablation studies to demonstrate the effective-
ness of several designs in FastDiff, including the time-aware
location variable convolution and noise predictor in neural
vocoding. The results of both subjective and objective evalua-
tions have been presented in Table 3, and we have the follow-
ing observations: 1) Replacing time-aware location-variable
convolution by traditional convolutional operations causes a
distinct degradation in sampling speed and perceptual quality.
2) Using grid search instead of the noise predictor to search
schedules had witnessed the decreased audio quality, demon-
strating that the noise schedule prediction process provides
more efficient reverse sampling without sacrificing quality.

Further, we compare two variants of FastDiff to test the
modality differences of diffusion condition (i.e., continuous
noise-level or discrete time-step). Note that the former model



Model Quality Speed Diversity
MOS (↑) STOI (↑) PESQ (↑) RTF (↓) NDB (↓) JSD (↓)

GT 4.52±0.09 / / / / /

WaveNet (MOL) 4.20±0.06 / / 85.230 33 0.002
WaveGlow 3.89±0.07 0.961 3.16 0.029 66 0.014
HIFI-GAN 4.08±0.08 0.956 3.28 0.002 72 0.010
UnivNet 4.13±0.09 0.971 3.45 0.002 68 0.013

Diffwave (6 steps) 4.18±0.08 0.966 3.62 0.093 72 0.007
WaveGrad (50 steps) 4.09±0.07 0.911 2.70 0.390 61 0.008

FastDiff (4 steps) 4.28±0.07 0.976 3.71 0.017 49 0.006

Table 1: Comparison with other nerual vocoders in terms of quality, synthesis speed and sample
diversity. For sampling, we used 50 steps in WaveGrad and 6 steps in DiffWave, respectively.

Model MOS

GT 4.37±0.06

WaveNet (MOL) 4.01±0.08
WaveGlow 3.66±0.08
HIFI-GAN 3.74±0.06
UnivNet 3.85±0.07

Diffwave (6 steps) 3.90±0.07
WaveGrad (50 steps) 3.72±0.06

FastDiff (4 steps) 4.10±0.06

Table 2: Comparison with other
neural vocoders of synthesized ut-
terances for unseen speakers.

Model MOS (↑) STOI(↑) PESQ (↑) RTF (↓)

GT 4.52±0.09 / / /

w/o Time-aware LVC 4.08±0.05 0.971 3.45 0.081
w/o Noise Predictor 4.10±0.06 0.968 3.50 0.033

Continuous, 4 steps 4.09±0.08 0.970 3.37 0.015
Continuous, 1000 steps 4.14±0.07 0.980 3.64 3.80

Discrete, 4 steps 4.28±0.07 0.976 3.71 0.017
Discrete, 1000 steps 4.36±0.08 0.989 3.86 4.70

Table 3: Ablation study results. Comparison of the effect of each com-
ponent in terms of quality and synthesis speed.

Model MOS

GT 4.52±0.09
GT(voc.) 4.28±0.07
Cascaded 4.13±0.07

FastSpeech 2s 3.94±0.06
WaveGrad 2 3.68±0.09

FastDiff-TTS 4.03±0.09

Table 4: Comparison with other text-to-
speech models in terms of quality.

does not require the schedule alignment process mentioned in
Section 3.3. We empirically find that the FastDiff model con-
ditioned on discrete time steps could synthesize samples with
higher quality, demonstrating that learning proposed FastDiff
with discrete diffusion times could be a better choice. More
information on the variant of FastDiff extended to continuous
noise schedules has been attached in Appendix E

5.4 Generalization to unseen speakers
We used 50 randomly selected utterances of 5 unseen speak-
ers in the VCTK dataset that were excluded from the training
set for the MOS test. Table 2 shows the experimental results
for the mel-spectrogram inversion of the unseen speakers: In
summary, we noticed that FastDiff achieved state-of-the-art in
terms of audio quality for out-of-domain generalization, indi-
cating that FastDiff could universally generate high-fidelity
audio from entirely new (unseen) speakers outside the train
set.

