
Published in Transactions on Machine Learning Research (05/2025)

MOORL: A Framework for Integrating Offline-Online Rein-
forcement Learning

Gaurav Chaudhary gauravch@iitk.ac.in
Department of Electrical Engineering
Indian Institute of Technology Kanpur

Washim Uddin Mondal wmondal@iitk.ac.in
Department of Electrical Engineering
Indian Institute of Technology Kanpur

Laxmidhar Behera lbehera@iitk.ac.in
Department of Electrical Engineering
Indian Institute of Technology Kanpur

Reviewed on OpenReview: https: // openreview. net/ forum? id= PHsfZnF2FC

Abstract

Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learn-
ing (DRL), particularly in complex domains. Offline RL, which enables agents to learn
optimal policies from static, pre-collected datasets, has emerged as a promising alternative.
However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that
limit policy performance and generalization. To overcome these limitations, we propose
Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies
offline and online RL for efficient and scalable learning. While previous hybrid methods
rely on extensive design components and added computational complexity to utilize offline
data effectively, MOORL introduces a meta-policy that seamlessly adapts across offline and
online trajectories. This enables the agent to leverage offline data for robust initialization
while utilizing online interactions to drive efficient exploration. Our theoretical analysis
demonstrates that the hybrid approach enhances exploration by effectively combining the
complementary strengths of offline and online data. Furthermore, we demonstrate that
MOORL learns a stable Q-function without added complexity. Extensive experiments on
28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing con-
sistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal
computational overhead, MOORL achieves strong performance, underscoring its potential
for practical applications in real-world scenarios.

1 Introduction

Deep Reinforcement Learning (DRL) has been tremendously successful in solving a variety of complex
problems, including robotics (Tang et al., 2025), autonomous driving (Kiran et al., 2021), healthcare (Yu
et al., 2021), game-playing (Silver et al., 2017; Vinyals et al., 2019), intelligent perception system (Chaudhary
et al., 2023), and finance (Charpentier et al., 2021). However, one of the primary drawbacks of DRL
algorithms is their sample inefficiency, i.e., the number of state-action-state transition samples they require
to train a policy. Typically, these algorithms require millions of such interactions, making them impractical
in real-world scenarios, particularly in safety-critical domains like robotics and autonomous driving (Kiran
et al., 2021). Learning policies in controlled simulation environments can offer a partial remedy, as these
policies often fail to generalize to real-world situations due to the well-known simulation-to-reality (sim2real)
gap (Tobin et al., 2017).
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An effective strategy to mitigate these problems is Offline Reinforcement Learning (RL) (Levine et al.,
2020), which enables policy learning from historical datasets without requiring online exploration. Offline RL
can train policies safely and cost-effectively using pre-collected human demonstrations or previously logged
interactions. Although it alleviates some concerns related to sample complexity, the reliance on static offline
data introduces new challenges, such as extrapolation errors and out-of-distribution (OOD) actions (Bai
et al., 2022), which can result in sub-optimal behaviors when policies are tested in real environments or
unfamiliar states (Kim et al., 2024). Offline-to-Online (O2O) RL (Lee et al., 2022; Wagenmaker & Pacchiano,
2023) dilutes the limitations of purely offline RL to some extent. O2O RL setups typically pre-train the
agent using offline data, followed by fine-tuning via limited online interactions. However, this approach often
experiences performance drops due to compounded Bellman errors (Sun et al., 2023)due to changes in reward
distributions and distributional shifts between offline data and online interaction (Farahmand et al., 2010;
Munos, 2005).

In this article, we aim to tackle the inherent challenges faced by offline RL and online RL algorithms. We
believe that directly integrating offline data into online RL training can lead to more stable learning and
mitigate issues such as out-of-distribution (OOD) actions and inefficient exploration. While recent efforts,
such as RLPD (Ball et al., 2023) and Hy-Q (Song et al., 2022), have attempted to address offline-online
integration, each comes with its own challenges. RLPD, which combines offline and online data, introduces
extensive design components (refer to Appendix E). RLPD employs a large Q-ensemble and a high Update-
to-Data (UTD) ratio to stabilize learning and optimize performance. These dependencies add complexity to
the algorithm, making it more challenging and computationally intensive, limiting its scalability.

On the other hand, Hy-Q offers a more streamlined approach by integrating offline data into online train-
ing without necessitating extensive design components. However, Hy-Q has its own limitations; it requires
maintaining separate Q-value functions for each timestep within a fixed horizon, significantly increasing
computational and memory overhead, especially in environments with longer or variable horizons. Addition-
ally, Hy-Q’s reliance on a predefined horizon makes it less adaptable to tasks with dynamic episode lengths,
limiting its scalability and flexibility across diverse RL scenarios. While Hy-Q reduces the need for many
design components compared to RLPD, it still struggles with computational efficiency and adaptability in
more complex or heterogeneous environments.

Further, as highlighted by (Furuta et al., 2021; Engstrom et al., 2019; Henderson et al., 2018), the RL
algorithms are difficult to optimize and tune, where minor hyperparameter changes can have a non-trivial
impact on performance. We believe it is important to limit RL algorithm design components. These
limitations underscore the necessity for a hybrid approach that effectively integrates offline and online data
and maintains computational efficiency and adaptability across various tasks. With this motivation in this
work, we propose a framework called Meta Offline-Online RL (MOORL) that addresses the stated issues by
utilizing a unified set of design components without the need for a large Q-ensemble, high UTD, and separate
Q-function per horizon step, offering a more robust and generalizable solution for hybrid reinforcement
learning. In particular, our contributions can be summarized as follows.

• We provide theoretical insights showing that mixing offline and online data can affect performance
and provide a performance bound on the expected reward.

• We leverage the off-policy RL framework, Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), to
seamlessly integrate offline and online data via meta-learning for efficient design-free policy learning
without introducing any new hyperparameters.

• Our proposed framework, MOORL, uses meta-learning principles (Finn et al., 2017; Nichol & Schul-
man, 2018) to train policies under a single meta-objective, enabling the dynamic balancing of offline
and online data. The learned meta-policy adapts across varying distributions, minimizing the impact
of distributional shifts and extrapolation errors.

