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Abstract

Partial observability remains a core challenge in cooperative multi-agent reinforce-
ment learning (MARL), often causing poor coordination and suboptimal policies.
We show that state-of-the-art methods fail even in simple settings under partial
observability. To address this, we propose LIMARL, a latent-inference frame-
work that augments centralized training with decentralized execution (CTDE) via
structured latent representations. LIMARL integrates (i) a state representation
module that learns compact global state embeddings, and (ii) a recurrent inference
module that enables agents to recover these embeddings from local histories. We
provide theoretical analysis on sufficiency and robustness under partial observ-
ability. Empirically, LIMARL outperforms strong baselines in diagnostic tasks
and challenging SMAC and SMACv2 scenarios, demonstrating better performance
and faster convergence. Our results highlight latent inference as an effective and
scalable solution for partially observable MARL. An implementation of LIMALR
is available at https://github.com/salmakh1/LIMARL.

1 Introduction

Reinforcement Learning (RL) provides a framework for sequential decision-making via interaction
with an environment to maximize long-term reward [39]. Multi-Agent RL (MARL) extends this
framework to settings involving multiple autonomous agents, where coordination and partial ob-
servability introduce fundamental challenges. MARL has driven advances across diverse domains,
including autonomous driving [36, 29, 6, 49], dynamic ride sharing [1, 14], collaborative robotics
[47], distributed resource management [26, 3], and traffic engineering [11]. By learning adaptive
policies through interaction, MARL offers a scalable and principled approach to multi-agent systems.

A wide range of MARL methods have emerged to address coordination and scalability. Fully cen-
tralized approaches are limited by communication and scalability constraints [2], while independent
learning, though scalable, suffers from instability due to non-stationarity. Therefore, Centralized
Training with Decentralized Execution (CTDE) has become the dominant paradigm, leveraging
global information during training while maintaining decentralized execution.

Within CTDE, key methods include Value Decomposition Networks (VDN) [38] and QMIX [32],
which decompose joint value functions to enable tractable learning. Extensions improve expressive-
ness via advantage-based decomposition [43], adaptive weighting [30], or attention mechanisms
[42, 45]. However, partial observability remains a central challenge: during execution, agents
generally lack access to the global state and must act based on local, noisy observations.
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To highlight the challenges current MARL methods face under partial observability, we introduce
a simple yet revealing two-agent, three-state matrix game (Figure 1). Despite its simplicity, this
setting exposes fundamental limitations in existing approaches, which fail to learn the optimal policy.
Motivated by this, we propose a novel method within the CTDE framework that directly tackles
partial observability through explicit latent state learning and inference.

Unlike prior work that relies on full-state access during training to learn mixing functions, our method
introduces a structured latent inference mechanism. We augment CTDE with two components: (1)
a State Representation Module (SRM) that encodes global states into compact latent embeddings,
and (2) a Recurrent Observation-to-Latent Inference Module (ROLIM) that infers these embeddings
from local action-observation histories. During training, SRM supervises ROLIM via an alignment
loss to ensure inferred latents capture essential state information. During execution, agents use
ROLIM to infer latent states, which are then combined with local observations to estimate utilities,
enabling more effective decision-making under partial observability. By modeling latent dynamics,
our approach reduces uncertainty and improves policy learning under partial observability.

We evaluate our method on diagnostic tasks and standard cooperative multi-agent benchmarks,
demonstrating strong performance across diverse scenarios. Results show significant improvements
over existing methods. These findings highlight the potential of integrating representation learning and
recurrent inference with MARL to address partial observability and enable more effective systems.

The main contributions are as follows:

(1) A latent inference framework for MARL under partial observability: We propose LIMARL,
a method that unifies self-supervised state representation learning and recurrent latent inference from
local agent histories, within the CTDE paradigm. This enables agents to approximate global state
information during decentralized execution.

(2) Theoretical guarantees for decentralized latent-based control: We show that LIMARL
preserves optimality under bounded reconstruction error, enables globally optimal coordination via
decentralized greedy policies with monotonic mixing, and maintains stable utility estimates under
latent inference errors.

(3) Comprehensive empirical validation across cooperative benchmarks: We evaluate LIMARL
on both diagnostic tasks and complex SMAC and SMACv2 scenarios, demonstrating improved or
competitive performance compared to recent baselines.

2 Background

2.1 Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

In this paper, we consider a fully cooperative multi-agent task modeled as a Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) [27]. A Dec-POMDP is formally defined as
G = ⟨N ,S,A, P,Ω,O, r, γ⟩, where N ≜ {1, . . . , n} represents a finite set of agents, and S is the
set of global states of the environment. Each agent can choose from a finite set of actions A, and
the state transition probability P (s′|s,a) determines the likelihood of transitioning from state s to
state s′ given the joint action a ∈ An. The set of observations for each agent is denoted by Ω, with
O(oi|s, ai) specifying the probability of agent i observing oi given state s and its action ai ∈ A. The
reward function r(s,a) is shared among all agents, and γ ∈ [0, 1) represents the discount factor.

At each time step, each agent i ∈ N observes oi ∈ Ω and selects an action ai from its action space.
The joint action a induces a transition to the next state s′ ∼ P (·|s,a), and a global reward r(s,a) is
received. Due to partial observability, each agent i maintains an action-observation history τ i ∈ T ≡
(Ω ×A)∗ and constructs its individual policy πi(a|τ i). The objective is to find a joint policy π =
⟨π1, . . . , πn⟩ that maximizes the expected joint value function: V π(s) = E [

∑∞
t=0 γ

trt | s0 = s,π] .
The joint action-value function is given by: Qπ(s,a) = r(s,a) + γEs′ [V π(s′)] .

2.2 Centralized Training with Decentralized Execution (CTDE)

Learning optimal policies in the Dec-POMDP framework is challenging due to non-stationarity and
limited information available to each agent. CTDE has emerged as a promising paradigm for MARL,
especially in cooperative settings [38, 32, 37, 45, 43]. CTDE allows agents to share information
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during training to facilitate centralized decision-making, while during execution, agents operate using
only their local observations and action histories.

A key principle in value-based CTDE is the Individual-Global-Max (IGM) [37], which ensures
consistency between joint and individual action-value functions. The IGM principle mandates that the
joint greedy action selection under the joint action-value function Qtot(τ ,a), where τ represents the
joint histories of all agents, aligns with individual greedy selections under the individual action-value
functions {Qi(τ

i, ai)}ni=1, as expressed:

∀τ ∈ T n, argmax
a∈An

Qtot(τ ,a) =
(
argmax
ai∈A

Qi(τ
i, ai)

)n
i=1

.

