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ABSTRACT

We revisit FedExProx—a recently proposed distributed optimization method de-
signed to enhance convergence properties of parallel proximal algorithms via ex-
trapolation. In the process, we uncover a surprising flaw: its known theoretical
guarantees on quadratic optimization tasks are no better than those offered by the
vanilla Gradient Descent (GD) method. Motivated by this observation, we develop
a novel analysis framework, establishing a tighter linear convergence rate for non-
strongly convex quadratic problems. By incorporating both computation and com-
munication costs, we demonstrate that FedExProx can indeed provably outperform
GD, in stark contrast to the original analysis. Furthermore, we consider partial par-
ticipation scenarios and analyze two adaptive extrapolation strategies—based on
gradient diversity and Polyak stepsizes—again significantly outperforming previ-
ous results. Moving beyond quadratics, we extend the applicability of our analysis
to general functions satisfying the Polyak-Lojasiewicz condition, outperforming
the previous strongly convex analysis while operating under weaker assumptions.
Backed by empirical results, our findings point to a new and stronger potential of
FedExProx, paving the way for further exploration of the benefits of extrapolation
in federated learning.

1 INTRODUCTION

Federated Learning (FL) (Konec¢ny et al., 2016; McMahan et al., 2017) is a distributed machine
learning paradigm where multiple edge devices collaboratively train a global model without the
need for centralized data collection. Instead of transmitting raw data, each client computes updates
based on their local datasets, and these are then aggregated at a central server to update the global
model. This approach ensures that no sensitive information is shared with the server or other clients,
making it particularly useful in privacy-sensitive domains, such as healthcare (Rieke et al., 2020)
and recommendation systems (Hard et al., 2018). Formally, FL solves the optimization problem
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where f; : R? — R represents the empirical risk associated with the local dataset stored on client i €
[n]. Despite its advantages, FL introduces several nontrivial challenges, including communication
delays caused by limited network bandwidth, and partial participation of clients due to random
outages (Kairouz et al., 2021). Addressing these issues is essential to making FL efficient and
reliable in real-world applications.

1.1 RELATED WORK

Let us briefly review several existing methods used to solve problem (1) in FL scenarios. For a
detailed overview of the notation used, please refer to Table 1.

Gradient descent. The simplest and most naive approach is the Gradient Descent (GD) method
(Nesterov, 2018), iterating xx+1 = zx — YV f(xg) = xp — 'y% Z?Zl V fi(zr), where xq is a
starting point and v > 0 is the stepsize. Let us introduce the key assumptions typically employed in
the analysis of GD in the convex world.

Assumption 1.1. The functions f; are proper, closed and convex for all ¢ € [n], and the function f
attains a minimum at some (potentially non-unique) point z, € R
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Assumption 1.2. The function f is L-smooth, i.e., ||V f(z) — Vf(y)| < Lz —y| Va,y € R4
Additionally, each f;, i € [n], is differentaible and L;—smooth, with Ly := max;epn) L.

Under these assumptions, classical optimization theory guarantees that GD solves problem (1) and
finds € R such that f(Z) — f(x.) < e in O(LE’/2) iterations, where R? := |z, — x| . In
an FL setting, finding a solution to the main problem requires each client to participate in every
communication round, and thus to communicate with the server

o (1)

times, transmitting the local gradient V f;(xy) at each iteration k. While this approach is conceptu-
ally simple, its direct application in distributed environments leads to several challenges related to
communication overhead and scalability.

Partial participation. In real-world FL scenarios, not all clients remain active for the entire duration
of training. Instead, a subset of clients is chosen at each iteration, typically based on practical factors
such as device availability (e.g., battery life or network conditions) or statistical considerations (e.g.,
data heterogeneity) (Kairouz et al., 2021; Tyurin & Richtarik, 2023).

Communication bottleneck. Another key problem in distributed training is the communication
bottleneck (Ramesh et al., 2021; Kairouz et al., 2021). Since the overall performance of a distributed
algorithm is the product of the number of communication rounds K needed to find a solution and the
cost C' of one such round, there exist two main strategies to addressing this issue: (i) minimizing C
and/or (i7) minimizing K. Objective (i) is typically achieved via compression of the information
transmitted between the clients and the server (Beznosikov et al., 2020; Gruntkowska et al., 2024).
Objective (i) can be accomplished by increasing the amount of local computation performed by
clients between rounds, allowing for less frequent communication.

FedAvg and modern local methods. A common strategy for ensuring communication efficiency
that falls into category (i7) is local training. The idea is simple: allow clients to do more work
before transmitting the results to the server. If executed with care, this approach leads to each
communication round providing more “informative” updates, ultimately resulting in more effective
changes to the global model. One of the most popular methods in this class is Federated Averaging
(FedAvg), introduced by McMahan et al. (2017). Within this framework, a subset of clients is se-
lected in each round to perform local training using a gradient-based method of their choice (e.g.,
GD). This is followed by an averaging step on the server, where the local updates are aggregated.
Despite its popularity, the theoretical properties of FedAvg are somewhat limited (Khaled et al.,
2019; Koloskova et al., 2020). A major issue is client drift, which can lead to slower convergence
(Karimireddy et al., 2020). This problem can be mitigated using modern drift correction techniques
(Karimireddy et al., 2020; Gorbunov et al., 2021; Mishchenko et al., 2022). One notable advance-
ment in this area is FedExP, introduced by Jhunjhunwala et al. (2023), which extends FedAvg by
leveraging extrapolation to better control server updates.

FedProx and proximal methods. All methods discussed so far assume that clients have access
to the gradients {V f;} of local functions. The class of proximal methods (Bertsekas, 2011; Ryu
& Boyd, 2014; Khaled & Jin, 2022; Richtarik et al., 2024) relies on a different, more powerful
oracle~the proximal operator prox. ; : R — R, defined by

prox. () = arg min {£(z) + 2 [}z — o]} . 3)

Here, f is a convex function and v > 0 plays a rule of a regularization parameter. It is important
to note that computing prox., f() is an optimization problem on its own. However, the analyses of
such methods typically do not consider how this subproblem should be solved, and instead assume
that computing prox., (+) is computationally cheap and can be performed using any iterative solver,
e.g., GD, Newton’s method or LBFGS (Nesterov, 2018; Liu & Nocedal, 1989).

There exist numerous proximal methods addressing the single-node case. A classic approach is
the Proximal Point Method (PPM) by Rockafellar (1976), which iterates 1 = prox., (7).
Stochastic versions of PPM have also been studied (Ryu & Boyd, 2014; Bianchi, 2016; Patrascu &
Necoara, 2018). Recently, interest in stochastic proximal methods has surged, with promising results
from several works (Condat & Richtarik, 2023; Traoré et al., 2024; Sadiev et al., 2024; Combettes
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& Madariaga, 2024). In the context of distributed learning, one relevant work by Li et al. (2020)
builds on the principles of FedAvg to introduce its proximal variant—FedProx. The method replaces
local gradient-based updates with proximal operator computations, leading to the update rule

n
Tpp1 =13 prox., s, (zx)- 4)
i=1

By leveraging proximal operators, FedProx addresses some of the limitations of traditional GD in
FL. However, simply averaging local updates at the server remains suboptimal and can be improved.

FedExProx. A recent advancement, and the main focus of this paper, is FedExProx, introduced by
Li et al. (2024). This method improves on FedProx by employing the technique of extrapolation'
(Combettes, 1997; Necoara et al., 2019). The algorithm operates under the interpolation regime:

Assumption 1.3. There exists 7, € R? such that V f;(x,) = 0 for all i € [n]. We denote the set of
such minimizers by &, := {z € R? : V f;(z) = 0} and the projection of z onto X, by II(z) .

This assumption is relatively mild and is often met in practice, e.g., for over-parameterized models
(Ma et al., 2018). Instead of (4), FedExProx introduces the extrapolated update

Tyl = T + Oy <71L > Prox., ¢, (zx) — l‘k> , (5)
i=1

where oy, serves as the extrapolation parameter. The algorithm is analyzed by reformulating step (5)
in terms of Moreau envelopes (Moreau, 1965): the update rule can be expressed equivalently as

Thir = Tk — gy >, VMY (xp), (6)
i=1
where the Moreau envelope M le : R — R of a convex function f is defined as
. 2
M] () = min {f(z) + 2 |lz—al } Vz € RY. )

Notably, when o, = 1, (5) reduces to (4). However, this choice is not optimal, and choosing o, > 1
yields better complexity. If ay is set to be constant across iterations of the algorithm, then using the
optimal value a, = o = 7% > 1 guarantees that FedExProx converges after

Y

O (M) (8)

g
communication rounds in the convex case, where L., is the smoothness constant of the function
M7(z) == £ 3272, M} (x). Lietal. (2024) show that (8) is not larger than O (LmsxR/c), and
can be significantly smaller in practical scenarios. Thus, FedExProx offers provably better iteration
complexity compared to both FedProx and FedExP (Li et al., 2020; Jhunjhunwala et al., 2023).

2 CONTRIBUTIONS

1. Although the iteration complexity (8) of FedExProx outperforms both FedProx and FedExP, we
find that it is not superior to that of the simplest baseline, GD, on quadratic optimization tasks (see
Remark 3.3). This raises a critical question regarding the utility of employing the proximal oracle
in the first place.

2. Motivated by these pessimistic findings, we revisit the analysis of FedProx and prove a signifi-
cantly more optimistic iteration complexity result. We establish a linear convergence rate for solving
non-strongly convex quadratic distributed optimization problems of the form (1) (see Theorem 4.1)
and demonstrate that our new result does indeed lead to the conclusion that FedExProx can signif-
icantly outperform GD. Our analysis assumes a realistic model that accounts for both computation
and communication times—critical factors in real-world distributed optimization. We show that the
total time complexity of FedExProx is never worse than that of GD, and can be strictly better when
communication time dominates computation time (see Theorem 4.3), which is typically the case in

"Notably, the idea of extrapolation was explored by Jhunjhunwala et al. (2023) in developing FedEXP.
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FL scenarios. This stands in stark contrast to the previous analysis by Li et al. (2024), underscoring
the superiority of our new findings.

3. To account for the stochastic setting that involves partial participation of clients, we complement
the above results with client sampling (see Theorems 5.1, 5.2, 7.5 and F.1).

4. Beyond constant extrapolation, we establish two novel results (Theorems 6.1 and F.1) that incor-
porate smoothness-adaptive strategies, based on gradient diversity (FedExProx-GraDS), and Polyak
stepsize (FedExProx-StoPS), again significantly improving upon the result previously established
by Li et al. (2024) in the quadratic case.

5. We extend the analysis beyond quadratics to arbitrary convex functions satisfying the Polyak-
Lojasiewicz (PL) condition, obtaining a linear convergence rate (see Theorems 7.2 and 7.5). In
contrast, Li et al. (2024) derived a linear rate under strong convexity for the function f. Our ap-
proach is not only more general, as it relies on weaker assumptions, but also demonstrates improved
dependence on problem-specific constants. Additionally, we establish a result in the PL setting that
accounts for inexact computations of the proximal mappings (Theorem E.1).

6. The theoretical findings are validated with empirical experiments, which demonstrate the robust-
ness and applicability of our framework.

3 NOT BETTER THAN GD ON QUADRATICS

Let us take a closer look at the complexity result (8). Suppose for now that we solve (3) using GD.
Then, the number of iterations needed to find prox., , () with accuracy ¢ is

O (L5 0g L) = O (7L +1)log L),

since the function f;(z) + % |z — 2| is (L; 4 1/~)-smooth and 1/-—strongly convex. Hence, ~
controls the difficulty of calculating the proximal operator: the larger it is, the more difficult the
problem. Therefore, to accelerate local computations, one would prefer to choose v as small as
possible. We can formalize this intuition by letting 7(-y) be the time per one iteration of FedExProx
and making the following reasonable assumption:

Assumption 3.1. The time complexity 7(-y) of a FedExProx step is a non-decreasing function of .