• We validate our methodology through 28 comprehensive experiments on benchmark D4RL (Fu et al.,
2020) and V-D4RL (Lu et al., 2022) environments, demonstrating that MOORL outperforms state-
of-the-art methods in reward accumulation while being stable across diverse tasks, including dense
and sparse reward scenarios.
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2 Preliminaries

2.1 Markov Decision Process

We consider a Markov Decision Process (MDP)M = ⟨S,A, T, H, R, γ, ρ⟩, where S indicates the state space,
A denotes the action space, T : S ×A → ∆(S) represents the state transition dynamics (where ∆(S) defines
the collection of all probability distributions over S), R : S×A×S → R is the reward function, γ ∈ (0, 1) is the
discount factor, H is the length of the horizon of the episodes, and ρ ∈ ∆(S) is the initial state distribution.
At each time instant t, the agent observes the state st, executes an action at, and as a result, transitions
to the next state st+1 ∼ T (·|st, at), and receives a reward rt = R(st, at, st+1). The goal in reinforcement
learning is to learn a (stochastic stationary) policy π : S → ∆(A) that maximizes the expected cumulative
reward Jπ = E

[∑H−1
t=0 γtrt | π, ρ

]
where the expectation is obtained over π-induced trajectories of length H

that start from the initial state distribution, ρ. The state-action distribution under policy π is defined as
dπ(s, a) = (1− γ)

∑∞
t=0 γtP (st = s, at = a | π). The state-value and state-action value functions are defined,

respectively, as V π(s) = E
[∑H−1

t=0 γtrt | s0 = s, π
]

and Qπ(s, a) = E
[∑H−1

t=0 γtrt | s0 = s, a0 = a, π
]

, where
the expectations are obtained over π-induced trajectories of length H. Note that Jπ = Es∼ρ [V π(s)]. In this
paper, we obtain the optimal policy that maximizes Jπ by combining offline and online data using ideas from
meta-reinforcement learning, which is described below.

2.2 Meta-Reinforcement Learning

Meta-RL aims to solve a distribution of tasks given by PT (·), rather than a single fixed task, where each
task is characterized by an MDP Mi = ⟨Si,Ai, Ti, Hi, Ri, γi, ρi⟩. In our setting, the meta-learning process
is used to combine offline and online data. Following the meta-RL paradigm, we maintain separate replay
buffers for each type of data, denoted as Doffline and Donline respectively, which store transition tuples in the
form (si, ai, ri, s′

i). The training process alternates between sampling from these replay buffers to update the
policy while adapting to the changing data as the agent gathers more online experiences. A meta-episode
consists of sampling data from either of these replay buffers and forming the associated trajectories to update
the meta policy. A significant challenge arises from the distributional shift between offline and online data,
which can lead to instability in the training process. To mitigate this issue, our meta-RL approach employs
gradient-based meta-learning to effectively balance updates between the offline and online data sources,
enhancing the robustness of the policy against distribution mismatches.

3 Why Meta Learning?

Meta-learning, or "learning to learn," is a powerful paradigm that performs well across diverse task distri-
butions (Finn et al., 2017; Nichol & Schulman, 2018). By leveraging meta-learning to integrate offline and
online data, Meta Offline Reinforcement Learning (MOORL) can achieve the following benefits:

• Reduced Extrapolation Error and Improved Distribution Generalization: MOORL adapts
to changing data distributions by training a meta-policy over online and offline data. This approach
minimizes extrapolation errors by optimizing the meta-policy to generalize across distributions rather
than being confined to a single dataset (Finn et al., 2017; Garcia & Thomas, 2019).

• Improved Credit Assignment: MOORL utilizes a meta-objective that optimizes task perfor-
mance across various data sources, helping isolate beneficial behaviors. By employing gradient-based
meta-learning techniques, the meta-policy can assign credit more accurately, focusing on the tra-
jectory aspects that generalize well between online and offline data (Finn et al., 2017; Al-Shedivat
et al., 2018).

• Multi objectivity: MOORL streamlines the learning process by employing a single meta-objective
that integrates agent and expert data without extensive design choices. This meta-objective is
robust across varying distributions, automating many design decisions that would require manual
adjustments (Chen et al., 2019; Ye et al., 2021).
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4 Integrating Online RL with Offline Data

This work aims to bridge the gap between online and offline reinforcement learning by presenting a unified
approach that integrates both paradigms without introducing extensive design elements and large computa-
tional overhead. Our method utilizes an off-policy reinforcement learning algorithm (Haarnoja et al., 2018)
to effectively leverage data from various distributions. The proposed framework, MOORL, is designed to
handle variations in offline data quality, making it adaptable to various scenarios. Additionally, MOORL
demonstrates consistent performance across different problem settings, including environments with state-
based or pixel-based observations, as well as those with dense, sparse, or even binary rewards. To support
this, we first offer theoretical insights into why combining offline data with online agent data may be a
more effective strategy than relying solely on online learning. We then introduce the MOORL framework,
highlighting its simplicity and computational efficiency (refer to Appendix E, D).

4.1 Expected Reward and its Performance Bound

In this section, we examine the expected cumulative reward when sampling trajectories from a mixed dis-
tribution D, which combines data generated by an offline policy µ and an online policy π. We derive a
performance bound for the expected reward difference relative to the online policy, leveraging the total vari-
ation distance as a measure of distributional discrepancy between the offline and online state-action visitation
distributions.

4.1.1 Problem Setup

Consider an offline policy µ, which generates the offline dataset, and an online policy π, which interacts with
the environment. Let D denote a mixed dataset of trajectories, where a fraction λ ∈ [0, 1] of the trajectories
are sampled from µ, and the remaining 1 − λ are sampled from π. The state-action visitation distribution
induced by a trajectory randomly sampled from D is defined as:

dD(s, a) = λdµ(s, a) + (1− λ)dπ(s, a) (1)

Here, dµ(s, a) and dπ(s, a) represent the state-action visitation distributions under policies µ and π, respec-
tively, over the state-action space S×A. The expected cumulative reward generated by trajectories sampled
from D is given by (Durugkar, 2023):

ED[R] = 1
1− γ

∑
(s,a)

dD(s, a)R(s, a) (2)

Here, R(s, a) = Es′∼T (·|s,a)[R(s, a, s′)].

Our goal is to quantify the performance difference between the expected reward under the mixed distribution
D and that under the online policy π:

∆R = ED[R]− Eπ[R] (3)

4.1.2 Performance Gain Expression

The expected reward under the online policy π is:

Eπ[R] = 1
1− γ

∑
(s,a)

dπ(s, a)R(s, a) (4)

Thus, the performance gain ∆R becomes:

∆R = 1
1− γ

∑
(s,a)

(
dD(s, a)− dπ(s, a)

)
R(s, a) (5)
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Substituting dD(s, a) = λdµ(s, a) + (1− λ)dπ(s, a), we obtain:

∆R = λ

1− γ

∑
(s,a)

(dµ(s, a)− dπ(s, a)) R(s, a) (6)

This expression indicates that the performance gain depends on the difference between the offline and online
distributions, weighted by R scaled by λ.

