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ABSTRACT

Machine learning (ML) has recently emerged as a powerful tool to enhance the
proactive optical network maintenance and thereby, improve network reliabil-
ity and operational efficiency, and reduce unplanned downtime and maintenance
costs. However, it is challenging to develop an accurate and reliable ML based
prognostic models due mainly to the unavailability of sufficient amount of training
data since the device failure does not occur often in optical networks. Federated
learning (FL) is a promising candidate to tackle the aforementioned challenge by
enabling the development of a global ML model using datasets owned by many
vendors without revealing their business-confidential data. While FL greatly en-
hances the data privacy, a global model can be strongly affected by a malicious
local model. We propose a robust collaborative learning framework for predic-
tive maintenance on cross-vendor in a dishonest setting. Our experiments confirm
that a global ML model can be accurately built with sensitive datasets in federated
learning even when a subset of vendors behave dishonestly.

1 INTRODUCTION

Optical fiber networks compose the core of telecommunication infrastructure today due to their high
capacity of data transmission. Optical networks rely on fully functional hardware components that
run under optimal conditions. In order to reduce the risk of unplanned network interruption and
service outage, it is important to predict the degradation of hardware network components correctly
using analyzing tools and techniques, by which the maintenance budget and resources are allocated
efficiently and timely. Due to the great benefits in industry, global predictive maintenance market is
expected to reach more than $13 billion by 2026 (ReportLinker, 2021; Simon, 2021).

Machine learning (ML) based prediction is an emerging method to improve the accuracy of predic-
tive maintenance in manufacturing industry and communication networks. An ML model is trained
by the historical data of hardware failure and then the upcoming maintenance is predicted by real-
time data gathered through measurement at the edge. ML techniques can be useful if a sufficiently
large, diverse, and realistic set of training data exists. Since an ML model relies so heavily on good
training data, the availability of such datasets is a crucial requirement for this approach.

However, it is challenging to develop a high-precision ML model for predictive maintenance mainly
due to the lack of training data. The hardware failures or maintenance events do not occur frequently
so that it takes time until good and meaningful training data are collected through the network.
Hence, an ML model is often trained using the accelerated aging test results (e.g. a life cycle under
the extreme temperature or the over-powered condition) that are conducted by hardware manufactur-
ers. Since the components of network equipment are usually produced by small and medium-sized
companies, such an ML model is trained based on the limited amount of data that are owned by each
manufacturer.

This situation can be relieved, if the training dataset can be aggregated from multiple vendors and
consolidated in a central location. Since collaborative learning allows to train a model on larger
datasets rather than the dataset available in a single vendor, a higher quality and more accurate ML
model can be built. However, such collaboration is not straightforward in reality since vendors are
not willing to share their training data with external companies. Aging test data are often company-
confidential and trade secret. Moreover, sharing data with foreign companies may be prohibited by
privacy protection regulations in their home countries.
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Federated Learning Federated learning (FL) is a framework of enabling distributed parties to
work together to train machine learning models without sharing the underlying data or trusting any
of the individual participants (Bonawitz et al., 2017b). FL can be used to build an ML model from
various companies for the purpose of predicting the failures, repairs, or maintenance of network
systems. With the FL technique, the training data is not required to be centralized, but can instead
remains with the data owners. Each vendor trains an ML model on their private data and using their
own hardware. These models are then aggregated by a central server (e.g. a network operator) to
build a unified global model that has learned from the private data of every vendor without ever
directly accessing it. Hence, confidential training data (e.g. aging test results of products) are not
visible to a server, nor other competitive vendors.

Secure aggregation Secure aggregation in FL is a cryptographic protocol that enables each ven-
dor to submit a local model securely and a server learns nothing but the sum of the local models. A
secure aggregation method for mobile networks was presented in Bonawitz et al. (2017b) and Bell
et al. (2020). This method relies on a pairwise secret exchange and Shamir’s t-out-of-n secret shar-
ing scheme, focusing on the setting of mobile devices where communication is extremely expensive,
and dropouts are common.

There is a rich literature exploring secure aggregation in both the single-server setting (via additive
masking Bonawitz et al. (2016), via threshold homomorphic encryption (HE) Halevi et al. (2011),
and via generic secure multi-party computation (MPC) Burkhart et al. (2010)) as well as in the mul-
tiple non-colluding servers setting (Corrigan-Gibbs & Boneh, 2017). For instance, one can perform
all computations using a fully homomorphic encryption scheme resulting in low communication
but very high computation, or using classical MPC techniques with more communication but less
computation. Other works use a hybrid of both and thus enjoy further improvement in performance
(Juvekar et al., 2018; Mishra et al., 2020). Nevertheless, it is still an open question how to construct
a secure and robust aggregation protocol that addresses all the challenges.