Combining it with the iteration complexity result (8) established by Li et al. (2024), the total time
required by FedExProx with ay, = /L, to find Z such that E[f(Z)] — f(z.) < s

T(y) i= m(y) x LlHLuedl®,
With this definition in place, we can now translate the main result of Li et al. (2024) (Theorem 1) to
quadratic optimization problems, yielding the following pessimistic outcome:

Theorem 3.2. Let Assumptions 1.3 and 3.1 hold. Consider solving a non-strongly convex quadratic
optimization problem of the form (1), where f;(z) = 2" Ajz — b/ x for all i € [n], with A; €
Symi and b; € R%. Then the assumptions of Theorem 1 by Li et al. (2024) hold, and

T(3) = mln) x 2L lE 2 7(0) x L ©
or all v > 0. Moreover, when ~v — 0, then 7(7) X Ly (A+7Lmax) B2 1) LE?  ind FedExProx
1y > 0. M hen vy — 0, then () x Ll Lma) R !

effectively reduces to GD. :

Remark 3.3. In light of Theorem 3.2, GD performs no worse than FedExProx by Li et al. (2024),
even if the time complexity 7(+y) of one FedExProx step does not depend on . Indeed, it holds that

Ly(14+yLmax) R* < LR?
€ - €
for all v > 0 (see the proof of Theorem 3.2).

These results, based on the original analysis of FedExProx, lead us to a rather disappointing con-
clusion: from a theoretical time complexity perspective, the optimal strategy appears to be using
vanilla GD, disregarding proximal oracles entirely. The question that remains is: is this an inherent
limitation of the method itself or merely a consequence of suboptimal analysis by Li et al. (2024)?
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4 TIGHTER AND MORE OPTIMISTIC RESULTS

Our refined analysis of FedExProx demonstrates that a tighter iteration complexity bound can be
derived, leading to significantly more optimistic results. In the following sections, we present a
novel analysis that provides an improved complexity result for FedExProx and sheds light on its
true capabilities. To ensure clarity and build intuition, we begin with quadratic optimization tasks,
where all relevant quantities can be explicitly derived. In Section 7, we extend these advancements
to general convex functions satisfying the PL condition.

Theorem 4.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1) where f;(z) = %xTAix — bz foralli € [n], with A; € Sym‘_j|r and b; € R Under
Assumption 1.3, FedExProx with o = 1/yL, finds T such that B[f (Z)] — f(x.) < € after

10 (;% log g) (10)
Y
iterations, where L., is a smoothness constant of M7 and u;’ is the smallest non-zero eigenvalue of

the matrix V2 M.
Remark 4.2. To the best of our knowledge, under the assumptions of Theorem 4.1, GD requires

O(ﬁlog%) (11)

iterations to solve the quadratic optimization problem, where ;7 is the smallest non-zero eigenvalue
of the matrix A = % Z?:l A; (Richtarik & Takac, 2020).

Let us now demonstrate that our new result does indeed provide a tighter bound, leading to the
conclusion that FedExProx can in fact outperform GD.

4.1 ONE STEP TIME COMPLEXITY 7(7) IS ) + 7 (YLmax + 1)

As introduced in Section 1, the time per one global iteration of FedExProx has two main sources:

1. Local computation: In large-scale problems, each step (5) requires clients to compute
prox., s, (zy) iteratively. One of the simplest solvers is GD, which returns a solution of subproblem 4
after O (vL; + 1) local iterations” (see Section 3). If each gradient calculation takes 7 seconds, the
total time required for all clients to calculate prox., ;, (z) is O (T X (7Lmax + 1)) since the process

i

is gated by the “slowest” client, associated with the problem with the highest smoothness constant.

2. Communication: Once the local computations are completed, clients must communicate their
results before the server can execute the global step (5). We assume this communication takes 7
seconds, which can be huge in FL environments (Kairouz et al., 2021).

Consequently, the total time per global iteration, 7(7y), is proportional to 1 + 7 (7 Lmax + 1) (thus
satisfying Assumption 3.1), and the total time complexity of FedExProx is

Ty(v) =0 ((77 + 7 (YLmax + 1)) X 5—1) . (12)

M

Note that the total time complexity of GD is
Teo = T,(0) = O (n+7) x & ).

Our next goal is to determine the value of -y that minimizes T),(7), with the hope that this time the
optimal choice does not result in v — 0. This is indeed the case whenever n > 7.

Theorem 4.3. Consider the non-strongly convex quadratic optimization problem from Theorem 4.1.
Up to a constant factor, the time complexity (12) is minimized by some

1 : I-1 1
Y E | ax Moo (A7) T Y s A (A7) min AT (A;)
i€[n] i€[n] i€[n] ™

2 Alternatively, an accelerated method could be employed, reducing the iteration count to o (\/'yLi + 1).
Our analysis can be extended to accommodate these faster solvers as well.
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if 2 > 2 and by some

. 2_ 1
e lo’ - {O’ - { Ry e A i N (A }H
i i€

if 1 < 2. Moreover, T, (v) < Tcp.

The theorem above establishes that the total time complexity of FedExProx is no worse than that of
GD, and can be strictly better when communication time dominates computation time, highlighting
the superiority of our new analysis. Notably, this was not the case for the previous analysis by
Li et al. (2024) (Theorem 3.2). The following example, where T;,(y) < Tgp for some v > 0,
highlights how our complexity can significantly outperform that of GD.

Example 4.4. Let the matrices { A;} be diagonal, i.e., A; = diag(a;1,...,a;q) forall i € [n], and
a;j > 0forall ¢ € [n], j € [d]. Then, according to (25) and (26), we get

n

Yagj
max ——

Ly _ Amax(y) _ j€ld ; e

e A O R

jeld] =1 e

where Amax () and Al (7) are the largest and the smallest non-zero eigenvalues of the matrix

M:=L13" 7( — (yA; +I)71), respectively (see Section C). Taking v = 1/ minien) je(q) @ij
and using the fact that 1 > 7 _f > 1 for all x > 1, we can conclude that ” < 2. Thus,

deG[ ]aij
Ty(v) = (9<TI+ m1Jn>

a
icnl.jeld

Suppose that communication is slow. Formally, let n > 7 max;¢n),je[q @ij / MiNe(n),je[d] Fij-
Then T,,(y) = O(n), while the total time complexity of GD is

9 L 3 7t ; %, o
€
TGDZQ(UX,F) =0 ijinl )
i &
which is at least max (g Y1 ; @/ minjerg Y1 | a;; times worse!

A similar improvement can be observed in the general case. However, the derivation is significantly
more complex, so to maintain clarity, the example focuses on diagonal matrices only.

5 PARTIAL PARTICIPATION

Thus far, we have concentrated on the full participation scenario. However, as outlined in Sec-
tion 1.1, practical FL settings often involve only a subset of clients participating in each training
round. To address this, we supplement our theory with a convergence result in the stochastic set-
ting. For illustration, we consider nice sampling (see Section A.2), where at each iteration, a sub-
set Sy C [n] of clients is selected uniformly at random from all subsets of size S. Although we use
this sampling strategy as an example, other client selection methods can also be employed. In this
context, we can formulate the following complexity result:

Theorem 5.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1), where f;(x) = %xTAix — bl foralli € [n], with A; € Symi and b; € Re. Under
Assumption 1.3, FedExProx with nice sampling (Algorithm 2) with o = 1/yL., s finds T such that

E[f(2)] = f(x.) < € after

L, 1
@ (—”'S lo 7> 13
l‘¢ g g ( )
iterations, where L, g = S’(Ln:sl) T +Lw"ﬁa;x + gii BL L., is the smoothness constant of M"

and u:‘{' is the smallest non-zero eigenvalue of the matrix V>M?.
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Assuming the same time complexity model as in Section 4.1, the total time complexity of FedExProx
with nice sampling is given by

Ty(3,8) = O (14 7 (YLmax + 1)) x 222 (14)

As it turns out, the optimal stepsize for the stochastic setting aligns with the one used in the deter-
ministic scenario (see Theorem 4.3).

Theorem 5.2. Up to a constant factor, the time complexity (14) is minimized by

1 . 2= 1
e Lé‘f"‘] Mo (A7) R { max Anax (A0 ‘min A1 (A)) H

v i€[n]

n
. n_ 1
v € |0, max ¢ 0, min N A, i A
s ’ :2?3] Amax (A;)’ 71160[13] Ain (A3)

Consequently, the conclusions from the previous section apply equally to the partial participation
scenario: FedExProx performs at least as well as GD and can be strictly better when communication
time exceeds computation time.

if 1 > 2 and by

ifl<2

6 ADAPTIVITY

We now turn to adaptive extrapolation strategies: gradient diversity (GraDS) and a variant of the
classical Polyak stepsize (StoPS). Both were first introduced by Horvath et al. (2022) and later
adapted for proximal methods by Li et al. (2024). As in the case of constant extrapolation, we refine
the analysis by Li et al. (2024) for quadratic problems. Although Theorem 6.1 refers to the full
participation setting, the approach can be extended to the stochastic case (see Section F.2).

Theorem 6.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1), where f;(z) = a2 Ajx — b} @ for all i € [n], with A; € Symi and b; € R%. Let
Assumption 1.3 hold and consider two adaptive extrapolation strategies:

1. (FedExProx-GraDS) Set

&S [var @

GraDS n
A = O, (ack) = 221~
g LS, VM, ()|
Then, the iterates of Algorithm [ satisfy
lox = Tl(wx)|* < (1= Ce)™ [lwo — (o) ||, (15)
: 24+vLmax
where Cg 1= k:or,?,r}(—l akwﬂmwf.
2. (FedExProx-StoPS) Ser
1 n Y H v
__StoPS _ m i (M @) —ine MY ) 1
R e P )
Then, the iterates of Algorithm 1 satisfy
lzx = (zx)|* < (1= C)" o — (o) |, (16)

where Cs := %k mir}( ak’yui.
=0,...,K—1

Remark 6.2. Similar to the observations by Li et al. (2024), we see that, unlike in the constant
extrapolation case (see Theorem 4.1), FedExProx with adaptive extrapolation benefits from semi-
adaptivity to the smoothness constant. Specifically, it converges for any v > 0, and since wﬁ is
bounded above (see (26)), it suffices to choose a large enough + to achieve the optimal performance.
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Remark 6.3. Bounding ming—o, . 1 g by 27%, inequality (16) implies that

2 3 pud K 2
ok = M)l < (1= 352 lwo — H(zo) |,

and hence Theorem 6.1 guarantees convergence of FedExProx-StoPS in O (L+/u+ X log1/e) itera-
tions, regardless of the choice of the stepsize . This matches the guarantee from Theorem 4.1, but
without requiring prior knowledge of the optimal extrapolation parameter o« = 1/L.,. The benefit
comes with the trade-off of needing to know the minimum of the average of Moreau envelopes.

7 BETTER THEORY WITH PL. CONDITION

The result from Section 4 can be extended to solving problem (1) for general functions that satisfy
the Polyak-L.ojasiewicz (PL) condition.