4.1.3 Bounding the Performance Gain with Total Variation Distance

To bound ∆R, we introduce the Total Variation (Cover, 1999) distance between the distributions dπ(s, a)
and dµ(s, a). The Total Variation distance between dπ(s, a) and dµ(s, a) is defined as:

TV(dπ, dµ) = 1
2

∑
(s,a)

|dπ(s, a)− dµ(s, a)| (7)

The total variation distance quantifies the maximum difference in probability assigned to any event by the
two distributions and satisfies 0 ≤ TV(dπ, dµ) ≤ 1. It provides a natural metric for comparing dπ(s, a) and
dµ(s, a) in the context of performance analysis.

For any bounded function f(s, a):∣∣∣∣∣∣
∑
(s,a)

(dµ(s, a)− dπ(s, a))f(s, a)

∣∣∣∣∣∣ ≤
∑
(s,a)

|(dµ(s, a)− dπ(s, a))| · |f |∞ (8)

where |f |∞ = max(s,a) R(s, a). If the reward function is taken to be bounded, i.e., |R(s, a)| ≤ Rmax, ∀(s, a),
then from equation 8 and the definition of TV (equation 7), we arrive at the following.∣∣∣∣∣∣

∑
(s,a)

(dµ(s, a)− dπ(s, a))R(s, a)

∣∣∣∣∣∣ ≤ 2 · TV(dπ, dµ) ·Rmax (9)

This leads to the following bound on the performance gain.

|∆R| ≤ TV (dπ, dµ) · 2λRmax

1− γ
(10)

Pinsker’s inequality (Pinsker, 1964) provides an upper bound on the TV distance between two probability
distributions in terms of their Kullback-Leibler (KL) (Kullback & Leibler, 1951)divergence:

TV(dπ, dµ) ≤
√

1
2DKL(dπ ∥ dµ) (11)

Using this definition, the final performance bound can be defined as:

|∆R| ≤
√

2DKL(dπ ∥ dµ) · λRmax

1− γ
(12)

The above result suggests that the performance difference between the mixed distribution D and the online
policy π is influenced by the total variation distance TV(dπ, dµ) and the mixing parameter λ. Specifically,
when TV(dπ, dµ) is small, that the offline and online policies induce similar state-action distributions, the
expected reward under D closely approximates that under π, suggesting stability in integrating the two data
sources. Conversely, a large TV(dπ, dµ) implies a potentially significant deviation in cumulative rewards,
highlighting the risk of distributional mismatch when combining offline and online data.
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Importantly, the performance gain ∆R depends on the relative quality of the offline policy µ com-
pared to the online policy π. For instance, if µ is an expert policy, ED[R] > Eπ[R] is expected early in
training when π is suboptimal, resulting in a positive ∆R > 0. However, as training progresses and π
improves, TV(dπ, dµ) may decrease, reducing the benefit of mixing. This dynamic suggests that the value
of offline data changes over time, with the greatest benefits often realized in the initial training phase.

Crucially, this analysis is not limited to expert offline datasets. For non-expert datasets, where µ
may be suboptimal or diverse, the evolving difference between dπ and dµ still governs the effectiveness of
data mixing. In such cases, an adaptive approach is essential to manage the shifting relationship between
offline and online distributions, ensuring that the policy can leverage useful information from offline data
while avoiding negative impacts as π matures. This motivates the design of MOORL, which employs
meta-learning to dynamically balance offline and online data, optimizing performance across diverse dataset
qualities and training stages.

4.2 MOORL: Meta Offline-Online RL

This section introduces the Meta Offline-Online Reinforcement Learning (MOORL) framework, which ad-
dresses the challenges of integrating offline and online data in off-policy reinforcement learning. MOORL
combines the strengths of off-policy learning (Haarnoja et al., 2018) and meta-learning (Finn et al., 2017),
leveraging offline data for efficient learning while enabling online exploration, all while ensuring stable Q-
learning updates. By employing a meta-learning strategy to dynamically adapt Q-function updates, MOORL
mitigates issues such as distributional mismatch, overestimation bias, and instability in Q-learning.

4.2.1 Problem Definition

The task is to learn a policy using two distinct data distributions:

• Offline Data (Doffline): This data consists of trajectories previously collected from one or more
policies. While offline data may include high-reward sequences, it is often derived from sub-optimal
or outdated policies, leading to potential biases. Direct incorporation of this data into training
may cause overestimation bias in learned Q-values due to limited diversity and representativeness
of experiences.

• Online Data (Donline): This data is collected through interactions with the environment based on
the current policy. Initially, online data may yield low rewards due to early-stage exploration, but
typically improves as the policy refines.

The primary challenge comes from the distributional mismatch between offline and online data. Directly
mixing these two distributions in off-policy RL algorithms can lead to instability in Q-learning, as the value
estimates can become biased towards the high-reward offline data, resulting in overestimated Q-values. The
proposed MOORL framework addresses this by learning a meta Q-function Qmeta(s, a; θmeta), parameterized
by θmeta, that aims to generalize across both offline and online data distributions. The meta Q-function
is optimized using a meta-Q objective using Reptile (Nichol & Schulman, 2018) meta-learning algorithm,
balancing contributions from offline and online data.

4.2.2 Meta Q-Function Learning

MOORL learns robust meta Q-values that generalize across offline and online data distributions to mitigate
overestimation bias. The MOORL framework aims to learn a meta Q-function Q(s, a; θmeta), parameterized
by θmeta, that generalizes across both offline and online distributions. The parameter θmeta can be interpreted
as a solution to the Bellman error minimization problem stated below.

min
θmeta

E(s,a,r,s′)∼D

[(
Q(s, a; θmeta)−

(
r + γEs′∼T (s′|s,a)

[
max

a′
Q(s′, a′; θmeta)

]))2
]

, (13)
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Algorithm 1 MOORL: Meta Offline-Online Reinforcement Learning
1: Initialize: Meta-policy parameters actor ϕmeta, critic θmeta, and temperature α.
2: Offline dataset Doffline and empty online buffer Donline.
3: Meta-learning rate ηmeta, inner-loop learning rate η, number of iterations N .
4: for n = 1 to N do
5: Select Buffer: Choose Doffline or Donline as the data buffer.
6: Inner-loop Adaptation:
7: Collect transition in online environment and store in Donline.
8: Sample mini-batch from the selected data buffer.
9: Perform K inner actor ϕ̃ and critic θ̃ updates using data from Di.