To achieve this, factorization structures are employed to decompose the joint action-value function.
Popular approaches include: VDN [38], which represent the joint action-value as a sum of individual
action-values: QVDN

tot (τ ,a) =
∑n
i=1 Qi(τ

i, ai). QMIX [32], which enforces a monotonic relationship
between the joint and individual action-values: ∀i ∈ N , ∂Qtot(τ ,a)

∂Qi(τ i,ai) > 0. However, both VDN
and QMIX enforce sufficient but not necessary conditions for the IGM constraint, limiting their
expressiveness [24]. Extensions such as Qatten [45] integrate multi-head attention mechanisms [42].
In contrast, QTRAN [37] reformulates IGM as a linear condition and applies it as a soft regularization
term. W-QMIX [30] introduces weighting mechanisms to emphasize high-quality joint actions.

2.3 Deep Multi-Agent Q-Learning in Dec-POMDP

Q-learning algorithms are widely used for optimizing joint action-value functions in value-based
MARL. The optimal joint action-value function is defined as:

Q∗(s,a) = r(s,a) + γEs′
[
max
a′

Q∗(s′,a′)

]
.

Deep Q-learning approximates the action-value function using a neural network parameterized by θ
[25, 41, 10]. In the Dec-POMDP setting, Q(τ ,a;θ) replaces Q(s,a;θ) due to partial observability,
and is often decomposed into local utilities, as discussed in Section 2.2. The parameters θ are learned
by minimizing the expected temporal difference (TD) error:

L(θ) = E(τ ,a,r,τ ′)∈D

[(
r + γV (τ ′;θ−)−Q(τ ,a;θ)

)2]
,

where V (τ ′;θ−) = maxa′ Q(τ ′,a′;θ−) is the TD target, and θ− are the parameters of the target
network, updated periodically with θ. Replay memory D is used to store transitions (τ ,a, r, τ ′).

3 Related Work

3.1 Multi-Agent Reinforcement Learning

CTDE is a widely adopted framework in cooperative MARL [31, 23]. It facilitates coordination
through centralized joint value estimation [4], while enabling efficient decentralized execution [40].
Actor-critic methods that leverage a centralized critic to guide decentralized policies, including RIIT
[17], have demonstrated notable effectiveness [23, 9, 17]. Variants of PPO [35], including IPPO [5],
MAPPO [46], and HAPPO [22], have further improved coordination in complex tasks.

Value-based methods within CTDE have evolved primarily by factorizing global value functions
into individual utilities. Early linear approaches (VDN [38]) were succeeded by nonlinear mixing
networks (QMIX [32]) and richer Individual-Global-Max (IGM) principles (QTRAN [37]). Further
enhancements included attention mechanisms (Qatten [45]), monotonicity constraints on advantage
values (QPLEX [43]), and relaxed weighting schemes (Weighted QMIX [30]).

To address partial observability, many approaches have adopted explicit inter-agent communication
[40]. However, these methods face limitations in practice, including applicability, unreliability, cost,
and scalability concerns, highlighting the necessity for communication-free alternatives.

Despite advances, popular CTDE methods typically rely on local observations and temporal-difference
signals, without explicitly modeling the underlying latent environmental states. This often results
in suboptimal representations under severe partial observability. Our method addresses this gap by
explicitly incorporating recurrent, self-supervised representation learning to robustly infer latent
states, significantly enhancing local utility estimations and overall value decomposition.

3



3.2 Representation Learning in Reinforcement Learning

Representation learning has played a pivotal role in advancing single-agent reinforcement learning,
particularly through world models that utilize variational autoencoders (VAEs) and recurrent networks
[16] to encode and predict future observations [13]. However, extending these approaches to MARL
presents unique challenges. MARL settings exhibit severe partial observability and inherent non-
stationarity due to the co-adaptation of agents, making it difficult to infer even the current state.

Recent efforts have sought to adapt representation learning to multi-agent settings. PAC [48]
introduces variational encodings for counterfactual prediction, improving value factorization. Grover
et al.[12] and Igl et al.[18] propose using Gaussian embeddings and recurrent VAE-based models
to manage uncertainty and partial observability. Papoudakis et al. [28] develop inference models
that explicitly reason about opponent strategies. COLA [44] learns decentralized representations via
contrastive learning, aligning agent trajectories without modeling latent dynamics or using centralized
supervision. In contrast, our approach infers a latent global state through self-supervised recurrent
modeling, leveraging centralized training for improved performance under partial observability.

A closely related method, MA2E [19], employs a transformer-based masked autoencoder to recon-
struct other agents’ trajectories from local observations, leveraging self-attention mechanisms [42].
While effective, MA2E requires pretraining on data collected from random policies, which can be
sample-inefficient. Its computational complexity scales with both episode length and agent count,
and its performance may degrade in settings where agent behaviors are homogeneous.

In contrast, our approach directly infers latent representations of the global state, without recon-
structing other agents’ trajectories or observations. It does not require pre-training or random policy
implementation. Using a recurrent encoder-decoder trained with self-supervised objectives, our
method efficiently captures latent state dynamics. Leveraging centralized training, variational infer-
ence, and recurrent modeling, we infer compact, fixed-size global representations from local agent
histories—scalable across episode lengths and agent counts.

4 Motivation: Two-Agent, Three-Action, Three-State Matrix Game

A B C

A 4 0 0

B 0 -2 0

C 0 0 0

State: (1, 0, 0)

A B C

A -1 0 0

B 0 1 0

C 0 0 0

State: (0, 1, 0)

A B C

A 0 0 0

B 0 -2 0

C 0 0 4

State: (0, 0, 1)

(a) Payoffs of the matrix game (b) QMIX payoffs estimations for each state

(c) M𝑨𝟐E payoffs estimations for each state (d) LIMARL (ours) payoffs estimations for each state

A B C

A 3.9 -0.3 0.4

B -0.3 -1.2 -0.5

C 0.3 -0.5 0.1

State: (1, 0, 0)

A B C

A 0.0 0.0 0.0

B 0.0 0.0 0.0

C 0.0 0.0 0.0

State: (0, 1, 0)

A B C

A 0.1 -0.5 0.3

B -0.5 -1.2 -0.3

C 0.3 -0.3 4.0

State: (0, 0, 1)

A B C

A 4.1 -0.3 0.3

B -0.3 -1.2 -0.5

C 0.4 -0.5 0.1

State: (1, 0, 0)

A B C

A 0.0 0.0 0.0

B 0.0 0.0 0.0

C 0.0 0.0 0.0

State: (0, 1, 0)

A B C

A 0.1 -0.5 0.3

B -0.5 -1.1 -0.3

C 0.4 -0.3 4.0

State: (0, 0, 1)

A B C

A 4.1 -0.3 0.3

B -0.3 -1.2 -0.6

C 0.4 -0.6 0.1

State: (1, 0, 0)

A B C

A -0.4 -0.1 -0.2

B -0.1 0.8 0.1

C -0.2 0.1 -0.0

State: (0, 1, 0)

A B C

A 0.1 -0.5 0.4

B -0.6 -1.2 -0.3

C 0.4 -0.3 4.0

State: (0, 0, 1)

Figure 1: Two-Agent, Three-State, Three-Action Matrix Game with Deterministic Rewards and Transitions.
Each table in (a) represents the true payoffs of a state, while the others—(b), (c), and (d)—show the estimations,
after 50k steps, of QMIX, MA2E, and LIMARL (ours). Each state is represented by a 3D one-hot vector. The
agents observe only the last dimension of the state vector, making the first two states indistinguishable.