Assumption 7.1. The function M7 satisfies PL.-condition, i.e., there exists uj such that

FIVMI@)|)* > pud (MY (2) = MY (2,)) Vo e R

This assumption holds with ,ujyr > 17 /(4(14+vLmax)) if the function f satisfies PE condition with
a constant x4+ (Lemma A.11). However, the choice ,uf/r = 17 /(4(147Lmax)) is loose and leads to
problems described in Theorem 3.2. With this assumption in place, we can present the theorem.

Theorem 7.2. Let Assumptions 1.1, 1.2, 1.3, and 7.1 hold. For all v > 0, FedExProx (Algorithm 1)
with o« = /L., finds T such that E[f(Z)] — f(z.) < ein

L 1
O (4 10g1)
w08
iterations, where L., is a smoothness constant of M" and ,ujy' is the PL constant.

Remark 7.3. In practice, solving the local problems exactly is often infeasible. Instead, we can only
calculate an inexact proximal operator that approximates the desired quantity within a certain accu-
racy budget. To accommodate this, we extend the above analysis to the scenario where the clients
can only compute updates prox‘fy 1, () such that || proxg 7, (@) — prox. ¢ (z) ||? < 6 (see Section E).

Remark 7.4. Li et al. (2024) also establish a linear rate for FedExProx. However, their result relies
on the assumption that the function f is strongly convex, and hence that (1) has a unique solution.
In contrast, our theorem is more general, as it allows for the possibility of multiple solutions.

A similar result can be established in the partial participation scenario.

Theorem 7.5. Let Assumptions 1.1, 1.2, 1.3, and 7.1 hold. For all v > 0, FedExProx with nice
sampling (Algorithm 2) and o = /L., finds T such that E[f (Z)] — f(z.) < ein

O (% 1os )

n=S __ Lyax n(S—1) ; 5
(S(n,l) Tylas T S(n—l)L'Y)’ L., is a smoothness constant of M

iterations, where L, g :=

and 7 is the PE constant.

Note that the complexities in Theorems 7.2 and 7.5 are entirely analogous to those in Theorems 4.1
and 5.1, with the only distinction being the substitution of the smallest non-zero eigenvalue of
V2M" with the PE. constant.

7.1 WHY DO WE GET A TIGHTER ANALYSIS?

The story behind our theoretical improvements is no less important than the improvements them-
selves, as it offers valuable insights and can be instructive for future research. To understand why
the new analysis yields stronger guarantees, we need to examine the reasoning behind Theorem 3.2.
When proving the result, we noticed that the main reason why (9) was true was the dependence of
the complexity on the L.« factor. At the same time, the complexity of GD depends only on L,
and there exist many examples when L, > L. The question was: why does the original anal-
ysis of FedExProx involve Ly, .x, and can one circumvent this dependency? The reason behind it
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Figure 1: Empirical time complexities of FedExProx on a quadratic optimization task.

is the reliance of the proofs by Li et al. (2024) on Lemma A.9, which establishes the inequality
MY (x) — M7 (z.) > # (f(z) — f(z«)). This result appears to be essential for deriving the
convergence result E[f(Z)] — f(x.) < € (where Z € R? is the output of FedExProx). Our main idea
is to instead obtain convergence in terms of distances, i.e., to establish that E[||Z — z.|°] < e, and

then translate it to E[f(Z)] — f(x«) < € using the L-smoothness of the function f. In this way, one
can avoid using Lemma A.9, ultimately obtaining much more favourable convergence guarantees.

8 EXPERIMENTAL HIGHLIGHTS

This section presents highlights from illustrative experiments; additional details and results—
including those on the ARCENE dataset (Guyon et al., 2004)—are provided in Section G. We consider
quadratic objectives of the form f(z) = 1 " | 12T A;x, where A; € Symz_, i € [n] are random
positive semidefinite matrices with minimum eigenvalue equal to zero. Each worker ¢ € [14] com-
putes proximal mappings using GD with stepsize 1/I;. The extrapolation parameter « is set to its
optimal value from Theorem 4.1. To validate our theory, we study the empirical time complexity of
FedExProx as a function of . In accordance with the setup described in Section 4.1, we assume that
one local iteration of GD takes 7 seconds (without loss of generality, 7 = 1). Thus, the time needed
by worker ¢ to find prox., ;. (z) at global iteration k is proportional to 7 X n;i, where n;j, is the num-

ber of GD iterations needed to find prox., . (z) to a given accuracy. In the full participation case,

the total empirical time complexity is Z,If;ol (n+ T max;e[n) s ), where K is the number of global
iterations needed for FedExProx to converge to the desired accuracy and 7 is the communication
time. The results are presented in Figure 1. The dashed lines represent the theoretical bounds from
Theorem 4.3, within which the optimal y is expected to lie. One can see that when 7 is relatively
small (n oc 100), the best choice of v is near 0. However, as the communication cost 7 increases,
the best y shifts to values greater than 0.1. A distinctive U-shape emerges, indicating the nontrivial
optimal choice of . These observations are fully consistent with our theoretical predictions.

9 CONCLUSION

In this work, we revisit the extrapolated parallel proximal method FedExProx, an algorithm that
has shown strong empirical performance but whose theoretical guarantees have so far lagged be-
hind practice. Upon re-examining the state-of-the-art analysis, we find that its guarantees are overly
pessimistic and that significantly stronger results are achievable. To address this gap, we develop a
novel analytical framework for non-strongly convex quadratic and PL cases, yielding substantially
improved convergence guarantees and a clearer picture of the method’s true performance. To put
these findings in context, we compare FedExProx with vanilla GD. This comparison is primarily
pedagogical but reveals a striking insight: previous analyses could not even show an advantage over
this simplest baseline. In contrast, our work is the first to rigorously demonstrate that FedExProx
can outperform GD, bridging a key gap between empirical observations and theoretical understand-
ing. Although our focus is on relatively simple quadratic problems, experiments suggest that the
phenomena we describe extend well beyond this setting. These results indicate that the benefits of
extrapolation in FL hold in broader optimization scenarios, motivating future research to relax our
assumptions and establish similar guarantees in more general and practical settings. We view this
work as a foundational stepping stone toward a deeper understanding of extrapolation in FL, paving
the way for advancing both the theory and practice of federated optimization.
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A BACKGROUND

Before discussing the contributions of this work, we provide formal definitions and essential facts
that will be repeatedly referenced in the proofs. A summary of the commonly used notation is
provided in Table 1.

Definition A.1 (Proximal operator). The proximal operator prox.,; : R? — R? of f is defined by

. 1
prox, (o) = argmin { () + - 1+ = ol |
z€Rd Y

where ||-|| is the standard Euclidean norm.

Definition A.2 (Moreau envelope). The Moreau envelope of an extended-real-valued function f :
R? — R? U {oo} with stepsize ¥ > 0 is the function M} : R? — R? such that

M) = min { 1) + 5 Iy =217}

for all z € RY.

A.1 USEFUL FACTS ABOUT MOREAU ENVELOPE

We will often rely on several useful properties of the Moreau envelopes, summarized below. In what
follows, we denote

MY (z) = — Z M (z).
i=1
Lemma A.3 (Beck (2017) Theorem 6.60). Let f : R? — R U {+oc} be proper; closed and convex.
Then its Moreau envelope M] satisfies

VM{(z) = %(x — prox., ;())

for all x € R, for any v > 0.

Lemma A.4 ((Li et al., 2024) Lemma 4). Let f : R? — R be convex and L—smooth. Then M}Y is

L
W—Smooth.

Lemma A.5 ((Li et al., 2024) Lemma 5). Let f : R — R U {400} be a proper; closed and convex
Sfunction. Then, for all v > 0, f and M}Y(x) have the same set of minimizers and minimum.

Lemma A.6 ((Beck, 2017) Theorem 6.55). Let f : RY s R U {+oc} be a proper, closed and
convex function. Then M}’ is also a convex function.

Lemma A.7 ((Li et al., 2024) Lemma 7). Let the functions f; : R? — R U {400}, i € [n], be
proper;, closed, convex and L;—smooth. Then M7 is convex and L.—smooth with

n

1 L 1 L;
— <L,<-— .
nzgl—l—'yLi_ W_n;I—&—VLZ‘

Lemma A.8 ((Li et al., 2024) Lemma 8). Let the functions f; : R? — R U {400}, i € [n], be
proper, closed and convex, and suppose that Assumption 1.3 holds. Then, for all v € (0,00), the
function f(x) = L 37" | fi(x) has the same set of minimizers and minimum as the function M7 ().
Lemma A.9. [Li et al. (2024) Lemma 10] Let Assumptions 1.1, 1.2 and 1.3 hold. Then, for any
Ty € X, and forall x € R<, iz holds that

Mj (@) = M} (@) > T () = fife).
Consequently,
(@) =M (@) = T (@) = f(@).
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The next lemma will play a role in the analysis of the method when assuming the Polyak-
Lojasiewicz (PL) condition.

Assumption A.10 (Polayk-t.ojasiewicz condition). The function f satisfies PL condition, i.e., there
exists 7 > 0 such that

S IVI@IP 20 (7@) - f(z.)

for all z € RY.

Lemma A.11. Let the function f satisfy Assumption A.10 with parameter u*, and suppose that
Assumptions 1.1, 1.2 and 1.3 hold. Then, Assumption 7.1 holds with parameter

ut

> — .
M’y - 1+7Lmax

Proof. 1If f satisfies Assumption A.10, then under Assumption 1.1, Polayk-F.ojasiewicz condition
implies
,U+ 2 d

f@) = f(@) 2 B o - T@)* Vo eRY, a7

(Karimi et al., 2016), where II(x) is the projection of x onto the solution set X, of f and z, € X,.
Then, using Lemma A.9, we get

1 an wt

) — J (T« >

(@)= 1) = g

Due to Lemma A.8, M7 and f share the set of minimizers. Thus, II(x) is the projection of = onto
the solution set X, of M”. Using convexity, we get

MY(I(z)) 2 M7 (x) + (VM7 (), I(z) — x)

M (z) — M () > [ER ][

- ]' + ’yLmax

and
M (z) — MY(II(2)) < (VM (2), 2 — 1(x)) < VMY ()] [}z - ()]
< [V (@) \/mmw M (TI(2)).
Therefore
ut

v v 1 v 2
m(M (z) — M7 (I(x))) < 5 VM ()",

. . - . +
meaning that M7 satisfies PE condition with parameter m

A.2 NICE SAMPLING

Let us formally introduce the sampling strategy used. Fix a minibatch size S € [n] and let S be a
random subset of [n] of size S, chosen uniformly at random from all () subsets of [n] of this size.

Such a random set S is known in the literature under the name S-nice sampling (Richtarik & Takac,
2016).

In the proofs, we will rely on the following useful lemma:
Lemma A.12. Fix By, ..., B, € R**! and let S be an S-nice sampling of the indices [n]. Then

<S;B> (527
s (15m) (150)
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Proof. Define

1 i€,
Xi'm 0 i¢s.

Then
:|(t5m) (427)

1 & 1 &
=E || g 2_xiBi < 2 XiBi
(5508) (330)

= ; S BIB+ Y v Bl B,
i=1 i#j
ZE XzB B+Z]E XZXJ j
i#]
:% —ZBTB +—— S ZBT
i=1 1753

M:

ZBTB+ (ZB) ( > ZBTBZ»

)

n

-S 1 n(S — 1 1 &
- nn—l ZBTB+ (nZBz> (TLZ;BZ>

A.3 NOTE ON OTHER SAMPLING STRATEGIES
As discussed in Section 5, Algorithm 2 can handle virtually any (unbiased) sampling technique, with
nice sampling used here as an illustrative example. For a comprehensive overview of other potential

sampling strategies, we direct the reader to Tyurin et al. (2022), which offers a general framework
for analyzing a broad range of sampling mechanisms.

