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ABSTRACT

We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV
Cache in large language model (LLM) inference, delivering substantial memory
savings while preserving superior performance. Previous methods either assume
that later tokens are more important or attempt to predict important tokens based
on earlier attention patterns. Both approaches, however, can result in performance
bottlenecks or frequent mispredictions.
LogQuant takes a different approach. By applying a log-based filtering mecha-
nism, it selectively compresses the KV Cache across the entire context, achieving
better performance with the same or even reduced memory footprint compared
to existing methods. In benchmark tests, it enhances throughput by 25% and
boosts batch size by 60% without increasing memory consumption. For chal-
lenging tasks such as Math and Code Completion, LogQuant improves accuracy
by 40% to 200% at the same compression ratio, outperforming comparable tech-
niques. LogQuant integrates effortlessly with popular inference frameworks like
Python’s transformers library and will be made open-source upon publica-
tion.

1 INTRODUCTION

As Large Language Models (LLMs) continue to evolve, their capacity to process extended context
lengths has increased significantly, from 4k to 128k tokens (Meta, 2024; OpenAI, 2024a). This im-
provement is particularly important for applications such as multi-round chatbot conversations (Ope-
nAI, 2024a; Anthropic, 2024; DeepSeek, 2024) and document-based question answering (Gao et al.,
2023; Lewis et al., 2020), where comprehensive contextual understanding is required. Moreover,
the emergence of new models, such as OpenAI’s o1 (OpenAI, 2024b), has increased the demand
for even longer reasoning contexts, which exacerbates the memory challenges faced in KV cache
management.

Recent works, such as Zhang et al. (2024); Li et al. (2024); Dong et al. (2024), have highlighted
the significant memory consumption of the KV cache in large language models, which grows lin-
early with context length and can exceed the model’s parameter size, presenting serious deployment
challenges; a comparative analysis of these methods reveals their limitations in addressing memory
efficiency, which our approach aims to overcome.

Various methods have been proposed to compress the KV cache, primarily focusing on either evic-
tion or quantization strategies. Eviction-based approaches, such as H2O (Zhang et al., 2024), Key-
former (Adnan et al., 2024), StreamingLLM (Xiao et al., 2023), and snapKV (Li et al., 2024), aim
to reduce memory usage by selectively removing tokens deemed unimportant. In contrast, quan-
tization techniques, like QAQ (Dong et al., 2024), Gear (Kang et al., 2024), and KiVi (Liu et al.,
2024c), reduce the precision of less important tokens, retaining more data while minimizing mem-
ory costs. Despite their differing approaches, both strategies face a common challenge: identifying
which tokens are less important and, therefore, more suitable for compression. Methods such as
KiVi and StreamingLLM address this by noting that tokens closer to the current position tend to be
more important, so they focus on compressing or evicting tokens further from the current context.
On the other hand, H2O predicts token importance based on attention scores from previous tokens.
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Figure 1: The observed log-distribution pattern is evident not only in the magnitude of attention
scores but also in the positions of attention spikes. These spikes become sparser as the model
attends to tokens further from the most recent position, indicating that the model not only focuses
on nearby tokens. This phenomenon, illustrated here with Llama3-8B-Instruct (Dubey et al., 2024)
on the GSM8K dataset (Cobbe et al., 2021), is consistent across different tasks and models, as further
detailed in Section 3.

However, these methods introduce trade-offs: KiVi and StreamingLLM risk compressing impor-
tant tokens outside their defined window, while H2O’s reliance on past attention scores may lead to
mispredictions, potentially reducing accuracy.

Our approach addresses these shortcomings by leveraging a key insight: the positions of the atten-
tion spikes (i.e. high attention scores) follow a log distribution as shown in Figure 1, resulting in
sparser importance for tokens as they move further from the current position. By utilizing this prop-
erty, we can outperform existing methods across a wide range of tasks. Additionally, the original
absolute positions of KV cache entries can be disregarded without changing the final attention results
during the decoding phase, which allows us to enhance the speed of our log-distributed quantization
method.

The key contributions of this paper are as follows:

• Observation of Log-Distributed Attention Spikes: We observe that in various models
and downstream tasks, the positions of high attention spikes follow a log distribution, be-
coming sparser as tokens move further from the current position. This insight underpins
our approach to estimate token importance.

• Design of LogQuant: Leveraging this log-distribution observation, we introduce
LogQuant, a 2-bit quantization technique that significantly improves accuracy. LogQuant
outperforms existing methods like KiVi and H2O by better preserving important tokens,
achieving a 40% to 200% improvement in accuracy on complex tasks such as Math and
Code Completion with the same or higher compression ratio.

• Throughput Optimization: By ignoring the absolute positions of KV cache entries, our
method further optimizes the speed of quantization/dequantization process without affect-
ing the final attention results, resulting in a 25% increase in throughput and a 60% increase
in batch size.

The remainder of the paper is organized as follows: Section 2 reviews the related work on KV
cache compression techniques, Section 3 details the core concepts behind our proposed LogQuant
methods, Section 4 present an extensive set of experiments, Section 5 summarizes our findings and
discusses potential directions for future work.

