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ABSTRACT

Spurious correlations can cause strong biases in deep neural networks, impairing
generalization ability. While most of existing debiasing methods require full su-
pervisions on either spurious attributes or target labels, training a debiased model
from a limited amount of both annotations is still an open issue. To overcome
such limitations, we first examine an interesting phenomenon by the spectral anal-
ysis of latent representations: spuriously correlated, easy-to-learn attributes make
neural networks inductively biased towards encoding lower effective rank repre-
sentations. We also show that a rank regularization can amplify this bias in a
way that encourages highly correlated features. Motivated by these observations,
we propose a self-supervised debiasing framework that is potentially compati-
ble with unlabeled samples. Specifically, we first pretrain a biased encoder in a
self-supervised manner with the rank regularization, serving as a semantic bot-
tleneck to enforce the encoder to learn the spuriously correlated attributes. This
biased encoder is then used to discover and upweight bias-conflicting samples in
a downstream task, serving as a boosting to effectively debias the main model.
Remarkably, the proposed debiasing framework significantly improves the gen-
eralization performance of self-supervised learning baselines and, in some cases,
even outperforms state-of-the-art supervised debiasing approaches.

1 INTRODUCTION

While modern deep learning solves several challenging tasks successfully, a series of recent works
(Geirhos et al., 2018; Gururangan et al., 2018; Feldman et al., 2015) have reported that the high
accuracy of deep networks on in-distribution samples does not always guarantee low test error on
out-of-distribution (OOD) samples, especially in the context of spurious correlations. Arjovsky
et al. (2019); Nagarajan et al. (2020); Tsipras et al. (2018) suggest that the deep networks can be
potentially biased to the spuriously correlated attributes, or dataset bias, which are misleading sta-
tistical heuristics that are closely correlated but not causally related to the target label. In this regard,
several recent works explain this phenomenon through the lens of simplicity bias (Rahaman et al.,
2019; Neyshabur et al., 2014; Shah et al., 2020) of gradient descent-based deep networks optimiza-
tion; deep networks prefer to rely on spurious features which are more “simpler” to learn, e.g., more
linear.

The catastrophic pitfalls of dataset bias have facilitated the development of debiasing methods,
which can be roughly categorized into approaches (1) leveraging annotations of spurious attributes,
i.e., bias label (Kim et al., 2019; Sagawa et al., 2019; Wang et al., 2020; Tartaglione et al., 2021),
(2) presuming specific type of bias, e.g., color and texture (Bahng et al., 2020; Wang et al., 2019;
Ge et al., 2021) or (3) without using explicit kinds of supervisions on dataset bias (Liu et al., 2021;
Nam et al., 2020; Lee et al., 2021; Levy et al., 2020; Zhang et al., 2022).

While substantial technical advances have been made in this regard, these approaches still fail to
address the open problem: how to train a debiased classifier by fully exploiting unlabeled samples
lacking both bias and target label. More specifically, while the large-scale unlabeled dataset can
be potentially biased towards spuriously correlated sensitive attributes, e.g., ethnicity, gender, or
age (Abid et al., 2021; Agarwal et al., 2021), most existing debiasing frameworks are not designed
to deal with this unsupervised settings. Moreover, recent works on self-supervised learning have
reported that self-supervised learning may still suffer from poor OOD generalization (Geirhos et al.,
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2020; Chen et al., 2021; Robinson et al., 2021; Tsai et al., 2021) when such dataset bias still remains
after applying data augmentations.

To address this question, we first made a series of observations about the dynamics of representations
complexity by controlling the degree of spurious correlations in synthetic simulations. Interestingly,
we found that spurious correlations suppress the effective rank (Roy & Vetterli, 2007) of latent
representations, which severely deteriorates the semantic diversity of representations and leads to the
degradation of feature discriminability. Another notable aspect of our findings is that the intentional
increase of feature redundancy leads to amplifying “prejudice” in neural networks. To be specific,
as we enforce the correlation among latent features to regularize the effective rank of representations
(i.e., rank regularization), the accuracy on bias-conflicting samples quickly declines while the model
still performs reasonably well on the bias-aligned 1 samples.

Inspired by these observations, we propose a self-supervised debiasing framework that can fully
utilize potentially biased unlabeled samples. We pretrain (1) a biased encoder with rank regulariza-
tion, which serves as a semantic bottleneck limiting the semantic diversity of feature components,
and (2) the main encoder with standard self-supervised learning approaches. Specifically, the biased
encoder gives us the leverage to uncover spurious correlations and identify bias-conflicting training
samples in a downstream task.

Contributions. In summary, the contributions of this paper are as follows: First, we empirically
demonstrate the inductive bias of neural networks in favor of low rank representations in the pres-
ence of spurious correlations. Based on these observations, we propose a novel rank-regularization
debiasing framework that fully exploits unlabeled samples that do not contain annotation for bias
and target label. Various experiments on real-world biased datasets demonstrate that retraining lin-
ear classifier in the last layer with upweighting of identified bias-conflicting samples significantly
improves the OOD generalization in the linear evaluation protocol (Oord et al., 2018), even without
making any modifications on the pretrained encoder. Our approach improves the accuracy on bias-
conflicting evaluation set by 36.4% → 59.5%, 48.6% → 58.4% on UTKFace (Zhang et al., 2017)
and CelebA (Liu et al., 2015) with age and gender bias, respectively, compared to the best self-
supervised baseline. Moreover, we found that the proposed framework outperforms state-of-the-art
supervised debiasing methods in semi-supervised learning problem with CelebA.

2 LOW-RANK BIAS OF BIASED REPRESENTATIONS

2.1 PRELIMINARIES

Preliminaries. To evaluate the semantic diversity of given representation matrix, we introduce
effective rank (Roy & Vetterli, 2007) which is a widely used metric to measure the effective dimen-
sionality of matrix and analyze the spectral properties of features in neural networks (Arora et al.,
2019; Razin & Cohen, 2020; Huh et al., 2021; Baratin et al., 2021):

Definition 2.1 Given the matrix X ∈ Rm×n and its singular values {σi}min (m,n)
i=1 , the effective

rank ρ of X is defined as the shannon entropy of normalized singular values:

ρ(X) = −
min (m,n)∑

i=1

σ̄i log σ̄i, (1)

where σ̄i = σi/
∑

k σk is i-th normalized singular value. Without loss of generality, we omit the
exponentiation of ρ(X) as done in Roy & Vetterli (2007).

Effective rank is also referred to as spectral entropy where its value is maximized when the singu-
lar values are all equal, and minimized when a top singular value dominates relative to all others.
Recent works (Chen et al., 2019b;a) have revealed that the discriminability of representations re-
sides on wide range of eigenvectors since the rich discriminative information for the classification

1The bias-aligned samples refer to data with a strong correlation between (potentially latent) spurious fea-
tures and target labels. The bias-conflicting samples refer to the opposite cases where spurious correlations do
not exist.
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(a) Unbiased correlation (b) Biased correlation (c) Color bias (d) Digit bias

(e) Subsampling results
(f) Spectral analysis

Figure 1: Empirical analysis on rank reduction phenomenon. (a, b): Hierarchically clustered auto-
correlation matrix of unbiased and biased representations (Bias ratio=99%). (c, d): Effective rank
with treating color or digit as dataset bias, respectively. ‘Unbiased’ represents the case training
model with perfectly unbiased dataset, i.e., assign random color for each training sample. (e): Unbi-
ased test accuracy (left) and effective rank (right) measured with subsampling bias-aligned samples.
Subsampling ratio denotes the ratio of removed samples among the total bias-aligned samples. (f):
SVD analysis with max-normalized singular values. Top 100 values are shown in the figure (Total:
256). All the analyses use the output Z of the encoder (see notations in section 2.3).

task cannot be transmitted by only few eigenvectors with top singular values. Thus from a spec-
tral analysis perspective, effective rank quantifies how diverse the semantic information encoded
by each eigenfeature are, which is closely related to the feature discriminability across target label
categories. In the rest of paper, we interchangeably use effective rank and rank by following prior
works.