A.4 USEFUL LEMMAS

Lemma A.13 ((Karimi et al., 2016) Theorem 2). Assume that the function f is convex, L-smooth,
and satisfies the Polyak-Lojasiewicz condition with parameter 1. Then

J(@) = f@) 2 3 e = (@),

for all x € R?, where I1(z) is the projection of = onto the solution set X, and ., € X,.

Lemma A.14 ((Nesterov, 2018)). Let Dy(z,y) := f(x) — f(y) — (Vf(y),x — y) be the Bregman
divergence of the function f. If f is convex, L—smooth and differentiable, then

LIV F) = Vi) < Dye,y) + Dy(y, )

forany x,y € R%
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Algorithm 1 FedExProx

1: Parameters: stepsize v > 0, extrapolation parameter a;; > 0, starting point zo € R?

2: for k=0,1,2,... do
3: Trt1 = Tg + Qg (% ZZL:l prox. , (Ik) — Ik)

4: end for

B FEDEXPROX AS (S)GD ON MOREAU ENVELOPE REFORMULATION

The key idea behind the original analysis of FedExProx is to rewrite the step

1 n
Tpi1 = Tp + Qg <n Zproxw@i (xg) — xk>
i=1

in terms of the Moreau envelopes of the local functions. Indeed, if the functions f; are proper, closed
and convex for all ¢ € [n], by Lemma A.3, the update rule of Algorithm 1 can be rewritten as

1 n
Tht1 = Tk — kY ZVMZ(M)-

i=1

Analogously, in the partial participation case (Algorithm 2), we have

1
Thtl = Tk — ARV g > VM ().
1ESk

It follows that Algorithms 1 and 2 are equivalent to GD and minibatch SGD for minimizing

M) = PORTHE)

with stepsize ay.
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C FEDEXPROX FOR QUADRATICS

We begin by formally introducing the problem setup and the notation used throughout the proofs.

We are interested in solving the quadratic optimization problem

. _1 —~ (1 1 T
in {f(x) = ; (2x Ax— b, x) } , (18)
where A; € Symjl_ ={X e R | X = X7, X = 0} and b; € R?, assuming the interpolation
regime (Assumption 1.3), which in this case states that there exists x, such that A;z, = b; for
all i € [n].

We denote the set of minimizers by X, := {z € R? : 1 3" | (A;z — b;) = 0} and let II(-) be the
projection onto X:

n T n
H(z) =z — (i ) Ai> (i > (Aix — b») , (19)

i=1
where T denotes the Moore-Penrose pseudoinverse.

Using eigendecomposition, each matrix A;, i € [n] can be decomposed as A; = Q;A;Q,, where
Qi = [¢i1,---,d € R%*4 ig the orthogonal matrix whose columns are eigenvectors of A;

and A; € R%? is a diagonal matrix whose diagonal elements are the corresponding eigenvalues
of Ai, i.e., Al = dlag ()\1(A2), ey /\d(Az))’ where 0 = >\1(Az) S )\Q(Al) é e S )\d(Al)
Let \. (A;) denote the smallest non-zero eigenvalue of A; and A (A;)—the largest eigenvalue
of Al .

In general, the largest eigenvalue, smallest eigenvalue, and smallest positive eigenvalue of any ma-
trix B will be denoted by Apax(B), Amin(B) and /\I';in(B), respectively.
The proximal operators in this setting are
prox ; (z) = (vA; + 1)~ (z +7b;) (20)
Thus, by Lemma A.3,
1 _ 1 _

VM] (z) = S (az —(vA; +D)7! (x—i—fybi)) = 5 (I —(vA; + 1) 1) (x — xy) (21)

for any x, € X, where we use the fact that A;z, = b;. Furthermore, it can easily be shown that

1
M} (x) = — (" (I = (vA; + ) )z — 290 (VA + I) "' — 0] (vA: + 1) 'by)

2y
= % ((m —2)T (I — (YA + D) Y (x —z,) — 'yx*TAix*) , (22)
and hence
N 1 711 . 1 & . ’
M (z) = Sz ﬁZ;(I—(VAH-I) R EZ(“YAH-I) bi| =z
i=1 i=1

g - T -1
— N (v A+ DM
2” P 1 (’y + )

T
L 7 1 ¢ -1 TN~ -1
T Me— (=S (A + D7 | - LS T (vA D7 @2
50 Mz <ni§=1(v i+ 1) bz) T Qn;:lbl (vAi +I)"b;  (23)

where M := 1370 Z(I — (yA; + I)™") is the Hessian matrix of the function A/7. This can
equivalently be written as

M7 (x) = %(m—:p*)TM(x—x*)—x*T (;ﬂZAz> Ty (24)
i=1

for any z, € X,. We shall denote by AT, () and Ayax(7) the smallest non-zero eigenvalue and

min

the largest eigenvalue of M, respectively.
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C.1 PROPERTIES OF THE HESSIAN

Next, we introduce several important properties of the matrix M, which will be repeatedly used in
the proofs that follow.

In the main part of the paper, we stick to the notation L., and uj for easier comparison with the
results by Li et al. (2024). However, in the proofs concerning the quadratic case, we adopt a more
intuitive eigenvalue-based notation.

Fact 1. Since M = V>M?", it holds that L, = Amax () and p = AE ().

min

Proof. The result is an immediate consequence of (23). O

Fact 2. Let Amax () and X () be the smallest non-zero eigenvalue and the largest eigenvalue of
the matrix

_ 1\~
- Z —(I-(nA+D7Y),
n i=1 'Y
respectively. Then
1< M (Ay)
Amax = max — ' Q; [Jb] jx (25)
™ = ||z\|<1n; @ 1+ yA;(A) ],
and
. 1 i(As)
pus = min ' Q; [1] ;rw, (26)
min(7) = 2]l =1,z€ker(A) L 1 4 Qi 1+92(4A;) ij

where A 1= L L 3" A and [bj];; is the diagonal matrix with bj as the jth entry.

Proof. Using the eigendecomposition, we can write M as

Aj(Ai) T
M = — Z Qz — (vAy +I) ZQz [H’Y/\(A)] Q.
The result follows from the identities

Amax(7) = max x Mz

lz|<1
and
AT - min z' Mz
min(7) l|lz]|=1,z€ (ker A)L
(see Lemma C.7). )

Fact 3. For anyy > 0, it holds that Mpax(77) < Amax(A) and X1 (7) < AL (A).

min

Proof. From Fact 2, we have

and similarly

Since it always holds that )(\7(

3 < Aj(A;), we get

>\max (’Y) < >\max (A) .

The proof of the second inequality is analogous. O

>v
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C.2 PROOFS FOR SECTION 3

Theorem 3.2. Let Assumptions 1.3 and 3.1 hold. Consider solving a non-strongly convex quadratic
optimization problem of the form (1), where f;(x) = " Ajz — b] x for all i € [n], with A; €
Symfl|r and b; € R%. Then the assumptions of Theorem 1 by Li et al. (2024) hold, and
2 2
T(y) = m(y) x FHEZmeli > r(0) x L ©)

2
Sor all v > 0. Moreover, when v — 0, then w(7y) X Lyt Lma) R, m(0) x @ and FedExProx

effectively reduces to GD. :
Proof. We first prove that L (1 + vLmax) = L = Amax (= Y1, A;) forall v > 0. Since

VM) = = (T- A+ 1)),

we have

(1= 0a, +I>l)> .

Therefore, using the fact that Ly.x = max; Amax(A;), we obtain

n

(141 L) Ly = (14703 A (41)) “Ams C‘ S (1-(ai+ I)‘1)> @)

i=1

- 1 i 1 —l—’ymaxi Amax(Ai) -1
—)\max <7’LZ (I_(A/A1+I) ))7

i=1 v

and hence, it is sufficient to show that

14+ ymax; Amax(A4;) (I
v

Using the eigenvalue decomposition of A;, the expression can be rewritten as

— (YA; + I)’l) = A, (28)

1 i)\lnax Az
Fme (40

1+ ymax; Amax(A4;) (I
0

v

1 4+ vymax; Apmax(A; _
-t o, (1- a7 QT

Now, letting [B] ; be the jth diagonal element of matrix B, we have

- (vA; +I)_1) = - (QirQ] +I)71)

1+ ymax; Amax(4;) 1+ ymax; Amax(A)

(1-6a+07)]
7 j Y
1+ ymax; Apax(As) (1 B 1 ) 1+ ymax; Amax(As) YA (Ag)
g YAl +1

[1- A+ D)

> Mi(Ay),
¥ 1+7>‘(A1)_ i(41)

and hence

(1 + Y max; Amax(Ai)) (I
Y

Multiplying by @Q; from the left and by Q, from the right, we see that (28) holds, and we can
conclude that

~ (A + D)) = A

1 n
(1 + 7Lmax)L7 Z )\max <n Z A7> =
=1

for all v > 0. Inequality (9) follows form Assumption 3.1.
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2
We now turn to the second part of the theorem and show that 7(~y) x M

LR?
as v — 0. The idea behind the proof is that for small enough -, it holds that :

— 7(0) x

(1 + ’YLmax>L'y (2) (1 + ’Ym?X )\max(Ai)) %)\max <711 i (I - (/VAZ + I)1)>

i=1

1 1 & 1 &

More formally, we have

I—(I+7A4:) 7" =7A; = A} +7° A} + - =) (1) 4k A,
k=1
so that

1 1
(1 + 'YLmax)L'y = (’7 + max /\max(Ai)> Amax <n

By applying the dominated convergence theorem to exchange the limit operation and summation,
we obtain

1 n o0 1 n
= Amax | — li -1 ket k_lAI‘C = Amax | A | =L
(n SO (-1 1A -
as required.

Lastly, letting v — 0, we have M} (v) — fi(z) for all z, and consequently M7 (z) — f(z)
(see, e.g., (Rockafellar & Wets, 1998)). Since Algorithm 1 is equivalent to GD for minimizing
M7 (z) with stepsize ay = 1/L., it follows that its iterates converge to those of vanilla GD with
stepsize /L. O
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C.3 TIGHTER ANALYSIS

C.3.1 FULL PARTICIPATION CASE

Iteration complexity. We first establish the convergence rate of the algorithm.

Theorem C.1. Let Assumption 1.3 hold and let xj, be the iterates of FedExProx (Algorithm 1)
applied to problem (18). Then

i = T() | < (1= a7 (2 = v Amax (1) M (1)) 120 = T(z0)| 1,

where Amax(Y) and A () are the largest and the smallest positive eigenvalues of the matrix

min

M =1 (I— 1 Y (A +I)” ) respectively.

vy n

The optimal choice of stepsize y and extrapolation parameter o is oy = in which case the

1
Amax (7)’
rate becomes

+
xK—Hu«m2<<1 Amin(7)

K
2
xm4w> o — Ti(ao)||*.