2 BACKGROUND & RELATED WORK: KV CACHE COMPRESSION

In transformer models, the attention mechanism relies on three key components: the Query (Q), Key
(K), and Value (V) vectors. For each token, the model computes a d-dimensional Query vector and
compares it against all stored N × d Key vectors, where N is the length of the sequence processed
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so far. The result of this comparison is used to weigh the corresponding Value vectors, producing
the final output. Mathematically, the attention operation is defined as:

Attention(Q,K, V ) = Softmax
(
QK⊤
√
d

)
V (1)

Here, the Query vector is multiplied by the transposed Key matrix, resulting in a set of attention
weights. These weights are then normalized using the softmax function, which reduces the N se-
quence length dimension and are applied to the Value vectors to compute the output.

In existing literature, LLM inference is typically described in two phases: the prefill phase for pro-
cessing input tokens and the decoding phase for generating new tokens. In the decoding phase, each
token generation requires loading the entire KV Cache from previous tokens, leading to inefficien-
cies in both execution time and memory usage.

KV cache compression methods can be categorized into two distinct types: ’training-free’ methods,
which do not require model retraining and include eviction and quantization strategies, and ’training-
required’ methods, involve designing more efficient attention structures. Our approach focuses on
improving training-free methods for broader applicability. Eviction methods discard less important
tokens based on selective strategies, while quantization reduces the precision of key and value states
to lower bits for memory efficiency. However, both methods face significant information loss at
high compression rates—especially with 2-bit quantization, which can result in substantial accuracy
degradation.

Inspired by attention patterns as Figure 1, we propose combining a logarithmic eviction strategies
with quantization. By selectively retaining tokens in their original precision at critical positions
during 2-bit quantization, we can preserve accuracy even at high compression rates.

2.1 KV CACHE EVICTION

Eviction methods aim to reduce KV cache memory usage in Large Language Models (LLMs) by
discarding less important tokens. The early work H2O (Zhang et al., 2024) selects ”heavy hitter”
tokens based on cumulative attention scores, though this risks evicting tokens that may become
important later. Keyformer (Adnan et al., 2024) improves on H2O by combining ”Key Attention”
with a ”window attention” mechanism, retaining both historically significant and recent tokens for
better accuracy. MiniCache (Liu et al., 2024b) reduces memory by reusing Key and Value states
across layers. This method assumes that some key and value representations are redundant across
model layers and can be shared. InfLLM (Xiao et al., 2024) addresses very long contexts by dividing
them into blocks and retaining ’representative tokens’ for block eviction decisions.

2.2 KV CACHE QUANTIZATION

Quantization reduces storage and boosts computational speed by using fewer bits to represent values.
Earlier works, like AWQ (Lin et al., 2023) and Qserve (Lin et al., 2024), applied 4-bit quantization
to the KV cache with minimal accuracy loss. Recent methods aim to compress the KV cache further
while preserving accuracy. QAQ (Dong et al., 2024) dynamically adjusts the precision of the in-
GPU quantized cache by offloading all original-precision KV data to CPU memory. GEAR (Kang
et al., 2024) improves accuracy by storing the quantization error of the KV cache as a sparse matrix
with low-rank decomposition. KiVi (Liu et al., 2024c) introduces a 2-bit quantization by retaining a
recent window of full-precision tokens, balancing memory efficiency and accuracy.

2.3 TRAINING-REQUIRED APPROACHES

An early memory-reducing attention design is Multi-Query Attention (MQA, (Shazeer, 2019)),
where all query heads share a single pair of key and value heads. While this reduces memory, it
significantly impacts accuracy. Grouped-Query Attention (GQA, (Ainslie et al., 2023)) addresses
this by grouping query heads, with each group sharing the same key and value heads, preserving
the generalization ability of multi-head attention while reducing KV cache size. Deepseek V2 (Liu
et al., 2024a) introduces Multi-Head Latent Attention (MLA), which compresses key and value
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Figure 2: The maximum attention score of each token position across four consecutive decod-
ing steps, marking the high attention positions for illustrating the unpredictable nature of atten-
tion scores. This analysis was conducted using Llama3-8B-Instruct (Dubey et al., 2024) on the
GSM8K (Cobbe et al., 2021) and OpenBookQA (Mihaylov et al., 2018) datasets.

Table 1: Impact of retaining the first two tokens (referred to as ”Sink”) at original precision.
The final answer accuracy results on GSM8K (Cobbe et al., 2021) are presented. We present the

improvement as ∆Sink. Both methods maintain the recent 128 tokens at original precision.

Model baseline(BF16) KiVi(4-bit) KiVi(2-bit) KiVi(2-bit)+Sink(BF16) ∆Sink

Llama3.1-8B-Instruct 71.41 67.24 18.04 18.49 +0.45
Qwen1.5-7B-Chat 57.24 52.27 39.80 39.42 -0.38

states using LoRA-based projections. To prevent disruption of position embeddings from LoRA
compression, specific channels are reserved for position information only, excluding them from
LoRA compression.

3 METHODOLOGY

In Section 3.1, we explore the attention score distribution and analyze how quantization loss influ-
ences the attention block output. In Section 3.2, we present our observations on KV Cache and
token importance. A position-agnostic attention calculation method is introduced in Section 3.3 for
speeding up the log-distributed quantization method. Finally, we introduce the implementation of
our LogQuant method in Section 3.4.