We introduce a simple yet insightful matrix game (Figure 1 (a)) to highlight the limitations of existing
MARL algorithms—even in settings with deterministic dynamics and a limited number of agents,
actions, and states. The game is carefully designed to satisfy the monotonicity assumption, where the
joint action-value function is a monotonic function of the individual agents’ utilities. Moreover, both
the state transitions and reward structure are deterministic and independent of the actions. Despite the
simplicity of this setup, we observe that several advanced MARL algorithms fail to learn the optimal
policy. In contrast, our method consistently learns the optimal policy within just a few thousand
iterations, accurately assigning the highest value to the optimal joint action in each state.

The environment models a two-agent setting with three states. Each agent selects from three possible
actions per state (A, B, or C), and each episode consists of a fixed horizon of 10 steps. State transitions
follow a deterministic cycle: S1 → S2 → S3 → S1. Each state is encoded as a 3D one-hot vector;
however, agents observe only the last dimension of this vector, introducing partial observability.
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Figure 2: Illustration of the training process for LIMARL. At each timestep, given the current local observation
oit and the previous action ait−1, each agent i uses the ROLIM module (Iϕ) to infer a latent representation µ̂it.
ROLIM is trained by aligning its output with the state-based latent encoding µt produced via an encoder fθ
using the full state st, and by minimizing reconstruction loss via a decoder gψ . Black arrows indicate forward
computation paths; colored arrows indicate gradient flows during training.

As a result, both S1 and S2 produce the same observation 0, while S3 produces a 1. This partial
observability renders S1 and S2 indistinguishable based on the current observation alone. However,
due to the deterministic and cyclic nature of the transitions, agents can infer the states by combining
their current and previous observations. For instance, if an agent observes a 1 followed by a 0, it must
currently be in S1; if it observes two consecutive 0s, it must be in S2.

Each state is associated with a payoff matrix that defines the rewards for all joint actions, as shown in
Figure 1 (a). We evaluate a suite of state-of-the-art algorithms, including QMIX [32, 31], QPLEX [43],
OW-QMIX and CW-QMIX [30], COLA [44], and MA2E [19]. While many of these methods
correctly assign the highest utility in S1 (A, A) and S3 (C, C), none of them are able to correctly
assign the highest utility to the optimal action (B, B) in S2. For example, as shown in Figure 1 (b)
and (c), the learned value distributions over actions in S2 are flat, failing to identify the optimal
action. In contrast, our approach LIMARL—depicted in Figure 1 (d)—overcomes this by leveraging
self-supervised representation learning to infer latent state representations (detailed in Section 5).
These representations enable the agents to distinguish between states despite identical instantaneous
observations, allowing our method to learn and assign the correct utilities and ultimately recover the
optimal policy in each state. Further experimental details and algorithm comparisons are provided in
Appendix D.

5 Methodology

LIMARL introduces a novel framework for cooperative MARL under partial observability. LIMARL
allows agents to infer compact global-state representations from local observation histories, following
the CTDE paradigm. The key idea is to learn compact, latent representations of the global state during
centralized training and enable agents to infer these representations from their local trajectories during
decentralized execution. As illustrated in Figure 2, LIMARL consists of three main components:

(1) State Representation Module (SRM): Learns a compact, structured latent encoding of the global
state during centralized training using a variational autoencoder (VAE) (Section 5.1).

(2) Recurrent Observation-to-Latent Inference Module (ROLIM): Enables each agent to infer the
latent representation of the global state from its local action-observation history during decentralized
execution, trained to align with the SRM’s encoding (Section 5.2).

(3) Latent-Augmented Policy: Uses the inferred latent (from ROLIM) together with local history to
compute utility estimates (Section 5.3).

5.1 State Representation Module (SRM)

During centralized training, we assume access to the true global state st ∈ S at each timestep.
The SRM encodes each state into a compact, d-dimensional latent vector using a VAE [20, 21, 33].
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Specifically, we define the encoder as: (µt, log σ
2
t ) = fθ(st), where µt, σt ∈ Rd parameterize a

diagonal Gaussian distribution pθ(zt | st) = N (zt;µt,diag(σ
2
t )). We sample latent variables using

the reparameterization trick: zt = µt + σt ⊙ ϵ, where ϵ ∼ N (0, I). The decoder gψ : Rd → S
reconstructs the state: ŝt = gψ(zt). The SRM is trained to minimize the following VAE objective:

LSRM(θ, ψ) = Est∼D

∥gψ(zt)− st∥22︸ ︷︷ ︸
Reconstruction Loss

+λKL DKL (pθ(zt | st) ∥N (0, I))︸ ︷︷ ︸
KL Regularization

 (1)

where D is the distribution of visited states, and λKL ∈ R+ balances reconstruction and regularization.

We train a single SRM shared across all agents. During centralized training, joint rollouts provide
states st, and the encoder-decoder pair is optimized to minimize the loss in Equation (1).

5.2 Recurrent Observation-to-Latent Inference Module (ROLIM)

To enable agents to infer latent representations ẑit ∈ Rd of the global state during decentralized
execution, we introduce the ROLIM. Each agent i maintains a hidden state hit based on its local
observation-action trajectory τ it = (oi0, a

i
0, . . . , o

i
t−1, a

i
t−1, o

i
t), and infers:

(µ̂it, log σ̂
i2
t , h

i
t) = Iϕ([o

i
t, a

i
t−1], h

i
t−1),

where ẑit ∼ q̂ϕ(. | τ it ) = N (µ̂it,diag(σ̂
i2
t )), and sampled via: ẑit = µ̂it + σ̂it ⊙ ϵ, ϵ ∼ N (0, I).

The ROLIM objective aligns these inferred latents with the SRM’s reference latents and promotes
semantic structure. Specifically, the loss is:

LROLIM(ϕ) = E(st,τ
i
t )∼D

λalign ∥µ̂it − µt∥22︸ ︷︷ ︸
Alignment to SRM

+λrec ∥gψ(ẑit)− st∥22︸ ︷︷ ︸
State Reconstruction

+λKL DKL(q̂ϕ(ẑ
i
t | τ it ) ∥N (0, I))︸ ︷︷ ︸

Latent Regularization

 (2)

where (µt, .) = fθ(st) is the latent mean from the SRM. The decoder gψ is frozen to ensure
consistency with the SRM latent space, and λalign, λrec, λKL ∈ R+ are hyperparameters controlling
the trade-offs between accuracy, alignment, and regularization. This objective ensures that the inferred
latent vectors approximate their SRM counterparts while remaining semantically meaningful.

