
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOGQUANT: LOG-DISTRIBUTED 2-BIT QUANTIZA-
TION OF KV CACHE WITH SUPERIOR ACCURACY
PRESERVATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV
Cache in large language model (LLM) inference, delivering substantial memory
savings while preserving superior performance. Previous methods either assume
that later tokens are more important or attempt to predict important tokens based
on earlier attention patterns. Both approaches, however, can result in performance
bottlenecks or frequent mispredictions.
LogQuant takes a different approach. By applying a log-based filtering mecha-
nism, it selectively compresses the KV Cache across the entire context, achieving
better performance with the same or even reduced memory footprint compared
to existing methods. In benchmark tests, it enhances throughput by 25% and
boosts batch size by 60% without increasing memory consumption. For chal-
lenging tasks such as Math and Code Completion, LogQuant improves accuracy
by 40% to 200% at the same compression ratio, outperforming comparable tech-
niques. LogQuant integrates effortlessly with popular inference frameworks like
Python’s transformers library and will be made open-source upon publica-
tion.

1 INTRODUCTION

As Large Language Models (LLMs) continue to evolve, their capacity to process extended context
lengths has increased significantly, from 4k to 128k tokens (Meta, 2024; OpenAI, 2024a). This im-
provement is particularly important for applications such as multi-round chatbot conversations (Ope-
nAI, 2024a; Anthropic, 2024; DeepSeek, 2024) and document-based question answering (Gao et al.,
2023; Lewis et al., 2020), where comprehensive contextual understanding is required. Moreover,
the emergence of new models, such as OpenAI’s o1 (OpenAI, 2024b), has increased the demand
for even longer reasoning contexts, which exacerbates the memory challenges faced in KV cache
management.

Recent works, such as Zhang et al. (2024); Li et al. (2024); Dong et al. (2024), have highlighted
the significant memory consumption of the KV cache in large language models, which grows lin-
early with context length and can exceed the model’s parameter size, presenting serious deployment
challenges; a comparative analysis of these methods reveals their limitations in addressing memory
efficiency, which our approach aims to overcome.

Various methods have been proposed to compress the KV cache, primarily focusing on either evic-
tion or quantization strategies. Eviction-based approaches, such as H2O (Zhang et al., 2024), Key-
former (Adnan et al., 2024), StreamingLLM (Xiao et al., 2023), and snapKV (Li et al., 2024), aim
to reduce memory usage by selectively removing tokens deemed unimportant. In contrast, quan-
tization techniques, like QAQ (Dong et al., 2024), Gear (Kang et al., 2024), and KiVi (Liu et al.,
2024c), reduce the precision of less important tokens, retaining more data while minimizing mem-
ory costs. Despite their differing approaches, both strategies face a common challenge: identifying
which tokens are less important and, therefore, more suitable for compression. Methods such as
KiVi and StreamingLLM address this by noting that tokens closer to the current position tend to be
more important, so they focus on compressing or evicting tokens further from the current context.
On the other hand, H2O predicts token importance based on attention scores from previous tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

100 200 300 400 500
Token position

0.00

0.02

0.04

0.06

0.08

0.10

At
te

nt
io

n
sc

or
e

Figure 1: The observed log-distribution pattern is evident not only in the magnitude of attention
scores but also in the positions of attention spikes. These spikes become sparser as the model
attends to tokens further from the most recent position, indicating that the model not only focuses
on nearby tokens. This phenomenon, illustrated here with Llama3-8B-Instruct (Dubey et al., 2024)
on the GSM8K dataset (Cobbe et al., 2021), is consistent across different tasks and models, as further
detailed in Section 3.

However, these methods introduce trade-offs: KiVi and StreamingLLM risk compressing impor-
tant tokens outside their defined window, while H2O’s reliance on past attention scores may lead to
mispredictions, potentially reducing accuracy.

Our approach addresses these shortcomings by leveraging a key insight: the positions of the atten-
tion spikes (i.e. high attention scores) follow a log distribution as shown in Figure 1, resulting in
sparser importance for tokens as they move further from the current position. By utilizing this prop-
erty, we can outperform existing methods across a wide range of tasks. Additionally, the original
absolute positions of KV cache entries can be disregarded without changing the final attention results
during the decoding phase, which allows us to enhance the speed of our log-distributed quantization
method.

The key contributions of this paper are as follows:

• Observation of Log-Distributed Attention Spikes: We observe that in various models
and downstream tasks, the positions of high attention spikes follow a log distribution, be-
coming sparser as tokens move further from the current position. This insight underpins
our approach to estimate token importance.

• Design of LogQuant: Leveraging this log-distribution observation, we introduce
LogQuant, a 2-bit quantization technique that significantly improves accuracy. LogQuant
outperforms existing methods like KiVi and H2O by better preserving important tokens,
achieving a 40% to 200% improvement in accuracy on complex tasks such as Math and
Code Completion with the same or higher compression ratio.

• Throughput Optimization: By ignoring the absolute positions of KV cache entries, our
method further optimizes the speed of quantization/dequantization process without affect-
ing the final attention results, resulting in a 25% increase in throughput and a 60% increase
in batch size.

The remainder of the paper is organized as follows: Section 2 reviews the related work on KV
cache compression techniques, Section 3 details the core concepts behind our proposed LogQuant
methods, Section 4 present an extensive set of experiments, Section 5 summarizes our findings and
discusses potential directions for future work.

2 BACKGROUND & RELATED WORK: KV CACHE COMPRESSION

In transformer models, the attention mechanism relies on three key components: the Query (Q), Key
(K), and Value (V) vectors. For each token, the model computes a d-dimensional Query vector and
compares it against all stored N × d Key vectors, where N is the length of the sequence processed

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

so far. The result of this comparison is used to weigh the corresponding Value vectors, producing
the final output. Mathematically, the attention operation is defined as:

Attention(Q,K, V) = Softmax
(
QK⊤
√
d

)
V (1)

Here, the Query vector is multiplied by the transposed Key matrix, resulting in a set of attention
weights. These weights are then normalized using the softmax function, which reduces the N se-
quence length dimension and are applied to the Value vectors to compute the output.