3.1 PRELIMINARY STUDY OF KV CACHE QUANTIZATION AND ATTENTION SCORES

As discussed in Section 2, two well-established observations in recent works are particularly relevant
to KV cache compression. First, many tokens exhibit consistently low attention scores, indicating
that their KV cache entries can be safely compressed with minimal impact on performance (Liu
et al., 2024c). Second, predicting token importance based on previous decoding steps is unreliable,
as attention scores can vary significantly across iterations, making it difficult to accurately identify
which tokens should be preserved (Dong et al., 2024; Jiang et al., 2024). This is also demonstrated
in Figure 2.

Inspired by the observation of sink tokens (Xiao et al., 2023), which are the first few tokens that
consistently receive high attention scores (Figure 3), we included these tokens in the set maintained
at original precision to improve accuracy in 2-bit quantization. However, as shown in Table 1,
this adjustment yielded minimal improvement. This suggests that while sink tokens play a role in
defining the conversational context, maintaining high precision for only these tokens is insufficient,
indicating that tokens beyond the first few are also crucial for preserving model performance.
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Figure 3: Attention distribution across different token positions, represented as boxplots based on
25% quantiles across all attention heads. The median and overall distribution of attention scores
for sink tokens (Xiao et al., 2023) (tokens 0 and 1) are greater than the sum of the most recent 128
tokens. The attention scores are derived from experiments using Llama3-8B-Instruct (Dubey et al.,
2024) and the GSM8K (Cobbe et al., 2021) dataset.

3.2 THE LOG-DISTRIBUTED ATTENTION PATTERN

As mentioned in Section 1, our analysis of attention heads reveals a log-distributed high-attention
pattern, which motivates the development of a quantization scheme that follows this distribution. We
introduce a selection scheme where a window of size 2W retains the most recent consecutive tokens
in full precision. Following this, another window of size W/2 selects tokens spaced one token apart,
and then a window of size W/4 follows the similar pattern and so on. Finally, a window of 3W
tokens is reserved in full precision. This creates a log-distributed token selection scheme.

We compare this log-distributed selection to other methods: KiVi, which selects only the most recent
3W tokens; StreamingLLM, which selects the most recent 3W tokens plus the first four sink tokens;
and H2O, which uses previous attention scores to select the top 3W tokens. To evaluate these
methods, we define token coverage as the average attention score captured by the selection scheme:

Token Coverage =

∑3W
i=1 Attention Score of Selected Tokens

3W
. (2)

Figure 4 presents the results, where we exclude the first two tokens for calibration, as they typically
have high attention scores but contribute minimally to overall model performance (see Section 3.1).

The results demonstrate that our log-distributed selection scheme covers high-attention tokens more
effectively. This suggests that filtering tokens for quantization based on this log distribution leads to
better token importance preservation.

3.3 POSITION-AGNOSTIC ATTENTION CALCULATION

LLM inference involves two phases: prefill and decoding (Section 2). As described in Yuan et al.
(2024), the decoding phase is computationally expensive and memory-bound due to the use of the
KV Cache. In the prefill phase, the model processes the input prompt in a single pass. However,
during decoding, new tokens are generated one at a time, and each generation step requires access
to the entire KV Cache. This leads to inefficiencies in both memory usage and execution time.

To mitigate these inefficiencies, we plan to accelerate the attention procedure. The attention opera-
tion can be expressed mathematically as follows:

A = Softmax(Q ·KT )

O = A · V,
(3)
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Figure 4: The attention coverage without the first two sink tokens for different selection meth-
ods (Liu et al., 2024c; Xiao et al., 2023; Zhang et al., 2024) and different models (Dubey et al.,
2024; Yang et al., 2024; Abdin et al., 2024), tested on a subset of the GSM8K (Cobbe et al., 2021)
dataset. Details of LogQuant will be introduced in Section 3.4.

where A is the attention distribution, a 1×N vector resulting from the softmax operation applied to
the product of Q and the transpose of K and O is the output, a 1×d vector calculated by multiplying
the attention distribution A with the Value matrix V .

Since the attention distribution A aggregates values over all N tokens, the specific ordering of tokens
in the Key and Value matrices does not affect the final output. This property allows us to permute or
reorder the Key and Value caches without any loss of accuracy. By leveraging this insight, we can
optimize the KV Cache by concatenating high-precision tokens with quantized tokens while disre-
garding their original positions. This approach enhances memory locality and processing efficiency
while maintaining the correctness of the attention computation. This leads to the relation:

A · V = AP · VP , (4)

where P is a permutation of the indices {1, . . . , N}. This enables us to optimize the KV Cache
effectively.

3.4 LOGQUANT: ALGORITHM AND IMPLEMENTATION

Algorithm. After comparing different logarithmic bases logN , we found that a base-2 logarithmic
implementation is sufficiently effective for our purposes. To maintain logarithmic sparsity within
a specified length, we adopt this base-2 logarithmic approach. We fix a window length configura-
tion W , allowing us to retain up to 3W tokens at original precision. Each time the length limit is
reached, we reduce the density of tokens in the first two windows (each of length W ) by retaining
tokens at regular intervals, effectively halving the density. This process reduces the number of re-
tained tokens in the first two windows from 2W to 2W

2 = W . Subsequently, we add W new tokens,
resulting in a full-precision window size of 2W

2 + W = 2W . At this point, the densities become
densityW1

= 1
2p and densityW2

= p, where p is the initial density and Wi denotes the i-th window.
By continuously adding new tokens, LogQuant naturally forms a log2 sparsity selection within the
constrained length. The detailed selection process is described in Algorithm 1. Using this approach,
the length of retained full-precision tokens fluctuates between 2W and 3W , providing a more stable
compression ratio compared to KiVi, where the length fluctuates between 0 and R, with R being the
length of retained full-precision tokens in KiVi. We illustrate the workflow in Figure 5, which visu-
ally represents the KV cache management process, enhancing the understanding of our algorithm’s
implementation.