During ROLIM training, the encoder fθ and decoder gψ are frozen to preserve consistency in the SRM
latent space. The inference module Iϕ is shared across all agents, promoting parameter efficiency and
robustness. This design leverages multiple agents’ diverse observations to improve latent inference.

5.3 LIMARL: Latent-Inference for MARL

5.3.1 Centralized Training

The training of LIMARL consists of two interleaved phases: (1) learning latent representations via
SRM and ROLIM, and (2) policy learning using value-based MARL with latent augmentation. This
modular decomposition improves training stability and facilitates efficient credit assignment.

Phase I: Learning Latent Representations. We first train the SRM to encode each global state
st into a compact latent vector zt. The SRM is implemented as a VAE with encoder-decoder pair
(fθ, gψ) trained using the objective in Equation (1), which balances reconstruction accuracy and KL
regularization. This step provides a latent space, serving as a reference for subsequent inference.

Next, we train the ROLIM to infer latent estimates µ̂it from each agent’s local trajectory τ it . ROLIM
minimizes the loss in Equation (2), aligning its outputs with the SRM’s latent codes. This alignment
ensures that decentralized agents can approximate global state information without explicit access.
The decoder gψ is frozen during this step to preserve a consistent latent reference.

To minimize redundant updates, we track the mean ROLIM loss L̄ROLIM on a dynamic validation set
and continuously monitor the online inference loss over a sliding buffer of recent episodes. When
the instantaneous loss exceeds L̄ROLIM by more than a predefined percentage δ ∈ [0, 1], we retrain
both the SRM and ROLIM modules from their most recent best checkpoint. This conditional update
strategy ensures that retraining is only triggered when the online performance degrades significantly
relative to the validation baseline, thereby avoiding unnecessary fine-tuning and improving overall
training stability. An ablation study in Appendix F analyzes the effect of varying δ.
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Phase II: MARL with Inferred Latent Augmentation. Once SRM and ROLIM are trained, we
freeze their parameters and proceed with policy learning. At each timestep, agent i computes its
latent estimate µ̂it, as function of its local action-observation history τ it , using ROLIM Iϕ. The local
utility function is conditioned on both the trajectory and the latent: Qi(a

i
t | τ it , µ̂it). These individual

utilities are combined using a monotonic mixing network Mixω to yield the global action-value:
Qtot(τt, µ̂0:t, at) = Mixω(Q1, . . . , Qn) where µ̂0:t denotes the sequence of inferred latents.

Standard temporal-difference learning is used to train Qi and Mixω, with frozen SRM and ROLIM
modules. Replay buffers store full trajectories to support both value updates and latent inference.

5.3.2 Decentralized Execution

At execution time, agents no longer access the state or the SRM encoder-decoder. Each agent
maintains its own trajectory τ it and uses ROLIM to infer its latent µ̂it. The agent then selects actions
via ait = argmaxa∈A Qi(a | τ it , µ̂it). This enables decentralized decision-making under partial
observability, without requiring communication or synchronization.

6 Theoretical Analysis

We provide theoretical foundations for LIMARL, establishing how latent representations support
MARL under partial observability in the CTDE framework. Our analysis yields three key results:
(1) Latent policies can recover optimal actions despite imperfect reconstruction (Theorem 6.4),
(2) Decentralized greedy policies over latent utilities can achieve globally optimal coordination
(Theorem 6.5), (3) Utility estimates remain stable even under inference errors at execution time
(Theorem 6.6). All proofs are provided in Appendix C.

6.1 Latent-State Sufficiency for Control

We begin by asking: Can latent representations retain all necessary information for optimal decision-
making? The following result shows that if the latent space perfectly captures the full state, then
value functions can be equivalently expressed in the latent space without loss.
Lemma 6.1 (Latent Sufficiency for Optimal Utility). Suppose gψ(fθ(s)) = s for all s ∈ S. Then,
for each agent i, there exists a function Q̃⋆

i : Rd ×A → R such that

Q⋆
i (s, a) = Q̃⋆

i (fθ(s), a), ∀s ∈ S, a ∈ A.

Perfect reconstruction is idealized; real-world models only approximate the true state. To study the
effect of the reconstruction error on policy quality, we assume the following regularity condition
[15, 8]:
Assumption 6.2 (Lipschitz Continuity of the Optimal Utility). The ground-truth utility function
Q⋆
i (s, a) is L-Lipschitz in s, i.e., for all s, s′ ∈ S, a ∈ A,

|Q⋆
i (s, a)−Q⋆

i (s
′, a)| ≤ L · ∥s− s′∥2.

Lemma 6.3 (Approximate Latent Sufficiency). Let Assumption 6.2 hold, the reconstruction error
at state s ∈ S be: εrec(s) = ∥gψ(fθ(s))− s∥2, and define the latent utility as Q̃⋆

i (µ, a) :=
Q⋆
i (gψ(µ), a). Then, for all s ∈ S, a ∈ A,∣∣∣Q⋆

i (s, a)− Q̃⋆
i (fθ(s), a)

∣∣∣ ≤ L · εrec(s).

We now ask: Can we still select optimal actions from the latent space even when reconstruction isn’t
perfect?
Theorem 6.4 (Argmax Consistency Under Imperfect Reconstruction). Let a⋆ =
argmaxa∈A Q⋆

i (s, a), and let ã = argmaxa∈A Q̃⋆
i (fθ(s), a). Define the advantage margin

∆(s) := Q⋆
i (s, a

⋆)−max
a ̸=a⋆

Q⋆
i (s, a).

If ∆(s) > 2L · εrec(s), then ã = a⋆; that is, the latent-greedy policy matches the state-optimal policy.

Interpretation: This result provides a margin-based guarantee that optimal decisions can still be
made from imperfect latent representations, as long as reconstruction errors are sufficiently small.
This establishes the robustness of LIMARL’s latent-space control in practice.
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6.2 Decentralized Optimality under Monotonicity

We now turn to coordination: Can decentralized agents acting on local latent estimates recover the
globally optimal joint action?
Theorem 6.5 (Decentralized Greedy Optimality [31]). Under the monotonic mixing assumption, the
decentralized greedy policy a(i)∗t = argmaxa∈A Qi

(
τ it , µ̂

i
0:t, a

)
, ∀i, recovers the globally optimal

joint action: a∗
t = argmaxa Qtot

(
τt, µ̂0:t,a

)
.

Implication: Even without communication, agents can act greedily over their local trajectories and
inferred latents to achieve optimal joint coordination. This result is critical for LIMARL’s scalability
and decentralized execution under partial observability.

6.3 Robustness to Latent Inference Errors

Finally, we consider the realistic case where latents are inferred from partial observations. The
question is: How sensitive are utility estimates to inference inaccuracies?