2.2 SPECTRAL ANALYSIS OF THE BIAS-RANK RELATIONSHIPS

Degree of spurious correlations. We now present experiments showing that the deep networks
may tend to encode lower rank representations in the presence of stronger spurious correlations. To
arbitrarily control the degree of spurious correlations, we introduce synthetic biased datasets, Color-
MNIST (CMNIST) and Corrupted CIFAR-10 (CIFAR-10C) (Hendrycks & Dietterich, 2019), with
color and corruption bias types, respectively. We define the degree of spurious correlations as the
ratio of bias-aligned samples included in the training set, or bias ratio, where most of the samples are
bias-aligned in the context of strong spurious correlations. Figure 1c shows that the rank of latent
representations from a penultimate layer of the classifier decreases as the bias ratio increases in
CMNIST. We provide similar rank reduction results of CIFAR-10C in the supplementary material.

We further compare the correlation matrix of biased and unbiased latent representations in the penul-
timate layer of biased and unbiased classifiers, respectively. In Figure 1a and 1b, we observe that
the block structure in the correlation matrix is more evident in the biased representations after the
hierarchical clustering, indicating that the features become highly correlated which may limit the
maximum information capacity of networks.

We also measure the effective rank by varying the subsampling ratio (Japkowicz & Stephen, 2002)
of bias-aligned samples. Subsampling controls the trade-off between the dataset size and the ratio
of bias-conflicting samples to bias-aligned samples, i.e., conflict-to-align ratio, where subsampling
of bias-aligned samples reduces the dataset size but increases the conflict-to-align ratio. Figure
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1e shows that the effective rank is aligned well with the conflict-to-align ratio or generalization
performance, whereas it is not along with the dataset size.

Simplicity bias. Here, we argue that the rank reduction is rooted in the simplicity bias (Shah et al.,
2020; Hermann & Lampinen, 2020) of deep networks. Specifically, we reverse the task where the
color is now treated as a target variable of networks, and the digit is spuriously correlated to the
color, as done in (Nam et al., 2020). Digits are randomly assigned to color in an unbiased evaluation
set. Figure 1d shows that the rank reduction is not reproduced in this switched context where the
baseline levels of effective rank are inherently low. It intuitively implies that the rank reduction is
evidence of reliance on easier-to-learn features, where the rank does not decrease progressively if
the representation is already sufficiently simplified.

Spectral analysis. To investigate the rank reduction phenomenon in-depth, we compare the normal-
ized singular values of biased and unbiased representations. Specifically, we conduct singular value
decomposition (SVD) on the feature matrices of both biased and unbiased classifiers and plot the
singular values normalized by the spectral norm of the corresponding matrix. Figure 1f shows that
the top few normalized singular values of biased representations are similar to or even greater than
that of unbiased representations. However, the remaining majority of singular values decay signif-
icantly faster in biased representations, greatly weakening the informative signals of eigenvectors
with smaller singular values and deteriorating feature discriminability (Chen et al., 2019b;a).

2.3 RANK REGULARIZATION

Motivated from the rank reduction phenomenon, we ask an opposite-directional question: “Can we
intentionally amplify the prejudice of deep networks by maximizing the redundancy between the
components of latent representations?”. If the feature components are extremely correlated, the
corresponding representations may exhibit most of its spectral energy along the direction of one
singular vector. For this case, effective rank may converge to 0. In other words, our goal is to design
a semantic bottleneck of representations which restricts the semantic diversity of feature vectors.
To implement the bottleneck in practice, we compute the auto-correlation matrix of the output of
encoder. Throughout the paper, we denote x ∈ Rm and y ∈ Y as m-dimensional input sample
and its corresponding predicting label, respectively. Then we denote X = {xk}nk=1 as a batch of
n samples from a dataset which is fed to an encoder fθ : Rm → Rd, parameterized by θ. Then
we construct a matrix Z ∈ Rn×d where each ith row is the output representations of the encoder
fθ(xi)

T for xi ∈ X . Let Z̄ denotes the mean-centered Z along the batch dimension. The normalized
auto-correlation matrix C ∈ Rd×d of Z̄ is defined as follow:

Ci,j =

∑n
b=1 Z̄b,iZ̄b,j√∑n

b=1 Z̄
2
b,i

√∑n
b=1 Z̄

2
b,j

∀1 ≤ i, j ≤ d, (2)

where b is an index of sample and i, j are index of each vector dimension. Then we define our
regularization term as negative of a sum of squared off-diagonal terms in C:

ℓreg(X; θ) = −
∑
i

∑
j ̸=i

C2
i,j , (3)

where we refer to it as a rank loss. Note that the target labels on X is not used at all in formulation.

To investigate the impacts of rank regularization, we construct the classification model by combining
the linear classifier fW : Rd → Rc parameterized by W ∈ W on top of the encoder fθ, where
c = |Y| is the number of classes. Then we trained models by cross entropy loss ℓCE combined with
λregℓreg , where λreg > 0 is a Lagrangian multiplier. We use CMNIST, CIFAR-10C, and Waterbirds
dataset (Wah et al., 2011), and evaluate the trained models on an unbiased test set following Nam
et al. (2020); Lee et al. (2021). After training models with varying the hyperparameter λreg , we
compare bias-aligned and bias-conflict accuracy, which are the average accuracy on bias-aligned
and bias-conflicting samples in the unbiased test set, respectively, for CMNIST and CIFAR-10C.
Test accuracy on every individual data group is reported for Waterbirds.

Figure 2 shows that models suffer more from poor OOD generalization as trained with larger λreg.
The average accuracy on bias-conflicting groups is significantly degraded, while the accuracy on
bias-aligned groups is maintained to some extent. It implies that rank regularization may force
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(a) CMNIST (b) CIFAR-10C (c) Waterbirds

Figure 2: (a, b): Bias-conflict and Bias-aligned accuracy on CMNIST and CIFAR-10C (Bias
ratio=95%). (c): Group accuracy on Waterbirds. Detailed simulation settings are in the appendix.

Precision (%) Recall (%)

ERM 85.59 19.76

+ Rank reg 98.83 95.91

(a) CMNIST

Precision (%) Recall (%)

ERM 52.03 0.06

+ Rank reg 71.39 51.43

(b) CIFAR-10C

Table 1: Precision and recall of identified bias-conflicting samples in error set of ERM model trained
with and without rank regularization. Bias ratio=95% for both dataset. λreg = 35 and λreg = 20
are used for CMNIST and CIFAR-10C, respectively. Capacity control techniques (e.g., strong ℓ2
regularization, early-stopping, Liu et al. (2021); Sagawa et al. (2019)) are not used to emphasize the
contribution of rank regularization. Detailed simulation settings are in the appendix.

deep networks to focus on spurious attributes. Table 1 supports that the biased models with strong
regularization can effectively probe out the bias-conflicting samples in the training set. Specifically,
we train a biased classifier with rank regularization and distill an error set E of misclassified training
samples as bias-conflicting samples proxies. As reported in Table 1, we empirically observe that
our biased classifier is relatively robust to the unintended memorization of bias-conflicting samples
(Sagawa et al., 2020) in contrast to the standard models trained by Empirical Risk Minimization
(ERM).

3 DEFUND: DEBIASING FRAMEWORK WITH UNLABELED DATA

Motivated by the observations in Section 2, we propose a self-supervised debiasing framework with
unlabeled data, coined DeFund. The most important difference from prior works is that the proposed
framework can intentionally learn biased representations without human supervision. Recent meth-
ods (Bahng et al., 2020; Nam et al., 2020; Liu et al., 2021; Lee et al., 2021; Zhang et al., 2022) train
a biased model to uncover the spurious correlations and guide the main model to focus on samples
that the biased model struggles to predict, which are seemingly the ones conflicting with the bias.
While these methods require a bias label or a target label to train biased representations, we obtain
such biased representations for free using self-supervised learning and rank regularization.

The proposed framework is composed of two stages: We first train the biased encoder, which can
be potentially adopted to detect the bias-conflicting samples in a downstream task, along with the
main encoder by self-supervised learning, both without any labels. After pretraining, we identify the
bias-conflicting samples in the downstream task using linear evaluation protocol (Oord et al., 2018;
Chen et al., 2020). This set of samples serves as a boosting to debias the main model.

We denote f bias
θ : X → Rd and fmain

ϕ : X → Rd as biased encoder and main encoder parame-
terzied by θ ∈ Θ and ϕ ∈ Θ, respectively, where d is the dimensionality of latent representations.
Then we can compute the rank loss in (3) with introduced encoders and given batch {xk}Nk=1 with
size N . Let f cls

Wb
: Rd → RC be a single-layer classifier parameterized by Wb ∈ W which is

placed on top of biased encoder f bias
θ , where C = |Y| is the number of classes. We similarly de-

fine the linear classifier f cls
Wm

for the main encoder. Then we refer to f bias : X → RC as biased
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model, where f bias(x) = f cls
Wb

(
f bias
θ (x)

)
,∀x ∈ X . We similarly define the main model fmain as

fmain(x) = f cls
Wm

(
fmain
ϕ (x)

)
,∀x ∈ X . While the projection networks (Chen et al., 2020; Khosla

et al., 2020) are employed as well, we omit the notations because they are not engaged in the linear
evaluation after pretraining encoders.