5.5 End-to-End Text-to-Speech
To demonstrate the robustness of the proposed model in
end-to-end text-to-speech synthesis, we compare FastDiff-
TTS with other neural TTS systems, including 1) GT, the
ground truth audio; 2) GT (voc.), where we first convert the
ground truth audio into mel-spectrograms, and then convert
the mel-spectrograms back to audio using FastDiff; 3) Por-
taSpeech [Ren et al., 2021] + FastDiff: vocoder cascaded
with mel-spectrogram generation using the most popular non-
autoregressive TTS models; 4) FastSpeech 2s [Ren et al.,
2020]: the extension of FastSpeech 2 to fully end-to-end text-
to-waveform generation with multi-task learning; 5) Wave-
Grad 2 [Chen et al., 2021]: a diffusion probabilistic model

to generate waveforms via gradient estimation. The results
are shown in Table 4: FastDiff-TTS could surpass compet-
ing end-to-end speech synthesis models and match the voice
quality of the state-of-the-art cascaded TTS systems, demon-
strating that FastDiff-TTS is efficient in simplifying the over-
all text-to-speech synthesis pipeline.

6 Conclusion
In this work, we proposed FastDiff, a fast conditional diffu-
sion model for high-quality speech synthesis. FastDiff em-
ployed a stack of time-aware location-variable convolutions
with diverse receptive field patterns to model long-term time
dependencies with adaptive conditions. A noise predictor was
further adopted to derive tighter schedules for reducing re-
verse iterations without distinct quality degradation. The ex-
tension model FastDiff-TTS discarded intermediate features
(e.g., spectrograms) and simplified the end-to-end text-to-
waveform syntheses pipeline. Experimental results demon-
strated that our proposed model outperformed the best pub-
licly available models in terms of synthesis quality, even com-
parable to the human level. Moreover, FastDiff showed a
significant improvement in synthesis speed, which required
as few as 4 iterations to generate high-quality samples. To
the best of our knowledge, FastDiff made diffusion models
for the first time applicable to interactive, real-world speech
generation with a low computational cost. In addition, Fast-
Diff performed strong robustness and enjoyed high-quality
synthesis in out-of-domain generalization to unseen speak-
ers. We will release our code and pre-trained models in the
future, and we envisage that our work could serve as a basis
for future speech synthesis studies.
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A Diffusion Probabilistic models
Given i.i.d. samples {x0 ∈ RD} from an unknown data
distribution pdata(x0). In this section, we introduce the
theory of diffusion probabilistic model [Ho et al., 2020;
Lam et al., 2022; Song et al., 2020a; Song et al., 2020b].
First, we present diffusion and reverse process given by
denoising diffusion probabilistic models (DDPMs), which
could be used to learn a model distribution pθ(x0) that ap-
proximates pdata(x0). Secondly, we introduce the recently
proposed bilateral denoising diffusion models (BDDMs) and
its tighter evidence lower bound (ELBO) for acceleration.

Diffusion process Similar as previous work [Ho et al.,
2020; Lam et al., 2022; Song et al., 2020a], we define the
data distribution as q(x0). The diffusion process is defined
by a fixed Markov chain from data x0 to the latent variable
xT :

q(x1, · · · ,xT |x0) =

T∏
t=1

q(xt|xt−1), (5)

For a small positive constant βt, a small Gaussian noise is
added from xt to the distribution of xt−1 under the function
of q(xt|xt−1).

The whole process gradually converts data x0 to whitened
latents xT according to the fixed noise schedule β1, · · · , βT .

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (6)

Efficient training is optimizing a random term of t with
stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ (αtx0 +
√
1− α2

t ϵ

)
− ϵ

∥∥∥∥2
2

, ϵ ∼ N (0, I) (7)

Reverse process Unlike the diffusion process, reverse pro-
cess is to recover samples from Gaussian noises. The reverse
process is a Markov chain from xT to x0 parameterized by
shared θ:

pθ(x0, · · · ,xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (8)

where each iteration eliminate the Gaussian noise added in
the diffusion process:

p(xt|xt−1) := N (xt−1;µθ(xt, t), σθ(xt, t)
2I) (9)

Acceration Recently, Bilateral denoising diffusion models
(BDDMs) [Lam et al., 2022] demonstrates its tighter evi-
dence lower bound (ELBO) for noise schedule prediction.
Given a leaned diffusion network θ, a scheduling network ϕ
could be applied in reducing the gap between the proposed
surrogate objective. To be more specific, instead of using the
fixed one in diffusion process, a much more efficient N-step
noise schedule (i.e., β̂) could be derived by the well-leaned
noise scheduling network ϕ. The noise schedule could be ap-
plied in reverse process, making it possible to explicitly trade-
off between inference computation and output quality in one
model.