The following result quantifies how inference errors at test time impact utility estimation.
Theorem 6.6 (Bounded Utility Error under Latent Misalignment). Let Assumption 6.2 hold, the
reconstruction error at state s ∈ S be: εrec(s) = ∥gψ(fθ(s))− s∥2, each agent i infer its latent
via µ̂it = Iϕ(τ

i
t ), and define the alignment error as: εialign(µ) =

∥∥µ̂i − µ
∥∥
2
, and assume gψ is

Lψ-Lipschitz. Then for any action a ∈ A,
1

L

∣∣Q⋆
i (st, a)−Q⋆

i

(
gψ(µ̂

i
t), a

)∣∣ ≤ Lψε
i
align(µt) + εrec(st).

Therefore, as long as inferred latents remain well-aligned and reconstruction is accurate, the impact
on decision quality is provably bounded. These theoretical guarantees underpin LIMARL’s design,
where training objectives explicitly minimize both alignment and reconstruction error.

7 Experiments

We empirically evaluate LIMARL across three complementary settings. First, we revisit the matrix
coordination game (introduced in Figure 1), where all considered baselines fail to learn the optimal
policy, while LIMARL consistently converges to it. Second, we benchmark LIMARL on the
StarCraft Multi-Agent Challenge (SMAC) [34] and its more recent variant SMACv2 [7], both of
which pose significant coordination and observability challenges. Third, to further isolate the impact
of the ROLIM module, we design a partially observable classification game that enables visual
inspection and quantitative evaluation of latent reconstructions. Complete experimental specifications,
hyperparameters, and implementation details are deferred to Appendix B.

Setup. We evaluate LIMARL against several state-of-the-art cooperative MARL baselines across
environments with varying levels of partial observability. Specifically, we compare against Fine-
tuned QMIX [32, 31, 17]; QPLEX [43], OW-QMIX [30], and CW-QMIX [30]. Furthermore we
compare against RIIT [17] (policy-based); COLA [44]; as well as against MA2E [19]. All methods
are evaluated on 6 challenging scenarios from the SMAC benchmark [34], which differ in team
composition, observability, and coordination complexity. In addition, we test on SMACv2 [7], a more
challenging benchmark that introduces environment shifts across three different unit types: Protoss,
, and Zerg. All methods are trained for 3 million environment steps, and evaluated using the average
win rate across 6 random seeds.

7.1 Performance on SMAC and SMACv2 Benchmarks.

Figures 3 and 4 show the win rate in each scenario over time steps. LIMARL consistently outperforms
all baselines across the considered scenarios, with the most pronounced gains in partially observable,
long-horizon tasks such as corridor and 6h_vs_8z (both super-hard), validating the efficacy of
ROLIM under decentralized execution. Furthermore, we evaluated the statistical significance of
LIMARL’s improvements over FT-QMIX using Wilcoxon signed-rank tests across 6 seeds. Significant
gains were observed on corridor (p = 0.03) and 3s_vs_5z (p = 0.03), while MMM2 (p = 0.07) and
6h_vs_8z (p = 0.08) showed marginal significance.
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(a) corridor (super-hard)
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(b) MMM2 (super-hard)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e6

0.0

0.1

0.1

0.2

0.2

0.2

0.3

Te
st

 B
at

tle
 W

in
 R

at
e

(c) 6h_vs_8z (super-hard)
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(d) 2c_vs_64zg (hard)
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(e) 5m_vs_6m (hard)
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(f) 3s_vs_5z (hard)

Figure 3: Training performance (win rate %) of LIMARL vs. baselines across SMAC scenarios. LIMARL
demonstrates consistently faster convergence and higher final performance.
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(a) Terran
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(b) Protoss
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(c) Zerg

Figure 4: Training performance (win rate %) of LIMARL vs. baselines across SMACv2 scenarios. LIMARL
demonstrates consistently faster convergence and higher final performance.

7.2 Visualization and Ablation: Inference in a Partially Observable Classification Game

O
bs

er
ve

R
O

L
IM

Figure 5: Qualitative reconstructions. Top: partial inputs (Observe) available to agents. Bottom: reconstruc-
tions from ROLIM, conditioned on the same observation sequence.

To isolate the contribution of each training objective, we evaluate our latent inference module in a
controlled multi-agent environment: the MNIST classification game. In this setting, agents receive
only partial observations of an MNIST digit, as illustrated in Figure 5 (top row), which depicts a
sequence of masked inputs from a fixed episode with a consistent underlying state (digit “9”). The
goal is to classify digits under partial observability.
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We show the ability of ROLIM to reconstruct the true state with just partial observation, as illustrated
in Figure 5 (bottom row). Morover we ablate two core components of the training loss: (i) alignment
loss, and (ii) regularization. Results demonstrate that alignment is important, while a moderate KL
penalty further improves alignment without causing degeneration. Full qualitative and quantitative
results across inference architectures and latent visualizations via t-SNE are provided in Appendix E.

7.3 Ablation Study on SMAC
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LIMARL ( rec = 0)
LIMARL (Ours)

Figure 6: Ablation results on the SMAC
corridor (super-hard) scenario.

Ablation studies on key hyperparameters, including the
intrinsic dimensionality d and the fine-tuning threshold
δ, are provided in Appendix F and G. These results show
that the approach is relatively robust to variations in these
parameters.

Besides, to assess the contribution of each component to
LIMARL, we evaluate different variants of our method,
removing different terms from the latent inference ob-
jective (Equation (2)): (1) LIMARL w/o Grounding —
removes the reconstruction loss term. (2) LIMARL w/o
Alignment — disables the alignment loss term, which
encourages the inferred latent to approximate the ground-
truth encoding; (3) LIMARL w/o KL — omits the KL
divergence term, allowing the latent space to evolve without a distributional prior. Furthermore, we
consider (4) Oracle - where agents are provided with the true latent state instead of using the inferred
one. Each ablation is evaluated under the same experimental settings as the full LIMARL method,
using the SMAC benchmark with identical hyperparameters.

As shown in Figure 6, removing any single component of the latent inference objective leads to a
measurable drop in performance. This highlights the complementary roles of inference alignment,
semantic grounding, and latent regularization. Notably, the combination of the three components
significantly approaches that of the Oracle baseline-without having access to the true latent state.