In existing literature, LLM inference is typically described in two phases: the prefill phase for pro-
cessing input tokens and the decoding phase for generating new tokens. In the decoding phase, each
token generation requires loading the entire KV Cache from previous tokens, leading to inefficien-
cies in both execution time and memory usage.

KV cache compression methods can be categorized into two distinct types: ’training-free’ methods,
which do not require model retraining and include eviction and quantization strategies, and ’training-
required’ methods, involve designing more efficient attention structures. Our approach focuses on
improving training-free methods for broader applicability. Eviction methods discard less important
tokens based on selective strategies, while quantization reduces the precision of key and value states
to lower bits for memory efficiency. However, both methods face significant information loss at
high compression rates—especially with 2-bit quantization, which can result in substantial accuracy
degradation.

Inspired by attention patterns as Figure 1, we propose combining a logarithmic eviction strategies
with quantization. By selectively retaining tokens in their original precision at critical positions
during 2-bit quantization, we can preserve accuracy even at high compression rates.

2.1 KV CACHE EVICTION

Eviction methods aim to reduce KV cache memory usage in Large Language Models (LLMs) by
discarding less important tokens. The early work H2O (Zhang et al., 2024) selects ”heavy hitter”
tokens based on cumulative attention scores, though this risks evicting tokens that may become
important later. Keyformer (Adnan et al., 2024) improves on H2O by combining ”Key Attention”
with a ”window attention” mechanism, retaining both historically significant and recent tokens for
better accuracy. MiniCache (Liu et al., 2024b) reduces memory by reusing Key and Value states
across layers. This method assumes that some key and value representations are redundant across
model layers and can be shared. InfLLM (Xiao et al., 2024) addresses very long contexts by dividing
them into blocks and retaining ’representative tokens’ for block eviction decisions.

2.2 KV CACHE QUANTIZATION

Quantization reduces storage and boosts computational speed by using fewer bits to represent values.
Earlier works, like AWQ (Lin et al., 2023) and Qserve (Lin et al., 2024), applied 4-bit quantization
to the KV cache with minimal accuracy loss. Recent methods aim to compress the KV cache further
while preserving accuracy. QAQ (Dong et al., 2024) dynamically adjusts the precision of the in-
GPU quantized cache by offloading all original-precision KV data to CPU memory. GEAR (Kang
et al., 2024) improves accuracy by storing the quantization error of the KV cache as a sparse matrix
with low-rank decomposition. KiVi (Liu et al., 2024c) introduces a 2-bit quantization by retaining a
recent window of full-precision tokens, balancing memory efficiency and accuracy.

2.3 TRAINING-REQUIRED APPROACHES

An early memory-reducing attention design is Multi-Query Attention (MQA, (Shazeer, 2019)),
where all query heads share a single pair of key and value heads. While this reduces memory, it
significantly impacts accuracy. Grouped-Query Attention (GQA, (Ainslie et al., 2023)) addresses
this by grouping query heads, with each group sharing the same key and value heads, preserving
the generalization ability of multi-head attention while reducing KV cache size. Deepseek V2 (Liu
et al., 2024a) introduces Multi-Head Latent Attention (MLA), which compresses key and value

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

580 600 620 640
Token position

0.00

0.25

0.50

0.75

1.00

M
ax

 a
tte

nt
io

n
sc

or
e

GSM8K

0 20 40 60 80
Token position

0.00

0.25

0.50

0.75

1.00

M
ax

 a
tte

nt
io

n
sc

or
e

OpenbookQA
Iteration

T-1
T-2
T-3

Figure 2: The maximum attention score of each token position across four consecutive decod-
ing steps, marking the high attention positions for illustrating the unpredictable nature of atten-
tion scores. This analysis was conducted using Llama3-8B-Instruct (Dubey et al., 2024) on the
GSM8K (Cobbe et al., 2021) and OpenBookQA (Mihaylov et al., 2018) datasets.

Table 1: Impact of retaining the first two tokens (referred to as ”Sink”) at original precision.
The final answer accuracy results on GSM8K (Cobbe et al., 2021) are presented. We present the

improvement as ∆Sink. Both methods maintain the recent 128 tokens at original precision.

Model baseline(BF16) KiVi(4-bit) KiVi(2-bit) KiVi(2-bit)+Sink(BF16) ∆Sink

Llama3.1-8B-Instruct 71.41 67.24 18.04 18.49 +0.45
Qwen1.5-7B-Chat 57.24 52.27 39.80 39.42 -0.38

states using LoRA-based projections. To prevent disruption of position embeddings from LoRA
compression, specific channels are reserved for position information only, excluding them from
LoRA compression.

3 METHODOLOGY

In Section 3.1, we explore the attention score distribution and analyze how quantization loss influ-
ences the attention block output. In Section 3.2, we present our observations on KV Cache and
token importance. A position-agnostic attention calculation method is introduced in Section 3.3 for
speeding up the log-distributed quantization method. Finally, we introduce the implementation of
our LogQuant method in Section 3.4.

3.1 PRELIMINARY STUDY OF KV CACHE QUANTIZATION AND ATTENTION SCORES

As discussed in Section 2, two well-established observations in recent works are particularly relevant
to KV cache compression. First, many tokens exhibit consistently low attention scores, indicating
that their KV cache entries can be safely compressed with minimal impact on performance (Liu
et al., 2024c). Second, predicting token importance based on previous decoding steps is unreliable,
as attention scores can vary significantly across iterations, making it difficult to accurately identify
which tokens should be preserved (Dong et al., 2024; Jiang et al., 2024). This is also demonstrated
in Figure 2.