Implementation. Popular inference frameworks, such as Hugging Face’s transformers library,
have encapsulated KV Cache management into dedicated classes, which simplifies the integration of
new methods. To leverage this modular design, we implemented LogQuant as a derived class of the
Cache class in the transformers library. This approach ensures seamless compatibility with
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Figure 5: LogQuant’s KV cache compression workflow. The number of reserved original-precision
tokens increases from 2W to 3W . We then apply a log-sparse strategy to filter the first 2W tokens,
quantize half of these tokens, and compress the reserved token length back to 2W .

Algorithm 1 Log-based Filtering Token Selection Strategy

0: Input: A (list of original precision tokens), a* (new token), W (window length)
0: Output: A (updated list of tokens)
0: procedure APPENDTOKEN(A, a∗, W )
0: if length(A) < 3W then
0: A← concat(A, a*)
0: else
0: A← concat(A[0:2W:2], A[2W:3W])
0: A← concat(A, a*)
0: end if
0: return A
0: end procedure =0

various quantization backends, including Quanto (Face, 2024) and HQQ (Badri & Shaji, 2023). For
our implementation, we utilized Quanto as the quantization backend, adopting the Key-per-channel
strategy. Furthermore, we integrated LogQuant into Hugging Face’s inference pipeline, enhancing
its usability for efficient and precise inference workflows.

Additionally, to assess the compression sensitivity of the Key and Value caches, we developed a vari-
ant called PartialLogQuant. This method log-sparsely selects original precision tokens exclusively
for the Key cache while reserving only the most recent W tokens for the Value cache.

4 EXPERIMENTS

4.1 SETTINGS

Models. We evaluate KiVi and LogQuant by 3 popular model families: Llama3/Llama3.1 (Dubey
et al., 2024), Qwen1.5/Qwen2 (Bai et al., 2023; Yang et al., 2024), and Microsoft Phi3 (Abdin et al.,
2024). Qwen1.5 and Phi3 are based on Multi-Head Attention, whereas Llama3/3.1 and Qwen2
utilize Group-Query Attention. The quantization group size G is set to the Hugging Face default
value of 64, and the quantized precision is set to INT2. For KiVi, the maximum length of reserved
original-precision tokens R is set to [128, 192, 256]. For LogQuant, the window length W is limited

7
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to ⌊R3 ⌋ as it will reserve a maximum of 3W original precision tokens and for PartialLogQuant, which
reserve 3W Key cache and W Value cache in original precision, we set W = ⌊R2 ⌋ to ensure that the
total number of reserved original-precision tokens does not exceed that of KiVi.

Datasets. We selected GSM8K(Grade School Math, (Cobbe et al., 2021)) and LongBench (Bai
et al., 2024) due to their widespread use in evaluating KV cache quantization, ensuring our results
are comparable to those in the literature. For GSM8K, we test with a 5-shot from the training set for
better accuracy and keep the length of the input token between 600 and 1700, the evaluation is based
on the exact value of the final answer. For LongBench, we test all 21 datasets among 6 types of
tasks and use the LongBench’s original pipeline for evaluation. The test dataset details are present
in Table 5.

4.2 ACCURACY AND EFFICIENCY ANALYSIS

4.2.1 ACCURACY COMPARISON ON DIFFERENT PRECISION

To illustrate the impact of quantized data precision, we evaluate the accuracy loss using Llama3.1-
8B-Instruct under both 2-bit and 4-bit quantization for KiVi and LogQuant methods on LongBench.
As shown in Table 2, both methods achieve performance comparable to the baseline across all tasks
with 4-bit quantization. However, 2-bit quantization results in a noticeable drop in accuracy, high-
lighting the trade-off between memory efficiency and performance. Notably, LogQuant demon-
strates better accuracy compared to KiVi under the same conditions.

Table 2: Accuracy of Different Precision on Llama3.1-8B. Refer to the Table 7 for the scores of each
specific task. The ∆ shows the difference to baseline.