10: Meta-update:
11: Update meta-policy parameters of both actor and critic using ϕmeta ← ϕmeta− ηmeta∇ϕmeta [L(ϕ̃)] and

θmeta ← θmeta − ηmeta∇θmeta [L(θ̃)], respectively.
12: end for

where D is a dataset containing both offline and online data.

The combined loss ensures that Q(·, ·; θmeta) provides consistent value estimates across both offline and online
data. However, this objective is similar to mixing offline and online data distribution as done by RLPD (Ball
et al., 2023), which simply mixes data from different distributions and learns a Q-function that can generalize
across data distributions, which requires different design choices to stabilize learning. In this work, we apply
a meta-learning perspective. Specifically, our algorithm progresses in multiple epochs, performing one meta-
policy update at each epoch. At the start of an epoch, we randomly choose either the offline or the online
replay buffer and perform K inner updates for distribution adaptation, followed by a meta-update.

Specifically, for a given data distribution, i ∈ {offline, online}, we take a mini-batch Bi ⊂ Di of length B,
and define the following loss functions for inner loop adaptation of the sampled distribution.

Lcritic
i (θ) = E(s,a,r,s′)∼Bi

[
(Q(s, a; θ)− (r + γQ(s′, a′; θ′)))2

]
(14)

where θ′ is the parameter of a target function that is used for stabilizing the learning. Following Q-learning
paradigm, θ and θ′ are synced periodically. The above loss is used to update the critic parameter, θ, via a
gradient-descent approach. The weights of the critic in the inner update loop are initialized with meta-critic
weights, followed by K inner loop gradient steps for distribution adaptation. where η denotes a learning
parameter. Mathematically, each gradient descent step is defined as follows.

θ ← θ − η∇θLcritic
i (θ) (15)

Let the final critic parameter (after K inner loop steps) be θ̃. We similarly define an actor loss function as
follows, where ϕ denotes the parameter of the actor (policy approximator), and α is a tunable parameter.

Lactor
i (ϕ, θ) = Es∼Bi,a∼π(·|s,ϕ) [α log π(a|s; ϕ)−Q(s, a; θ)] (16)

Starting from meta-policy weights, the parameter ϕ is also updated K times as follows.

ϕ← ϕ− η∇ϕLactor
i (ϕ, θ) (17)

Here, we use the principle of Soft Actor Critic (Haarnoja et al., 2018) that maximizes the expected reward
(Q-value) while ensuring sufficient exploration through entropy regularization controlled by the temperature
parameter α. The entropy term encourages the policy to remain stochastic, promoting diverse actions and
balancing exploration and exploitation. Let the final value of the actor parameter be ϕ̃. After inner loop
distribution adaptation, in the outer loop, we update the meta actor and critic parameters θmeta, ϕmeta using
the updated inner loop parameters as follows, where ηmeta is a tunable learning parameter.

θmeta ← θmeta − ηmeta∇θmeta [L(θ̃)] (18)
ϕmeta ← ϕmeta − ηmeta∇ϕmeta [L(ϕ̃, θ̃)] (19)
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For computing meta-updates ϕmeta and θmeta in the last step in the direction of ϕmeta − ϕ̃ and θmeta − θ̃,
we treat ϕmeta − ϕ̃ and θmeta − θ̃ as a gradient similar to (Nichol & Schulman, 2018) and plunge it into an
adaptive algorithm such as Adam (Kingma, 2014). In summary, the learning process consists of two steps:
first, adapting the distribution through K inner updates, followed by a meta-update aimed at generalizing
across distributions

Hence, by leveraging meta-learning capabilities of task adaptation (Finn et al., 2017), we enable adaptation
across diverse data distributions generated by different policies. This distribution adaptation strategy allows
the learned Q-function to approximate a combined Bellman Q-function. Further, Figure 1 illustrates that
the Q-values learned via MOORL and RLPD exhibit similar convergence trends. This demonstrates that
learning a combined Bellman function, as done by RLPD or exploring a meta Q-function, yields comparable
Q-values. However, MOORL offers the advantage of not relying on specific design choices for stability,
highlighting its robustness and simplicity.

5 Experiments

We evaluate the proposed MOORL approach on the D4RL benchmark (Fu et al., 2020) and V-D4RL (Lu
et al., 2022), comparing its performance against state-of-the-art methods, including hybrid RL approach
RLPD (Ball et al., 2023), Hy-Q (Song et al., 2022) and offline RL method ReBRAC (Tarasov et al., 2024),
for completeness. Each baseline has distinct design choices and operational paradigms that provide valuable
context for evaluating MOORL’s strengths in hybrid offline-online RL settings. Through our chosen baselines
and benchmark tasks, we aim to address the following questions:

• Can MOORL effectively integrate offline data into an online RL setting without extensive design-
specific configurations?

• Does MOORL ensure stable learning across diverse data distributions, minimizing the need for
task-specific tuning?

• Can MOORL be extended to high-dimensional image-based observation data?

• Does MOORL maintain consistent performance across varying offline data qualities by learning a
stable Q-function?

5.1 Evaluation on Offline D4RL Tasks

To evaluate MOORL’s performance, we select a range of D4RL tasks to assess robustness across diverse data
distributions:

• D4RL Locomotion(Fu et al., 2020): This set includes 15 dense-reward locomotion tasks, with
offline data covering varying levels of optimality, from expert to random trajectories.

• D4RL Maze-Navigation(Fu et al., 2020): We utilize 6 AntMaze navigation tasks with sparse
binary reward structures, each with different complexities.

• D4RL Adroit (Fu et al., 2020): The tasks in this set (Pen, Door, Hammer) involve complex
manipulation and sparse rewards, with offline data consisting of expert-level trajectories.

5.1.1 Choice of Baselines

Hybrid RL: We evaluate the performance of MOORL against current state-of-the-art hybrid RL ap-
proaches including RLPD (Ball et al., 2023) and Hy-Q (Song et al., 2022). These approaches aim to inte-
grate offline and online learning. To ensure stable learning, they introduce many design elements, resulting
in computational overhead and limiting their broader impact on real-world scenarios.
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Table 1: The performance comparison across Locomotion tasks is presented as the average normalized score
across 10 seeds. The symbol ± denotes the standard error of the mean.