Inspired by the observation of sink tokens (Xiao et al., 2023), which are the first few tokens that
consistently receive high attention scores (Figure 3), we included these tokens in the set maintained
at original precision to improve accuracy in 2-bit quantization. However, as shown in Table 1,
this adjustment yielded minimal improvement. This suggests that while sink tokens play a role in
defining the conversational context, maintaining high precision for only these tokens is insufficient,
indicating that tokens beyond the first few are also crucial for preserving model performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7N-128 to N
Token position

0.0

0.2

0.4

0.6

At
te

nt
io

n
sc

or
e

Figure 3: Attention distribution across different token positions, represented as boxplots based on
25% quantiles across all attention heads. The median and overall distribution of attention scores
for sink tokens (Xiao et al., 2023) (tokens 0 and 1) are greater than the sum of the most recent 128
tokens. The attention scores are derived from experiments using Llama3-8B-Instruct (Dubey et al.,
2024) and the GSM8K (Cobbe et al., 2021) dataset.

3.2 THE LOG-DISTRIBUTED ATTENTION PATTERN

As mentioned in Section 1, our analysis of attention heads reveals a log-distributed high-attention
pattern, which motivates the development of a quantization scheme that follows this distribution. We
introduce a selection scheme where a window of size 2W retains the most recent consecutive tokens
in full precision. Following this, another window of size W/2 selects tokens spaced one token apart,
and then a window of size W/4 follows the similar pattern and so on. Finally, a window of 3W
tokens is reserved in full precision. This creates a log-distributed token selection scheme.

We compare this log-distributed selection to other methods: KiVi, which selects only the most recent
3W tokens; StreamingLLM, which selects the most recent 3W tokens plus the first four sink tokens;
and H2O, which uses previous attention scores to select the top 3W tokens. To evaluate these
methods, we define token coverage as the average attention score captured by the selection scheme:

Token Coverage =

∑3W
i=1 Attention Score of Selected Tokens

3W
. (2)

Figure 4 presents the results, where we exclude the first two tokens for calibration, as they typically
have high attention scores but contribute minimally to overall model performance (see Section 3.1).

The results demonstrate that our log-distributed selection scheme covers high-attention tokens more
effectively. This suggests that filtering tokens for quantization based on this log distribution leads to
better token importance preservation.

3.3 POSITION-AGNOSTIC ATTENTION CALCULATION

LLM inference involves two phases: prefill and decoding (Section 2). As described in Yuan et al.
(2024), the decoding phase is computationally expensive and memory-bound due to the use of the
KV Cache. In the prefill phase, the model processes the input prompt in a single pass. However,
during decoding, new tokens are generated one at a time, and each generation step requires access
to the entire KV Cache. This leads to inefficiencies in both memory usage and execution time.

To mitigate these inefficiencies, we plan to accelerate the attention procedure. The attention opera-
tion can be expressed mathematically as follows:

A = Softmax(Q ·KT)

O = A · V,
(3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

128 192 256
Reserved length

0.000

0.002

0.004

0.006

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Llama3-8B-Instruct

128 192 256
Reserved length

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Qwen2-7B-Instruct

128 192 256
Reserved length

0.000

0.002

0.004

0.006

0.008

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Phi-3-mini-128k-Instruct

LogQuant KiVi Streaming H2O

Figure 4: The attention coverage without the first two sink tokens for different selection meth-
ods (Liu et al., 2024c; Xiao et al., 2023; Zhang et al., 2024) and different models (Dubey et al.,
2024; Yang et al., 2024; Abdin et al., 2024), tested on a subset of the GSM8K (Cobbe et al., 2021)
dataset. Details of LogQuant will be introduced in Section 3.4.

where A is the attention distribution, a 1×N vector resulting from the softmax operation applied to
the product of Q and the transpose of K and O is the output, a 1×d vector calculated by multiplying
the attention distribution A with the Value matrix V .

Since the attention distribution A aggregates values over all N tokens, the specific ordering of tokens
in the Key and Value matrices does not affect the final output. This property allows us to permute or
reorder the Key and Value caches without any loss of accuracy. By leveraging this insight, we can
optimize the KV Cache by concatenating high-precision tokens with quantized tokens while disre-
garding their original positions. This approach enhances memory locality and processing efficiency
while maintaining the correctness of the attention computation. This leads to the relation:

A · V = AP · VP , (4)

where P is a permutation of the indices {1, . . . , N}. This enables us to optimize the KV Cache
effectively.

3.4 LOGQUANT: ALGORITHM AND IMPLEMENTATION

Algorithm. After comparing different logarithmic bases logN , we found that a base-2 logarithmic
implementation is sufficiently effective for our purposes. To maintain logarithmic sparsity within
a specified length, we adopt this base-2 logarithmic approach. We fix a window length configura-
tion W , allowing us to retain up to 3W tokens at original precision. Each time the length limit is
reached, we reduce the density of tokens in the first two windows (each of length W) by retaining
tokens at regular intervals, effectively halving the density. This process reduces the number of re-
tained tokens in the first two windows from 2W to 2W

2 = W . Subsequently, we add W new tokens,
resulting in a full-precision window size of 2W

2 + W = 2W . At this point, the densities become
densityW1

= 1
2p and densityW2

= p, where p is the initial density and Wi denotes the i-th window.
By continuously adding new tokens, LogQuant naturally forms a log2 sparsity selection within the
constrained length. The detailed selection process is described in Algorithm 1. Using this approach,
the length of retained full-precision tokens fluctuates between 2W and 3W , providing a more stable
compression ratio compared to KiVi, where the length fluctuates between 0 and R, with R being the
length of retained full-precision tokens in KiVi. We illustrate the workflow in Figure 5, which visu-
ally represents the KV cache management process, enhancing the understanding of our algorithm’s
implementation.

Implementation. Popular inference frameworks, such as Hugging Face’s transformers library,
have encapsulated KV Cache management into dedicated classes, which simplifies the integration of
new methods. To leverage this modular design, we implemented LogQuant as a derived class of the
Cache class in the transformers library. This approach ensures seamless compatibility with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 new
token

View of their original positions

KVCache Accumulation KVCache Quatization 3W

W

Quantized
KVCache

Full-Precision
KVCache

Yes

2WNo

Full-Precision
KVCache full?