Hence, the number of iterations needed to reach an e-solution is

Amax zo — TI(2o)|?
}{ZA+E?k%<”O 6(@)_

min

Proof of Theorem C.1. The update rule of FedExProx can be written as

S
1
Tpp1 = Tp + (S Zprox,yfi (zx) — ack)

i=1

S
R (SZWA +1I)” (Sck+'yb)—mk>

3

S S
=T+ a (; d (A +1)7! _1)> xk—a< Z (YA + 1)~ 1)) I(xy),

i=1

where we use the fact that A;x, = b; for all z, € X,. Therefore, using symmetry of A;

lirr = Mapsn)|* < llawrr — Ma) |
2

= ((1 —a)l + Oé% > (A + I)_1> (zr — (2))

=1

2

_ <7112 (YA; + 1)~ )) (z — (zk))

=M
= (wx — T(w))" (I — ayM)" (I — ayM) (), — ()
= (zx = M(2)" (I = 2ayM + o> M?) (x5, — T(2y)).
Since M? < A\ax ()M, it follows that
ks = Waen)|* < (@x = W(@r)” (T = 207M + Amax (7)0*y* M) (a5 — T(a))
= [lex = (@) [ = @v(2 = Amax(¥)ay) @k — TW(zx)) " M (2 — T(z))
< ke = (s [* = @9(2 = Amax (V)Y A (V) 2k — ()|

for any ay such that 2 — A\ (y)ay > 0, where the last inequality follows from the fact that
xp — II(x) € range(M) (see Lemma C.6). Consequently,

k1 = Marg) 1 < (1= @92 = ayAmax (D)) A (1) 2 = ()|
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It remains to unroll the recurrence and substitute the optimal step size avy = %ﬁ) to obtain the
rate

Amin(?)

Jkss = Wi < (1 Amax(fy)) . — TG

O

Theorem 4.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1) where f;(z) = %xTAi:c — bl x foralli € [n], with A; € Symi and b; € R?. Under
Assumption 1.3, FedEXProx with o = 1/yL., finds T such that E[f (Z)] — f(x.) < € after

L 1
o (F log g) (10)
iterations, where L., is a smoothness constant of M7 and u;’ is the smallest non-zero eigenvalue of

the matrix V2M?7.

Proof. The result follows directly from Theorem C.1, smoothness of f, and Fact 1 by substituting
Amax (V) = Amax (VM) = L and )‘mm( ) = A (VEM7) = /‘j/_‘ N

min

Remark C.2. Recall from the proof of Fact 2 that

1< Mi(Ay)
M =— i | T i
n;Q {1+W(Ai)Lj :

where 14-/\';;\:4(12) [AJ (QAi) A (Az)} if v < 7&(1144,)' Consequently, for v < s c i A (A7) 1>\max(A7:)’ we
have
1< Aj(AY) -
M == B A A eV y L A=A
eS| zczz 4),QT =1 Ai=4,
=1 Wy =1
and analogously, M > %A. Using (25) and (26) gives
1 1
—Amax(A4) = = max x Az < Amax(7) = max ' Mz < max z| Az = Amax(A),
2 2 el <1 llzll<1 lzll<1
and similarly
Ly ()<t () = o Mz <A\ (A
2 mln( ) — min (’y) Hx“ 1 I‘]jrlel(rll(er A)L T mln( )
Noting that L, = Amax(7), 5 = AL (7). L = Amax(A) and pF = AE, (A ), it follows that the

rates (10) of FedExProx and (30) of GD coincide up to a constant factor when 7 is sufficiently small.
This should come as no surprise, as Theorem 3.2 shows that FedExProx effectively reduces to GD
asvy — 0.

Time complexity. Let us now prove the result from Section 4.1. We assume that each worker ¢
computes the proximal operator using an iterative method, with the running time proportional to
the condition number of the subproblem. Given that Apin(A;) = 0 for all ¢ € [n] (otherwise the
problem becomes trivial), the time required for all clients to compute prox. ;. (zx) at each global
iteration k is

X (1 + ’)/Hl[a)]( )\Inax(Ai))
€N

seconds, where 7 is the time per one iteration of solving the subproblem. Then, it takes 7 seconds to
aggregate the updates at the server and move on to the next step. Since, according to Theorem C.1,
the number of iterations needed to reach an e-solution is

Amax(v) ||(E0 - H(xU)HQ
S <>1°g< 6 )

min

the total time required to solve the global problem is

T,(v) == Amax (V) 0 (IO - H(x‘))”2> x (77 7 (1 + 7 max Amax(Ai)>> . (9

A ( ) € i€n

min
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Theorem 4.3. Consider the non-strongly convex quadratic optimization problem from Theorem 4. 1.
Up to a constant factor, the time complexity (12) is minimized by some

1 2-1 1
Y E | ax Amax (A;)” min | ey Amax(Ai)’ min AT, (A;)
i€[n] i€[n] i€n)  min

if 2 > 2 and by some

€ |0, max < 0, min s ;
¥ ) ) max A (A7) m[m] Ahin (A0)
icln i€ln

if 1 < 2. Moreover, T, (v) < Tcp.

Proof. Recall that Apayx(7) and A () are the eigenvalues of the matrix

M == ii —(yA+ D2 = ZQZLA(A’:) ] Q.

+ i (A;)
i(A:) A (A
Since if v > 55y and \; (A )>O,thenm € [3.1),andif v < 5, then {25745 €
[%7 '7)\]'(141')), it follows that
LA (A)  lO((A), 7 < 54y

Moreover, the identities (25) and (26) from Fact 2 tell us that

llz<1m 14+79X;(A5)
and
min 1 i(Ay)
Amin z'Q, [] Q/ =,
() = llz]|=1, ageker(A)L n 4 14+9)(A) i

where A := % Yo, A;. Due to (25), (26) and (30), the function 75,(v) is approximately constant

23
for all v < —l)\max(A'i)' Ifv > e (AT then 7(1 + vy max;c(,) Amax(Ai)) > 7, and
consequently,

maxie[n]
)\max —1I 2
I, () = Dmas0) (nxo 1) ) < (4 (1 v maonn(an))

< 2T)\max(’Y) log (Hmo - 13(200)2) % (1 + »ymax)\max(Ai)> = 2g(7).

i€[n]

Hence, g(v) < T;,(7) < 2g(7y), and the term to be minimized is

= >\IIldX Y
T”](PY) = )\'F(()) X (1 + V?éﬁl)iArrlax(Ai)> .

Using (25) and (26), this can be written as
n 14+~ max;cin Amax(Ai)
max|g|<1 5 21 &' Qi { . 1+we/\[j](A7.,) Aj(Ai)]jj Qfx

; 15 T, | 26lAd) T
MmN z||=1,z€ker(A)+ 7 Zi:lx Qi |:1+’Y>\j(A7',) Iy Qz Z

where the numerator is non-decreasing and the denominator is non-increasing as a function of . It
follows that g(+y) is non-decreasing for v > W;ldxm) Hence, when I > 2, the optimal (up
to a multiplicative factor) -y belongs to the interval

1 -1 } . (31)

maxie[n] Amax(Ai) ’ maxie[n] /\max(Ai)

Tn (v)=

RS
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Algorithm 2 FedExProx with partial participation

1: Parameters: stepsize v > 0, extrapolation parameter o, > 0, starting point 2o € R, batch
size S
for k=0,1,2,... do

Sample a minibatch S, C [n] uniformly from all subsets of cardinality .S

Thi1 = T + Qg (% > ics, Prox. ;. (wx) — xk)
end for

n

When 2 < 2, the time-complexity is non-decreasing for v > WKLXW and approximately

constant otherwise, so the choice

11
T 2
ve {0’ e {07 maX;en] Amax (A7) }} 2

is optimal (again, up to a constant factor).

1
Now, suppose that v > i) M (A7)

min

[%Lj are either to 0 (when \;(A;) = 0) or lie within the interval [$,1). Therefore,

the ratio

In this case, the diagonal entries of the matrix

1 n T YA (As) T
Amax (7) mAXa<1 ;2o Qi [WLJ O

Qlz
j

+ - (A
Amin(ry) mlnHzH:l,a:Eker(A)L % Z?:l Z‘TQ,‘ [%}

is approximately constant in . Consequently, the time

1 o D) (nxo - 13<x0>||2> y (n L (1 - Am(Ai)»

J

-t
)\min (’7)
. . . . 1
is an increasing function of  for v > T (A)
i€[n] Amin (Ai

from the previously established bounds (31) and (32) to

, and the optimal range for - can be tightened

1 _ -1 1
[InaXiE[n] Amax(Ai) . { maX;en) )\max(Ai) 7 minie[n] )\;;in(Ai) }]

when 2 > 2 and

2_1 1
€ |0, 0, mi - )
vy [ max { min { MaX;e(n] Amax(Ai) mingep, A (AY) }}1

when 2 < 2. O

C.3.2 PARTIAL PARTICIPATION CASE

Iteration complexity. We again start with establishing the iteration complexity of the algorithm.

Theorem C.3. Let Assumption 1.3 hold and let xy, be the iterates of minibatch FedExProx (Algo-
rithm 2) applied to problem (18). Then

2 K 2
E[llzx — i)’ < (1= a7 2 = a7Ly,5) M) llzo = (o) |1
where  \'. () is the smallest positive eigenvalue of the matrix M =

1 1 n -1 . =S max;en) Amax (Aq) (S-1)
; (I B Z Z:l(’YA’L + I) ) and L’Y"S T S?ﬂ—l) 1+’Y mafue[n] )\max(Ai) + g(n_l) )\nlax(r)/).

The optimal choice of stepsize y and extrapolation parameter o is oy = — L 5 in which case the
Y
rate becomes

E [Jox - Mol < (1- AZ?)K Jro — T1(a0) .
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Hence, the number of iterations needed to reach an e-solution is

Lys g — (o)
K>)\+()10g< . ) (33)

min

Remark C.4. Similar to the proof of Theorem 4.1, the result of Theorem 5.1 follows directly from
Theorem C.3, smoothness of f, and Fact 1 by noting that Apax(Y) = Amax(VZM?Y) = L., and
Ain (1) = A (VEMY) = i

min min v

Proof of Theorem C.3. The update rule of FedExProx can be written as

1
Tl = Tp + <S Z Prox., (zx) — xk>

1E€Sk

=+ o (; D (AT (@ +bi) - $k>

1€Sk
—a+a <; YA+ D - I)) - a (; YA+ D - I>> Mz,

where we use the fact that A;z, = b; for all z,. € X.. Therefore

[ ()

o (]
2

= H ((1 —a)I + a% > (1A + I)1> (z1 — H(xy))

1€Sk

= [l = M) = 2a(a — ()" (I —5 0+ I)*) (ox ~ Tl(z2))

1€Sk

+a? (zy, — (xy))" (I - % D A+ I)_1> (I - % D A+ I)_1> (2 — M(2k))

i€Sy, =
= ||z — T(a)||* = 20y (2, — T(a)) " My (ax — ()
+a?~y% (xg, — O(x) T ME My (x), — T (x)), (34)
where M}, ;= 1 (I - %Ziesk (vA; + I)*l). Next, using the fact that M? < A..(7)M and

5
applying Lemma A.12 with B; = = (I — (vA; + I)~"), the expectation of M M, is

E [M] M) = 7125&__51)1 ;(I— (YA + D7) (I= (A + 1)) + S((i:;MTM
=
St e (- 04 D7) LS - )

+Z’,<(i — B Amax (7) M
- mmﬁ(m)M+mAmawa

1
v
_ ( n—.S maX;e(n) Amax(Ai) n(s —1) (35)

)\max M.
S(n — 1) 1 —+ ﬁ/maxie[n] /\Inax(Ai) S(TL - 1) (7)>

=L, s
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Hence, taking expectation conditioned on xj, in (34) gives

B [Jlons1 = Mas)|?]