Category KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) baseline
Single-Document QA 38.89 (∆− 8.11) 47.75 (∆+ 0.75) 41.91 (∆− 5.09) 47.73 (∆+ 0.73) 47.71
Multi-Document QA 34.02 (∆− 4.98) 39.74 (∆+ 0.74) 36.08 (∆− 2.92) 39.93 (∆+ 0.93) 39.96
Summarization 16.10 (∆− 1.90) 17.94 (∆− 0.06) 16.62 (∆− 1.38) 17.92 (∆− 0.08) 18.08
Few-shot Learning 52.51 (∆− 8.49) 61.34 (∆+ 0.34) 56.43 (∆− 4.57) 61.21 (∆+ 0.21) 61.22
Synthetic Tasks 45.02 (∆− 21.98) 67.74 (∆+ 0.74) 52.51 (∆− 14.49) 67.68 (∆+ 0.68) 67.78
Code Completion 43.06 (∆− 15.94) 59.53 (∆+ 0.53) 52.10 (∆− 6.90) 59.57 (∆+ 0.57) 59.78

4.2.2 ACCURACY COMPARISON AMONG DIFFERENT CONFIGURATIONS

As discussed in Section 4.2.1, 4-bit quantization incurs only a slight accuracy loss across tasks.
Therefore, we focus on 2-bit quantization in the following discussion to highlight LogQuant’s per-
formance. To further investigate the accuracy loss resulting from quantization, we compared the
following methods: 1) 16-bit baseline, 2) KiVi, 3) LogQuant, and 4) PartialLogQuant across differ-
ent configurations, we define the compression ratio as:

Original tensor size
Tensor size in compressed format

(5)

where, for a sequence length L and reserved original precision token length R in a BF16 model with
2-bit quantization, the compression ratio can be expressed as:

16L

2(L−R) + 16R
. (6)

We tested the three compression ratios using GSM8K across three model families, and the results
summarized in Figure 6. Our findings demonstrate that the LogQuant method consistently outper-
forms KiVi across all three models at various compression ratios. Furthermore, at higher compres-
sion ratios, PartialLogQuant exhibits superior performance compared to standard LogQuant, which
show a speculation that Key, the component for computing attention are more sensitive for quan-
tization loss. The results also indicate that smaller models and small KV states models, such as
Phi3-mini (3.8B) and Qwen2-7B (retaining only 1

8 of KV heads than Query, while other GQA mod-
els typically retain at least 1

4 .), experience a more significant accuracy loss with 2-bit quantized KV
caches. However, our method provides a notable improvement in accuracy for these smaller models.
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Figure 6: Accuracy(EM) with different compression ratio in GSM8K tasks for different models.

4.2.3 ACCURACY COMPARISON AMONG DIFFERENT TASKS

To further investigate the accuracy loss in different tasks, we evaluate the seven task groups listed
in Table 5, providing the average score for each method in Table 3. We set the reserved length R as
128, where LogQuant will have only 3⌊R3 ⌋ = 126 original precision tokens, slightly smaller than
128 of KiVi. As shown in Table 3, for simpler tasks such as summarization, quantization has little
to no impact on performance compared to the 16-bit baseline. However, for more complex tasks
like Code Completion, Synthetic Tasks and Math, quantization significantly affects accuracy, with
LogQuant demonstrating better retention of accuracy compared to KiVi.

4.2.4 EFFICIENCY COMPARISON

To evaluate memory and throughput efficiency by a NVIDIA H100 48G MIG with the HuggingFace
pipeline, we conducted a benchmark similar to that in (Turganbay, 2024), setting an average prompt
length of 512 and a maximum output length of 2000. We incrementally increased the batch size
while recording peak memory usage and throughput for both LogQuant (2-bit with 126 reserved
tokens) and the BF16 baseline on the Llama-3.1-8B model, until memory usage reached the 48GB
limit. The hardware utilized was a single NVIDIA H100 GPU. As shown in Figure 7, LogQuant
achieves approximately 25% higher throughput by supporting a larger batch size. Additionally, it
allows for a 60% increase in batch size within the same memory constraints under the HuggingFace
pipeline.

We also observed that, within the HuggingFace pipeline, inference with a quantized cache does
not immediately release original KV states, which limits memory compression and efficiency. Fur-
thermore, the dequantization operation impacts throughput. These issues suggest that memory ef-
ficiency and speed could be further improved by employing operator fusion, enabling computation
on the quantized cache directly with a fused attention operation. We will explore this optimization
in future work.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced LogQuant, a novel quantization technique designed to optimize KV
Cache management in large language models (LLMs). Our approach leverages a base-2 logarithmic
strategy to maintain sparsity while accommodating an increased number of full-precision tokens.
Through comprehensive evaluations, we demonstrated that LogQuant consistently outperforms ex-
isting methods, such as KiVi, across various model families and compression ratios, particularly
benefiting smaller models that typically suffer from accuracy loss due to quantization.

We further explored the efficiency of our implementation within the HuggingFace pipeline, achiev-
ing notable improvements in throughput and memory utilization. Additionally, our investigation
into accuracy loss across different tasks highlighted LogQuant’s superior retention of performance,

9
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Table 3: Task Group Average Score for Different Models and Methods.
(The best result of 2-bit quantization will be bold. Refer to the Table 6 for the scores of each

specific task in LongBench)

Model precision 16-bit 2-bit

Task Group Baseline KiVi LogQuant
(ours)

PartialLogQuant
(ours)

llama-3.1-8B-Instruct

Math 71.42 18.04 40.41 50.64
Code Completion 59.78 43.06 52.09 52.36
Few-shot Learning 61.21 52.50 56.42 56.91
Multi-Document QA 39.95 34.01 36.08 35.80
Single-Document QA 47.71 38.89 41.90 42.48
Summarization 18.07 16.10 16.62 16.74
Synthetic Tasks 67.78 45.02 52.51 52.11