Example of W = 4

 1 2 3 4 5 6 7 8 9 10 11 12Quant. 1

 1 3 5 7 9 10 11 12 13 14 15 16

 1 3 5 7 9 10 11 12

 1 5 9 11 13 14 15 16
Quant. 2

Bef.
After

Bef.
After

1

KVCache

3W

Empty at
the start

4 states of Full-Precision KVCache

3W

During
Accumulation

3W

Right After
Quantization

3W

Full
2W

2W

124

Figure 5: LogQuant’s KV cache compression workflow. The number of reserved original-precision
tokens increases from 2W to 3W . We then apply a log-sparse strategy to filter the first 2W tokens,
quantize half of these tokens, and compress the reserved token length back to 2W .

Algorithm 1 Log-based Filtering Token Selection Strategy

0: Input: A (list of original precision tokens), a* (new token), W (window length)
0: Output: A (updated list of tokens)
0: procedure APPENDTOKEN(A, a∗, W)
0: if length(A) < 3W then
0: A← concat(A, a*)
0: else
0: A← concat(A[0:2W:2], A[2W:3W])
0: A← concat(A, a*)
0: end if
0: return A
0: end procedure =0

various quantization backends, including Quanto (Face, 2024) and HQQ (Badri & Shaji, 2023). For
our implementation, we utilized Quanto as the quantization backend, adopting the Key-per-channel
strategy. Furthermore, we integrated LogQuant into Hugging Face’s inference pipeline, enhancing
its usability for efficient and precise inference workflows.

Additionally, to assess the compression sensitivity of the Key and Value caches, we developed a vari-
ant called PartialLogQuant. This method log-sparsely selects original precision tokens exclusively
for the Key cache while reserving only the most recent W tokens for the Value cache.

4 EXPERIMENTS

4.1 SETTINGS

Models. We evaluate KiVi and LogQuant by 3 popular model families: Llama3/Llama3.1 (Dubey
et al., 2024), Qwen1.5/Qwen2 (Bai et al., 2023; Yang et al., 2024), and Microsoft Phi3 (Abdin et al.,
2024). Qwen1.5 and Phi3 are based on Multi-Head Attention, whereas Llama3/3.1 and Qwen2
utilize Group-Query Attention. The quantization group size G is set to the Hugging Face default
value of 64, and the quantized precision is set to INT2. For KiVi, the maximum length of reserved
original-precision tokens R is set to [128, 192, 256]. For LogQuant, the window length W is limited

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

to ⌊R3 ⌋ as it will reserve a maximum of 3W original precision tokens and for PartialLogQuant, which
reserve 3W Key cache and W Value cache in original precision, we set W = ⌊R2 ⌋ to ensure that the
total number of reserved original-precision tokens does not exceed that of KiVi.

Datasets. We selected GSM8K(Grade School Math, (Cobbe et al., 2021)) and LongBench (Bai
et al., 2024) due to their widespread use in evaluating KV cache quantization, ensuring our results
are comparable to those in the literature. For GSM8K, we test with a 5-shot from the training set for
better accuracy and keep the length of the input token between 600 and 1700, the evaluation is based
on the exact value of the final answer. For LongBench, we test all 21 datasets among 6 types of
tasks and use the LongBench’s original pipeline for evaluation. The test dataset details are present
in Table 5.

4.2 ACCURACY AND EFFICIENCY ANALYSIS

4.2.1 ACCURACY COMPARISON ON DIFFERENT PRECISION

To illustrate the impact of quantized data precision, we evaluate the accuracy loss using Llama3.1-
8B-Instruct under both 2-bit and 4-bit quantization for KiVi and LogQuant methods on LongBench.
As shown in Table 2, both methods achieve performance comparable to the baseline across all tasks
with 4-bit quantization. However, 2-bit quantization results in a noticeable drop in accuracy, high-
lighting the trade-off between memory efficiency and performance. Notably, LogQuant demon-
strates better accuracy compared to KiVi under the same conditions.

Table 2: Accuracy of Different Precision on Llama3.1-8B. Refer to the Table 7 for the scores of each
specific task. The ∆ shows the difference to baseline.

Category KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) baseline
Single-Document QA 38.89 (∆− 8.11) 47.75 (∆+ 0.75) 41.91 (∆− 5.09) 47.73 (∆+ 0.73) 47.71
Multi-Document QA 34.02 (∆− 4.98) 39.74 (∆+ 0.74) 36.08 (∆− 2.92) 39.93 (∆+ 0.93) 39.96
Summarization 16.10 (∆− 1.90) 17.94 (∆− 0.06) 16.62 (∆− 1.38) 17.92 (∆− 0.08) 18.08
Few-shot Learning 52.51 (∆− 8.49) 61.34 (∆+ 0.34) 56.43 (∆− 4.57) 61.21 (∆+ 0.21) 61.22
Synthetic Tasks 45.02 (∆− 21.98) 67.74 (∆+ 0.74) 52.51 (∆− 14.49) 67.68 (∆+ 0.68) 67.78
Code Completion 43.06 (∆− 15.94) 59.53 (∆+ 0.53) 52.10 (∆− 6.90) 59.57 (∆+ 0.57) 59.78

4.2.2 ACCURACY COMPARISON AMONG DIFFERENT CONFIGURATIONS

As discussed in Section 4.2.1, 4-bit quantization incurs only a slight accuracy loss across tasks.
Therefore, we focus on 2-bit quantization in the following discussion to highlight LogQuant’s per-
formance. To further investigate the accuracy loss resulting from quantization, we compared the
following methods: 1) 16-bit baseline, 2) KiVi, 3) LogQuant, and 4) PartialLogQuant across differ-
ent configurations, we define the compression ratio as:

Original tensor size
Tensor size in compressed format

(5)

where, for a sequence length L and reserved original precision token length R in a BF16 model with
2-bit quantization, the compression ratio can be expressed as:

16L

2(L−R) + 16R
. (6)

We tested the three compression ratios using GSM8K across three model families, and the results
summarized in Figure 6. Our findings demonstrate that the LogQuant method consistently outper-
forms KiVi across all three models at various compression ratios. Furthermore, at higher compres-
sion ratios, PartialLogQuant exhibits superior performance compared to standard LogQuant, which
show a speculation that Key, the component for computing attention are more sensitive for quan-
tization loss. The results also indicate that smaller models and small KV states models, such as
Phi3-mini (3.8B) and Qwen2-7B (retaining only 1

8 of KV heads than Query, while other GQA mod-
els typically retain at least 1

4 .), experience a more significant accuracy loss with 2-bit quantized KV
caches. However, our method provides a notable improvement in accuracy for these smaller models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4
Compression Ratio

20

40

60
Ac

cu
ra

cy
(%

)

Meta-Llama-3.1-8B-Instruct

0 2 4
Compression Ratio

40

45

50

55

Ac
cu

ra
cy

(%
)

Qwen1.5-7B-Chat

0 2 4
Compression Ratio

60

65

70

Ac
cu

ra
cy

(%
)

Qwen1.5-14B-Chat

0 2 4
Compression Ratio

70

75

80

Ac
cu

ra
cy

(%
)

Qwen1.5-32B-Chat

0 2 4
Compression Ratio

20

40

60

80

Ac
cu

ra
cy

(%
)

Phi-3-mini-128k-instruct

0 2 4
Compression Ratio

40

60

Ac
cu

ra
cy

(%
)

Meta-Llama-3-8B-Instruct

0 2 4
Compression Ratio

40

45

50

55

Ac
cu

ra
cy

(%
)

Qwen1.5-7B-Chat-AWQ

0 2 4
Compression Ratio

60

65

70

Ac
cu

ra
cy

(%
)

Qwen1.5-14B-Chat-AWQ

0 2 4
Compression Ratio

20

40

Ac
cu

ra
cy

(%
)

Qwen2-7B-Instruct

0 2 4
Compression Ratio

25

50

75

Ac
cu

ra
cy

(%
)

Phi-3-medium-128k-instruct

Accuracy by Compression Ratio on GSM8K(Top right is better)

LogQuant (ours) PartialLogQuant (ours) KiVi baseline

Figure 6: Accuracy(EM) with different compression ratio in GSM8K tasks for different models.

4.2.3 ACCURACY COMPARISON AMONG DIFFERENT TASKS

To further investigate the accuracy loss in different tasks, we evaluate the seven task groups listed
in Table 5, providing the average score for each method in Table 3. We set the reserved length R as
128, where LogQuant will have only 3⌊R3 ⌋ = 126 original precision tokens, slightly smaller than
128 of KiVi. As shown in Table 3, for simpler tasks such as summarization, quantization has little
to no impact on performance compared to the 16-bit baseline. However, for more complex tasks
like Code Completion, Synthetic Tasks and Math, quantization significantly affects accuracy, with
LogQuant demonstrating better retention of accuracy compared to KiVi.

4.2.4 EFFICIENCY COMPARISON

To evaluate memory and throughput efficiency by a NVIDIA H100 48G MIG with the HuggingFace
pipeline, we conducted a benchmark similar to that in (Turganbay, 2024), setting an average prompt
length of 512 and a maximum output length of 2000. We incrementally increased the batch size
while recording peak memory usage and throughput for both LogQuant (2-bit with 126 reserved
tokens) and the BF16 baseline on the Llama-3.1-8B model, until memory usage reached the 48GB
limit. The hardware utilized was a single NVIDIA H100 GPU. As shown in Figure 7, LogQuant
achieves approximately 25% higher throughput by supporting a larger batch size. Additionally, it
allows for a 60% increase in batch size within the same memory constraints under the HuggingFace
pipeline.

We also observed that, within the HuggingFace pipeline, inference with a quantized cache does
not immediately release original KV states, which limits memory compression and efficiency. Fur-
thermore, the dequantization operation impacts throughput. These issues suggest that memory ef-
ficiency and speed could be further improved by employing operator fusion, enabling computation
on the quantized cache directly with a fused attention operation. We will explore this optimization
in future work.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced LogQuant, a novel quantization technique designed to optimize KV
Cache management in large language models (LLMs). Our approach leverages a base-2 logarithmic
strategy to maintain sparsity while accommodating an increased number of full-precision tokens.
Through comprehensive evaluations, we demonstrated that LogQuant consistently outperforms ex-
isting methods, such as KiVi, across various model families and compression ratios, particularly
benefiting smaller models that typically suffer from accuracy loss due to quantization.

We further explored the efficiency of our implementation within the HuggingFace pipeline, achiev-
ing notable improvements in throughput and memory utilization. Additionally, our investigation
into accuracy loss across different tasks highlighted LogQuant’s superior retention of performance,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Task Group Average Score for Different Models and Methods.
(The best result of 2-bit quantization will be bold. Refer to the Table 6 for the scores of each

specific task in LongBench)

Model precision 16-bit 2-bit

Task Group Baseline KiVi LogQuant
(ours)

PartialLogQuant
(ours)

llama-3.1-8B-Instruct

Math 71.42 18.04 40.41 50.64
Code Completion 59.78 43.06 52.09 52.36
Few-shot Learning 61.21 52.50 56.42 56.91
Multi-Document QA 39.95 34.01 36.08 35.80
Single-Document QA 47.71 38.89 41.90 42.48
Summarization 18.07 16.10 16.62 16.74
Synthetic Tasks 67.78 45.02 52.51 52.11

Qwen1.5-7B-Chat-AWQ

Math 56.18 39.27 49.28 50.57
Code Completion 52.46 34.79 40.68 43.11
Few-shot Learning 53.88 51.32 52.54 52.46
Multi-Document QA 33.05 31.08 32.04 31.80
Single-Document QA 39.26 35.80 37.22 37.3
Summarization 17.11 17.16 17.38 17.31
Synthetic Tasks 26.5 10 13.5 13.66