Stage 1. Train biased encoder. To train the biased encoder f bias
θ , we revisit the proposed rank reg-

ularization term in (3) which can control the effective dimensionality of representations for instance
discrimination task. We conjecture that the scope of captured features may be restricted to the easy-
to-learn ones if the maximum information capacity of the encoder is strongly suppressed. Based
on these intuitions, we apply rank regularization directly to the output of the base encoder, which
encourages each feature component to be highly correlated. A simple simulation on the synthetic
dataset conceptually clarifies the validity of our intuition, where we figured out that the representa-
tion becomes more biased as it is trained with stronger regularization, by measuring the bias metric,
which quantifies how much the encoder focus on the short-cut attributes (Details provided in sup-
plementary material). Moreover, while the overall performance may be upper-bounded due to the
constraint on effective dimensionality (Jing et al., 2021), we observed that the bias-conflict accuracy
is primarily sacrificed compared to the bias-aligned accuracy (Related experiments in Section 4).

Stage 2. Debiasing downstream tasks. After training the biased encoder, our next goal is to debias
the main model, pretrained on the same dataset with standard self-supervised learning approaches,
e.g., Chen et al. (2020); Chen & He (2021). To achieve this, we recall the recent work which
explains the contrastive learning as a protocol inverting the data generating process; Zimmermann
et al. (2021) demonstrates that the pretrained encoder with a contrastive loss from the InfoNCE
family can recover the true latent factors of variation under some statistical assumptions. That being
said, imagine that we have an ideal pretrained encoder of which each output component corresponds
to the latent factor of data variation. Then one may expect that this encoder perfectly fits downstream
classification tasks, where the only remaining job is to find out the optimal weights of these factors
for prediction. However, if most samples in the downstream task are bias-aligned, these samples
may misguide the model to upweight the spuriously correlated latent factors. In other words, the
model may reach a biased solution even though it encodes well-generalized representations.

The above contradiction elucidates the importance of bias-conflicting samples, which serve as coun-
terexamples of spuriously correlated feature components, thereby preventing the alleged involve-
ment of such components in prediction. Based on these intuitions, we introduce a novel debias-
ing protocol that probes and upweights bias-conflicting samples to find and fully exploit feature
components independent of spurious correlations. We evaluate our framework on two scenarios:
linear evaluation and semi-supervised learning. First, following the conventional protocol of self-
supervised learning, we conduct linear evaluation (Zhang et al., 2016; Oord et al., 2018), which
trains a linear classifier on top of unsupervised pretrained representations by using target labels of
every training sample. After training a linear classifier f cls

Wb
with pretrained biased encoder f bias

θ

given the whole training set D = {(xk, yk)}Nk=1 with size N , an error set E of misclassified sam-
ples and corresponding labels is regarded as bias-conflicting pairs. Then we train a linear classifier
f cls
Wm

on freezed representations of main encoder fmain
ϕ by upweighting the identified samples in E

with λup > 0. The loss function for debiased linear evaluation is defined as follow:

ℓdebias(D;Wm) = λup

∑
(x,y)∈E

ℓ(x, y;Wm) +
∑

(x,y)∈D\E

ℓ(x, y;Wm), (4)

where we use cross entropy loss for ℓ : X ×Y ×W → R+. Note that the target labels are only used
in training linear classifiers after pretraining.

While linear evaluation is mainly opted for evaluating self-supervised learning methods, we also
compare our method directly to other supervised debiasing methods in the context of semi-
supervised learning. Here we assume that the training dataset includes only a small amount of
labeled samples combined with a large amount of unlabeled samples. As in linear evaluation, we
train a linear classifier on top of the biased encoder by using labeled samples. After obtaining an er-
ror set E of misclassified samples, we finetuned the whole main model by upweighting the identified
samples in E with λup. Note that supervised baselines are restricted to using only a small fraction
of labeled samples, while the proposed approach benefits from the abundant unlabeled samples dur-
ing training of the biased encoder. The pseudo-code of DeFund is provided in the supplementary
material.
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Table 2: (Linear evaluation) Bias-conflict and unbiased test accuracy (%) evaluated on UTKFace
and CelebA. Models requiring information on target class or dataset bias in (pre)training stage are
denoted with ✓in column Y and B, respectively. The results are averaged on 4 random seeds.

Model Y B UTKFace (age) UTKFace (gender) CelebA (makeup)

Conflict Unbiased Conflict Unbiased Conflict Unbiased

LNL ✓ ✓ 45.8±0.6 72.6±0.3 73.1±1.6 84.9±0.8 55.9±2.1 76.0±0.6

EnD ✓ ✓ 45.3±0.9 72.2±0.2 75.5±1.1 85.5±0.4 57.3±2.4 76.4±1.4

JTT ✓ ✗ 63.8±0.9 69.4±1.3 71.2±0.3 77.6±0.4 62.4±1.2 74.7±0.8

CVaR DRO ✓ ✗ 45.7±2.0 71.4±0.3 68.6±1.0 81.0±0.8 58.0±1.7 76.5±0.6

ERM ✓ ✗ 45.4±2.1 71.0±1.2 65.7±1.4 79.5±0.6 54.2±0.2 74.1±1.4

SimSiam ✗ ✗ 28.2±0.9 62.6±0.7 48.5±1.0 69.8±0.7 39.9±0.6 66.7±0.6

VICReg ✗ ✗ 32.3±0.6 64.6±0.3 51.0±1.4 71.3±0.7 48.6±0.6 71.9±0.2

SimCLR ✗ ✗ 36.4±1.5 66.3±0.6 56.3±0.2 74.2±0.2 46.9±1.0 69.8±0.4

DeFund ✗ ✗ 59.5±0.8 70.6±0.8 63.7±2.0 74.9±0.9 58.4±0.6 73.1±1.0

4 RESULTS

4.1 METHODS

Dataset. To investigate the effectiveness of the proposed debiasing framework, we evaluate several
supervised and self-supervised baselines on UTKFace (Zhang et al., 2017) and CelebA (Liu et al.,
2015) in which prior work has observed poor generalization performance due to spurious correla-
tions. Each dataset includes several sensitive attributes, e.g., gender, age, ethnicity, etc. We consider
three prediction tasks: For UTKFace, we conduct binary classifications using (Gender, Age) and
(Race, Gender) as (target, spurious) attribute pair, which we refer to UTKFace (age) and UTKFace
(gender), respectively. For CelebA, we consider (HeavyMakeup, Male) and (Blonde Hair,
Male) as (target, spurious) attribute pairs, which are referred to CelebA (makeup) and CelebA
(blonde), respectively. The results of CelebA (blonde) are reported in appendix. Following Nam
et al. (2020); Hong & Yang (2021), we report bias-conflict accuracy together with unbiased accu-
racy, which is evaluated on the explicitly constructed validation set. We exclude the dataset in Figure
2 based on the observations that the SimCLR models are already invariant w.r.t spurious attributes.

Baselines. We mainly target baselines consisting of recent advanced self-supervised learning meth-
ods, SimCLR (Chen et al., 2020), VICReg (Bardes et al., 2021), and SimSiam (Chen & He, 2021),
which can be categorized into contrastive (SimCLR) and non-contrastive (VICReg, SimSiam) meth-
ods. We further report the performance of vanilla networks trained by ERM, and other supervised
debiasing methods such as LNL (Kim et al., 2019), EnD (Tartaglione et al., 2021), and upweighting-
based algorithms, JTT (Liu et al., 2021) and CVaR DRO (Levy et al., 2020), which can be catego-
rized into methods that leverage annotations on dataset bias (LNL, EnD) or not (JTT, CVaR DRO).