For learning the noise schedule predictor ϕ, we apply the
loss function as a KL divergence term between the forward
and the reverse distribution:

Lϕ = 1
2(1−βt−α2

t )
∥
√
1− α2

t ϵt −
βt√
1−α2

t

ϵθ(xt, αt)∥22 + Ct

(10)
where Ct =

1
4 log

1−α2
t

βt
+ D

2 (
βt

1−α2
t
−1) is a constant that can

be ignored during training.

B Model Architectures

B.1 FastDiff

As illustrated in Table 5, we list the hyper-parameters of Fast-
Diff. We further visualize the detailed architectures of the
noise predictor and DBlock in the refinement model in Fig-
ure 3.

Hyperparameter FastDiff
Refinement Model θ
DBlock Hidden Channels 32
DBlock Downsample Ratios [4, 8, 8]
Diffusion UBlock Hidden Channels 32
Diffusion UBlock Upsample Ratios [8, 8, 4]
Time-aware LVC layers Each Block 4
Time-aware LVC layers Kernel Size 256
Diffusion Kernel Predictor Hidden Channels 64
Diffusion Kernel Predictor Kernel Size 3
Diffusion Embedding Input Channels 128
Diffusion Embedding Output Channels 512
Use Weight Norm True

Total Number of Parameters 13M

Noise Predictor ϕ
Window Length 8 Samples
Segment Size 64
Number of GALR Blocks 2
GALR Blocks Hidden Channels 128

Total Number of Parameters 0.5M

Table 5: Architecture hyperparameters of FastDiff.

B.2 FastDiff-TTS

In this section, we list the model hyper-parameters of
FastDiff-TTS in Table 5.
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Figure 3: The details of network architectures. Left: The GALR-block based noise predictor ϕ. Right: DBlock in FastDiff θ

Hyperparameter FastDiff-TTS
Phoneme Embedding Dimension 256
Pre-net Layers 3
Pre-net Hidden 256
Encoder Layers 4
Encoder Hidden 256
Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024
Encoder Attention Heads 2
Encoder/Decoder Dropout 0.1
Variance Predictor Conv1D Kernel 3
Variance Predictor Conv1D Filter Size 256
Variance Predictor Dropout 0.5
FastDiff wave decoder Follow Table 5

Total Number of Parameters 40M

Table 6: Architecture hyperparameters of FastDiff-TTS.

C Training, Noise scheduling and Inference
details

C.1 Diffusion hyperparameters
We list the diffusion hyper-parameters of FastDiff and
FastDiff/FastDiff-TTS in Table 7.

Diffusion Hyperparameter
Noise Scheduling
τ = 200, α̂t = 0.54, β̂t = 0.70, N = 4

Training and Sampling
Pre-defined (T = 1000):
β = Linear(1× 10−6, 0.005, 1000)
Grid Search (Tm = 4) derived:
β̂ = [3.6701e−7, 1.7032e−5, 7.908e−4, 7.6146e−1]
Noise Predictor (Tm = 4) derived:
β̂ = [3.2176e−4, 2.5743e−3, 2.5376e−2, 7.0414e−1]

Table 7: Diffusion hyperparameters of FastDiff and FastDiff-TTS.

C.2 Noise Scheduling
Our noise scheduling algorithm mainly follows the bilateral
denoising diffusion models [Lam et al., 2022]:

Algorithm 4 Noise scheduling process

1: Input: Pre-defined discrete β, trained refinement net-
work θ, hyperparameter N, α̂t, β̂t.