Task Name TD3+BC ReBRAC Hy-Q RLPD (UTD=20) MOORL, our
half-cheetah-expert 93.4 ± 0.1 105.9 ± 0.6 84.0 111.1 ± 0.1 105.9 ± 0.3
half-cheetah-medium-expert 89.1 ± 1.9 101.1 ± 1.7 86.0 105.8 ± 0.1 103.4 ± 1.0
half-cheetah-medium-replay 45.0 ± 0.4 51.0 ± 0.3 89.0 72.2 ± 0.1 96.9 ± 0.7
half-cheetah-medium 54.7 ± 0.3 65.6 ± 0.3 88.0 85.4 ± 0.1 99.2 ± 0.7
half-cheetah-random 30.9 ± 0.1 29.5 ± 0.5 80.0 85.1 ± 3.3 99.0 ± 1.6
hopper-expert 109.6 ± 1.2 100.1 ± 2.8 54.0 101.7 ± 5.5 111.6 ± 1.4
hopper-medium-expert 87.8 ± 3.5 107.0 ± 2.1 100.0 97.1 ± 4.2 101.5 ± 2.0
hopper-medium-replay 55.1 ± 10.6 98.1 ± 1.8 77.0 81.3 ± 0.8 99.6 ± 1.4
hopper-medium 60.9 ± 2.5 102.0 ± 0.3 106.0 90.8 ± 0.7 107.9 ± 0.8
hopper-random 8.5 ± 0.2 8.1 ± 0.8 80.0 92.9 ± 0.9 101.9 ± 1.1
walker2d-expert 110.0 ± 0.2 112.3 ± 0.1 112.0 127.5 ± 1.9 123.6 ± 1.2
walker2d-medium-expert 110.4 ± 0.2 111.6 ± 0.1 95.0 128.0 ± 1.8 117.2 ± 2.5
walker2d-medium-replay 68.0 ± 6.4 77.3 ± 2.6 103.0 105.7 ± 2.4 111.2 ± 1.2
walker2d-medium 77.7 ± 1.0 82.5 ± 1.2 86.0 115.1 ± 2.1 114.1 ± 0.6
walker2d-random 2.0 ± 1.2 18.4 ± 1.5 90.0 73.7 ± 10.6 93.8 ± 0.3
Average 66.9 ± 3.0 78.0 ± 1.0 88.7 98.2 ± 3.7 105.8 ± 1.1

Table 2: The performance comparison across AntMaze tasks is reported as the average normalized score
over 10 seeds. The symbol ± represents the standard error of the mean. For RLPD, results with UTD=20
and UTD=5 correspond to 300K timesteps, whereas UTD=1 results are based on 1M timesteps.

Task Name TD3+BC ReBRAC Hy-Q RLPD MOORL, our
UTD=20 UTD=5 UTD=1

antmaze-umaze 66.3 ± 2.1 97.8 ± 0.3 - 99.0 ± 0.2 99.0 ± 0.2 88.2 ± 9.3 99.2 ± 0.2
antmaze-umaze-diverse 53.8 ± 2.8 88.3 ± 4.3 - 97.8 ± 0.3 98.5 ± 0.3 93.4 ± 1.2 99.0 ± 0.3
antmaze-medium-play 26.5 ± 6.1 84.0 ± 1.4 25.0 98.5 ± 0.2 97.5 ± 0.5 94.4 ± 1.2 98.2 ± 0.3
antmaze-medium-diverse 25.9 ± 5.1 76.3 ± 4.5 2.0 98.0 ± 0.3 97.5 ± 0.3 93.6 ± 1.4 98.5 ± 0.4
antmaze-large-play 0.0 ± 0.0 60.4 ± 8.7 0.0 88.0 ± 0.8 75.0 ± 8.3 57.8 ± 5.4 82.3 ± 3.4
antmaze-large-diverse 0.0 ± 0.0 54.4 ± 8.4 0.0 87.5 ± 1.2 77.5 ± 4.2 50.2 ± 6.9 85.6 ± 2.1
Average 28.7 ± 2.7 76.8 ± 4.6 6.8 94.8 ± 0.5 90.8 ± 2.3 79.6 ± 3.5 93.8 ± 1.1

Offline RL: For the offline RL method, we use ReBRAC (Tarasov et al., 2024), which builds on offline
RL and investigates the effect of many design elements on the performance highlighting how different design
elements can enhance the performance of offline RL agents. ReBRAC is primarily designed for offline RL,
while it is less relevant to MOORL’s hybrid offline-online framework, and is included for completeness.

RL+BC: These approaches use a minimalistic approach for learning from offline data. To demonstrate the
effectiveness of MOORL against the Behavior Cloning (BC) regularized (Bain & Sammut, 1995) RL method,
we use TD3+BC (Fujimoto & Gu, 2021) and DrQ+BC (Yarats et al., 2021) for state and pixel-based tasks.

5.1.2 Empirical Results

The baselines TD3+BC and ReBRAC results are taken from (Tarasov et al., 2024) while Hy-Q and DrQ+BC
results are taken from (Nakamoto et al., 2024). Our results demonstrate that MOORL achieves competitive
performance with RLPD, Hy-Q, and ReBRAC across the D4RL and V-D4RL tasks while being simple and
computationally efficient without introducing many design components. MOORL exhibits stable learning in
a hybrid RL setting, i.e., offline-online learning, and achieves robust cumulative rewards.
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Table 3: The performance comparison across Adroit tasks is presented as the average normalized score across
10 seeds. The symbol ± denotes the standard error of the mean.

Task Name BC TD3+BC ReBRAC RLPD (UTD=20) MOORL, our
pen 85.1 146.3 ± 2.4 154.1 ± 1.8 137.8 ± 2.4 150.0 ± 0.8
door 34.9 84.6 ± 14.8 104.6 ± 0.8 105.5 ± 2.1 107.1 ± 0.7
hammer 125.6 117.0 ± 10.3 133.8 ± 0.2 140.3 ± 2.8 137.2 ± 1.1
Average 81.9 116 ± 9.2 130.8 ± 1.0 127.9 ± 2.4 131.4 ± 0.9

On D4RL locomotion benchmarks, MOORL achieves the highest average performance. For the tasks with
suboptimal data, hybrid approaches such as MOORL, Hy-Q, and RLPD highlight the advantage of using a
hybrid learning approach. It is evident from Table 1 that MOORL performs most optimally across tasks,
specifically where offline data is suboptimal. MOORL achieves 8 − 10% performance improvement over
RLPD without using large critic ensembles, high UTD, and layer normalization. Further, MOORL high-
lights that for the task, such as halfcheetah-random, it achieves a significant performance gain. We believe
that this advantage comes from MOORL’s adaptation strategy. Unlike other hybrid approaches, MOORL
alternates between offline and online data sources rather than directly mixing them. This design prevents
the policy from being overly constrained by the offline dataset at each adaptation step, as the inner-loop
fine-tuning is performed separately for each data source. Consequently, MOORL shifts its reliance toward
online interactions, resulting in superior policy.