8 Conclusion

We introduced LIMARL, a novel framework for MARL under partial observability that combines
self-supervised state representation learning with recurrent latent inference. LIMARL uses centralized
training to learn compact global-state embeddings and enables decentralized agents to infer them
from local observation histories. Our theoretical analysis supports the design with justifications
and guarantees. Extensive experiments on diagnostic tasks and SMAC/SMACv2 scenarios show
that LIMARL outperforms state-of-the-art baselines, demonstrating its effectiveness in cooperative,
partially observable settings.
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A Table of Notation

Symbol Description
N Number of agents
S Set of global environment states
A Action space for each agent
Ω Observation space for each agent
P (s′ | s, a) Transition probability from s to s′ given joint action a
O(oi | s, ai) Observation distribution for agent i
r(s, a) Shared reward function for joint action a in state s
γ Discount factor
τ it Action-observation history for agent i up to time t
πi(a | τ i) Policy of agent i based on its history
Qi(·) Local utility function for agent i
Qtot(·) Global joint action-value function
fθ(·) Encoder mapping global state to latent embedding (SRM)
gψ(·) Decoder mapping latent to reconstructed state
Iϕ(·) ROLIM inference module for estimating latent from local history
zt Latent representation of global state at time t
ẑit Inferred latent estimate by agent i at time t
µt Mean of latent distribution from SRM at time t
µ̂it Inferred latent mean for agent i at time t with ROLIM
σ2
t Variance of latent distribution from SRM

σ̂i2t Inferred latent variance for agent i from ROLIM
hit Hidden state of agent i’s RNN in ROLIM
LSRM SRM loss (reconstruction + KL divergence)
LROLIM ROLIM loss (alignment + reconstruction + KL)
λKL KL regularization weight
λalign Alignment loss weight
λrec Reconstruction loss weight
ϵ Gaussian noise sample in latent reparameterization
Mixω(·) Monotonic mixing network with parameters ω
D Replay buffer / dataset distribution
V (·) Value function (TD target)
θ− Parameters of the target Q-network

Table 1: Notation used throughout the paper.
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B Experimental Details

B.1 Environments

We evaluate LIMARL on both controlled synthetic environments and standard multi-agent bench-
marks:

• Matrix Game (Figure 1): A two-agent, three-state deterministic game designed to highlight
the limitations of existing MARL methods under partial observability.

• MNIST Classification Game (Section Experiments): A diagnostic task where agents
receive independent masked views of a digit and must classify the underlying image based
on their local trajectories.

• SMAC [34]: The StarCraft Multi-Agent Challenge provides a suite of decentralized mi-
cromanagement tasks based on the StarCraft II game engine. We use the implementation
available at https://github.com/oxwhirl/smac, which is released under the MIT li-
cense.

• SMACv2 [7]: An updated and more challenging version of SMAC that addresses some
of the limitations of the original benchmark. We adopt the implementation from https:
//github.com/oxwhirl/smacv2, also under the MIT license.

B.1.1 SMAC Scenarios

The StarCraft Multi-Agent Challenge (SMAC) is a widely adopted benchmark for evaluating MARL
algorithms. In this benchmark, agents control units from the real-time strategy game StarCraft
II to cooperate and defeat opposing units. The environment offers a variety of scenarios, each
categorized into difficulty levels such as Easy, Hard, and Super Hard, depending on the complexity
of coordination required. In our study, we focus on the Hard and Super Hard settings, which pose
significant challenges due to unit imbalance, coordination demands, or heterogeneous agent types.
Table 2 provides an overview of the scenarios considered in our experiments.

Table 2: Detailed description of the SMAC scenarios used in our experiments.
Scenario Difficulty Ally Units Enemy Units Type
3s_vs_5z Hard 3 Stalkers 5 Zealots Micro-trick: kiting
2c_vs_64zg Hard 2 Colossi 64 Zerglings Micro-trick: positioning

MMM Hard
1 Medivac
2 Marauders
7 Marines

1 Medivac
2 Marauders
7 Marines

Heterogeneous & symmetric

corridor Super Hard 6 Zealots 24 Zerglings Micro-trick: wall off
6h_vs_8z Super Hard 6 Hydras 8 Zealots Micro-trick: focus fire

MMM2 Super Hard
1 Medivac
2 Marauders
7 Marines

1 Medivac
3 Marauders
8 Marines

Heterogeneous & asymmetric

B.1.2 SMACv2

SMACv2 was introduced to address key limitations in the original SMAC benchmark, particularly
its limited stochasticity and overly simplified partial observability [7]. It introduces three core
enhancements to better reflect the challenges of real-world multi-agent coordination:

First, unit compositions are no longer fixed. Instead, in SMACv2, unit types are sampled probabilisti-
cally for each episode, introducing diversity in team configurations (unit generation is detailed in
Table 3). Second, agent observability is made more realistic. Unlike SMAC—where if one agent
spots an enemy, others within range are guaranteed to do the same—SMACv2 introduces uncertainty:
agents within observation range may perceive different local views, even when observing the same
enemy. Finally, SMACv2 randomizes spawn locations using two spatial initialization strategies:
surround, where allied units are positioned encircling enemies, and reflect, where opposing teams
are arranged in mirrored, head-on formations. These changes collectively make SMACv2 a more
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challenging and stochastic environment for MARL research. In our experiments we focused on
the surround setting as it offers less information about the full state making it more challenging in
partially observable settings.

Race Unit Generation Probability
Terran Marine 0.45

Marauder 0.45
Medivac 0.10

Protoss Stalker 0.45
Zealot 0.45

Colossus 0.10
Zerg Zergling 0.45

Hydralisk 0.45
Baneling 0.10

Table 3: Detailed generation probabilities of the three types of units for the three races (Protoss,
Terran, and Zerg).

B.2 Training and Evaluation Protocol

• Training steps: For SMAC all models are trained for at least 3 million environment steps.
• Evaluation: We evaluate every 10,000 steps using 32 test episodes without exploration

noise and report average win rates over 6 random seeds.
• Episode limits: Follow default SMAC time limits (e.g., 120–200 steps per episode depend-

ing on the scenario).
• Computing resources: All experiments were run on NVIDIA A100 GPUs with 40 GB

memory.

B.3 Hyperparameters

Shared across all models:

• Replay buffer size: 5000 episodes
• Batch size: 128
• Optimizer: Adam, learning rate 1× 10−3

• Discount factor γ = 0.99

• Target network update interval: every 200 episodes
• Exploration: ϵ-greedy with linear decay from 1.0 to 0.05 over 100k steps

LIMARL-specific:

• Latent dimension d = 64

• Encoder/decoder: 2-layer MLP with ReLU activations
• Inference module: 1-layer GRU with hidden size 128

• KL regularization weight λKL = min
(
1.0, steps

KLwarmup

)
• Alignment loss weight λalign = 1.0

• Reconstruction loss weight λrec = 1.0

B.4 Baselines

We compare against the following baselines, reimplemented or adapted from open-source libraries:

• FT-QMIX [32, 31, 17]
• QPLEX [43]
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• OW-QMIX and CW-QMIX [30]
• COLA [44]
• RIIT [17]
• MA2E [19]

All baselines use their recommended hyperparameters and are trained under the same CTDE setup
and training budget for fair comparison.

B.5 Implementation and Reproducibility

Our code is implemented in PyTorch and builds on the open-source PyMARL2 framework [17].
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C Missing Proofs

C.1 Proof of Lemma 6.1

Proof. Define Q̃⋆
i (x, a) := Q⋆

i (gψ(x), a). Then for any s ∈ S, let (µ, .) = fθ(s)

Q̃⋆
i (µ, a) = Q⋆

i (gψ(µ), a) = Q⋆
i (s, a),

by the assumption that gψ(µ) = s. Hence, the claim holds.

