
Early Fusion of H&E and IHC Histology Images for Pediatric
Brain Tumor Classification

Christoforos Spyretos1,2 christoforos.spyretos@liu.se
Iulian Emil Tampu1,2 iulian.emil.tampu@liu.se
Nadieh Khalili3 nadieh.khalili@radboudumc.nl
Juan Manuel Pardo Ladino1,4 juapa351@student.liu.se
Per Nyman2,5 per.nyman@regionostergotland.se
Ida Blystad2,6 ida.blystad@regionostergotland.se
Anders Eklund1,2,4 anders.eklund@liu.se
Neda Haj-Hosseini1,2 neda.haj.hosseini@liu.se

1 Department of Biomedical Engineering, Linköping University, Sweden

2 Center for Medical Image Science and Visualization, Linköping University, Sweden
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Abstract

This study explores the application of computational pathology to analyze pediatric brain
tumors utilizing hematoxylin and eosin (H&E) and immunohistochemistry (IHC) histology im-
ages. Experiments were conducted on H&E images for predicting tumor diagnosis and fusing
them with unregistered IHC images to investigate potential improvements. Patch features
were extracted using UNI, a vision transformer (ViT) model trained on H&E data, and whole
slide classification was achieved using the attention-based multiple instance learning CLAM
framework. In the astrocytoma tumor classification, early fusion of the H&E and IHC signif-
icantly improved the differentiation between tumor grades (balanced accuracy: 0.82 ± 0.05 vs
0.84 ± 0.05). H&E only stain had a balanced accuracy of 0.79 ± 0.03 for the overall classes
without any improvement obtained when fused with IHC. The findings highlight the potential
of using multi-stain fusion to advance the diagnosis of pediatric brain tumors, however, further
fusion methods should be investigated to explore the potentials.

Keywords: pediatric brain tumour, H&E, immunohistochemistry (IHC), Ki-67, GFAP, com-
putational pathology, early fusion, UNI, CLAM, foundation model

1 Introduction

Central nervous system (CNS) tumors were the second leading cause of cancer incidences
among children and adolescents aged 0-19 years old, with worldwide incidence and mortality
rates of 1.2 and 0.6 (per 100,000 people) in 2022 (Ferlay J, 2024). Whole slide images (WSIs)
are one of the primary tools for pathologists to diagnose brain tumors, providing a cost-effective
illustration, sharing, and archiving for pathology information. The introduction of WSIs has
led to an extensive volume of data generated, facilitating the implementation of deep learning
in assisting pathologists with making faster and more consistent decisions.

The world health organization’s (WHO) latest edition of guidelines for the CNS tumors clas-
sification published in 2021, emphasizes the integration of molecular information into diagnosing
brain tumors (Louis et al., 2016). Despite the recent advancements in molecular diagnostics,
the assessment of histology remains a crucial element in the evaluation of CNS tumors (Viaene,
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2023). More precisely, since some molecular tests can take several days to weeks to provide
results, the histologic diagnosis can guide initial treatment planning and patient counseling
while awaiting the integrated diagnosis. In addition, histologic evaluation is frequently essential
for determining the specific ancillary molecular tests needed for diagnosis. Pathologists often
use various immunohistochemical (IHC) stains to identify specific molecular alterations, detect
mutant proteins, and determine the molecular subgroups of brain tumors.

The increasing availability of biomedical data, such as medical imaging, electronic health
records and genome sequences, has led to the development of multimodal artificial intelligence
applications (Kline et al., 2022; Acosta et al., 2022). These applications mimic the multimodal
nature of clinical expert decision-making and aim to enhance predictions and achieve more
accurate diagnoses. enhance predictions and achieve more accurate diagnoses. Few studies in
computational pathology have analyzed H&E-stained WSIs alongside IHC-stained WSIs, and
those available are focused on breast cancer (Weitz et al., 2021; Liu et al., 2020). In this
study, the classification of pediatric brain tumors is investigated using H&E stained images. In
addition, the study examines whether the early fusion of unregistered H&E, Ki-67, and glial
fibrillary acidic protein (GFAP) stained images improves diagnostic predictions compared to
only using H&E slides. To the best of our knowledge, no published study has yet explored the
potential and feasibility of fusing unregistered H&E and IHC images for predicting pediatric or
adult brain tumor diagnoses. Potential uses for Ki-67 include diagnosis of medulloblastomas and
astrocytomas and distinguishing between astrocytoma grades (Sengupta et al., 2012; Sharma
et al., 2018). GFAP is a reliable marker for histological diagnosis between glial and non-glial
tumors and the grading of astrocytomas (Varma et al., 2018; van Bodegraven et al., 2019).