Qwen1.5-7B-Chat-AWQ

Math 56.18 39.27 49.28 50.57
Code Completion 52.46 34.79 40.68 43.11
Few-shot Learning 53.88 51.32 52.54 52.46
Multi-Document QA 33.05 31.08 32.04 31.80
Single-Document QA 39.26 35.80 37.22 37.3
Summarization 17.11 17.16 17.38 17.31
Synthetic Tasks 26.5 10 13.5 13.66

Qwen1.5-14B-Chat-AWQ

Math 70.28 59.82 63.31 65.50
Code Completion 57.47 37.48 49.37 50.44
Few-shot Learning 59.02 57.50 58.25 58.22
Multi-Document QA 39.72 37.91 38.01 38.14
Single-Document QA 42.48 40.39 41.37 41.31
Summarization 17.21 17.17 17.24 17.21
Synthetic Tasks 61.33 46.85 52.17 52.00

Qwen2-7B-Instruct

Math 52.99 3.71 34.34 36.47
Code Completion 58.23 35.91 48.71 49.56
Few-shot Learning 61.90 35.26 51.23 51.04
Multi-Document QA 33.35 12.35 28.28 28.19
Single-Document QA 44.66 20.52 34.84 35.46
Summarization 16.33 9.31 13.13 13.34
Synthetic Tasks 43.00 11.42 22.83 24.17

Phi-3-mini-128k-instruct

Math 80.29 12.59 51.86 52.39
Code Completion 55.97 33.97 40.84 40.33
Few-shot Learning 52.58 36.17 39.36 40.07
Multi-Document QA 33.55 18.19 21.70 22.05
Single-Document QA 42.47 19.58 23.63 23.63
Summarization 17.56 9.10 9.89 10.30
Synthetic Tasks 48.00 4.83 5.39 6.15
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Figure 7: memory usage and throughput comparison between 2bit LogQuant and 16bit baseline
under huggingface generation pipeline with llama3.1-8B and H100.

especially in complex tasks. These findings underscore the potential of LogQuant to enhance LLM
inference in resource-constrained environments.

Future work will focus on refining our quantization approach and investigating further optimizations,
such as operator fusion, to maximize efficiency and performance in LLM applications.
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Figure 8: Eviction and Quantization Loss on Attention Distribution

A DISCUSSION ON WHY NOT EVICTION

Unlike quantization, which only impacts the precision of specific tokens, eviction alters the sequence
length directly. Attention is computed using the softmax function, which scales all values to sum to
1. Due to this property, eviction methods can result in much larger deviations from the baseline com-
pared to quantization within the fully preserved window. Furthermore, for the dropped segments,
eviction methods are unable to compute attention, leading to significantly higher errors.

We illustrate this behavior in Figure 8 and summarize the attention error relative to the baseline for
Llama3.1-8B on the GSM8K dataset in Table 4.

Table 4: Comparison of L1 error with original attention for eviction and quantization.

LogQuant (2-bit) KiVi (2-bit) LogQuant (Eviction) KiVi (Eviction)
432.50 556.10 1076.70 1612.56

B OVERVIEW OF TEST DATASETS

C META DATA OF LONGBENCH RESULTS

Table 6: LongBench score of each dataset

precision 16-bit 2-bit
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)

llama-3-8B-Instruct
2WikiMultihopQA 37.24 31.72 35.08 35.79
DuReader 16.73 12.45 15.5 15.69
GovReport 17.8 12.8 15.63 16.37
HotpotQA 46.1 43.87 44.96 44.73
LCC 56.85 31.73 41.75 44.61
LSHT 25.25 21.5 21.75 21.75
MultiFieldQA-en 44.44 38.68 41.04 41.68
MultiFieldQA-zh 56.3 43.96 48.44 48.64
MultiNews 16.59 15.76 16.06 15.79
MuSiQue 21.44 19.56 20.59 20.56
NarrativeQA 22.07 19.82 21.56 21.81
PassageCount 6.5 5.5 4.0 5.0

Continued on next page
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Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
PassageRetrieval-en 66.0 53.0 58.5 59.0
PassageRetrieval-zh 91.0 33.45 72.0 72.5
Qasper 43.69 33.9 39.46 39.38
QMSum 17.49 17.01 17.37 17.48
RepoBench-P 51.32 31.99 40.1 41.59
SAMSum 33.22 22.44 32.66 33.15
TREC 74.0 72.5 73.0 73.0
TriviaQA 90.48 87.65 89.36 88.59
VCSUM 0.16 0.17 0.25 0.2

llama-3.1-8B-Instruct
2WikiMultihopQA 45.06 39.52 40.69 39.61
DuReader 28.48 22.2 22.59 22.63
GovReport 20.41 18.6 18.78 18.96
HotpotQA 55.9 48.83 52.43 52.06
LCC 62.99 47.09 57.52 57.55
LSHT 45.0 31.42 33.75 34.0
MultiFieldQA-en 54.91 42.51 45.98 47.17
MultiFieldQA-zh 62.72 50.12 55.51 55.57
MultiNews 15.89 15.07 15.11 15.28
MuSiQue 30.39 25.52 28.62 28.93
NarrativeQA 28.19 26.44 27.93 28.17
PassageCount 6.31 5.67 5.63 5.63
PassageRetrieval-en 99.5 83.17 92.25 91.5
PassageRetrieval-zh 97.54 46.23 59.65 59.2
Qasper 45.03 36.5 38.21 39.01
QMSum 19.15 17.41 18.19 18.2
RepoBench-P 56.57 39.03 46.67 47.18
SAMSum 35.72 23.88 33.33 34.26
TREC 72.5 65.0 67.0 68.0
TriviaQA 91.64 89.72 91.63 91.41
VCSUM 16.85 13.33 14.41 14.52