Optimization setting. Both bias and main encoder is pretrained with SimCLR (Chen et al., 2020)
for 100 epochs on UTKFace, and 20 epochs on CelebA, respectively, using ResNet-18, Adam opti-
mizer and cosine annealing learning rate scheduling (Loshchilov & Hutter, 2016). We use a MLP
with one hidden layer for projection networks as in SimCLR. All the other baseline results are
reproduced by tuning the hyperparameters and optimization settings using the same backbone ar-
chitecture. We report the results of the model with the highest bias-conflicting test accuracy over
those with improved unbiased test accuracy compared to the corresponding baseline algorithms, i.e.,
SimCLR for ours. The same criteria are applied to supervised baselines, while JTT often sacrifices
unbiased accuracy for highly improved bias-conflict accuracy. More details about the dataset and
simulation settings are provided in the supplementary material.

4.2 EVALUATION RESULTS

Linear evaluation. The bias-conflict and unbiased test accuracy are summarized in Table 2. We
found that DeFund outperforms every self-supervised baseline by a large margin, including Sim-
CLR, SimSiam and VICReg, with respect to both bias-conflict and unbiased accuracy. Moreover, in
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Table 3: (Semi-supervised learning) Bias-conflict and unbiased accuracy (%) evaluated on CelebA
(makeup). Label fraction is set to 10%. Each first and second ✓marker represents whether the model
requires information on target class or dataset bias in pretraining stage, respectively.

Accuracy LNL EnD JTT CVaR DRO ERM SimCLR DeFund
✓✓ ✓✓ ✓✗ ✓✗ ✓✗ ✗✗ ✗✗

Conflict 55.7±1.4 55.3±1.5 51.5±1.9 55.6±1.5 51.5±1.1 50.5±4.7 60.5±0.4

Unbiased 75.6±0.5 76.2±0.8 71.4±1.3 75.7±1.0 73.1±0.3 71.6±1.9 75.6±0.2

some cases, DeFund even outperforms ERM models or supervised debiasing approaches regarding
bias-conflict accuracy. Note that there is an inherent gap between ERM models and self-supervised
baselines, roughly 8.7% on average. Moreover, we found that non-contrastive learning methods
generally perform worse than the contrastive learning method. This warns us against training the
main model using a non-contrastive learning approach, while it may be a viable option for the biased
model. We provide results of the proposed framework implemented with non-contrastive learning
methods in the supplementary material.

Semi-supervised learning. To compare the performance of supervised and self-supervised methods
in a more fair scenario, we sample 10% of the labeled CelebA training dataset at random for each
run. The remaining 90% samples are treated as unlabeled ones and engaged only in pretraining
encoders for self-supervised baselines. Labeled samples are provided equally to both supervised
and self-supervised methods.

Remarkably, Table 3 shows that the proposed framework outperforms all the other state-of-the-
art supervised debiasing methods. Notably, only about 16 samples remain within (Gender=1,
HeavyMakeup=1) group after subsampling. Thus it is almost impossible to prevent deep net-
works from memorizing those samples even with strong regularization if we train the networks from
scratch, which explains the failure of existing upweighting protocols such as JTT. In contrast, the
proposed framework can fully take advantage of unlabeled samples where contrastive learning help
prevent memorization of the minority counterexamples (Xue et al., 2022). It highlights the im-
portance of pretraining using unlabeled samples that most prior debiasing works do not consider.
Moreover, such implicit bias of deep networks towards memorizing samples may seriously deterio-
rate the performance of existing bias-conflicting sample mining algorithms (Kim et al., 2021; Zhao
et al., 2021; Nam et al., 2020) when the number of labeled samples is strictly limited. However, such
failure is unlikely to be reproduced in the proposed framework since we only train a simple linear
classifier on top of a freezed biased encoder to identify such bias-conflicting samples.

Table 4: Ablation study on introduced modules. Accuracy is reported in (%).

Method UTKFace (age) UTKFace (gender) CelebA (makeup)

Conflict Unbiased Conflict Unbiased Conflict Unbiased

SimCLR 36.4 66.3 56.3 74.2 46.9 69.8
+ Rank reg 26.6 61.3 50.9 70.3 43.9 68.3
+ Upweight 53.0 64.6 58.3 74.5 50.1 70.4

DeFund 59.5 70.6 63.7 74.9 58.4 73.1

Table 5: Precision and recall (%) of bias-conflicting samples identified by SimCLR and our biased
model. Both case used linear evaluation.

Method UTKFace (age) UTKFace (gender) CelebA

Precision Recall Precision Recall Precision Recall

SimCLR 68.31 44.63 33.36 39.59 52.25 28.23

DeFund 68.67 75.94 29.98 50.93 55.29 32.46
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Ablation study. To quantify the extent of performance improvement achieved by each introduced
module, we compared the linear evaluation results of (a) vanilla SimCLR, (b) SimCLR with rank
regularization, (c) SimCLR with upweighting error set E of the main model, and (d) Full model
DeFund. Note that (c) does not use a biased model at all. Table 4 shows that every module plays
an important role in OOD generalization. Considering that the main model is already biased to
some extent, we found that bias-conflict accuracy can be improved even without a biased model,
where the error set E of the biased model further boosts the generalization performance. We also
quantify how well the biased model captures bias-conflicting samples by measuring the precision
and recall of identified bias-conflicting samples in E. As reported in Table 5, the biased model
detects more diverse bias-conflicting samples compared to the baseline for free or with affordable
precision costs. While the improvement of recall in CelebA may seem relatively marginal, a large
quantity of bias-conflicting samples is additionally identified in practice considering that CelebA
includes much more samples than UTKFace.

5 DISCUSSIONS AND CONCLUSION

Contributions. In this paper, we (a) first unveil the catastrophic adverse impacts of spurious cor-
relations on the effective dimensionality of representations. Based on these findings, we (b) design
a rank regularization that amplifies the feature redundancy by reducing the spectral entropy of la-
tent representations. Then we (c) propose a debiasing framework empowered by the biased model
pretrained with abundant unlabeled samples.

Comparisons to related works. Our observations are in line with the simplicity bias of gradient
descent-based optimizations, where many recent studies (Rahaman et al., 2019; Shah et al., 2020)
have revealed that networks tend to exploit the simplest feature at the expense of a small margin and
often ignore the complex features. Similar observations have been made confined to self-supervised
learning named feature suppression, where the encoder may heavily rely on the attributes that make
the instance discrimination tasks easier. While these existing works often focus on the innate pref-
erence of models on input cues (Hermann & Lampinen, 2020; Scimeca et al., 2021), we provide a
novel perspective on the practical impacts of spurious correlations on deep latent representations:
reduction of effective rank.

Robinson et al. (2021) proposes an opposite-directional approach compared to our framework to
improve generalizations of self-supervised learning. It aims to overcome the feature suppression
and learn a wide variety of features by Implicit Feature Modification (IFM), which adversarially
perturbs feature components of the current representations used to discriminate instances, thereby
encouraging the encoder to use other informative features. We observed that IFM improves the
bias-conflict accuracy by about 1% on UTKFace (age) in Table 6, which is roughly consistent with
the performance gains on the standard benchmarks, e.g., STL10, reported in the original paper.
However, its performance gain is relatively marginal compared to the proposed framework.

Table 6: Results of Implicit Feature Modification (Robinson et al., 2021) with SimCLR on UTKFace
(age). we denote ϵ as the adversarial budget of feature modification as in the original paper.

Accuracy SimCLR ϵ = 0.05 ϵ = 0.1 ϵ = 0.5

Bias-conflict (%) 36.4 37.5 36.4 33.7

Unbiased (%) 66.3 66.5 66.2 64.6

Future directions. While this work has focused on intentionally encoding biased representations,
we argue that more advances should be concurrently made in learning both biased and debiased
representations, as partially discussed above (Robinson et al., 2021). The interplay between those
bidirectional modules may further improve generalizations. We also note that the proposed rank reg-
ularization is one possible implementation of the semantic bottleneck. While we explicitly control
the feature correlations, we believe such design can be employed more implicitly. We provide exper-
iments examining the potential of existing hyperparameters, e.g., the temperature in InfoNCE loss,
etc., as a bias controller in the supplementary material. Lastly, we believe that a semi-supervised
learning scenario should be part of a standard evaluation pipeline where many supervised baselines
may fail due to the inductive bias of networks towards memorizing a few counterexamples.
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Appendix
The supplementary material is organized as follows. We begin with providing the algorithm of
DeFund, followed by more discussions on the related works. Then we provide additional results and
analyses in section C. Optimization setting, hyperparameter configuration and other experimental
details are provided in section D.

A PSEUDOCODE

Algorithm 1 Debiasing Framework with unlabeled data

1: Input: Dl = {(xk, yk)}N1

k=1, Du = {xk}N2

k=1 for semi-supervised learning (N2 ≫ N1), or ∅
for linear evaluation, D = Dl ∪Du, batch size n, structure of f bias and fmain.