The performance of RLPD is competitive to MOORL on the AntMaze navigation task, but as highlighted in
Table 2, the performance of RLPD drops significantly with a lower UTD ratio (UTD=1), whereas MOORL
performs significantly superior. The performance of RLPD (UTD=5), with a similar number of gradient
steps, is similar to MOORL. However, MOORL being larger Q-ensemble free highlights its computational
efficiency. For the D4RL AntMaze navigation tasks, MOORL avoids incorporating design choices such as
Clipped Double Q-learning (CDQ) (Fujimoto et al., 2018) and Entropy Backup similar to RLPD, which are
used in other tasks. These design choices tend to perform poorly in the sparse reward structure of AntMaze
tasks, leading to overly conservative learning and suboptimal policy performance. While RLPD demonstrates
the best performance under standard configurations, achieving a modest 3%−4% improvement over MOORL,
its reliance on a high Update-to-Data (UTD) ratio makes it sensitive to this hyperparameter. With UTD=1,
RLPD suffers a substantial performance drop, whereas MOORL maintains stable learning, achieving a
13%−17% improvement over RLPD at 1M timesteps. This highlights MOORL’s ability to maintain effective
learning without reliance on aggressive update schedules, making it particularly advantageous in scenarios
with limited computational budgets or where low UTD ratios are preferred.

Adroit tasks pose significant challenges due to their high-dimensional action spaces and sparse reward struc-
tures. To evaluate the performance of various approaches, we conducted experiments on Adroit tasks using
high-quality offline expert data. As shown in Table 3, the performance of all methods, including MOORL,
remains consistent across tasks, with no single approach demonstrating a definitive advantage. Depending
on the specific task, RLPD, ReBRAC, and MOORL occasionally outperform one another. However, the
differences in performance are not statistically significant. This lack of clear improvement can likely be
attributed to the inherent complexity of the Adroit tasks, which makes it challenging for any single method
to achieve a distinct edge over others in this domain.

5.2 MOORL’s Adaptability to Pixel-Based Observation Spaces

This section investigates MOORL’s ability to operate effectively with high-dimensional image-based observa-
tions. Unlike methods that require extensive hyperparameter tuning or specialized architectural adjustments,
MOORL seamlessly extends to this challenging domain by utilizing a shared feature extraction encoder within
its actor-critic framework. This encoder processes raw pixel input into meaningful feature representations,
enabling efficient learning even in visually complex environments. We evaluate MOORL’s performance on
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Table 4: The performance comparison across V-D4RL Locomotion tasks is presented as the average normal-
ized score across 10 seeds. The symbol ± denotes the standard error of the mean.

Task Name BC DrQ+BC ReBRAC RLPD MOORL, our
walker-walk-expert 91.5 ± 1.3 68.4 ± 2.5 81.4 ± 3.3 91.5 ± 1.1 94.6 ± 0.2
walker-walk-medium 40.9 ± 1.3 46.8 ± 0.8 52.5 ± 1.1 84.9 ± 0.7 87.9 ± 1.8
cheetah-run-expert 67.4 ± 2.3 34.5 ± 2.8 35.6 ± 1.8 68.3 ± 1.0 53.2 ± 2.5
cheetah-run-medium 51.6 ± 0.5 53.0 ± 1.0 59.0 ± 0.2 49.0 ± 1.3 49.9 ± 1.6
Average 62.9 ± 1.3 50.7 ± 1.8 57.1 ± 1.6 73.4 ± 1.0 71.4 ± 0.9

high-dimensional DeepMind Control Suite (DMC) (Tassa et al., 2018) tasks, leveraging datasets with pixel-
based observations that test robustness and adaptability. As shown in Table 4, MOORL outperforms RLPD
on 3 out of 4 DMC tasks, while RLPD achieves slightly better average cumulative performance. Though
RLPD remains competitive, its reliance on large Q-ensembles makes it computationally expensive, particu-
larly for image-based tasks. MOORL, on the other hand, achieves comparable results without using large
critic-ensembles, emphasizing its practicality for resource-constrained scenarios.

These findings highlight MOORL’s capacity for generalization and computational efficiency in high-
dimensional reinforcement learning tasks. By maintaining strong performance without complex design alter-
ations or fine-tuning, MOORL demonstrates its suitability for visually demanding environments, reaffirming
its flexibility and reliability across diverse settings.

5.3 Does MOORL learn Stable Q-Values
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Figure 1: Learning curves showing the mean Q-values for
the AntMaze-Medium task on Diverse and Play datasets.
Figures 1a and 1b depict the performance of the MOORL
and RLPD frameworks, respectively, demonstrating their
learning stability and effectiveness across both datasets.

To this end, we demonstrate that MOORL en-
ables stable learning without relying on exten-
sive design choices. Specifically, we present the
mean Q-values in Figure 1 to showcase the sta-
bility of MOORL’s learning architecture. De-
spite the data quality, MOORL consistently
learns a stable meta Q-function, translating
into a stable meta-policy.

In Figure 1, we evaluate MOORL stabil-
ity in the challenging and sparsely rewarded
AntMaze navigation task. The diverse dataset
is created by assigning random goal locations
in the maze and directing the agent to navigate
to them. In contrast, the play dataset consists
of trajectories from specific, hand-picked initial
positions to hand-picked goal locations. Remarkably, MOORL achieves similar Q-value trajectories across
these datasets, emphasizing its robustness to variations in data quality.

For comparison, we conducted a similar analysis on RLPD to further substantiate the stability of Q-value
learning across different frameworks. This analysis highlights MOORL’s capability to maintain stable learn-
ing dynamics even under diverse and challenging data conditions without requiring specific design choices.

6 Related Work

6.1 Offline Reinforcement Learning

Offline reinforcement learning (RL) has gained significant attention for its ability to learn policies from
pre-collected datasets without additional environmental interaction. However, distributional shift remains a
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fundamental challenge, as highlighted by Levine et al. (2020), designing algorithms that generalize effectively
from limited data is crucial. Several approaches address this challenge by incorporating regularization
techniques. TD3+BC (Fujimoto & Gu, 2021) integrates behavioral cloning into the actor loss to constrain
policy learning, while CQL (Kumar et al., 2020) enforces conservatism by penalizing the critic for assigning
high values to out-of-distribution (OOD) actions. IQL (Kostrikov et al., 2021) takes a different approach by
leveraging advantage-weighted regression to avoid sampling OOD actions altogether. More recent methods
further improve policy learning by incorporating representation learning, such as pre-training action encoders
(Akimov et al., 2022; Chen et al., 2022) or estimating dataset uncertainty using VAEs (Wu et al., 2022) and
RND (Nikulin et al., 2023). Another line of work improves policy robustness by leveraging ensemble-based
uncertainty estimation. SAC-N (An et al., 2021) achieves strong results using large Q-function ensembles,
though some tasks require ensembles of up to 500 members, making it computationally expensive. MSG
(Ghasemipour et al., 2022) mitigates this by introducing independent target updates, reducing the ensemble
size to four in MuJoCo tasks but still requiring 64 members for AntMaze.