2 Data

In this study, WSIs were utilized from the children’s brain tumor network (CBTN) dataset,
which consists of over 2,000 subjects and more than 8,000 slides (Lilly et al., 2023; Shapiro
et al., 2023). However, the CBTN dataset is based on the 2016 WHO guidelines, which include
brain tumor classifications no longer used in clinical practice. Therefore, subjects with outdated
tumor classifications were excluded, and the brain tumor classifications listed in the 2021 WHO
guidelines were used to conduct the analysis.

Most WSIs are H&E-stained, and the most represented IHC stains are Ki-67 and GFAP.
Thus, only subjects with slides containing all three stains were chosen to conduct the exper-
iments. It is important to note that the slides are unregistered, and subjects might contain
several single-modality WSIs. In addition, a threshold of 10 subjects per class was set to ensure
sufficient representation of each tumor family/type. Consequently, the study analyzes the can-
cer types of ependymoma (EP), medulloblastoma (MED), and ganglioglioma (GANG), and the
tumor families of astrocytoma low-grade glioma (grades 1, 2) (ASTR-LGG) and astrocytoma
high-grade glioma (grades 3, 4) (ASTR-HGG). ASTR-LGG, ASTR-HGG, GANG, and EP are
glial tumors, while MED is a non-glial tumor. Additionally, images with artifacts such as pen
marks and air bubbles were included in the experiments, as their effect was negligible in the
model’s performance (Pardo Ladino, 2024). Table 1 summarizes the number of subjects and
WSIs included in the study, and figure 1 is an example from the dataset.

3 Methodology

End-to-end classification of WSIs using deep learning algorithms is challenging due to their
immense size, typically in the range of gigapixels (Hosseini et al., 2024). This limitation is
commonly circumvented by training patch-based networks using pixel-level annotations and
then aggregating the patch-level results. Those approaches are known as supervised learning
methods. However, obtaining a large amount of patches with fine-grained annotations is expen-
sive, time-consuming, and requires the input of skilled and experienced pathologists. There-
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Table 1: Tumor families/types and the number of subjects, H&E, KI-67, and GFAP slides used
in the analysis. Only subjects with slides containing all three stain modalities were included in
the experiments.

Tumor family/type
Number of
subjects

Number of
H&E slides

Number of
Ki-67 slides

Number of
GFAP slides

ASTR-LGG 173 342 195 196
ASTR-HGG 64 127 71 76
EP 47 106 54 57
MED 46 80 52 51
GANG 40 91 47 52

Totals 370 746 421 432

(a) H&E staining (b) Ki-67 staining (c) GFAP staining

Figure 1: Examples of H&E, Ki-67, and GFAP WSIs from the same subject diagnosed with
medulloblastoma.

fore, weakly-supervised and self-supervised learning methods have been developed in computa-
tional pathology, addressing the aforementioned issues. Under the weakly-supervised learning
paradigm, models are trained on partially or sparsely labeled data, such as one label for an entire
WSI or per subject. With self-supervised learning, the algorithms learn feature representations
through unlabeled data.

Multiple instance learning (MIL) is a weakly-supervised learning method, where each WSI
is considered as a bag containing multiple patches, also called instances (Carbonneau et al.,
2018). If a WSI (bag) is labeled class-positive, then at least one patch (instance) in that WSI
is class-positive. Otherwise, if a WSI is class-negative, all patches in that WSI are negative. In
this study, a MIL approach named clustering-constrained attention multiple instance learning
(CLAM) was utilized to perform the classification tasks (Lu et al., 2021), aggregating patch-level
features in slide-level representations for classification.