2:
3: Stage 1. Pretraining encoders
4: for subsampled minibatch X = {xk}nk=1 from D do
5: Update θ of f bias

θ with SimCLR NT-Xent loss and λregℓreg(X; θ).
6: Update ϕ of fmain

ϕ with SimCLR NT-Xent loss.
7: end for
8: Obtain pretrained parameters θ̂ and ϕ̂.
9:

10: Stage 2. Downstream task
11: Freeze f bias

θ̂
and train f cls

Wb
with Dl. Identify the error set E ⊂ Dl with trained f bias.

12: if Linear evaluation then
13: Freeze fmain

ϕ̂
and train f cls

Wm
with ℓdebias(Dl;Wm)

14: else if Semi-supervised learning then
15: Finetune fmain with ℓdebias(Dl;Wm, ϕ) where ϕ is initialized with ϕ̂.
16: end if

B SUPPLEMENTARY INFORMATION - RELATED WORKS

Here, we have detailed discussions about related works.

Discovering bias without supervision. In practice, several limitations exist against gleaning more
labeled samples: labeling budget, expert-level knowledge required for labeling, data privacy, etc. In
this regard, most training samples lack annotations on the spuriously correlated attributes.

To mitigate these problems, several works aim to discover biases without bias annotations. Liu et al.
(2021) reveals that the standard ERM model may serve as a bias-capturing model if one trains it
with strong capacity control. Yaghoobzadeh et al. (2019) shows that forgettables, or examples that
have been forgotten at least once, contain more minority examples, and proposes a novel robust
learning framework by fully exploiting the identified forgettable examples. Li & Xu (2021) obtains
a biased attribute hyperplane of the generative models, which can help identify semantic biases by
generating bias-traversal images. Li et al. (2022) introduces the discoverer model, which uncovers
multiple unknown biases such that the difference of averaged predicted probabilities on the target
attribute in two groups is maximized. Lang et al. (2021) proposes a novel framework, StylEx, which
trains a styleGAN to specifically visualize multiple attributes underlying the classifier decisions.

While substantial advances have been made in discovering the unknown biases of neural networks
without bias labels, these works still inevitably require target labels. In contrast, we consider a
very challenging scenario that has received little attention so far: self-supervised debiasing. In this
regard, our work addresses the following open problems/questions:

• Can we learn biased/debiased representations by using unlabeled samples?

• What is the fundamental difference between biased and debiased representations?
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• Is supervised debiasing robust despite decreasing the number of labeled samples?

• How can bias-conflicting samples be discovered by leveraging information from unlabeled
samples?

• Many recent works have reported the limitations of self-supervised learning (SSL) in OOD
generalization. How can we overcome such limitations?

Mitigating bias with reweighting. Recently, Kirichenko et al. (2022) have reported an intriguing
observation: Simple last layer retraining, so-called Deep Feature Reweighting (DFR), can match or
outperform state-of-the-art approaches on spurious correlation benchmarks. Kirichenko et al. (2022)
shows that biased classifiers still often learn core features associated with the desired attributes of the
data. Based on these observations, they probe invariant features for the reweighting by leveraging
explicit group-balanced dataset D̂.

We compare the proposed framework with DFR as follows. First, while DFR and the proposed
framework can mitigate the bias in representations by retraining the last linear layer, our method is
not restricted to such last-layer retraining. Instead, the semi-supervised learning scenario is a more
practical application of the proposed method. Specifically, we can fine-tune representations by fully
exploiting both unlabeled and labeled samples, which improves the performance compared to the
last layer retraining in Table 3. In contrast, DFR trains a linear classifier while freezing the pre-
trained representations as-is. More importantly, DFR requires pretrained networks or fully labeled
datasets where we consider a more challenging scenario without such assumptions. Moreover, DFR
does not use mining bias-conflicting samples in the training set. Specifically, DFR trains a new clas-
sification head from scratch on the available group-balanced data D̂. In Kirichenko et al. (2022), the
reweighting dataset D̂ often consists of a random group-balanced subset of the training or valida-
tion data. In other words, DFR is not designed to identify the bias-conflicting samples but exploits
the existing group annotations. Considering practical situation with several limitations against col-
lecting more labeled samples, it remains unclear how to obtain the group-balanced dataset D̂ with
sufficient number of samples in the absence of prior information on the dataset bias. In contrast, the
proposed framework can leverage the explicit set D̂ if accessible, as well as identifying the unknown
bias-conflicting samples in the training set.

C ADDITIONAL RESULTS

Our additional results can be roughly categorized into: (1) more observations related to the rank
reduction, (2) rank regularization in self-supervised learning, and (3) an examination of the poten-
tial of existing hyperparameters as a bias controller. Our observations include the visualization of
reconstructed images with biased representations, rank reduction trends in CIFAR-10C and Vision
Transformer (ViT, Dosovitskiy et al. (2020)), minority mining performance in supervised settings,
and rank regularization with a moderate level of bias. Then we present a simple synthetic simula-
tion on the behavior of rank-regularized encoder, followed by additional results on non-contrastive
methods and CelebA (blonde). Then the potential of using shallow networks as the bias-capturing
model will be discussed. Lastly, we provide additional analysis on relations between existing hyper-
parameters of self-supervised learning and effective rank.

C.1 MORE OBSERVATIONS

Reconstruction of biased representations. To understand the relationship between rank regulariza-
tion and spurious correlations more deeply, we visualize the pretrained representations with varying
degrees of bias. We first trained deep networks on: (a) unbiased CMNIST (random background
color), (b) biased CMNIST (bias ratio=95%) without rank regularization and (c) with rank regular-
ization (λreg = 50). Then, we train the auxiliary decoder, which reconstructs the bias-conflicting
images from freezed latent representations of each pretrained network.

Figure 3 shows that the reconstructed results are evidently different for each case. First, the decoder
successfully reconstructs the foreground digit from the (a) unbiased representations, while the back-
ground color is completely changed in some cases. It implies that unbiased representations may
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(a) Unbiased (b) Biased (c) Biased with rank reg.

Figure 3: Randomly selected reconstructed images from representations with varying degrees of
bias. First and third row correspond to the input bias-conflicting images. Second and fourth row
correspond to the reconstructed images. Reconstructed from (a) unbiased representations, (b) biased
representations, and (c) biased representations with rank regularization (bias ratio=95% in b, c).

lack information on spuriously correlated attributes, i.e., background color. However, both digit and
color are well reconstructed in (b) biased case, implying that the biased model encodes both spurious
and invariant features. Intriguingly, the decoder fails to reconstruct bias-conflicting images from the
(c) biased representations pretrained with rank regularization. Specifically, the foreground digit is
blurred, and its class is often changed following the color-digit assignment in Figure 4.

Figure 4: Examples of bias-aligned
CMNIST images.

Based on these observations, we summarize some key insights:
First, the rank-regularized representation may lose its infor-
mation on harder-to-learn invariant features. While the recon-
structed images in (a) or (b) preserve the detailed class, shape,
and style of the foreground digit, such properties are deterio-
rated in (c), implying the loss of feature discriminability and
informative signals. Second, with limited semantic diversity, the rank-regularized model fails to
identify the true underlying independent generative factors for multidimensional data; it may rather
encode feature components entangled with both spurious and invariant attributes. In other words,
the proposed low-rank regularization prevents features from encoding discriminative information
independently. It is indirectly reflected in (c) that the digit class of the reconstructed image is erro-
neously determined by the spurious attribute, i.e., background color. The experiments showed that
our rank regularization encourages the network to focus more on spurious correlations in a way that
minimizes semantic diversity.

Table 7: Unbiased test accuracy (%) on CMNIST and CIFAR-10C measured with varying bias ratio
r. The model trained with unbiased dataset (r = 10%) serves as a baseline.

Dataset Unbiased r = 95% r = 98% r = 99% r = 99.5%

CMNIST 99.87 88.27 68.13 36.21 13.61

CIFAR-10C 78.71 46.15 34.18 26.76 20.94

Rank reduction. Figure 5a shows that the rank of latent representations from a penultimate layer
of classifier decreases as the bias ratio increases in CIFAR-10C. In Table 7, we supplement the
unbiased test accuracy of CMNIST and CIFAR-10C from the experiments presented in Figure 1c
and 5a, respectively. Moreover, similar rank reduction trends are observed in Vision Transformer
(ViT, Dosovitskiy et al. (2020)). We train ViT on CMNIST and CIFAR-10C for 2000 and 10000
iterations, respectively, with Adam optimizer of learning rate 0.001, patch size 4, dimension of
output tensor 128, number of transformer blocks 6, number of heads in multi-head Attention layer
4, dropout rate 0.2 and dimension of the MLP (FeedForward) layer 1024. Figure 5b, 5c show that
the effective rank of the output of the Transformer encoder z0L (notation follows the original paper)
decreases as bias ratio increases.