C.2 Proof of Lemma 6.3

Proof. Let s′ = gψ(fθ(s)). By the Lipschitz property of Q⋆
i ,

|Q⋆
i (s, a)−Q⋆

i (s
′, a)| ≤ L · ∥s− s′∥2 = L · εrec(s).

C.3 Proof of Theorem 6.4

Proof. By Lemma 6.3, for all a ∈ A,

|Q⋆
i (s, a)− Q̃⋆

i (fθ(s), a)| ≤ L · εrec(s).

Because ã maximizes Q̃⋆
i , we have

Q̃⋆
i (fθ(s), ã) ≥ Q̃⋆

i (fθ(s), a
⋆).

Combining these two facts,

Q⋆
i (s, a

⋆)−Q⋆
i (s, ã) ≤ 2L · εrec(s).

If ∆(s) > 2L · εrec(s), this implies ã = a⋆.

C.4 Proof of Theorem 6.5

We follow the argument from [31] and include it here for completeness. Assume that the total value
function Qtot

(
Q1, . . . , Qn

)
is monotonic in each of its inputs:

∂Qtot

∂Qi
≥ 0, ∀i ∈ {1, . . . , n}.

Then, for any joint action at = (a1t , . . . , a
n
t ), we can iteratively improve the joint value by replacing

each agent’s action with its local maximizer:

Qtot
(
Q1(τ

1
t , µ

1
0:t, a

1
t ), . . . , Qn(τ

n
t , µ

n
0:t, a

n
t )
)

≤ Qtot
(
max
a1

Q1(τ
1
t , µ

1
0:t, a

1), . . . , Qn(τ
n
t , µ

n
0:t, a

n
t )
)

≤ · · · ≤ Qtot
(
max
a1

Q1(τ
1
t , µ

1
0:t, a

1), . . . ,max
an

Qn(τ
n
t , µ

n
0:t, a

n)
)
.

Define each agent’s greedy local action as:

a
(i)∗
t = argmax

a∈A
Qi(τ

i
t , µ

i
0:t, a),

and let the joint greedy action be a∗
t = (a

(1)∗
t , . . . , a

(n)∗
t ). Then:

Qtot
(
Q1(τ

1
t , µ

1
0:t, a

(1)∗
t ), . . . , Qn(τ

n
t , µ

n
0:t, a

(n)∗
t )

)
= Qtot

(
max
a1

Q1(τ
1
t , µ

1
0:t, a

1), . . . ,max
an

Qn(τ
n
t , µ

n
0:t, a

n)
)

= max
a

Qtot(τt,µ0:t,a).

Therefore, the joint action composed of individually greedy actions is globally optimal:

a∗
t = argmax

a
Qtot(τt,µ0:t,a).
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C.5 Proof of Theorem 6.6

We can decompose the error as:∣∣Q⋆
i (st, a)−Q⋆

i (gψ(µ̂
i
t), a)

∣∣ ≤ |Q⋆
i (st, a)−Q⋆

i (gψ(µt), a)|+
∣∣Q⋆

i (gψ(µt), a)−Q⋆
i (gψ(µ̂

i
t), a)

∣∣ .
Under Assumption 6.2, where Q⋆

i is L-Lipschitz in its first argument, we obtain:

|Q⋆
i (st, a)−Q⋆

i (gψ(µt), a)| ≤ L · ∥st − gψ(µt)∥2.

Again using Assumption 6.2, we have:∣∣Q⋆
i (gψ(µt), a)−Q⋆

i (gψ(µ̂
i
t), a)

∣∣ ≤ L · ∥gψ(µt)− gψ(µ̂
i
t)∥2.

Assuming the decoder gψ is Lψ-Lipschitz, we further bound:

∥gψ(µt)− gψ(µ̂
i
t)∥2 ≤ Lψ · ∥µt − µ̂it∥2.

Combining the two terms, we conclude:∣∣Q⋆
i (st, a)−Q⋆

i (gψ(µ̂
i
t), a)

∣∣ ≤ LLψ · ∥µt − µ̂it∥2 + L · ∥gψ(µt)− st∥2.
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D Extended Results: Matrix Game Performance Across Algorithms

This section presents extended results and analysis for the matrix game described in Section 4,
offering a detailed comparison across several state-of-the-art MARL algorithms.
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Figure 7: Two-Agent, Three-State, Three-Action Matrix Game with Deterministic Rewards and Transitions.
Table (a) shows the ground-truth payoffs for each state. Tables (b)–(g) show estimated Q-values produced by
various baseline algorithms. Table (h) shows the results from our proposed method. Due to partial observability,
S1 and S2 yield identical observations, which causes many methods to misrepresent their true values.

D.1 Experimental Setup

Each algorithm is trained and evaluated using the same matrix game environment. Key experimental
parameters include:

• Exploration: We fix the exploration rate ϵ = 1.0 throughout training for all algorithms.
This setup focuses purely on the value estimation challenge, ensuring that all state-action
pairs are visited sufficiently often.

• Discount Factor: We use γ = 0.0, so that the estimated values depend only on the payoff
of the joint action played and not on the future states, since the transitions are deterministic
and independent of actions.

• Episode Length: Each episode spans 10 steps, and transitions cycle through states in a
fixed order: S1 → S2 → S3 → S1.

• Partial Observability: Only the last dimension of each state’s one-hot vector is observable
by the agents. As a result, S1 and S2 yield identical observations.

• Evaluation: Each method is run using 3 random seeds. The Q-value tables shown in
Figure 7 are the element-wise average over these seeds.

D.2 Evaluated Algorithms

We evaluate the following MARL algorithms: QMIX [32, 31], QPLEX [43], OW-QMIX [30],
CW-QMIX [30], COLA [44], and MA2E [19].
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D.3 Findings and Analysis

Across all baseline algorithms, as shown in Figure 7 a consistent pattern emerges:

• Accurate Value Estimation in S1 and S3: All baseline methods are able to assign high
utility to the correct joint actions in states S1 and S3, where either the reward is clearly
distinct (e.g., action A in S1) or where the state is uniquely identifiable (e.g., S3 with
observation 1).

• Failure in S2: No baseline method successfully identifies action B as the optimal joint
action in S2. Instead, these methods mainly average over all possible actions.

• Our Method’s Success: In contrast, our method consistently recovers the optimal policy,
even in S2. By leveraging self-supervised representation learning, it learns a latent encoding
that correctly differentiates between S1 and S2, enabling accurate payoff estimation under
partial observability.