In the pre-processing phase of the images, the CLAM toolbox was employed to segment
the tissue and extract patches of 256x256 pixels and their features. The ViT named UNI
(UNI-ViT) was utilized as a feature extractor, pre-trained on a proprietary histology dataset.
UNI is a recently introduced foundation model trained on more than 100 million patches from
over 100,000 diagnostic H&E-stained WSIs across 20 major tissue types. Feature extractors
pre-trained on in-domain histology datasets can capture a broad spectrum of patterns, such as
different fixations, staining characteristics, scanning protocols, and tissue architecture across
multiple centers. After extracting the features, those corresponding to the same stain modality
for each subject were concatenated, representing subject-level features per stain modality.
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Healthcare professionals utilize various information sources to make comprehensive decisions
and a thorough understanding of the patient’s condition. By fusing multiple modalities, the di-
verse tissue characteristics of each modality could be captured and obtain a more comprehensive
and accurate analysis (Lipkova et al., 2022). An early fusion approach was utilized to explore
the potential improvement in diagnostic prediction through the integration of IHC with H&E
staining. Specifically, all possible fused combinations between the three stain modalities were
investigated by concatenating features at the subject level. Figure 2 illustrates the workflow
framework for the single modality and multi-stain approaches.

Figure 2: Overview of the a) single modality and b) multi-stain frameworks. a) Tissue segmen-
tation and patch extraction from the whole slide images (WSIs) were accomplished using the
CLAM toolbox. The extracted patches were encoded to feature representations using UNI, a
ViT pre-trained on an in-domain proprietary H&E histology dataset. These features were then
input into the CLAM model to perform the classification tasks. b) Tissue segmentation, patch
and feature extraction were conducted in the same manner as in the single-modality procedure
for each stain. An early fusion approach was employed between all possible combinations of the
three stain modalities by concatenating features at the subject level. The fused features were
then fed into the CLAM model to perform the classification tasks.

The classification tasks were accomplished using the small-sized single-branch CLAM model.
In the training phase, the learning rate was 1e-4, and the maximum and minimum number of
epochs was set at 20 and 10, respectively. Early stopping was utilized with patience set to 5
epochs. All other settings were set at the default values suggested by the authors. In addition
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to the CLAM framework, class weight adjustment was used to mitigate the imbalanced data
distribution, using the Scikit-learn library, with weights being inversely proportional to the
number of samples in each class (Pedregosa et al., 2011).

The dataset was class-stratified and subject-wise split into 50% for training, 20% for valida-
tion, and 30% for testing to prevent data leakage between the sets. Since the class distribution
of the dataset is imbalanced, the models were assessed using balanced accuracy, Matthew’s
correlation coefficient (MCC), area under the receiver operating characteristic curve (AUC-
ROC), and weighted F1-score. Experiments were conducted on individual modalities and all
combinations of the fused modalities using non-parametric bootstrapping with 50 replicates.
Non-parametric bootstrapping involves repeatedly sampling from the dataset with replacement
to generate multiple training, validation, and test sets (replicates). This approach allows for
robust estimations of statistical measures without making assumptions about the data distri-
bution. For the statistical comparison, 10000 permutations were conducted between the test
sets to assess observed differences in the performance of the models, at a significance level of
α = 0.05. Statistical comparisons were conducted between the H&E single modality model
and the fused modality models, as well as comparisons between the fused models. Bonferroni
correction was utilized to adjust the significance level, and each hypothesis was performed at a
statistical significance level α = 0.05/6 ≈ 0.0083 (Napierala, 2012).

Attention maps were used to visualize and interpret the importance of regions in the WSI,
utilizing the CLAM toolbox. Furthermore, QuPath was employed to generate the positive and
negative cell density maps of the Ki-67 and compared them to the attention maps (Bankhead
et al., 2017; Pai et al., 2022). The Ki-67 immunostaining is interpreted as a labeling index
(Ki-67 LI) and is defined as the percentage of the number of Ki-67 positive tumor nuclei (brown
cells) divided by the number of all tumor nuclei, correlating with the histological tumor grade.