Further, Fujimoto & Gu (2021) shows that non-algorithmic factors significantly influence performance, and
ReBRAC (Tarasov et al., 2024) performs a detailed analysis to understand the effect of design choice on
the performance of offline RL. Offline RL also struggles when datasets lack full coverage, making pessimism
computationally challenging (Jin et al., 2021; Zhang et al., 2022) and often requiring strong representation
conditions (Xie et al., 2021). To overcome these limitations, hybrid approaches incorporating limited online
interaction have been proposed as a promising alternative.

6.2 Bridging Online and Offline RL

Integrating online and offline reinforcement learning (RL) is a critical research area. Empirical studies have
examined how online learners can leverage logged data to improve performance (Rajeswaran et al., 2017; Nair
et al., 2017; Hester et al., 2017; Ball et al., 2023; Nakamoto et al., 2024; Zheng et al., 2023). While practical
benefits are evident, formal guarantees in this setting remain limited. (Ross & Bagnell, 2012) proposed a
framework where a learner can choose between executing a logging policy µ or an alternative online policy,
effectively bridging the gap between online and offline data exploitation. (Xie et al., 2021) demonstrated
that no approach could achieve strictly better sample complexity than purely online or offline methods
when using data collected from a logging policy. This result highlights the challenges of balancing online
exploration with offline data utilization. In contrast, our research assumes access to a pre-collected offline
dataset and the ability to interact online, enabling the refinement of a near-optimal policy while minimizing
online interactions. (Song et al., 2022) proposed "Hybrid RL" using the Hybrid Q-learning algorithm (Hy-
Q) for low bilinear rank Markov Decision Processes (MDPs) (Du et al., 2021). Under certain conditions,
Hy-Q can achieve optimal policies efficiently. However, the method’s performance may degrade when offline
data coverage of the optimal policy is insufficient, illustrating the importance of comprehensive offline data.
Further, a study by (Xie et al., 2022) delves into purely online contexts or frameworks involving offline
datasets, offering insights into the concealability coefficient—a parameter critical in establishing guarantees
for offline RL. This approach bridges the analytical methods used in online and offline settings. Recent work
by (O’Donoghue et al., 2018; Wagenmaker & Pacchiano, 2022), and others explore synergies between these
methodologies, revealing strategies for effectively integrating offline data with online exploration.

Our approach builds on these foundations by addressing sample complexity when merging offline datasets
with online learning. We aim to enhance the unified integration of offline data into online reinforcement
learning without extensive design choices and added computational complexity (Ball et al., 2023; Song et al.,
2022), which limits the border applicability of such hybrid-RL approaches.

7 Conclusion

In this work, we demonstrated that off-policy RL can effectively integrate offline and online data distribu-
tions. By learning a meta-policy over these distributions, our approach enables stable Q-value estimation
independent of data quality. Extensive experiments across 28 diverse tasks, spanning both state and pixel
observations, validated the efficacy of our method. Specifically, we showed that a hybrid RL policy improves
sample efficiency and ensures robust performance across varying data qualities. By limiting design compo-
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nents and computational overhead, our approach generalizes well across different environments, making it a
scalable and practical solution for real-world applications. These findings highlight the potential of combining
offline and online learning to address key challenges in reinforcement learning. While MOORL demonstrates
robustness in handling diverse offline datasets, highly biased data may still constrain exploration. Future
work could explore adaptive mechanisms to mitigate such biases by dynamically adjusting the influence of
offline data to further enhance learning stability and generalization.
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Figure 2: The plots show learning curves with normalized returns on the y-axis. Each curve represents
the mean performance across 10 random seeds, with shaded regions indicating the standard deviation. The
normalized return at each point is computed as the average over 10 evaluation episodes. All tasks are
evaluated over 300K timesteps.
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Figure 3: The plots illustrate the impact of the inner-loop adaptation step on learning. The y-axis represents
the normalized return, while the x-axis denotes timesteps. The solid curves show the mean return across 10
random seeds, with shaded regions indicating the standard deviation. Each evaluation point is computed as
the average return over 10 episodes. All tasks are evaluated over 300K timesteps.

A Ablation Study: Impact of Inner-Loop Adaptation Steps

The number of inner-loop adaptation steps (K) plays a crucial role in our meta-learning framework, influ-
encing the policy’s ability to adapt to distributional shifts. To assess its impact, we conduct an ablation
study (Figure 3) by varying K ∈ {2, 4, 6} while keeping all other hyperparameters fixed.

Our results highlight the importance of selecting an appropriate K for effective adaptation. With K = 2, the
model struggles to align with the target distribution, leading to high variance and degraded performance.
This suggests that too few updates hinder the agent’s ability to capture distributional shifts, resulting in
unstable learning dynamics. Conversely, K = 4 provides the best balance between stability and adaptability,
yielding optimal performance. However, increasing K further to K = 6 offers no significant performance
gains. Instead, we observe diminishing returns, where additional updates increase computational overhead
without substantial improvements. This is likely due to overfitting to recent experiences, reducing the learned
policy’s generalization capability.

This aligns with prior meta-learning findings (Finn et al., 2017; Nichol & Schulman, 2018), which indicate
that a moderate number of inner-loop steps maximizes generalization while maintaining efficient adapta-
tion. Overall, our findings suggest that a balanced adaptation strategy—rather than aggressive inner-loop
optimization—is key to achieving strong generalization in hybrid offline-online reinforcement learning.

B Implementation Details

To implement the proposed framework, we use entropy-regularized SAC (Haarnoja et al., 2018) as the base
RL algorithm and apply Reptile (Nichol & Schulman, 2018) for meta-updates, improving generalization across
distributions. The policy and Q-networks are 2-layer MLPs with 256 hidden units and ReLU activations.
We use the Adam optimizer (Kingma, 2014) for inner-loop adaptation and meta-updates. Each training
iteration consists of K = 4 SAC updates followed by a Reptile-style (Nichol & Schulman, 2018) meta-
update. A learning rate of 3× 10−4 for inner-loop adaptation is used, while for meta-updates, the learning
rate is dynamically adjusted (Nichol & Schulman, 2018) based on the ratio of the current timestep to
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Table 5: MOORL Hyperparameters

Parameter Value
Batch size 256
Discount (γ) 0.99
Optimizer Adam
Learning rate 3× 10−4

Critic EMA Weight (ρ) 0.005
Inner Gradient Steps (K) 4
Network Width 256 Units
Number of Layers 2
Initial Entropy Temperature (α) 1.0
Target Entropy −dim(A)

2

total timesteps. We maintain an exponentially moving average target Q-network with an update weight of
ρ = 0.005. Hyperparameters are summarized in Table 5.