Our contribution In this paper, we propose a secure and robust collaborative learning method
using cross-vendor datasets for predictive maintenance in optical networks. Each vendor builds a
local model using its own training dataset and uploads it to the server. The private dataset remains
in the vendor’s domain and is never exposed to other companies. A server builds a global ML model
by aggregating local ML models iteratively and averaging them to form an updated global model
proportional to the size of dataset. Using the global model, the potential risk of hardware failure
and corresponding maintenance events are predicted and the necessary resources are proactively
prepared to run optical networks without disruption.

In our framework, a secure aggregation protocol is tolerant to the malicious behavior of participants
in a honest-majority model; that is, a server and majority of vendors are assumed to be honest
yet some may be malicious or unreliable. Compared to the original FL, the local models are not
many, and the dropouts are very rare in our framework. Furthermore, an updated global model is
not shared with vendors. The reason is that, while a global model is a valuable asset to the network
management, it is not really beneficial to the vendors. Instead, each vendor receives the personalized
maintenance report which contains the discrepancy between its local model and the global model,
which is useful to improve the quality of products in the future. Fig. 1 shows that an example of the
ML-based predictive maintenance process in FL under the assumption that a single vendor behaves
maliciously.

Related work In Bonawitz et al. (2017a), a practical secure aggregation technique in an FL setting
was proposed over large mobile networks. Such framework does not fit for our use case due to
multiple reasons. Firstly, in our use case, a global model is not shared with data owners (vendors).
Each vendor gets benefit by receiving an individual maintenance result (e.g. the difference between
the prediction and the real failure) after the global model is deployed and hardware degradation is
predicted. Secondly, the scalability is not important since the number of vendors are not very large
and dropouts are expected to be rare. On the other hand, secure aggregation is critical since the
disclosure of the private training dataset may give negative impact on the data owner’s business.

Another interesting work on collaborative predictive maintenance was presented in Mohr et al.
(2021), where a combination of blockchain and federated learning techniques was applied. We
apply a multi-party computation technique for data privacy since it is more suitable for our use case.
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Figure 1: ML-based predictive maintenance process in a dishonest setting

More recently, in Zheng et al. (2021), an end-to-end platform for collaborative learning using MPC
is proposed. Though it is an interesting approach, it is unlikely that this platform can be applied to
our use case since the collaborative learning through the use of release policies and auditing is not
preferable to the predictive maintenance.

The rest of this paper is structured as follows: The use case and methods of ML-based predictive
maintenance are presented. Then, the threat scenarios and defending methods are presented. Our
experimental results are presented and the conclusion is given.

2 ML-BASED PREDICTIVE MAINTENANCE

2.1 USE CASE: OPTICAL TRANSMITTER DEGRADATION PREDICTION

Semiconductor lasers are considered as one of the most commonly used optical transmitters for
optical communication system thanks to their high efficiency, low cost, and compactness. They have
been rapidly evolved to meet the requirements of the next generation optical network in terms of high
speed, low power consumption etc. However, during operation the performance of the laser can be
adversely impacted by several factors such as contamination, facet oxidation etc. Such factors are
hard to predict and cause the laser degradation and failure, and thereby resulting in optical network
disruption and high maintenance costs. Therefore, it is highly required to predict the degradation
of the semiconductor laser device after its deployment in optical communication system in order to
enhance the system reliability and minimize the downtime costs.

ML techniques could provide a great potential to tackle the laser degradation prediction problem
(Abdelli et al., 2020). The development of such prognostic methods requires the availability of
run-to-failure data sets modelling both the normal operation behavior and the degradation process
under different operating conditions. However, such data is often unavailable due the scarcity of the
failures during the system operation and the long time required to monitor the device up failing and
then generating the reliability data. That’s why accelerated aging tests are often adopted to collect
run-to-failure data in shorter time by speeding up the device degradation by applying accelerated
stress conditions resulting in the same degradation process leading to failure (Celaya et al., 2011).