Minority mining in supervised setting. Following the official implementation of JTT (Liu et al.,
2021), we compare the quality of bias-conflicting samples identified by JTT and the rank-regularized
model in Waterbirds dataset. Following the official command of JTT, λℓ2 = 1 is used for JTT, while
λℓ2 = 1e − 4 is used for ours to focus on the contribution of rank regularization. The number of
training epochs is selected by tuning T ∈ {20, 40, 60} for both JTT (T = 60) and ours (T = 40). All
the other experimental settings are fixed, including backbone architecture (ResNet-50) and optimizer
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(a) CIFAR-10C (b) CMNIST (ViT) (c) CIFAR-10C (ViT)

Figure 5: Effective rank measured with (a) CIFAR-10C (ResNet-18), (b) CMNIST (ViT) and (c)
CIFAR-10C (ViT).

(Adam), etc. Table 8 shows that the proposed rank regularization improves the precision and recall of
identified bias-conflicting samples by using sufficiently large λreg . Even though these results imply
that rank regularization may be a viable option for the minority mining algorithms in a supervised
learning setting, we defer extensive discussions about this possibility to focus on the unsupervised
learning settings.

Table 8: Precision and recall of bias-conflicting samples identified by ERM, JTT and the proposed
biased model in Waterbirds dataset.

Metrics ERM JTT Ours (λreg = 5) Ours (λreg = 10)

Precision (%) 37.84 48.95 48.91 54.77
Recall (%) 11.67 48.75 46.67 55.01

Rank regularization with moderate level of bias. To study the compatibility of rank regular-
ization with weak spurious correlations, we apply the rank regularization to the moderately biased
CMNIST, i.e., bias ratio=60%. Table 9 shows that the rank regularization works well in this natural
setting. This implies that the rank regularization can be leveraged to reveal the moderate level of
bias embedded in the representations, which is supported by the empirical results of other general
datasets, e.g., Waterbirds, UTKFace or CelebA.

Table 9: Ablation study of rank regularization on weakly biased CMNIST (Bias ratio=60%). Our
rank-regularized model is trained with λreg = 50. For a fair comparison, all the other experimental
settings are fixed. Bias-aligned accuracy, bias-conflict accuracy, precision and recall of identified
bias-conflicting samples are reported.

Methods Align (%) Conflict (%) Precision (%) Recall (%)

ERM 99.49 97.81 79.55 0.87

Ours 96.25 38.15 91.56 60.97

Behavior of rank-regularized encoder. Here, we present a simple simulation which conceptually
clarifies the impacts of rank regularization in self-supervised learning. Inspired from Chen et al.
(2020); Robinson et al. (2021), we create a DigitsOnSTL10 dataset as in Figure 6a where MNIST
images are randomly selected and placed on top of the STL10 images. After self-supervised repre-
sentation learning, we train two independent linear classifiers on top of the freezed representations,
where we provide label of foreground MNIST digit for one classifier, and label of background
STL10 object class for the other. After training linear classifiers, we measure the ratio of MNIST
classifier test accuracy to STL10 classifier test accuracy, which we treat as a proxy of ratio of spu-
riously correlated features to invariant features, i.e., degree of bias in representations. Intuitively,
the proposed bias metric increases as the encoder focus more on the short-cut attribute, i.e., MNIST
digit.

We measure the bias metric on the representations of ResNet-18 encoders trained by SimCLR (Chen
et al., 2020) together with rank regularization loss λregℓreg, where λreg > 0 is a balancing hyper-
parameter. As denoted in the main paper, we apply regularization not on the output of projection
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(a) Sample images (b) Evaluation results

Figure 6: (a) Sample images from DigitsOnSTL10 dataset. (b) Test accuracy of STL10 classifier
and bias metric.

networks but directly on the output of base encoder, which makes it fully agnostic to networks ar-
chitecture. Figure 6b shows that the rank regularization exacerbates the “feature suppression” phe-
nomenon revealed by Chen et al. (2021). The representation becomes more biased as it is trained
with stronger regularization. While the overall performance of self-supervised learning may be
upper-bounded due to the constraint on effective dimensionality (Jing et al., 2021), we observe in
Figure 6b that the bias-conflict accuracy is primarily sacrificed compared to the bias-aligned accu-
racy. Coupled with results in section 4, this result implies that rank regularization can amplify bias
in self-supervised encoder.

C.2 ADDITIONAL RESULTS ON CELEBA

We report the results of CelebA (blonde) in here due to the limited space. Detailed information on
the dataset and simulation settings is provided in the section D. Following Sagawa et al. (2019);
Liu et al. (2021), we report worst-group and average accuracy because CelebA (blonde) includes
abundant samples in (Blonde Hair=0, Male=0) bias-conflicting group. The number of training
samples in each group is provided in Table 17.

Table 10 shows that DeFund outperforms not only every self-supervised baseline, but also ERM,
CVaR DRO, and LfF Nam et al. (2020) in linear evaluation. Table 11 shows that DeFund outper-
forms all the other baseline methods in semi-supervised learning, which is consistent with Table 3
of the main paper.

Moreover, recent works unveil that CelebA (blonde) exhibits a large class imbalance which in turn
correlates with a large group imbalance. Hong & Yang (2021); Idrissi et al. (2022) found that both
target classes are biased toward a non-Male bias class in CelebA (blonde) which obfuscates whether
the dataset is indeed biased. In this regard, Idrissi et al. (2022) observed that the simple class
balancing serves as a powerful baseline due to the class imbalance. This directly motivates us to
alleviate the class imbalance and focus on the dataset bias itself. Following Hong & Yang (2021), we
randomly subsample images from (Blonde Hair=0, Male=0) group so that two target classes are
biased toward different bias classes. The number of training samples before and after subsampling
is provided in Table 17d and 12b, respectively. Table 12a shows that DeFund outperforms JTT with
respect to both worst-group and average accuracy. These additional results imply that the proposed
framework ensures reliable performance in the presence of strong spurious correlations.

C.3 NON-CONTRASTIVE METHODS

We provide the results of proposed framework implemented based on non-contrastive methods.
Specifically, we leverage SimSiam (Chen & He, 2021) and VICReg (Bardes et al., 2021) as base-
lines. Table 13 shows that the generalization performance of both baselines can be improved with
the proposed debiasing framework.
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Table 10: (Linear evaluation) Worst-group and average accuracy (%) evaluated on CelebA (blonde).
Results of ERM, CVaR DRO, LfF (Nam et al., 2020) and JTT are come from Table 1 of the original
JTT paper (Liu et al., 2021). Each first and second ✓marker represents whether the model requires
information on target class or dataset bias in pretraining stage, respectively.

Accuracy ERM CVaR DRO LfF JTT VICReg SimSiam SimCLR DeFund
✓✗ ✓✗ ✓✗ ✓✗ ✗✗ ✗✗ ✗✗ ✗✗

Worst-group 47.2 64.4 77.2 81.1 10.2 1.1 17.1 77.9
Average 95.6 82.5 85.1 88.0 89.0 89.0 88.9 89.0

Table 11: (Semi-supervised learning) Worst-group and average accuracy evaluated on CelebA
(blonde). Label fraction is set to 10%. Each first and second ✓marker represents whether the
model requires information on target class or dataset bias in pretraining stage, respectively.