< lwge — (ap)||® + o7z — M(xy)) By [MI My (z), — H(zy,))

—2ay (), — () B [My] (25, — T(21))
o = () |* + 0y Ly s (wx — T(y,)) " M (@x — ()
—2ay(xy, — ()" M (zx — (x))
= |lzx — I(2)|* — oy (2 — @yLy,s) (zr, — W(ax)) " M (z), — (z))
< o = (@) |1? = ay (2 = ayLy.s) M () (@x — (i) (2 — (),

where the last inequality follows from the fact that x;, — II(x) € range(M) (see Lemma C.6).
Taking expectation again,

Ellzkes = Mars) ] < (1= 02 = a7Ly.6) Xoiu () E [z — W) ]

It remains to unroll the recurrence. O

(EA)

Time complexity. Let us consider the same setup as in Section C.3.1, i.e., at each iteration k, each
client computes a proximal operator prox., ;, () in at most

<1 + fyrnax Amax (A ))
i€[n]

seconds, where 7 is the time per one iteration of solving the subproblem, and it takes 7 seconds to

aggregate the updates at the server and move on to the next step. According to Theorem C.3, the

number of iterations needed to reach an e-solution is

L’yS 2o — (o)
= I

n—S Max;cn] Amax(Ai)
S(n—1) 1+v maX;en] Amax(4i)
solve the global problem is at most

2
T,,(%S) — )\fvi ) log <|3C0 - l;l(a?o)H ) % (77 + 7 X (1 + 7?61{[%5]( )\maX(Ai)>) . (36)

min

where L, g := + S(S D /\mdx( ). Hence, the total time required to

Theorem 5.2. Up to a constant factor, the time complexity (14) is minimized by

1 : 2-1 1
Ve max Amax (A7) T max Anax (A7)’ min AT (A;)
icn] i€ln] ic[n) min

€ [0, max < 0, min 71 L
’y ’ a ’ Zrel?f] >\1nax(A ) ’ m[m] /\xnxxl(Ai)

Proof. Fix some S € [n]. Then, we are interested in minimizing

- n—S 1 MaX;e(n] Amax(Ai)
T =
") = 51 an (3) T+ v masicpn Ama(A) \7

min

if 1 > 2 and by

fl<2

1+ ymax )\max(Al)>)

1€[n]

=g1(7)

S i (10 (1 e 4))

:=g2(v)
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n—=5S _ n(S—1)

=0+ m

Sin—1) 92(7)-

We know from Theorem 4.3 that the second term of this expression, ga(+y), is minimized by

1 , 11 1
lmaxie[n] N A7) { maXie(n) Amax(Ai) " miniepn) A (Ai) H

when 2 > 2 and

e |0, 0, mi T
Y [ max { min { mMaXie(n) Amax(A;)’ mine )\mm (A)) }}1

when 2 < 2.
The same argument can be applied to the term g;(y). To be more premse due to (25), (26),
and (30), the function g;(v) is approximately constant for all v < For ~v >

11
max;e[n] AmatX(Ai) ’

max;en] max(A )

we have 2 + 1 + 7 max;e ;] Amax(Ai) < 2(1 + 7 max;ec[,) Amax(A;)). Conse-
max;e[n] Amax(a‘A )

=2 Ahin (1)

S90) <@(3) < 02).

quently, letting g(v) := , g1(7y) can be bounded as

Since Al () is a non-increasing function of v, g(7y) is non-decreasing. It follows that
21

for v > i e (A7) g1(y) is non-decreasing in -y (up to a constant factor), and
we arrive at the same conclusions as in the case of go(y): gi(7y) is minimized by v €

1 21 P 11 .
[maxie[n] Amax (Ai) MaxX;c[n] Amax(Ai) if T > 2and by v € {O,max {O’ MaX;en] Amax (Ai) }} if

n
1<o,

On the other hand, by following a similar argument as in the proof of Theorem 4.3, the expression

Y Max;e(n] Amax(Aq)
1 MaX;e[n] Amax (Ai) I+ max;en] Amax (Ai)

)\Ln( ) 1+ ymax;e(y Amax (A;) MDY =1 peker(A)- % 2?21 2T Q, [%} Qsz
I

is approximately constant for v > This implies that g; () is increasing, and hence

min; e ) AJr (A)°

the intervals can be bounded above by

min;epn Ay, (A0

The conclusion follows from the fact that the minimum of a convex combination of gy () and ga(7)
must lie within the same interval. O

Remark C.5. The only term in (33) and (36) that depends on S is

n—_S maX;en) )‘maX(Ai) n(S - 1)
S(n —1) 14+ ymax;en] Amax(A:)  S(n—1)

L'y,S = Amax(7)~

Recall that Apax(7) is the largest eigenvalue of the matrix M = 2 37" | %(I —(I+~A)™ 1), s0

)\max(’y) S ll n )\maX(Ai)'y S maxie[n] )\max(Ai) ‘
Tn 1 )‘max(Ai)’y +1 maX;en] Amax (Az)’)/ +1

(2

As a result, since S( 1) is decreasing, and & ( 1% is increasing in S, both the iteration and time

complexities are increasing functions of S. This underscores the advantage of involving a larger
number of clients in the training process.
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C.4 LEMMAS

Lemma C.6. Let x; be the iterates of SGD applied to the problem
min,, {f(gc) = %Z:’ 1 (1 TBZx + CT:L‘ + di) }, where the matrices B; are symmetric. Then
x, — (xx) € range(+ Y1 | B;) for all k.

Proof. By definition of II, we have

- (155m) (3

Hence, using the identity AT (AAT)T = AT,

xk—H(xk)=<:Li: ) ( z”: zl‘k‘FCz)

3\'—*

i 2ercl>.

i=1 =1
_ EZB EZB lZB EZBE[ ]
“\n 4 i n - i n - i n - L | T — G |,
=1 =1 1=1 1=1
and so, by symmetry of B;, we get 7, — II(zy,) € range(L 37" | B;). O

Lemma C.7. Let M := 13" | %(I — (yA; + I)7Y), where v > 0 and A; € Symi Sor all
i € [n]. The smallest positive eigenvalue of M is given by

/\r_;in (7) = min 1 TQz |:

[|z]|=1,z€(ker A)+ ’I’L

Aj(Aq) T
1T+ 9A; ( )}”QZ o

where A = 23" | A; and [b;);; denotes a diagonal matrix with b; as the jth entry.

Proof. First, observe that the matrices I — (yA; + I )’1 are symmetric, and their eigenvalues are
given by
_ 1 _ ’y)\j (Az)
TF (A T+ (A))

Consequently, M is a sum of symmetric positive definite matrices and is therefore also symmetric
positive definite. We now claim that

A (y) = min z M.
min(7) l|z||=1,z€ (ker M)+

First, choosing x to be a multiple of the eigenvector of M corresponding to )\mm( ), we see that

At () > min " M.
|lz||=1,z€ (ker M)+
To establish the reverse inequality, let {e;} be an orthonormal eigenbasis of M and let  be such

that ||z|| = 1. Then we can write x = Zf:1 a;e;, and since z € (ker ML, all coefficients
corresponding to an eigenvalue 0 vanish. Thus

d
o Mz = ZaQ/\ > A () Z = AF( HJUH = Ahin (1)
This proves that
/\I‘;in(ry) = min z Mzx.

lz||=1,z€(ker M)+
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Now, each matrix I — (vA; + I)~! can be decomposed as Q; [%} Q.. Therefore what
]

remains to be proven is that ker(M) = ker(A). To this end, take « € ker(M). Then Mz = 0, and
since vy > 0, we have

n

% Z('yAZ- + I lr =2, 37

i=1

Next, observe that

1« _ -1 1 - . A Y v
Ao (nZ(q/Az—kI) ><nZAmax (WA + 1) )—nZH%m(Ai).

=1 =1 =1
Now consider two cases.

First, if there exists j € [n] such that Amin(A;) > 0, the above upper bound is strictly less than 1.
This implies that there exists no nonzero z that satisfies equation (37), and so ker(M) = {0}. But
Amin(A;) > 0 also implies that

1 n 1 n
)\min (n ;Az> Z % ;Amm(AJ > O

As aresult, ker(M) = {0} = ker(A).

Now, let us suppose that Amin(A;) = 0 for all i € [n]. In this case, Amax ((vA; +I1)71) =1
for all i € [n]. Since all matrices (yA; + I)~! are symmetric positive definite with maximum
eigenvalue equal to 1, it follows that equation (37) holds if and only if

(YA, + D) 'z =2

for all i € [n]. This is equivalent to yA;x = 0 for all i € [n]. Since v > 0 and A, are symmetric
positive definite, we can, in turn, equivalently express it as Az = % Yo A =0.

Consequently, (37) holds (i.e., z € ker(M)) if and only if z € ker(A) and hence ker(A) =
ker(M).

The final expression in the statement of the Lemma follows from eigendecomposition (see Fact 2).
O
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D FEDEXPROX UNDER PL CONDITION

Theorem D.1. Let Assumptions 1.1, 1.2, 1.3, and 7.1 hold, and assume that ary < ﬁ Then the
s

iterates of Algorithm 2 satisfy

2 Iy " 2

E|llox - Iax)|] < (1 —ay(2-aqLys) 2) E [lleo — I(ao)|’

and hence
K
Bl (o) - 1)) < 5 (1= 00 2= ar) 5 ) oo - 1G]

where L., s := ( 5?7;31) I +L7T;ax + Z‘Eij; LA,). For the optimal choice of stepsize and extrapola-

tion parameter ary = /L., s, these rates become

#y

E [lex - )] < (1- QL%S)KE [0 ~ 1z ]

and

Bl (o)~ £ < 5 (1- 2535)1{1@ (o — T1(20)1?].

Remark D.2. The above theorem proves Theorem 7.5. Furthermore, by setting S = n, we recover
the result from Theorem 7.2.

Proof. The proof closely follows the proof of Theorem 3 from Li et al. (2024). Recall from Sec-
tion B that Algorithm 2 is equivalent to SGD for minimizing M7 (z) := + 3" VMY (z) with
stepsize oy, and its updates can be written as

1
Thtl = Tk — QY g Z VZM}Y (k).
1€Sk

Then, for any z, € X,

B [akss - ]

2

1
3 > VM] ()

= Jlax — z.])* — 20 <xk — ., By
1€Sk

> + a272IEk

1
’s > VM] (xx)
1€Sk

2

1
@ |2k — 2 ||” — 20y (2 — 20, VM (23) — VM (2,)) + 0?~°Ey, HS Z VM ()

1€Sk

2

1
= |2k — 2.||* = 207 (Dago (@, 1) + Dars (4, 21)) + a?42Ey, HS Z VM (zx)|| |, (38)

1€Sk

where Dy (z,y) == M7(z) — M7(y) — (VM7 (y),z — y). Next, applying Lemma A.12 with
B; = VM (z) — VM; (2.) € R?¥1 the last term in the above inequality can be written as

2 2

% S (VAL} () - VM ()

1€Sk

1
Ex ||5 > VM] (1)

1ESk

-5 1 ’
A 18 LS 901y (o) - VM5 (22)
=1

S(n—1)n
A A (e - )
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Looking at the first term of the inequality above, using convexity and smoothness of the functions
M;Z (Lemmas A.4 and A.6), we have

‘2 (a14) 1 & L,
n <~ 1+vL;

1 n
22 [V ) = VAL ) (Dagy, (@r.2) + Dagy (1)

n

> (DM}; (@g, ) + Doy (iv*,l’k))

i=1

Liax 1
1 + ’yLmax n

LIn X
= ]ﬂizm (DM"’ (Q?k;, .’L‘*) + Dy (x*, Z‘k)) .
Next, since by Lemma A.7, the function M” is convex and smooth, the second term can be bounded
as
2

= VM (2i) = VM ()|

% i (VM]i (a4) — VM, (:c*))
i=1

(A.14)
< L’Y (D]ww (:L’k, {E*) + D (x*mk)) .

Applying these bounds in (38) gives
Ep |flarss - a.’]