4 Results

Experiments were conducted using the three different staining modalities individually and
in all possible combinations. Table 2 illustrates the classification performance between ASTR-
LGG and ASTR-HGG and between the five tumor families/types. The tables show the mean
values of the metrics along with their standard deviation across 50 repetitions. The models
were assessed using unseen test sets.

In binary classification, the fusion of all three stains achieves the highest performance, with
significant differences compared to using only the H&E WSIs in most metrics, although it
is not always significantly better than fusing H&E WSIs with either Ki-67 or GFAP WSIs.
The performance of each class has steadily improved by gradually combining different stain
modalities across 50 repetitions. For ASTR-LGG, the balanced accuracy has increased from
0.91 ± 0.04 to 0.92 ± 0.05, and the f1-score has improved from 0.73 ± 0.07 to 0.77 ± 0.06
when fusing three stains. Similarly, for ASTR-HGG, the balanced accuracy has enhanced from
0.72 ± 0.1 to 0.75 ± 0.1, and the f1-score has increased from 0.91 ± 0.02 to 0.92 ± 0.02 when
fusing the three stains. However, in the five-class classification, fusing Ki-67, GFAP, or both
with H&E does not significantly improve performance compared to using H&E WSIs alone,
and there is no improvement in each class’s performance. Specifically, EP and MED are almost
perfectly classified, and ASTR-LGG is correctly classified in most cases. However, ASTR-HGG
is incorrectly classified in less than half of the cases, often classified as ASTR-HGG, and GANG
is frequently misclassified as ASTR-LGG.

Figure 3 illustrates the attention maps for individual stain modalities and fused modalities.
Red regions indicate higher attention from the model, while blue regions indicate lower attention
in those tissue regions. Figures 5 and 4 illustrate the attention and cell density maps of an
ASTR-LGG Ki-67 WSI and an ASTR-HGG Ki-67 WSI, respectively. The positive cell density
map shows Ki-67 positive stained nuclei (brown cells); the greater the number of the positive
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Table 2: Classification performances between ASTR-LGG and ASTR-HGG and five-class clas-
sification of tumor families/types using the three different staining modalities, individually and
in all possible combinations, across 50 repetitions. The models with the best overall perfor-
mance are highlighted in bold.

ASTR-LGG vs ASTR-HGG

H&E 0.82± 0.05a 0.65± 0.08a 0.90± 0.04a 0.86± 0.03a

H&E + Ki-67 0.83± 0.05b 0.68± 0.09b 0.90± 0.03b 0.87± 0.03b

H&E + GFAP 0.82± 0.05c 0.66± 0.09c 0.91± 0.04c 0.87± 0.04c

H&E + Ki-67 + GFAP 0.84± 0.05a 0.69± 0.08a 0.90± 0.04d 0.88± 0.03a

Ki-67 0.81± 0.04 0.62± 0.07 0.88± 0.05 0.85± 0.03
GFAP 0.77± 0.05 0.55± 0.08 0.86± 0.04 0.82± 0.03

Five-class classification between tumour families/types

H&E 0.79± 0.03a 0.72± 0.04a 0.94± 0.01a 0.80± 0.03a

H&E + Ki-67 0.78± 0.03b 0.73± 0.04b 0.94± 0.01a,b 0.80± 0.03b

H&E + GFAP 0.78± 0.04c 0.72± 0.05c 0.94± 0.01b 0.80± 0.03c

H&E + Ki-67 + GFAP 0.78± 0.03d 0.72± 0.05d 0.94± 0.01c 0.80± 0.03d

Ki-67 0.66± 0.04 0.58± 0.05 0.88± 0.02 0.70± 0.04
GFAP 0.69± 0.05 0.61± 0.05 0.90± 0.02 0.72± 0.04

Stain Modalities
Balanced
Accuracy

MCC AUC-ROC
Weighted
F1-Score

a,b,c,d Within a column, two-sided p-value < 0.05 permutation test, significance level adjusted
after Bonferroni correction to α = 0.05/6 ≈ 0.0083. Model performances with a common
superscript differ significantly.