D.4 Implementation Details

For fairness, all algorithms use the same configuration where applicable. An example configuration
file for QMIX is shown below:

# QMIX hyperparameters
action_selector: "epsilon_greedy"
epsilon_start: 1.0
epsilon_finish: 1.0
gamma: 0.0
batch_size_run: 8
buffer_size: 5000
batch_size: 500
optimizer: ’adam’
t_max: 50000
target_update_interval: 200
mac: "n_mac"
agent: "n_rnn"
learner: "nq_learner"
mixer: "qmix"
mixing_embed_dim: 32
hypernet_embed: 64
lr: 0.001
td_lambda: 0.6

D.5 Evaluation Method

To evaluate the estimated payoff matrices, we fix the state and sweep through all possible joint actions
(a1, a2) ∈ {A,B,C}2. The Q-values are computed for each pair, and the resulting 3× 3 matrix is
averaged over batches and seeds. Our evaluation script ensures proper alignment between the global
state and individual Q-values from agents, passing them through the appropriate mixer module to
compute global Q-values.

D.6 Conclusion

This matrix game poses a deceptively simple yet fundamentally hard challenge for MARL algorithms
under partial observability. Many well-established methods fail due to partial observability, while our
method successfully overcomes this via representation learning, clearly highlighting the importance
of learned latent states in decentralized multi-agent scenarios.
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E Extended Results: Classification Game and Inference Ablation
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Figure 8: Qualitative reconstructions across model variants. Top: full input (State) seen only by the oracle
encoder. Second: partial inputs (Observe) available to agents. Bottom: reconstructions from (RAE), (RVAE),
and (ROLIM), conditioned on the same observation sequence.

Setup. To evaluate our latent inference module in a controlled setting, we introduce the MNIST
classification game, a simplified cooperative multi-agent environment. At each timestep, a global
image st (an MNIST digit) is partially and independently masked for each agent, producing local
observations that evolve over time: τ it = (oi0, a

i
0, . . . , o

i
t). Agents aim to classify the digit using only

their own observation histories—without communication.

The core challenge is to infer a latent representation ẑit that reflects the true global state st under
severe partial observability. Ideally, this decentralized latent should align with a centralized reference
encoding zt = fθ(st), learned from full-state supervision. This setting captures key challenges in
real-world MARL: partial observability, decentralized inference, and distributed learning dynamics.

Ablation Design. We ablate the inference objective by varying two critical loss components:

• Alignment loss (λalign): Encourages ẑit to align with the centralized latent zt.

• KL regularization (λKL): Promotes compact and regular latent spaces.

We evaluate six combinations with λalign ∈ {0, 1.0} and λKL ∈ {0, 0.001, 0.01, 0.1}, allowing us to
isolate the impact of each component.

Evaluation Metrics. To assess inference quality, we report:

• Reconstruction loss: Mean squared error between gψ(ẑ
i
t) and st.

• Alignment loss: Squared L2 distance between ẑit and zt.

• KL divergence: Regularization against a unit Gaussian prior.

• Classification accuracy: Task performance from a decoder applied to ẑit.

• Latent variance: Diversity of ẑit across the dataset.

Inference Results. Table 4 summarizes the final inference metrics. Notably, the configuration with
λKL = 0.01 and λalign = 1.0 achieves the best overall tradeoff between reconstruction fidelity and
alignment, while maintaining regularized latents.
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Figure 9: t-SNE projections of oracle latent z and inferred latent ẑ. Each point represents a sample
colored by digit class.

Configuration Recon ↓ Align ↓ KL ↓ Acc ↑ (%) ẑ Var ↑

RAE (λKL = 0, λalign = 0) 0.8416 105.7743 9399.46 24.00 4.6160
RVAE (λKL = 0.001, λalign = 0) 0.9227 0.2427 5.11 15.00 0.0130
RVAE (λKL = 0.01, λalign = 0) 0.9347 0.0178 0.06 12.00 0.0001
ROLIM(λKL = 0.01, λalign = 1.0) 0.2336 0.0018 1.64 47.00 0.0196
ROLIM(λKL = 0.001, λalign = 1.0) 0.1439 0.0135 18.26 50.50 0.1589
ROLIM(λKL = 0, λalign = 1.0) 0.0930 0.8125 1405.80 68.00 7.7520
Table 4: Inference and evaluation metrics (epoch 49) for TrainDecoder ablation configurations.

Key Takeaways.

• Alignment is essential: Without alignment, even low KL values fail to prevent drift in ẑit,
leading to poor reconstructions and unstructured latents.

• KL alone is insufficient: Higher regularization improves compactness but harms semantic
expressiveness (e.g., KL=0.1, Align=0).

• Best tradeoff: Moderate KL with alignment achieves the most structured, predictive, and
transferable representations.

Conclusion. These ablations demonstrate that partial observations alone are inadequate for learning
useful representations. Alignment with a centralized reference is crucial for semantic structure, while
KL regularization improves generalization but must be balanced carefully.

F Ablation Study on Fine-tuning Threshold δ
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Figure 10: Performance impact of varying the fine-tuning threshold δ on the SMAC MMM2 (super-hard) scenario.
The results highlight the sensitivity of the model to δ, illustrating the trade-off between adaptation and overfitting.

We investigate the effect of the fine-tuning percentage threshold δ, which determines the percentage
increase of the tracked mean to launch fine-tuning. Figure 10 presents the ablation results on the
challenging MMM2 scenario in SMAC. The study reveals that both very low (δ = 0.05) and very
high (i.e., pretrain only) values of δ can lead to suboptimal performance, while a moderate setting
(δ = 0.1) yields the best balance perfromance.
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G Ablation Study on Fine-tuning the Intrinsic Dimension d
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Figure 11: Impact of varying the latent dimension d on LIMARL performance in two super-hard
SMAC scenarios.

To understand the sensitivity of our method to the dimensionality of the latent space, we conducted
an ablation study varying the intrinsic dimension d used in both modules (SRM and ROLIM).
Specifically, we evaluated d ∈ {16, 32, 64, 128} on two super-hard SMAC scenarios: corridor and
MMM2.

Throughout the main paper, we fix d = 64, motivated by its strong empirical performance. This
choice is supported by our findings here: d = 64 consistently achieves the highest final win rate
across both environments. Interestingly, d = 128 performs comparably well, suggesting that a
slightly larger latent space can retain performance.

In contrast, lower-dimensional latents (d = 16 and d = 32) often degraded performance. In
corridor, d = 32 performs notably worse, whereas in MMM2, d = 16 is the least effective. Across
both tasks, d = 16 and d = 32 are the weakest two configurations, demonstrating the importance of
having sufficient capacity in the latent space for capturing the complex, partially observable dynamics.

Despite this, LIMARL remains surprisingly robust to changes in d: even the smallest latent size
(d = 16) allows for competitive learning and non-trivial win rates. This resilience indicates that the
core inference mechanism is not overly sensitive to the exact choice of d, as long as it remains within
a reasonable range.

Overall, this study highlights that while d = 64 offers a reliable trade-off between expressiveness and
efficiency, LIMARL exhibits a degree of robustness to this hyperparameter, reinforcing the general
applicability of our latent inference framework.
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