< Nwp — z4]|? = 200y (Daga (@, 24) + Dags (2, 1))
9 o0f M—2S Limax n(S—1)
oy <S(n—1)1+7LmaX S(n—1)

L’Y) (D (g, xs) + Dpg (T, xg))

=Ly s

= ||z — a||* — ay (2 — avL,y s) (D (2k, +) + Dav (24, 21)) -

By Lemma A.7, M7 is convex and smooth, so Dy (x4, xr) > 0, and by Assumption 7.1 and
Lemma A.13, we have
— A ¥ MjY_ 2
Darr (2, 2) = M7 (2x) = M7 (24) 2 - [l — (a7

Therefore, for ayL, g < 2
Er (o = 2al?] < low = 2.]* = 07 2 = aLy.5) (Dars (g, 2.) + Dars (@, 31))

+
2 K 2
< i = 2.’ — @72 = a7Ly,) 5 flow — T

Taking expectation and letting z, = II(xy) gives
E[llzkss = D@ern) ] < E [lzns - )]

< B [l ~ @] - a7 (2 = @1y 5) 2 [ — 1) ).

Unrolling the recurrence, we obtain the first result

i\ K
2 Koy 2
B [l ~ Mal”] < (1- a2 - 01L,.0) 5 ) & [l ~ )]

Lastly, using L—smoothness of f, it follows that
L
E[f(ax) - f(0x))] < 5E [l2x - Www)|]

+
=

é <1 —ay(2—ayLys) ,u2 )KE [HIO - H(IO)HQ} .
2

Substituting oy = /L., s, which minimizes the expression avy (2 — awvyL., ), finishes the proof. [

IN
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E FEDEXPROX WITH INEXACT COMPUTATIONS

In practice, solving (3) exactly is often infeasible, and we can only find a vector prox‘fy 7 (z) such that

2
||prox? ;(2) — prox ¢ ()[|” <6,
where ¢ represents the accuracy of the approximate solution to (3). As a result, we can only calculate
an inexact gradient of the Moreau envelope, defined as
1
0 —
VM (z) == ;(x — proxif(x)).

One can easily show that

HVM].“S(x) - VM;(x)HZ < %

With these inexact updates, Algorithm 1 iterates

Ty = T + ( Zprox () — xk> =Ty — QY — ZVMW 6(xk) (39)

=1

=V M9 (zy,)

where
2

VM7 (2) — VM (2)||* =

% Zn: (VM;ivé(x) ~VM] (x))

n

1|1
= pel Z (proxif(a:) - prox,yf(x))
i=1
<11y 2.0 4
< T*ZHprox —prox,p(@)[| < - (40)

With this in mind, we proceed to our analysis.

Theorem E.1. Consider the inexact FedExProx method in the full participation setting defined
in (39). Let Assumptions 1.1, 1.2, 1.3, and 7.1 hold, and set oy = L Then, the iterates of

2L
the algorithm satisfy !
+\ K
o 209
o =)l < (1= 22 ) lloo = M) + 20—,
7 (M'y) Y
and hence
K
L e 10L5
) = £ < 4 (1= 55 ) lloo — Man) |+ @)
v (M'v) 0

Remark E.2. Note that the price one has to pay for inexactness is minimal. To illustrate this, suppose
that clients solve the local problems using GD. Then, taking

(1) 7%

5=
20L

we ensure that the last term in (41) is small:
10L6 <

_ U0 &
(W)~ 2
Since problem (3) is strongly convex, the local complexity is proportional to

(’)(nxlog;) =0 (ﬁxlog (202L>>,
(1Y) 7%

where x > 1 is the condition number. In practice, this logarithmic factor can be ignored and treated
as a constant.
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Proof of Theorem E. 1. The updates can be written as
Tht1 = T — anyMV’é(xk).
Thus
i1 = Maps)|* < i — Ma)|?
2
= ||lz — I(z)]]* — 20y (zp — M(zy), VM'Y"S(xk» + a?y? HVM“”‘S(wk)H
= [l — TW(ay)||* = 20y (wy, — T(ag), VM (2))
— 2ay (zp — (), VMY () — VM (zk))
+ a?y? || VMY () + (VMY (z1,) — VM (24))
Using Jensen’s inequality, we get
lesr — M) |2 < o — g ® — 20 (ax — M), VM (x))
— 2ary <xk —(zg), VM'Y"S(xk) — VM’Y(.’E]C»
+ 20297 [V M7 (@) |? + 20°92 |V M () — VM7 (@) ||*. (42)
Following the same steps as in the proof of Theorem D.1 gives
i — M) |* = 20y g, = (2x), VM (2)) + 20797 | VM (21)]*
< (1 - 0y(1 — ayLy)paf) [l — ()|

et 2
< (10" ) how - 1)

2
I

1

57— » and hence
5

for ay <

“2) ur
oo = M)l < (1= v’y ) o = o)
=20y (g, — H(zy), VMY () — VM ()
+20%4? HVMWs(xk) — VM'Y(xk)H2 .

Young’s inequality yields

+
i
o = Manan)|? < (1= @’ ) o = M) I? + @A o — 1)

+ SV (@) = VA (@) | + 20292 [V M ) = VI (@)

n
where A > 0 is a free parameter. Taking A = “T”, we obtain

+
I dav 2
1 = Marn)|* < (1 - av;) . = ()| + TJ IV () = VM ()|
¥
+ 20242 HVM"”‘S(J;k) — VMV(JCIC)H2
+
7 %0’ 2
< (]. — O[’}/,Y> ||£Ck — H((Ek;)HQ + T_,;y ||VM’Y,6(CL.kj) - VM’Y(CL']C)H s

Y

where the last inequality due to ay < ﬁ and L, > ,ufyr. Lastly, due to (40), we have
v

+

w 5

oo = Manen)|” < (1= 0’ ) llow = ) + 252,

My Y

Unrolling the recursion, one can show that
i\ K
2 2 2 206
Jox = )l < (1= a2 ) oo = )+ i
v)
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and hence
L
flag) = fl(zk)) < 5 llox — ()|
K
L u 10L6
<5 (1-afE) oo - o+ 22
(M’y) Y
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F ADAPTIVE EXTRAPOLATION

The optimal extrapolation parameter values in Theorems 4.1, 5.1, 7.2 and 7.5 depend on L,
(or L, s). This dependency can be avoided by employing adaptive extrapolation strategies (Horvéth
et al., 2022). Specifically, we analyze methods based on gradient diversity (FedExProx-GraDS) and
the Polyak stepsize (FedExProx-StoPS).

F.1 FULL PARTICIPATION CASE

Theorem 6.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1), where f;(x) = %xTAia: — b} x for all i € [n], with A; € Symi and b; € RY. Let
Assumption 1.3 hold and consider two adaptive extrapolation strategies:

1. (FedExProx-GraDS) Set

15 HVM}Vi (zk)H2

GraDS 7 2ei=1
a = af (zg) == > > 1.
|3 =y v, |
Then, the iterates of Algorithm I satisfy
ok — H(zx)||* < (1= Ce)™ |lao — (zo) ||, (15)
— : 2+yLmax
where Cg := k:ofp,l,r}(_1ak71-‘-3muifr'
2. (FedExProx-StoPS) Set
1 n ¥ : vy
_ StoPS L owm2i=1 (]\in (zp)—inf Mfi) 1
o = o (k) = Ese, vag o T PR
Then, the iterates of Algorithm 1 satisfy
ok — (zx)|* < (1= Cs)™ [lwo — Tl(x0)|?, (16)

where Cs 1= % mir}{ 1ak’y,u¢.

Proof. We start with the standard decomposition

w1 = Wanp)[* < [lowpr — D))

n

= ||z — () [|* — 200y <ib Z VM} (r), xx — H(xk)>

i=1
2

1 n
+azy? - Z VM}Z (k)
i—1

D g — )|~ 2089(, — T(wy)) " M (2 — ()
2

1 n
oy’ EZVM%(;%) . 43)
i=1

Now, let us consider the two adaptive extrapolation strategies.

1. (FedExProx-GraDS) In this case, the last term of (43) can be rewritten as
2

2_2
QR

1 n
— M7
2 VM ()

1 & 2
_ 2 Y
= apy - ZEZI HVMfZ(xk)H
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1 2

5 (T- (A + D7) (@ — ()

e 1 n
2 § :
= « —
EY n

i=1

— gl — T(x)) T (i Z (1 — (A + 1)—1)T (1 — (A + I)—1)> (25 — I(zx))

< ag ma>]<)\max (I — (vA; + I)fl) (zp — H(xp)) " (711 Z (I — (A + I)1)> (zr — TI(2y))

i€[n P

Y Iax;e [n] )\max (Az)
1+~ max;ec[n] Amax(Ai)

= oY (zp — O(xp)) " M (25, — (zy)).

Substituting this in (43) gives
[ETsE (C]
<l — T(aw)|1* = 200y (zx — () " M (2 — ()
Y MaX;e[n] Amax (A;)

1 + ymax;e(n) Amax (Ai)

+ary (zr — I(xp)) " M (2 — T(z4))

2 + Y MaX;e[n] Amax(As)
1+ ’ymaXiE[n] Amax(Ai>

2 + ymaX;e[n] Amax(Ai) | 4 9
<|ll—-« . — II(xg
- ( T Y MaXie (] Amax (As) () ) Iz @l

where the last inequality follows from the fact that xp — II(xy) € range(M) (see
Lemma C.6). Applying this bound iteratively for k =0, ..., K — 1 gives

lexe — M(ax) ||

= ||k — M(ae)l” — awy (2 — I(xp)) " M (2 — I(24))

2 i€[n )‘max Ai "
+ 7 maXie ) Amax( )ALH(V)) 0 = TI(z0) .

<|({1- i
- ( T o1 T Y MAX; e [n] Amax (Ai)

2. (FedExProx-StoPS) First, note that L,—smoothness of M " implies that
1
M (zy) — inf MY > —— ||[VM" (x|,
2L,

and hence oy, s (7)) > 27%
v
Now, the last term of (43) is
2

2 2
Ry

1 n
- E ‘17
n pt v fz(xk)

ST
= gy (Mv(zk) — MV(H(Ik)))

@ %Oéw(xk — (a4))" M (zx — (x)).

Therefore, using Lemma C.6, we get
(43)
k1 — Marp)|” < lae — Waw)|* — 20y (x — My)) "M (2), — ()
1
+5au(@ = @) M (@~ (zy)
3 + 2
< (1= SanA () ) lox = T .

Applying this bound iteratively for £ =0, ..., K — 1 gives

K
3 .
o = a0l < (15, min axidiu, ) o~ )]
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F.2 PARTIAL PARTICIPATION CASE

Theorem F.1. Fix any v > 0 and consider solving non-strongly convex quadratic optimization
problem (1), where f;(x) = %.%‘TAiJ) — b} x for all i € [n], with A; € Symi and b; € RY. Let
Assumption 1.3 hold and consider two adaptive extrapolation strategies:

1. (FedExProx-GraDS) Set

ap = o § (xn, Sp) =

Then, the iterates of Algorithm 2 satisfy

2+ 'YLmax )\+

K
. — (x)|”, (44
L)) e~ M), @

EDMK—H@mW}s(L4Mam

where

inf oy, := agfngS(amS).

inf
2€RY,SC[n],|S|=S
2. (FedExProx-StoPS) Set
% Y icsk (M; (z) — inf M}l)

LE o ] e

o = aifgps(xk,é‘k) =
Y

Then, the iterates of Algorithm 2 satisfy

E [Jlox — x|

IA

K
3.
(1- 3 infainn() leo-TGl*. @

where

inf ay, == inf a3l (z, S).
veRL,SCIn],|S|=8 *

Remark F.2. In the single node setting (S = 1),

inf agrePs (1, 8) = 1.
z€R?,S8C[n],|S|=1

However, as more clients participate, the extrapolation parameter may exceed 1, resulting in im-
proved performance of FedExProx-GraDS.