Phi-3-mini-128k-instruct
2WikiMultihopQA 35.78 19.12 24.61 24.96
DuReader 22.75 10.38 9.26 8.66
GovReport 18.7 8.83 9.47 9.96
HotpotQA 50.44 31.33 37.48 38.66
LCC 57.44 39.85 47.53 47.41
LSHT 27.25 14.25 13.75 14.75
MultiFieldQA-en 54.9 29.04 34.91 33.71
MultiFieldQA-zh 52.09 8.16 12.32 11.87
MultiNews 15.52 12.72 13.33 13.36
MuSiQue 25.23 11.92 15.46 15.93
NarrativeQA 23.28 15.34 17.37 18.26
PassageCount 3.0 2.25 4.5 3.0
PassageRetrieval-en 82.5 11.0 9.68 13.96
PassageRetrieval-zh 58.5 1.25 2.0 1.5
Qasper 39.6 25.78 29.91 30.68
QMSum 17.97 5.88 7.04 8.37
RepoBench-P 54.49 28.09 34.16 33.25
SAMSum 30.62 9.23 13.03 13.42
TREC 66.0 59.5 62.5 62.5
TriviaQA 86.43 61.72 68.15 69.6
VCSUM 18.04 8.97 9.74 9.5

Qwen1.5-14B-Chat-AWQ
2WikiMultihopQA 44.81 44.35 44.39 44.39
DuReader 26.02 23.34 23.28 23.6

Continued on next page
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Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
GovReport 16.31 16.23 16.25 16.29
HotpotQA 55.67 53.69 53.9 53.95
LCC 56.69 36.94 50.95 51.78
LSHT 37.0 32.5 34.5 34.5
MultiFieldQA-en 48.36 44.75 45.68 45.69
MultiFieldQA-zh 60.35 58.54 59.43 59.44
MultiNews 14.95 15.01 14.94 14.94
MuSiQue 32.38 30.25 30.45 30.6
NarrativeQA 22.26 21.73 22.83 22.59
PassageCount 1.0 2.55 2.0 2.5
PassageRetrieval-en 94.5 71.0 80.0 79.0
PassageRetrieval-zh 88.5 67.0 74.5 74.5
Qasper 38.93 36.56 37.54 37.53
QMSum 18.16 18.03 18.13 18.09
RepoBench-P 58.25 38.03 47.79 49.1
SAMSum 32.95 32.69 33.34 32.86
TREC 77.5 76.5 77.5 77.5
TriviaQA 88.63 88.32 87.66 88.01
VCSUM 19.41 19.42 19.65 19.54

Qwen1.5-7B-Chat
2WikiMultihopQA 32.8 31.83 32.14 32.53
DuReader 25.96 22.64 24.06 23.72
GovReport 16.66 15.57 15.84 15.83
HotpotQA 48.11 47.37 48.91 48.11
LCC 58.17 45.87 53.77 53.93
LSHT 28.0 24.0 24.5 25.0
MultiFieldQA-en 47.14 42.26 43.72 44.08
MultiFieldQA-zh 53.4 50.18 51.68 51.13
MultiNews 15.02 15.0 14.92 14.83
MuSiQue 26.74 25.88 27.09 26.33
NarrativeQA 20.06 19.02 20.06 20.5
PassageCount 1.0 0.5 0.0 0.5
PassageRetrieval-en 40.5 20.0 24.0 24.5
PassageRetrieval-zh 59.0 18.25 29.0 27.5
Qasper 39.84 37.19 37.28 37.13
QMSum 18.25 17.59 18.18 17.82
RepoBench-P 45.46 26.33 30.76 32.55
SAMSum 33.01 29.7 33.31 32.62
TREC 70.5 69.5 67.5 67.0
TriviaQA 86.76 86.51 87.37 87.79
VCSUM 17.98 19.15 19.34 19.26

Qwen1.5-7B-Chat-AWQ
2WikiMultihopQA 32.43 30.82 33.46 32.94
DuReader 25.84 23.1 24.36 24.06
GovReport 16.98 16.31 16.65 16.7
HotpotQA 47.77 47.17 46.0 46.33
LCC 57.98 44.56 52.33 54.32
LSHT 29.0 25.5 27.0 27.0
MultiFieldQA-en 46.72 42.87 45.85 45.93
MultiFieldQA-zh 50.97 45.51 46.73 47.13
MultiNews 14.97 15.04 15.16 15.08
MuSiQue 26.18 23.23 24.36 23.9
NarrativeQA 20.93 19.58 20.14 19.94
PassageCount 0.5 0.0 0.0 0.0
PassageRetrieval-en 30.5 16.0 18.5 17.0
PassageRetrieval-zh 48.5 14.0 22.0 24.0