stained nuclei, the higher the tumor grade. Conversely, the negative cell density map shows
Ki-67 negatively stained nuclei (blue cells); the more negatively stained nuclei present, the
lower the tumor grade. The Ki-67 labeling index of the ASTR-HGG is approximately 3.67%,
suggesting a high proliferation rate associated with high-grade pediatric brain tumors. By
comparing the attention map to the positive cell density map, it could be inferred that the
model’s attention is localized in the WSI regions that have a high density of positive Ki-67
(brown) cells. In contrast, the Ki-67 labeling index of the ASTR-LGG is approximately 0.4%,
indicating a low proliferation rate associated with low-grade pediatric brain tumors. When
comparing the attention map to the negative cell density map, it could be interpreted that the
model’s attention is mainly localized in the upper left part of the tissue, which represents the
negative cell (blue) region according to the cell density map. However, the model’s attention is
also concentrated on tissue regions with a low density of negative cells.

5 Discussion

The experiments conducted using unregistered WSIs with three different staining modalities
(H&E, Ki-67, and GFAP), both individually and in fusion, produced satisfactory results in
binary and five-class classifications. When distinguishing between ASTR-LGG and ASTR-
HGG, fusing all three stains significantly outperformed H&E slides alone. This highlights the
potential diagnostic value of Ki-67 and GFAP in differentiating between astrocytoma grades
confirmed by the observation made using the Ki-67 labeling index. However, in the five-class
classification task, although the performance of the model on the H&E WSIs alone was high,
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Figure 3: Attention maps of ASTR-LGG WSIs of the ASTR-LGG vs ASTR-HGG classification
task between individual and fused modalities.

(a) Ki-67 WSI (b) Attention map (c) Positive cell density
map

(d) Negative cell
density map

Figure 4: A Ki-67 WSI of an ASTR-HGG along with its corresponding attention and cell density
maps.
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(a) Ki-67 WSI (b) Attention map (c) Positive cell density
map

(d) Negative cell
density map

Figure 5: A Ki-67 WSI of an ASTR-LGG along with its corresponding attention and cell density
maps.

fusing Ki-67 WSIs, GFAP WSIs, or both with H&E WSIs did not improve the results, implying
that the IHC information is not useful for multi-class tumor-type classification due to the
multiple tumor classes or that a different fusion strategy is needed.

To further explore the potential of multi-stain fusion in computational pathology, alternative
fusion strategies beyond early fusion should be investigated. Multimodal strategies also include
late and intermediate fusions, with intermediate fusion further subdivided into single-level,
gradual, and guided. In intermediate fusion, the prediction loss is backpropagated to the feature
extraction layer of each modality to iteratively learn improved feature representations. Using
the late fusion approach, individual classifiers are trained separately on each staining modality,
and their predictions are combined at the decision level.

The relationship between the attention and the cell density maps provides useful under-
standings of how the model’s attention is localized to the regions of the tissue based on cell
proliferation activity. In low-grade tumors, the model emphasizes tissue areas with negatively
stained nuclei, whereas in high-grade tumors, the model’s attention is mainly concentrated on
regions with high Ki-67 positively stained nuclei. This attention pattern underlines the model’s
potential for classifying tumor grades based on cellular proliferation markers. However, a more
thorough analysis would require further interpretation of the maps and eventual statistical
analysis.

6 Conclusion

The experiments showed promising results in classifying pediatric brain tumor families/types
using H&E slides. Early fusion of unregistered Ki-67 and GFAP with H&E slides improved the
distinction between ASTR-LGG and ASTR-HGG with statistical significance, suggesting the
diagnostic potential of Ki-67 and GFAP stains. However, over multiple tumor classes, fusion of
the H&E and IHC did not improve the results from what is obtained by the H&E images only.
Alternative fusion strategies beyond early fusion, such as late and intermediate fusions, should
be explored in the next step to maximize the potential of multi-stain fusion for this application.
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