Accuracy LNL EnD JTT CVaR DRO ERM SimCLR DeFund
✓✓ ✓✓ ✓✗ ✓✗ ✓✗ ✗✗ ✗✗

Worst-group (%) 40.3 41.5 79.2 49.1 30.8 12.8 80.8
Average (%) 91.1 91.0 91.0 91.0 89.1 89.1 90.0

Methods Worst-group (%) Average (%)

JTT 70.6 86.6

DeFund 75.1 94.8

(a) Accuracy

Male

0 1

Blonde
0 1558 53483
1 18417 1102

(b) Subsampled CelebA (blonde)

Table 12: (Semi-supervised learning) (a) Worst-group and average accuracy evaluated on subsam-
pled CelebA (blonde). Label fraction is set to 10%. (b) Number of training samples for each group
in subsampled CelebA (blonde). (Original dataset in Table 17d)

Conflict Unbiased

SimSiam 28.15 62.63

+ Rank reg 23.40 59.65

+ Upweight 56.12 65.44

DeFundSiam 60.37 67.78

(a) SimSiam

Conflict Unbiased

VICReg 32.33 64.58

+ Rank reg 29.73 62.08

+ Upweight 51.19 63.41

DeFundVIC 53.93 66.31

(b) VICReg

Table 13: Bias-conflict accuracy and unbiased accuracy evaluated on UTKFace (age). Last row
corresponds to the full version of proposed framework which upweights misclassified samples iden-
tified by biased model. Results are averaged on 4 different random seeds. Accuracy is reported in
(%).

Table 14: Comparison study on the depth of biased networks. Both networks are trained with target
labels on CIFAR-10C (Bias ratio=95%). For UTKFace (age) and CelebA (makeup), both networks
are pretrained with SimCLR followed by last linear layer training. Precision and recall are reported
in (%).

Networks CIFAR-10C UTKFace (age) CelebA (makeup)

Precision Recall Precision Recall Precision Recall

Shallow 64.73 59.50 55.68 69.98 27.49 33.79
ResNet-18 71.39 51.43 68.67 75.94 55.29 32.46
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C.4 SHALLOW NETWORK

Considering the inductive bias of neural networks towards encoding low effective rank representa-
tions in this paper, one may ask whether the shallow neural networks can easily learn such simple
inductive bias and serve as a bias-capturing network. In this regard, we observe some pros and cons
of using a shallow network as the bias model throughout experiments. Specifically, we use a simple
convolutional network with three convolution layers as a counterpart of ResNet-18, with feature map
dimensions of 64, 128 and 256, each followed by a ReLU activation and a batch normalization.

In the labeled setting, CIFAR-10C in Table 14 shows a tradeoff between precision and recall of
the shallow network: The shallow network improves the recall of identified hard samples, i.e., the
fraction of the bias-conflicting samples that are identified, because it is robust to the unintended
memorization due to their fewer number of hyperparameters. However, it sacrifices the precision,
i.e., the fraction of identified samples that are indeed bias-conflicting because its performance on the
bias-aligned samples is degraded due to the low expressivity.

While the shallow network shows promising results with a simple dataset, the tradeoff worsens in
the self-supervised setting with a larger dataset. Table 14 shows that the shallow network may suffer
from bad precision. It is conventional wisdom that unsupervised learning benefits more from bigger
models than its supervised counterpart (Chen et al., 2020). Considering this, the general performance
of shallow networks may deteriorate in a large-scale self-supervised learning scenario. In this case,
the identified error set E contains too many false-positive bias-conflicting samples. While one may
improve the performance with good care of hyperparameter tuning, e.g., depth of networks, learning
rate, etc., it may be more laborious compared to the proposed framework, which has only a few
scalar hyperparameters, e.g., λreg.

C.5 HYPERPARAMETER ANALYSIS

While rank regularization biases the representations effectively, we do not argue that it is the optimal
form of semantic bottleneck but rather that it highlights the unrecognized importance of controlling
effective rank in encoding biased representations. In this regard, we examine the impacts of existing
optimization hyperparameters on the effective rank and degree of bias in latent representations.
Specifically, we investigated four candidates of bias controller through the lens of effective rank and
generalizations: hardness concentration parameter β of hard negative sampling (Robinson et al.,
2020), temperature τ in InfoNCE (Oord et al., 2018) loss, strength of ℓ2 regularization λℓ2 and the
number of training epochs T .

Hardness concentration parameter. Recent works (Robinson et al., 2020; Cai et al., 2020; Tabas-
sum et al., 2022) stress out the importance of negative examples that are difficult to distinguish
from an anchor point. Several recent works propose algorithms on selecting informative negative
samples, often controlled by hardness concentration parameter β (Robinson et al., 2020) coupled
with importance sampling. Robinson et al. (2021) conducted a synthetic simulation showing that
increasing β makes instance discrimination tasks more difficult, thereby enforcing the encoder to
represent more complex features. Thus we aim to examine whether β can contribute to learn a
debiased representations with real-world dataset.

Temperature. A recent work on contrastive loss (Wang & Liu, 2021) have revealed that temperature
τ can also control the strength of penalties on hard negative samples. Contrastive loss with high
temperature turns out to be less sensitive to the hard negative samples (Robinson et al., 2020; 2021),
thereby encouraging representations to be locally clustered while the uniformity of features on the
hypersphere decreases (Wang & Isola, 2020). That being said, we hypothesized that the temperature
τ may indirectly affect the effective dimensionality of representations, where large τ may decrease
the effective rank.

ℓ2 regularization and early-stopping. Sagawa et al. (2019; 2020) underlines the importance of
regularization for worst-case generalization where the naive upweighting strategy may fail if it is
not coupled with strong regularization that prevents deep networks from memorizing upweighted
bias-conflicting samples. In this regard, Liu et al. (2021) leverages capacity control techniques, e.g.,
strong ℓ2 regularization or early-stopping, to train complexity-constrained bias-capturing models.
We investigate whether such regularizations can serve as a bias controller in self-supervised learning
as well.
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Accuracy 0.01 0.05 0.1 0.15 1

Conflict 35.8 36.3 37.5 37.6 36.6

Unbiased 65.6 65.6 66.6 66.5 66.0

(a) Biased linear evaluation

SimCLR β=0.1

Conflict 62.0 64.2

Unbiased 78.9 80.7

(b) Debiased linear evaluation

Table 15: Results of controlling concentration parameter β on UTKFace (age). Accuracy is reported
in (%). (a): Accuracy of linear evaluation without upweighting bias-conflicting samples. Each
value in top row indicates β used in pretraining. (b) Accuracy of linear evaluation with upweighting
ground-truth bias-conflicting samples. Both models use λup = 10.

Table 16: Results of early-stopping on UTKFace. We denote T as the number of training epochs.

Attribute Accuracy T = 5 T = 10 T = 15 T = 20 T = 25

Age Bias-conflict (%) 31.6 33.0 32.4 32.8 32.8

Unbiased (%) 63.3 64.1 63.6 63.7 63.7

Gender Bias-conflict (%) 54.6 54.0 53.5 53.4 54.5

Unbiased (%) 72.1 72.0 71.8 72.2 72.7

Results. We evaluate each knob on generalizations with SimCLR. Table 16 and 15a show that im-
pacts of both early-stopping and concentration parameter β on generalizations are marginal, in con-
trast to the observations reported in supervised learning or synthetic simulations (Robinson et al.,
2021). However, it still remains unclear whether the debiased representations can be encoded by
controlling β. It is because the model may reach a biased solution even though it encodes debiased
representations, if most samples in linear evaluation are bias-aligned, as discussed in the main paper.
To preclude such confounding relationships, we conduct debiased linear evaluation with upweight-
ing ground-truth bias-conflicting samples. Table 15a and 15b show that there was no significant
difference in the performance gain of β in biased and debiased linear evaluation, which implies that
β is not enough to fully debias representations.

Despite the failure of learning debiased representations with controlling β, biased representations
can be learned by controlling temperature τ , and strength of ℓ2 regularization in some cases. Figure
7a, 7b and 7c show that effective rank, temperature and bias-conflicting accuracy are highly corre-
lated each other in both UTKFace and CelebA. It implies that the effective rank can serve as a metric
of generalization performance and degree of bias in representations. While temperature control can-
not be generalized to several non-contrastive learning methods (Chen & He, 2021; Bardes et al.,
2021; Zbontar et al., 2021), this results imply that the temperature may serve as an effective bias
controller for contrastive learning methods using InfoNCE loss. Moreover, stronger-than-typical ℓ2
regularization also limits the effective rank and bias-conflict accuracy to some extent in UTKFace
(Figure 7d and 7e), while it fails to do so in CelebA.

This series of observations afford us a novel insight that both explicit (rank regularization) and
implicit (temperature control, strong ℓ2 regularization) methods offer a way to train biased repre-
sentations. However, it still remains unclear how to directly learn debiased representations. While
increasing temperature or reducing effective rank bias representations, inverse does not always hold;
Abnormally small temperatures cause the contrastive loss only focus on the nearest one or two sam-
ples, which heavily degenerates the performance (Wang & Liu, 2021). Moreover, we found that
explicit decorrelation of feature components in SimCLR does not lead to debiased representations
(not shown in figure).