Remark F.3. In the single node setting (S = 1), Lemma A.4 implies that
_ 1 1 + 'YLmax

z€R,SC[n],|S|=1
As the number of participating clients increases, the extrapolation parameter may exceed this bound,
leading to better performance of FedExProx-StoPS.

Proof of Theorem F.1. As in the full batch case, we start with the decomposition

|kt — M) |® < o — D(aw)]

1
= () I* — 20y <S > VM (ar) o — H($k)>
ieSk
2
1
+aiqy? g Z VM (xr)
€Sk
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Z Y — W) | — 2007 (2s — (k) T M (g, — (k)

1
22 ¥
+ain® | g X VMG (@) (46)
€Sk
where M}, := % (I - % D ic Si (vA;, +1 )_1). Now, let us consider the two adaptive extrapolation
strategies.

1. (FedExProx-GraDS) In this case, the last term of (46) can be rewritten as
2

1
azy? g Z VM; (k)
i€Sk
1 2

ieSk
2

Loy |2 (1- 04+ D7) @ - TiGw)
ieSk
= aplm -1 5 3 (1A D7) (1- 0+ D™) | (e T)
€Sk

_ 1 _
< 0k mAX A (I-(GA+D ) (@ —1@)T | 5 Y (- (A+ D7) | (@ = )
ieSk
Wmaxie[n] )\max(Ai)

— 11 TM _1 .
L+ ’Ymaxie[n] Amax(Ai) (ajk ($k)) k(xk (xk))

= QY

Substituting this in (46) gives
k1 — (@)

<l — T(ap)[|* = 200y (2 — W(ax)) " My (2 — ()

Y MaX;e(n] Amax (Ai)

1+ ymax;e(n) Amax(Ai
2 + ¥ maX;e[n] Amax(As)
1 + vy max;e(n) Amax (Ai)
2 + ¥ maX;e[n] Amax(As)
1 + vy max;epy) Amax(Ai)

+agy ) (zx — M(2k)) " My (2 — H(2))

(z — () " My (g, — ()

= |lzx — M(a)l|* — awy

< g — (xp)]]* — inf agy (zp — O(z1)) " My (z — H(x)),

where we view o, as a function of x an S. Taking expectation conditioned on x, we
obtain

Er | lorss = M)

< [law — ()|

2 4y maX;e[n] Amax(As)
1 + vy maX;e(n) Amax(Aq)
2 + Y MaX;e[n] Amax(As)
1+ vy max;efn) Amax(Aq)

(v)) ok — (a4 2

where the last inequality follows from the fact that z;, — II(z;) € range(M) (see
Lemma C.6). Taking full expectation and applying this bound iteratively for £ =
0,..., K — 1 gives the final result.

—inf agy (xr — H(l’k))T]Ek [M}] (zp, — TL())

= ||z, — (@) |* — inf opy (zx — M(ap)) " M (2 — T(24))

2+ Y MaX;e(n) )\max(Ai) +
1 + vy max;epy) Amax(Ai) min

< (1 — inf a7y
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2. (FedExProx-StoPS) In this case, the last term of (46) is
2

1
oi? || 5 D2 VM ()
€Sk

= ak'y% Zk (M;’ (z) — inf M;)
€S

= %ak% D (e = ()" (T = (YA + 1)) (2 — W)
1€ESk

= Jowr(os — 1) Mi(i — Tay).
Therefore, (46) gives
|21 — (@) ” < llow — W) |? — 200y (2 — (k) " Mi(zx — (k)
+gaw . — (o))" Mi(on — 1)
< i~ T[> — 3 inf oy (i — ()" Mic(og — ().

Taking full expectation and applying Lemma C.6, we obtain

3.
B [Jons ~ o)) < (1= § infenydin () low - W0

and hence

3, ®
Ellzx - Mx)I] < (1 — in am;m<v>) o — (o)
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1 x1000.0 n10000.0 1« 100000.0

— Total

Time

Figure 2: Empirical time complexities of FedExProx with partial client participation on a quadratic
optimization task for S' € {1,7,14} clients participating in each round.

G EXPERIMENTS

G.1 EXPERIMENTAL SETUP

To verify our theoretical results, we assess the empirical time complexity of FedExProx as a function
of v. We consider two types of optimization problems: synthetic quadratic optimization tasks and
classification problems with a smooth hinge loss function. In both cases, local updates are computed
using GD. Below, we first outline the methodology common to both experiments, followed by a
detailed description of the specific settings and their corresponding results.

Total empirical time complexity. As described in Section 4.1, we assume that one local iteration
of GD takes 7 seconds. Thus, the time needed by worker ¢ to find prox., , (z) at global iteration k
is proportional to 7 X n;j, where n;j, is the number of GD iterations needed to find prox., s, (k) to
a given fixed accuracy. In the full participation case, the total empirical time complexity is given by

K—-1
> (77 o+ 7 max nk) (47)

=0 i€[n

where K is the number of global iterations needed for FedExProx to converge to the desired accu-
racy and 7 is the communication cost. In experiments involving client sampling, we consider the
complexity

K—1
Z <17 + 7 max nki) (48)
pars €S

instead, where Sj, is the random subset of clients sampled at global iteration k. Notice that we
take the maximum over n.; because the overall time is determined by the slowest client. In all
experiments, we fix 7 = 1 and vary 7, effectively considering the ratio 7/~

To ensure robust experiments, we count the number of GD steps and communications K and apply
formula (47) (or (48)). This proxy for real wall-clock time is robust, reliable, reflects reality, and
allows controlled experiments. The plots report the empirical time complexity required to find 2*
such that f(x*) — inf e f(z) < 1073

One of experimental tasks is to verify that this empirical complexity aligns with the theoretical
complexity derived in (14) (see Section G.3.1).

G.2 EXPERIMENTS WITH QUADRATIC OPTIMIZATION PROBLEMS

In the first set of experiments, we consider quadratic optimization problems of the form

11 o A
flz) = - ; 5¢ A,
where A; € Syml, i € [n] are random positive semidefinite matrices with the smallest eigenvalue
equal to zero. In particular, each worker’s matrix is generated as A; = Q;DQT, where Q; is a
random orthogonal matrix from QR decomposition of a d x d matrix with standard normal entries.
The diagonal matrix D is constructed by uniformly sampling eigenvalues between 0 and a maximum
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Figure 3: Empirical time complexities of FedExProx on a synthetic classification task with smooth
hinge loss.
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Figure 4: Comparison of theoretical time complexity (12) and empirical time complexity (47).

drawn from the interval [5,10]. Each worker ¢ computes the proximal mappings using GD with a
stepsize of 1/L;, where L; = Amax(A;)+1/7 is the smoothness constant of the local subproblem (3).
The extrapolation parameter « is set to its optimal value from Theorem 4.1, using an explicitly
computed value of L. The data is distributed across n = 14 workers.

Figures 1 and 2 display the results for the full and partial participation settings, respectively. The
dashed lines indicate the theoretical bounds derived in Theorems 4.3 and 5.2, within which the
optimal value of + is expected to lie. When the communication cost 7 is relatively low (n oc 100),
the optimal ~y is close to zero. However, as 7 increases, the optimal + shifts to values exceeding 0.1.
This results in a characteristic U-shaped curve, reflecting the nontrivial optimal choice of . These
observations are fully consistent with our theoretical predictions.

G.3 EXPERIMENTS WITH SMOOTH HINGE LOSS
G.3.1 SYNTHETIC DATA

We now turn to a classification problem involving linearly separable data { (25, ¥ij) }ie[n],je[m]> €N-
suring the interpolation regime. Specifically, we construct a synthetic binary classification problem

by independently sampling n x m data points z;; € R? and a ground-truth weight vector w* € R?

from the standard normal distribution. Labels are then assigned as y;; = s1gn(a:Tw ).

The function f : RY — R is defined as

n

fw) = =3 fiw

i=1 i=1 Jj=1

where (77,yi;) € R?x {—1,1} foralli € [n],j € [m] and ¢;; is the smooth hinge loss, defined by

0, if yiijxij 2 ].,
EU(’U}) = %(1 — yij’wT.Tij)Q, if 0 < yiijLL'Z‘j <1,
1-— yiijxijv if yiijxij S 0.

Each client i € [n] computes the local proximal mappings using GD with stepsize /L;, where L; =
L ZT:l |z, ||? is an upper bound on the smoothness constant of the function f;. The extrapolation

parameter « is determined via grid search within the theoretical range given by Lemma A.7. We use
n = 4 workers, each holding m = 4 datapoints, and the number of parameters is d = 3.
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Figure 5: Empirical time complexities of FedExProx on the ARCENE classification task with smooth
hinge loss.

The results are presented in Figure 3. As in Section G.2, these experiments again suggest a non-zero
optimal choice of v when communication is slow. Indeed, the values of v minimizing the U-shapes
in the last three plots are around 1. These experiments provide further support for our theory.

Comparing theoretical and empirical time complexities. Next, we compare the theoretical and
empirical time complexities (12) and (47). Both are plotted on the same scale in Figure 4. We see
that our theoretical model reflects the empirical dependencies (up to a multiplicative factor).

G.3.2 REAL DATA

We further validate our findings on real-world data by repeating the experiment on the ARCENE
dataset (Guyon et al., 2004). We subsample 20 random data points and restrict attention to 30
randomly chosen features. The resulting plot in Figure 5 again exhibits the characteristic U-shape
behavior as the communication cost increases, mirroring the synthetic case and reinforcing the ro-
bustness of our observations
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H NOTATION

Notation
1l Standard Euclidean norm
(54) Standard Euclidean inner product
[k] ={1,...,k}
Eyx [] Expectation conditioned on the first k iterations
n Number of workers/nodes/clients/devices
d Dimensionality of the problem
Stepsize
ak Extrapolation parameter
L, L;, Lmax | Smoothness constants (Assumption 1.2)
prox.; (z) Proximal operator of the function f with parameter ~y (see (3))
M}’ Moreau envelope of the function f with parameter -y (see (7))
MY = % A M}’l
L, Smoothness constant of M~
uj The smallest non-zero eigenvalue of the matrix V2M” (see Theorems 4.1, 5.1) /
PL constant (see Theorems 7.2, 7.5)
(%) Total time per global iteration of Algorithm 1 /2
T,(7) Time complexity of Algorithm 1
Ty(7,S) Time complexity of Algorithm 2
X = {z e R%: Vfi(z) = 0}
II(z) Projection of z onto the solution set X’
R | = e — aol?
Dy(z,y) Bregman divergence between x and ¥ associated with a function f : RY — R
I Identity matrix
A; Local data matrix stored on worker 7, with spectral decomposition A; = Q; A;Q;
A =iy A
Sym¢ = {X e R™¥| X = X7, X > 0} - the set of symmetric positive semidefinite
matrices
ker A Kernel of a matrix A
M, =1 (T- 1 Sies, A+ D7)
M =L (I- 1Y A+ D))
Amax(B) The largest eigenvalue of matrix B
Amin (B) The smallest eigenvalue of matrix B
AE(B) The smallest positive eigenvalue of matrix B
[B]; The jth diagonal element of a diagonal matrix B
[b5155 A diagonal matrix with b; as the jth entry
Table 1: Frequently used notation.
Note on LLM Usage. Large Language Models were used to aid in writing and polishing portions

of the manuscript. LLM assistance did not contribute to the scientific content of the paper.
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