2: for t = N, · · · , 2 do
3: Sample xt−1 ∼ pθ(xt−1|xt)
4: α̂t−1 = α̂t√

1−β̂t

5: β̂t−1 = min
{
1− α̂2

t−1, β̂t

}
ϕ (x̂t−1)

6: if β̂t−1 < β1 then
7: return β̂t, . . . , β̂N

8: end if
9: end for

10: return β̂t, . . . , β̂N

C.3 Schedule Alignment
Here we search and interpolate αs between two training noise
constants lt and lt+1, enforcing αs to get closed to lt. In the
end, we gain the well-mapped diffusion step tm:

Firstly we compute the corresponding constants respective
to diffusion and reverse process:

lt =

t∏
i=1

√
1− βi, αs =

s∏
i=1

√
1− β̂i (11)

Here we search and interpolate αs between two training
noise constants lt and lt+1, enforcing αs to get closed to lt.
In the end, we gain the well-mapped diffusion step tm:

tm = t+
lt − αs

lt − lt+1
if αs ∈ [ lt+1, lt ]. (12)

Where integer t represents a single pre-defined diffusion
step, and s presents a single step of noise schedule obtained
through the scheduling process. Given these two schedules
mentioned above, we could conduct schedule alignment and
derive the floating-point tm for much more efficient reverse
sampling.

D Evaluation Matrix
D.1 PESQ and STOI
Perceptual evaluation of speech quality (PESQ) [Rix et
al., 2001] and The short-time objective intelligibility



Figure 4: Screenshot of MOS testing.

(STOI) [Taal et al., 2010] assesses the denoising quality for
speech enhancement.

D.2 NDB and JSD
Number of Statistically-Different Bins (NDB) and Jensen-
Shannon divergence (JSD). They measure diversity by 1)
clustering the training data into several clusters, and 2) mea-
suring how well the generated samples fit into those clusters.

D.3 Details in MOS Evaluation
All our Mean Opinion Score (MOS) tests are crowd-sourced
and conducted by native speakers. The scoring criteria has
been included in Table 8 for completeness. The samples are
presented and rated one at a time by the testers, each tester is
asked to evaluate the subjective naturalness of a sentence on
a 1-5 Likert scale. The screenshots of instructions for testers
are shown in Figure 4. We paid $8 to participants hourly and
totally spent about $750 on participant compensation.

Rating Naturalness Definition

1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions

Table 8: Ratings that have been used in evaluation of speech natu-
ralness of synthetic and ground truth samples.

E Extension to Continuous Condition
Our ablation study extends FastDiff to be conditioned on
continuous noise levels and compares it to the basic model
with the discrete condition. To be more specific, the Fast-
Diff model conditioned on continuous noise levels does not
require an additional schedule alignment process, which has
a separated training and sampling procedure:

Algorithm 5 Training refinement network θ (Continuous
Condition)

1: Input: Pre-defined noise schedule l
2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I), and t ∼

Unif({1, · · · , T})
4: αs ∼ Uniform (αt−1, αt)
5: xs = αsx0 + δsϵ
6: Take gradient descent steps on ∇θ ∥ϵ− ϵθ (xs, αs)∥22
7: until iterative refinement model θ converged

Algorithm 6 Sampling

1: Input: Pre-defined β, T and β̂ derived in noise schedul-
ing process.

2: for t = T, · · · , 1 do
3: Sample xt−1 ∼ pθ(xt−1|xt)
4: end for
5: return x0

F Sample Diversity
Previous works [Dhariwal and Nichol, 2021; Xiao et al.,
2021] in the image generation task has demonstrated that dif-
fusion probabilistic model outperforms GAN in sample di-
versity, while the comparison in the speech domain is rel-
atively overlooked. Similarly, we can intuitively infer that
diffusion probabilistic models are good at generating high-
fidelity diverse speech samples. To verify our hypothesis, we
employed two metrics NDB and JSD to explore the diversity
of generated mel-spectrograms. As shown in Table 1, we can
see that diffusion probabilistic model achieve a higher JSD
and matching NDB score for generated speeches compare to
GAN-based model, which is expected for the following rea-
sons:

1) It is well-known that the mode collapse prob-
lem [Creswell et al., 2018] appears in the dominated GAN-
based generative models, which leads to very similar output
samples from a single or few modes of the distribution, espe-
cially in the strongly conditional generation task. 2) In con-
trast, diffusion probabilistic model is meant to reduce mode
collapse compared to one-shot generation. It breaks the gen-
eration process into several conditional denoising diffusion
steps in which each step is relatively simple to model. Thus,
we expect our model to exhibit better training stability and
mode coverage.
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