Qwen1.5-14B-Chat-AWQ

Math 70.28 59.82 63.31 65.50
Code Completion 57.47 37.48 49.37 50.44
Few-shot Learning 59.02 57.50 58.25 58.22
Multi-Document QA 39.72 37.91 38.01 38.14
Single-Document QA 42.48 40.39 41.37 41.31
Summarization 17.21 17.17 17.24 17.21
Synthetic Tasks 61.33 46.85 52.17 52.00

Qwen2-7B-Instruct

Math 52.99 3.71 34.34 36.47
Code Completion 58.23 35.91 48.71 49.56
Few-shot Learning 61.90 35.26 51.23 51.04
Multi-Document QA 33.35 12.35 28.28 28.19
Single-Document QA 44.66 20.52 34.84 35.46
Summarization 16.33 9.31 13.13 13.34
Synthetic Tasks 43.00 11.42 22.83 24.17

Phi-3-mini-128k-instruct

Math 80.29 12.59 51.86 52.39
Code Completion 55.97 33.97 40.84 40.33
Few-shot Learning 52.58 36.17 39.36 40.07
Multi-Document QA 33.55 18.19 21.70 22.05
Single-Document QA 42.47 19.58 23.63 23.63
Summarization 17.56 9.10 9.89 10.30
Synthetic Tasks 48.00 4.83 5.39 6.15

0 50 100 150
Batch Size

200

400

600

800

Sp
ee

d
(To

ke
ns

/s
)

20 30 40
Memory (GB)

200

400

600

800

Sp
ee

d
(To

ke
ns

/s
)

20 30 40
Memory (GB)

0

25

50

75

100

125

150

Ba
tc

h
Si

ze

LogQuant(2-bit) Baseline(BF16)

Figure 7: memory usage and throughput comparison between 2bit LogQuant and 16bit baseline
under huggingface generation pipeline with llama3.1-8B and H100.

especially in complex tasks. These findings underscore the potential of LogQuant to enhance LLM
inference in resource-constrained environments.

Future work will focus on refining our quantization approach and investigating further optimizations,
such as operator fusion, to maximize efficiency and performance in LLM applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Anthropic. Claude. https://claude.ai/new, 2024. (Accessed on 09/26/2024).

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), August 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek. Deepseek. https://chat.deepseek.com/, 2024. (Accessed on 09/26/2024).

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. arXiv preprint arXiv:2403.04643, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hugging Face. Optimum quanto, 2024. URL https://github.com/huggingface/
optimum-quanto. Accessed: 2024-09-06.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference: Accelerating pre-filling
for long-context llms via dynamic sparse attention. In Workshop on Efficient Systems for Founda-
tion Models II@ ICML2024, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

11

https://claude.ai/new
https://mobiusml.github.io/hqq_blog/
https://chat.deepseek.com/
https://github.com/huggingface/optimum-quanto
https://github.com/huggingface/optimum-quanto

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Acti-
vationaware weight quantization for llm compression and acceleration. arxiv. arXiv preprint
arXiv:2306.00978, 2023.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. CoRR, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. In Forty-first
International Conference on Machine Learning, 2024c.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024. (Accessed on 09/26/2024).

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

OpenAI. Models - openai api. https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo, 2024a. (Accessed on 09/26/2024).

OpenAI. Openai o1 hub — openai. https://openai.com/o1/, 2024b. (Accessed on
09/26/2024).

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Raushan Turganbay. Unlocking longer generation with key-value cache quantization, 2024. URL
https://huggingface.co/blog/kv-cache-quantization. Accessed: 2024-09-
24.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. CoRR, 2024.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao Xue, Bingzhe Wu, Zhikai Li,
Qingyi Gu, Yong Jae Lee, Yan Yan, et al. Llm inference unveiled: Survey and roofline model
insights. arXiv preprint arXiv:2402.16363, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://openai.com/o1/
https://huggingface.co/blog/kv-cache-quantization

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

460 480 500 520 540 560 580 600
10 6

10 5

10 4

10 3

10 2

10 1

Original Precision
LogQuant (2-bit quantization)
LogQuant (Eviction)

Figure 8: Eviction and Quantization Loss on Attention Distribution

A DISCUSSION ON WHY NOT EVICTION

Unlike quantization, which only impacts the precision of specific tokens, eviction alters the sequence
length directly. Attention is computed using the softmax function, which scales all values to sum to
1. Due to this property, eviction methods can result in much larger deviations from the baseline com-
pared to quantization within the fully preserved window. Furthermore, for the dropped segments,
eviction methods are unable to compute attention, leading to significantly higher errors.

We illustrate this behavior in Figure 8 and summarize the attention error relative to the baseline for
Llama3.1-8B on the GSM8K dataset in Table 4.

Table 4: Comparison of L1 error with original attention for eviction and quantization.

LogQuant (2-bit) KiVi (2-bit) LogQuant (Eviction) KiVi (Eviction)
432.50 556.10 1076.70 1612.56

B OVERVIEW OF TEST DATASETS

C META DATA OF LONGBENCH RESULTS

Table 6: LongBench score of each dataset

precision 16-bit 2-bit
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)

llama-3-8B-Instruct
2WikiMultihopQA 37.24 31.72 35.08 35.79
DuReader 16.73 12.45 15.5 15.69
GovReport 17.8 12.8 15.63 16.37
HotpotQA 46.1 43.87 44.96 44.73
LCC 56.85 31.73 41.75 44.61
LSHT 25.25 21.5 21.75 21.75
MultiFieldQA-en 44.44 38.68 41.04 41.68
MultiFieldQA-zh 56.3 43.96 48.44 48.64
MultiNews 16.59 15.76 16.06 15.79
MuSiQue 21.44 19.56 20.59 20.56
NarrativeQA 22.07 19.82 21.56 21.81
PassageCount 6.5 5.5 4.0 5.0