Continued on next page
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Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
Qasper 38.45 35.27 36.16 36.2
QMSum 17.85 17.34 17.77 17.58
RepoBench-P 46.95 25.02 29.03 31.91
SAMSum 31.98 28.3 32.06 31.39
TREC 67.0 65.0 63.5 64.0
TriviaQA 87.56 86.48 87.61 87.48
VCSUM 18.66 19.95 19.96 19.91

Qwen2-7B-Instruct
2WikiMultihopQA 44.15 11.33 40.12 40.02
DuReader 19.22 13.08 15.01 14.54
GovReport 18.09 10.82 16.07 16.74
HotpotQA 44.3 17.39 39.92 39.66
LCC 57.72 36.63 51.46 51.92
LSHT 44.0 23.0 26.25 28.25
MultiFieldQA-en 46.89 21.97 36.42 37.69
MultiFieldQA-zh 61.48 33.67 47.57 47.01
MultiNews 15.58 8.53 13.6 13.71
MuSiQue 25.71 7.58 18.07 18.53
NarrativeQA 24.43 5.29 18.43 18.56
PassageCount 5.0 5.5 5.5 6.0
PassageRetrieval-en 69.0 19.25 33.5 36.0
PassageRetrieval-zh 55.0 9.5 29.5 30.5
Qasper 45.82 21.16 36.94 38.58
QMSum 17.92 9.08 12.25 12.14
RepoBench-P 58.74 35.18 45.95 47.19
SAMSum 35.94 18.23 28.03 26.77
TREC 78.0 58.25 68.0 68.0
TriviaQA 89.66 41.56 82.63 81.15
VCSUM 13.74 8.82 10.58 10.77
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Table 5: Overview of all test datasets.
‘Avg len’ (average length) is computed using the number of words for the English (code) datasets
and the number of characters for the Chinese datasets. ‘Accuracy (CLS)’ refers to classification

accuracy, while ‘Accuracy (EM)’ refers to exact match accuracy

Task Group Dataset Avg len Metric Language #data

Math GSM8K 240 Accuracy (EM) English 1319

Single-Document QA

NarrativeQA 18,409 F1 English 200
Qasper 3,619 F1 English 200
MultiFieldQA-en 4,559 F1 English 150
MultiFieldQA-zh 6,701 F1 Chinese 200

Multi-Document QA

HotpotQA 9,151 F1 English 200
2WikiMultihopQA 4,887 F1 English 200
MuSiQue 11,214 F1 English 200
DuReader 15,768 Rouge-L Chinese 200

Summarization

GovReport 8,734 Rouge-L English 200
QMSum 10,614 Rouge-L English 200
MultiNews 2,113 Rouge-L English 200
VCSUM 15,380 Rouge-L Chinese 200

Few-shot Learning

TREC 5,177 Accuracy (CLS) English 200
TriviaQA 8,209 F1 English 200
SAMSum 6,258 Rouge-L English 200
LSHT 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
PassageCount 11,141 Accuracy (EM) English 200
PassageRetrieval-en 9,289 Accuracy (EM) English 200
PassageRetrieval-zh 6,745 Accuracy (EM) Chinese 200

Code Completion LCC 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 4,206 Edit Sim Python/Java 500

Table 7: Comparison on Llama3.1-8B-Instruct of different quantization precisions

Dataset KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) Baseline
2wikimqa 39.52 44.79 40.69 45.18 45.06
dureader 22.20 27.75 22.59 27.99 28.48
gov report 18.60 19.86 18.78 20.09 20.41
hotpotqa 48.83 55.78 52.43 55.85 55.90
lcc 47.09 63.44 57.52 62.85 62.99
lsht 31.42 45.00 33.75 45.00 45.00
multi news 15.07 15.65 15.11 15.64 15.89
multifieldqa en 42.51 55.10 45.98 54.63 54.91
multifieldqa zh 50.12 62.77 55.51 63.27 62.72
musique 25.52 30.65 28.62 30.70 30.39
narrativeqa 26.44 27.91 27.93 28.28 28.19
passage count 5.67 6.31 5.63 6.15 6.31
passage retrieval en 83.17 99.50 92.25 99.50 99.50
passage retrieval zh 46.23 97.42 59.65 97.38 97.54
qasper 36.50 45.20 38.21 44.74 45.03
qmsum 17.41 19.07 18.19 18.92 19.15
repobench-p 39.03 55.61 46.67 56.28 56.57
samsum 23.88 36.12 33.33 35.45 35.72
trec 65.00 72.50 67.00 72.50 72.50
triviaqa 89.72 91.73 91.63 91.89 91.64
vcsum 13.33 17.17 14.41 17.04 16.85

17


	Introduction
	Background & Related Work: KV Cache Compression
	KV Cache Eviction
	KV Cache Quantization
	training-required approaches

	Methodology
	Preliminary Study of KV Cache Quantization and Attention Scores
	The Log-distributed Attention Pattern
	Position-Agnostic Attention Calculation
	LogQuant: Algorithm and Implementation

	Experiments
	Settings
	Accuracy and Efficiency Analysis
	Accuracy Comparison on Different Precision
	Accuracy Comparison among different Configurations
	Accuracy Comparison among different Tasks
	Efficiency Comparison


	Conclusion and Future Work
	Discussion on Why not Eviction
	Overview of Test Datasets
	Meta Data of LongBench Results