C Inner-Loop Adaptation in MOORL vs. UTD in RLPD

It is essential to distinguish the role of inner-loop adaptation steps (K) from the Update-To-Data (UTD)
ratio in RLPD (Ball et al., 2023). The UTD ratio dictates the number of gradient updates per environment
step, primarily influencing sample efficiency in off-policy RL by controlling the degree of data reuse. In
contrast, our adaptation steps (K) govern the number of inner-loop within each outer-loop meta-update
iteration, directly shaping the adaptation dynamics rather than the frequency of gradient updates. While
a high UTD enables more updates per collected transition, K determines how effectively the learned policy
aligns with the target distribution across offline and online phases. Thus, K plays a fundamental role in
optimizing meta-adaptation rather than modulating sample efficiency, making it a distinct and crucial design
choice in our framework. These distinctions become evident in Figure 1, where we show that both RLPD
and MOORL learn similar Q values. While MOORL inherently adapts to changing distribution through
inner and meta updates, RLPD uses layer norm and a large Q-ensemble to stabilize learning, essentially to
learn similar Q-values.

D Computational Cost Comparison

We compare the computational cost of our methods with RLPD on Adroit hand tasks, including pen door
and hammer. The RLPD for these tasks uses a 3-layer MLP, whereas MOORL uses a 2-layer MLP, which
is consistent across all the tasks as highlighted in Table 7. Also, RLPD uses a high UTD ratio (20) while
maintaining a large Q-ensemble (10), which is in contrast to MOORL, which maintains a simple Double-Q
network architecture. RLPD is trained for 300K timesteps at each timestep, it performs 20 gradient steps
given by UTD, essentially resulting in 6M gradient steps over 300K timesteps. MOORL performs 4 inner
update adaptation gradient steps and 1 meta update gradient step at each timestep, resulting in a total
of 1.5M gradient steps over 300K timesteps. RLPD takes approx 0.5sec while MOORL takes 0.05sec per
timestep when run on a single RTX A4000 GPU.

E MOORL: Embracing Simplicity in Design

Recent works have demonstrated that leveraging offline data can significantly enhance reinforcement learning
performance. State-of-the-art methods in hybrid RL (e.g., RLPD (Ball et al., 2023)) and offline RL (e.g.,
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ReBRAC (Tarasov et al., 2024)) typically rely on extensive component selection and fine-tuning of design
elements to address offline data challenges. In contrast, MOORL adopts a simpler algorithmic structure that
requires fewer design components.

MOORL integrates offline and online data using an architecture that minimizes reliance on extensive tun-
ing—avoiding the need for deep network ensembles or high UTD ratios—while still effectively handling
distribution shifts and limited exploration. As illustrated in Tables 6 and 7, MOORL delivers robust perfor-
mance with a streamlined set of design choices compared to ReBRAC and RLPD.

Although the MOORL algorithm is not entirely free of design decisions, the simplicity of MOORL’s approach
enhances its adaptability across diverse tasks, providing a more generalizable and robust solution relative to
methods that depend heavily on intricate design configurations.

Table 6: Comparison of Design Choices with ReBRAC (Tarasov et al., 2024)

Component ReBRAC MOORL
Deeper Networks ✓ ✗
Larger Batches ✓ ✗
Layer Normalization ✓ ✗
Decoupled Penalization ✓ ✗
Adjusted Discount Factor ✓ ✗

Table 7: Comparison of Design Choices with RLPD (Ball et al., 2023)

Component RLPD MOORL
Sampling Strategy ✓ ✗
Layer Normalization ✓ ✗
Random Ensemble Distillation ✓ ✗
Clipped Double Q-Learning ✓ ✓
Network Architectures ✓ ✗
Update to Data Ratio ✓ ✗
Entropy Backup ✓ ✓

F Detailed Task Definition

F.1 D4RL: Locomotion

In these tasks, the reward is dense and based on the agent’s forward velocity, penalizing large control inputs
to encourage stable movement. The goal is to maximize the cumulative reward over the episode by learning
an efficient and stable gait. The standard evaluation metric is the normalized score, which is computed by
normalizing the agent’s return relative to expert and random policies, as defined by (Fujimoto et al., 2019).
The datasets are generated from policies of varying expertise, including random, medium, medium-replay,
medium-expert, and expert trajectories. Episodes typically last for 1,000 timesteps without early termination.

F.2 D4RL: AntMaze

In these tasks, the reward is sparse and binary, indicating whether the agent has reached the goal. Upon
reaching the goal, the episode terminates. The normalized return is measured as the proportion of successful
trials out of evaluation trials following prior work. The dataset consists of play-based and diverse demon-
strations, where the former includes goal-directed trajectories, and the latter contains broader movement
data. The challenge in this domain arises from long-horizon credit assignment and the need for effective
exploration in a sparse reward setting.

20



Published in Transactions on Machine Learning Research (05/2025)

F.3 D4RL: Adroit

The Adroit suite consists of dexterous hand manipulation tasks that require controlling a 24-DoF simulated
Shadow Hand robot to perform complex actions such as hammering a nail, opening a door, or twirling a
pen. This domain is specifically designed to assess the impact of narrowly distributed expert demonstrations
on learning in a high-dimensional robotic manipulation setting with sparse rewards. Unlike standard Gym
MuJoCo tasks, Adroit exhibits several distinct characteristics. First, the dataset is sourced from human
demonstrations. Second, solving these tasks with online RL alone proves challenging due to the sparse
reward structure and inherent exploration difficulties. Lastly, the high-dimensional nature of these tasks
introduces additional complexity in representation learning.

F.4 V-D4RL: DeepMind Control Suite (DMC)

The DMC tasks involve controlling physics-based agents with dense rewards that encourage smooth, efficient
movement. The standard evaluation metric is the normalized score, computed using the agent’s return
normalized against the performance of a well-trained SAC policy. The datasets include expert and medium
policies, allowing evaluation of an agent’s ability to learn from varying data quality. Episodes typically run
for 1,000 timesteps without early termination.
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