Continued on next page

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
PassageRetrieval-en 66.0 53.0 58.5 59.0
PassageRetrieval-zh 91.0 33.45 72.0 72.5
Qasper 43.69 33.9 39.46 39.38
QMSum 17.49 17.01 17.37 17.48
RepoBench-P 51.32 31.99 40.1 41.59
SAMSum 33.22 22.44 32.66 33.15
TREC 74.0 72.5 73.0 73.0
TriviaQA 90.48 87.65 89.36 88.59
VCSUM 0.16 0.17 0.25 0.2

llama-3.1-8B-Instruct
2WikiMultihopQA 45.06 39.52 40.69 39.61
DuReader 28.48 22.2 22.59 22.63
GovReport 20.41 18.6 18.78 18.96
HotpotQA 55.9 48.83 52.43 52.06
LCC 62.99 47.09 57.52 57.55
LSHT 45.0 31.42 33.75 34.0
MultiFieldQA-en 54.91 42.51 45.98 47.17
MultiFieldQA-zh 62.72 50.12 55.51 55.57
MultiNews 15.89 15.07 15.11 15.28
MuSiQue 30.39 25.52 28.62 28.93
NarrativeQA 28.19 26.44 27.93 28.17
PassageCount 6.31 5.67 5.63 5.63
PassageRetrieval-en 99.5 83.17 92.25 91.5
PassageRetrieval-zh 97.54 46.23 59.65 59.2
Qasper 45.03 36.5 38.21 39.01
QMSum 19.15 17.41 18.19 18.2
RepoBench-P 56.57 39.03 46.67 47.18
SAMSum 35.72 23.88 33.33 34.26
TREC 72.5 65.0 67.0 68.0
TriviaQA 91.64 89.72 91.63 91.41
VCSUM 16.85 13.33 14.41 14.52

Phi-3-mini-128k-instruct
2WikiMultihopQA 35.78 19.12 24.61 24.96
DuReader 22.75 10.38 9.26 8.66
GovReport 18.7 8.83 9.47 9.96
HotpotQA 50.44 31.33 37.48 38.66
LCC 57.44 39.85 47.53 47.41
LSHT 27.25 14.25 13.75 14.75
MultiFieldQA-en 54.9 29.04 34.91 33.71
MultiFieldQA-zh 52.09 8.16 12.32 11.87
MultiNews 15.52 12.72 13.33 13.36
MuSiQue 25.23 11.92 15.46 15.93
NarrativeQA 23.28 15.34 17.37 18.26
PassageCount 3.0 2.25 4.5 3.0
PassageRetrieval-en 82.5 11.0 9.68 13.96
PassageRetrieval-zh 58.5 1.25 2.0 1.5
Qasper 39.6 25.78 29.91 30.68
QMSum 17.97 5.88 7.04 8.37
RepoBench-P 54.49 28.09 34.16 33.25
SAMSum 30.62 9.23 13.03 13.42
TREC 66.0 59.5 62.5 62.5
TriviaQA 86.43 61.72 68.15 69.6
VCSUM 18.04 8.97 9.74 9.5

Qwen1.5-14B-Chat-AWQ
2WikiMultihopQA 44.81 44.35 44.39 44.39
DuReader 26.02 23.34 23.28 23.6

Continued on next page

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
GovReport 16.31 16.23 16.25 16.29
HotpotQA 55.67 53.69 53.9 53.95
LCC 56.69 36.94 50.95 51.78
LSHT 37.0 32.5 34.5 34.5
MultiFieldQA-en 48.36 44.75 45.68 45.69
MultiFieldQA-zh 60.35 58.54 59.43 59.44
MultiNews 14.95 15.01 14.94 14.94
MuSiQue 32.38 30.25 30.45 30.6
NarrativeQA 22.26 21.73 22.83 22.59
PassageCount 1.0 2.55 2.0 2.5
PassageRetrieval-en 94.5 71.0 80.0 79.0
PassageRetrieval-zh 88.5 67.0 74.5 74.5
Qasper 38.93 36.56 37.54 37.53
QMSum 18.16 18.03 18.13 18.09
RepoBench-P 58.25 38.03 47.79 49.1
SAMSum 32.95 32.69 33.34 32.86
TREC 77.5 76.5 77.5 77.5
TriviaQA 88.63 88.32 87.66 88.01
VCSUM 19.41 19.42 19.65 19.54

Qwen1.5-7B-Chat
2WikiMultihopQA 32.8 31.83 32.14 32.53
DuReader 25.96 22.64 24.06 23.72
GovReport 16.66 15.57 15.84 15.83
HotpotQA 48.11 47.37 48.91 48.11
LCC 58.17 45.87 53.77 53.93
LSHT 28.0 24.0 24.5 25.0
MultiFieldQA-en 47.14 42.26 43.72 44.08
MultiFieldQA-zh 53.4 50.18 51.68 51.13
MultiNews 15.02 15.0 14.92 14.83
MuSiQue 26.74 25.88 27.09 26.33
NarrativeQA 20.06 19.02 20.06 20.5
PassageCount 1.0 0.5 0.0 0.5
PassageRetrieval-en 40.5 20.0 24.0 24.5
PassageRetrieval-zh 59.0 18.25 29.0 27.5
Qasper 39.84 37.19 37.28 37.13
QMSum 18.25 17.59 18.18 17.82
RepoBench-P 45.46 26.33 30.76 32.55
SAMSum 33.01 29.7 33.31 32.62
TREC 70.5 69.5 67.5 67.0
TriviaQA 86.76 86.51 87.37 87.79
VCSUM 17.98 19.15 19.34 19.26