To sum up, we provide useful recipes on learning biased representations, where rank regularization
is mainly discussed in the main paper due to its intuitive insights, good performance and broad
applicability. We hope these discussions facilitate in-depth studies about advanced algorithms on
learning both biased and debiased representations in unsupervised manner.
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(a) τ on UTKFace (age) (b) τ on UTKFace (gender) (c) τ on CelebA (makeup)

(d) λℓ2 on UTKFace (age) (e) λℓ2 on UTKFace (gender)

Figure 7: Analysis on temperature τ and strength of ℓ2 regularization λℓ2 . Effective rank and bias-
conflict accuracy are measured with varying τ for (a, b, c), and λℓ2 for (d, e). Standard deviation
of bias-aligned accuracy on each experiment is 1.0%, 2.8%, 0.3%, 1.3% and 1.7% in order. Perfor-
mance become quickly degenerated as λℓ2 increases over 0.005 in CelebA (makeup).

D EXPERIMENTAL SETUP

D.1 DATASETS

We mainly evaluate our debiasing framework on UTKFace (Zhang et al., 2017) and CelebA (Liu
et al., 2015) in which several prior works has observed poor generalization performance due to
spurious correlations. Example images are presented in Figure 8.

UTKFace. We first consider UTKFace dataset which is consist of human face images with varying
Race, Gender and Age attributes. For each sensitive attribute, we categorize all samples into
two groups. Specifically, for label associated with age, we assign 1 to samples with age ≤ 10,
and 0 to samples with age ≥ 20 following (Hong & Yang, 2021). For label associated with race,
we assign 1 to samples with race ̸= white, e.g., Black, Indian and Asian, and 0 to samples with
race = white. For label associated with gender, we assign 1 to female, and 0 to male. Based on
this settings, we conduct binary classifications using (Gender, Age) and (Race, Gender) as
(target, spurious) attribute pairs. Following Hong & Yang (2021), we construct a biased dataset by
randomly truncating a portion of samples, where roughly 90% of samples are bias-aligned in our
setting. Pixel resolutions and batch size are 64× 64 and 256, respectively.

CelebA. For CelebA, we consider (HeavyMakeup, Male) and (Blonde Hair, Male) as (target,
spurious) attribute pairs, following (Nam et al., 2020; Hong & Yang, 2021; Sagawa et al., 2019).
Pixel resolutions and batch size are 256× 256 and 128, respectively. The exact number of samples
for each prediction task is summarized in Table 17.

A

0 1

G
0 8229 822
1 134 1346

(a) UTKFace (age)

G

0 1

R
0 4354 534
1 435 5344

(b) UTKFace (gender)

M

0 1

H
0 25789 54460
1 49804 163

(c) CelebA (makeup)

M

0 1

B
0 57214 53483
1 18417 1102

(d) CelebA (blonde)

Table 17: Number of training samples for each prediction task. A for Age, G for Gender, R for
Race, M for Male, H for HeavyMakeup and B for Blonde Hair.
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(a) UTKFace (age) (b) UTKFace (gender) (c) CelebA (makeup)

Figure 8: Example images of datasets. The images above the dotted line denote the bias-aligned
samples, while the ones below the dotted line are the bias-conflicting samples. The group of two
columns indicates each class of target attribute, i.e., Gender, Race and HeavyMakeup, respec-
tively.

D.2 RANK REDUCTION ANALYSIS

For CMNIST, we use a simple convolutional network with three convolution layers as a counterpart
of ResNet-18, with feature map dimensions of 64, 128 and 256, each followed by a ReLU activation
and a batch normalization. For CIFAR10-C and Waterbirds, we use ResNet-18 and ResNet-50 with
pretrained weights provided in PyTorch torchvision implementations, respectively. The convolu-
tional network is trained for 2000 iterations using SGD optimizer with inital learning rate 0.1 and
decaying by 0.1 for every 600 iterations, following Zhang et al. (2021). For CIFAR10-C, ResNet-18
is trained for 10000 iterations using the Adam optimizer with learning rate 0.001. After training,
misclassified training samples are identified as the bias-conflicting samples as in Table 1. For Water-
birds in Figure 2c, following the official implementation of JTT, ResNet-50 is trained for 300 epochs,
and early-stopped with referring to the validation accuracy, using SGD optimizer with learning rate
0.0001.

D.3 DEBIASING EXPERIMENTS

Architecture details. We use ResNet-18 back-bone architecture with pretrained weights provided
in in PyTorch torchvision implementations. For projection networks in SimCLR, we use the
MLP consists of one hidden layer with feature dimension of 512, followed by a ReLU activation.
We employ a single linear classifier in downstream tasks for all self-supervised learning methods.

Training details. Both biased and main encoders are pretrained for 100 epochs on UTKFace, and
20 epochs on CelebA, by using Adam optimizer with learning rate of 0.0003. Cosine annealing
scheduling (Loshchilov & Hutter, 2016) is leveraged with warmup for the first 20 epochs on UTK-
Face, and 4 epochs for CelebA.

For biased encoders, we apply rank regularization with using λreg of 0.3, 0.5, 0.01 and 0.03
for UTKFace (age), UTKFace (gender), CelebA (makeup) and CelebA (blonde), respectively.
This values are selected by tuning λreg ∈ {0.0, 0.1, 0.3, 0.5, 1.0} for UTKFace and λreg ∈
{0.0, 0.01, 0.02, 0.03, 0.05} for CelebA. Specifically, we report the results of model with highest
worst-group accuracy (for CelebA (blonde)), or bias-conflicting test accuracy over those with im-
proved unbiased test accuracy compared to the SimCLR baseline. Same values are consistently used
for upweighting in ablation study (Table 4). To emphasize the contribution of rank regularization,
we do not control any other parameters, e.g., strength of ℓ2 regularization, temperature τ , or number
of training epochs. Specifically, we fix τ = 0.07 and λℓ2 = 0.0001 for every experiment.

After pretraining, we conduct either linear evaluation or finetuning with using λup of 10, 5, 8 and
15 for UTKFace (age), UTKFace (gender), CelebA (makeup) and CelebA (blonde), respectively.
For UTKFace and CelebA (makeup), these values are selected by tuning λup ∈ {5, 8, 10} using
the above-mentioned decision rules, where λup ∈ {5, 8, 10, 15} is compared for CelebA (blonde).
Same values are consistently used in ablation study (Table 4). For linear evaluation, we train a linear
classifier on top of pretrained main encoder for 3000 iterations on UTKFace, and 5000 iterations
on CelebA, with using learning rate of 0.0003 and upweighting identified bias-conflicting samples.
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For semi-supervised learning, we finetune the whole main model for 5000 iterations, with using
SGD optimizer, momentum of 0.9, λℓ2 = 0.1, learning rate of 0.0001, and λup = 8, 15 for CelebA
(makeup) and CelebA (blonde), respectively.

Data augmentations. Following SimCLR, we generate multiviewed batch with random augmen-
tations of (a) random resized crop with setting the scale from 0.2 to 1, (b) random horizontal flip
with the probability of 0.5, (c) random color jitter (change in brightness, contrast, and saturation)
with the probability of 0.8 and scale of 0.4, (d) random gray scaling with the probability of 0.2. In
linear evaluation and finetuning, we only apply random horizontal flip. Same augmentation pipeline
is applied to both SimSiam and VICReg.

Baselines. For a fair comparison, we tune hyperparameters of other baselines using the same
ResNet-18 back-bone architecture. We use the official implementation of JTT which also includes
that of CVaR DRO. Other baselines are reproduced by ourselves with referring to original papers.
LNL is trained for 20 epochs on UTKFace, and 40 epochs on CelebA, with using Adam optimizer
and learning rate of 0.001. For EnD, we set the multipliers α for disentangling and β for entangling
to 1. For JTT, we tune the upweighting factor λup ∈ {20, 50, 80} and number of training epochs
T ∈ {30, 40, 50}, following the original paper. For CVaR DRO, we tune the size of the worst-case
subpopulation α ∈ {0.1, 0.2, 0.5}. For SimSiam and VICReg, the architectures for the additional
layers followed the official implemenation of each method, where the hyperparameters for the train-
ing is identical to the SimCLR case. For C.3, λreg = 0.001 for DeFundSiam and λreg = 0.1 for
DeFundVIC.
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