Qwen1.5-7B-Chat-AWQ
2WikiMultihopQA 32.43 30.82 33.46 32.94
DuReader 25.84 23.1 24.36 24.06
GovReport 16.98 16.31 16.65 16.7
HotpotQA 47.77 47.17 46.0 46.33
LCC 57.98 44.56 52.33 54.32
LSHT 29.0 25.5 27.0 27.0
MultiFieldQA-en 46.72 42.87 45.85 45.93
MultiFieldQA-zh 50.97 45.51 46.73 47.13
MultiNews 14.97 15.04 15.16 15.08
MuSiQue 26.18 23.23 24.36 23.9
NarrativeQA 20.93 19.58 20.14 19.94
PassageCount 0.5 0.0 0.0 0.0
PassageRetrieval-en 30.5 16.0 18.5 17.0
PassageRetrieval-zh 48.5 14.0 22.0 24.0

Continued on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6 – continued from previous page
Task Group Baseline KiVi LogQuant (ours) PartialLogQuant (ours)
Qasper 38.45 35.27 36.16 36.2
QMSum 17.85 17.34 17.77 17.58
RepoBench-P 46.95 25.02 29.03 31.91
SAMSum 31.98 28.3 32.06 31.39
TREC 67.0 65.0 63.5 64.0
TriviaQA 87.56 86.48 87.61 87.48
VCSUM 18.66 19.95 19.96 19.91

Qwen2-7B-Instruct
2WikiMultihopQA 44.15 11.33 40.12 40.02
DuReader 19.22 13.08 15.01 14.54
GovReport 18.09 10.82 16.07 16.74
HotpotQA 44.3 17.39 39.92 39.66
LCC 57.72 36.63 51.46 51.92
LSHT 44.0 23.0 26.25 28.25
MultiFieldQA-en 46.89 21.97 36.42 37.69
MultiFieldQA-zh 61.48 33.67 47.57 47.01
MultiNews 15.58 8.53 13.6 13.71
MuSiQue 25.71 7.58 18.07 18.53
NarrativeQA 24.43 5.29 18.43 18.56
PassageCount 5.0 5.5 5.5 6.0
PassageRetrieval-en 69.0 19.25 33.5 36.0
PassageRetrieval-zh 55.0 9.5 29.5 30.5
Qasper 45.82 21.16 36.94 38.58
QMSum 17.92 9.08 12.25 12.14
RepoBench-P 58.74 35.18 45.95 47.19
SAMSum 35.94 18.23 28.03 26.77
TREC 78.0 58.25 68.0 68.0
TriviaQA 89.66 41.56 82.63 81.15
VCSUM 13.74 8.82 10.58 10.77

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Overview of all test datasets.
‘Avg len’ (average length) is computed using the number of words for the English (code) datasets
and the number of characters for the Chinese datasets. ‘Accuracy (CLS)’ refers to classification

accuracy, while ‘Accuracy (EM)’ refers to exact match accuracy

Task Group Dataset Avg len Metric Language #data

Math GSM8K 240 Accuracy (EM) English 1319

Single-Document QA

NarrativeQA 18,409 F1 English 200
Qasper 3,619 F1 English 200
MultiFieldQA-en 4,559 F1 English 150
MultiFieldQA-zh 6,701 F1 Chinese 200

Multi-Document QA

HotpotQA 9,151 F1 English 200
2WikiMultihopQA 4,887 F1 English 200
MuSiQue 11,214 F1 English 200
DuReader 15,768 Rouge-L Chinese 200

Summarization

GovReport 8,734 Rouge-L English 200
QMSum 10,614 Rouge-L English 200
MultiNews 2,113 Rouge-L English 200
VCSUM 15,380 Rouge-L Chinese 200

Few-shot Learning

TREC 5,177 Accuracy (CLS) English 200
TriviaQA 8,209 F1 English 200
SAMSum 6,258 Rouge-L English 200
LSHT 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
PassageCount 11,141 Accuracy (EM) English 200
PassageRetrieval-en 9,289 Accuracy (EM) English 200
PassageRetrieval-zh 6,745 Accuracy (EM) Chinese 200

Code Completion LCC 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 4,206 Edit Sim Python/Java 500

Table 7: Comparison on Llama3.1-8B-Instruct of different quantization precisions

Dataset KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) Baseline
2wikimqa 39.52 44.79 40.69 45.18 45.06
dureader 22.20 27.75 22.59 27.99 28.48
gov report 18.60 19.86 18.78 20.09 20.41
hotpotqa 48.83 55.78 52.43 55.85 55.90
lcc 47.09 63.44 57.52 62.85 62.99
lsht 31.42 45.00 33.75 45.00 45.00
multi news 15.07 15.65 15.11 15.64 15.89
multifieldqa en 42.51 55.10 45.98 54.63 54.91
multifieldqa zh 50.12 62.77 55.51 63.27 62.72
musique 25.52 30.65 28.62 30.70 30.39
narrativeqa 26.44 27.91 27.93 28.28 28.19
passage count 5.67 6.31 5.63 6.15 6.31
passage retrieval en 83.17 99.50 92.25 99.50 99.50
passage retrieval zh 46.23 97.42 59.65 97.38 97.54
qasper 36.50 45.20 38.21 44.74 45.03
qmsum 17.41 19.07 18.19 18.92 19.15
repobench-p 39.03 55.61 46.67 56.28 56.57
samsum 23.88 36.12 33.33 35.45 35.72
trec 65.00 72.50 67.00 72.50 72.50
triviaqa 89.72 91.73 91.63 91.89 91.64
vcsum 13.33 17.17 14.41 17.04 16.85

17

	Introduction
	Background & Related Work: KV Cache Compression
	KV Cache Eviction
	KV Cache Quantization
	training-required approaches

	Methodology
	Preliminary Study of KV Cache Quantization and Attention Scores
	The Log-distributed Attention Pattern
	Position-Agnostic Attention Calculation
	LogQuant: Algorithm and Implementation

	Experiments
	Settings
	Accuracy and Efficiency Analysis
	Accuracy Comparison on Different Precision
	Accuracy Comparison among different Configurations
	Accuracy Comparison among different Tasks
	Efficiency Comparison

	Conclusion and Future Work
	Discussion on Why not Eviction
	Overview of Test Datasets
	Meta Data of LongBench Results