However, the burn-in aging tests are carried out just for few devices due to the high costs of per-
forming such tests. Hence, the amount of the run-to-failure data that can be derived from such tests,
might be small, which can adversely affect the performance of ML model (Abdelli et al., 2021).
Therefore, a FL approach is considered as a promising candidate to address the aforementioned
problem, whereby different semiconductor laser manufacturers (i.e vendors) collaborate with their
small local dataset, stored at their premise, in order to build an accurate and reliable global laser
degradation prediction model with good generalization and robustness capabilities.

Note that the semiconductor laser manufacturers might have different types of laser devices with
various characteristics leading to different degradation trends, and that the data owned by each ven-
dor is derived from aging tests conducted under different operating conditions. State that the global
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model is run in a server hosted by an optical network operator owning the infrastructure in which
the semiconductor lasers manufactured by the different vendors are deployed.

We consider a FL system composed of a server and N clients (i.e vendors) that collaboratively train
a global model using the FedAvg algorithm (McMahan et al., 2017). The clients send securely the
local model weight updates to the server using MPC. The autoencoder based on gated recurrent unit
(GRU) is used as global model to solve the task of semiconductor laser degradation prediction. A
convolutional autoencoder implemented at the server is adopted as an anomaly detection method to
detect the anomalous weights sent by the malicious clients.

2.2 METHODS

Autoencoder An autoencoder (AE) is a type of artificial neural network seeking to learn a com-
pressed representation of an input in an unsupervised manner (Kramer, 1991). An AE is composed
of two sub-models namely the encoder and the decoder. The encoder is used to compress an in-
put X into lower-dimensional encoding (i.e. latent-space representation) Z through a non-linear
transformation, which is expressed as follows:

Z = f(WX + b), (1)

where W and b denote the weight and bias matrices of the encoder and f represents the activation
function of the encoder.

The decoder attempts to reconstruct the output X̂ given the representation Z via a nonlinear trans-
formation, which it is formulated as follows:

X̂ = g(W ′X + b′), (2)

where W ′ and b′ represent the weight and the bias matrices of the decoder and g denotes the activa-
tion function of the decoder.

The AE is trained by minimizing the reconstruction error between the output X̂ and the input X ,
which is the loss function L(θ), typically the mean square error (MSE), defined as:

L(θ) =
∑
||X − X̂||2 (3)

where θ = {W, b,W ′, b′} denotes the set of the parameters to be optimized.

Gated Recurrent Unit (GRU) GRU recently proposed by (Cho et al., 2014) to solve the gradient
vanishing problem Cho et al. (2014), is an improved version of standard recurrent neural networks
(RNNs), used to process sequential data and to capture long-term dependencies. The typical struc-
ture of GRU contains two gates namely reset and update gates, controlling the flow of the infor-
mation. The update gate regulates the information that flows into the memory, while the reset gate
controls the information flowing out the memory. The GRU cell is updated at each time step t by
applying the following equations:

zt = σ(Wz · xt +Wz · h(t−1) + bz) (4)
rt = σ(Wr · xt +Wr · h(t−1) + br) (5)

ĥt = tanh(Wh · xt +Wh · (rt ◦ h(t−1)) + bh) (6)

ht = zt ◦ h(t−1) + (1− zt) ◦ ĥt (7)

where zt denotes the update gate, rt represents the reset gate, xt is the input vector, ht is the output
vector, W and b represent the weight and the bias matrices respectively. σ is the gate activation
function and tanh represents the output activation function. The ’·’ operator denotes a matrix mul-
tiplication, the ’◦’ operator represents the dot product.

2.3 ANOMALY DETECTION

AE has been widely used for anomaly detection by adopting the reconstruction error as anomaly
score. It is trained with only normal data representing the normal behavior. After training, AE
will reconstruct the normal instances very well, while it will fail to reproduce the anomalous obser-
vations by yielding high reconstruction errors. The process of the classification of an instance or

4



Under review as a conference paper at ICLR 2022

observation as anomalous/normal is shown in Alg. 1. If the calculated anomaly score is higher than
a set threshold θ, the instance is classified as “anomalous”, else it is assigned as “normal”. θ is a
hyperparameter optimized based on the number of true positives and false positives.

Algorithm 1 Autoencoder-based anomaly detection algorithm

Input Normal dataset X , Anomalous dataset x(i), i = 1, . . . , N , threshold θ
Output Reconstruction error ||x− x̂||
f, g ← train an autoencoder using the normal dataset X
for i = 1, · · · , N do

reconstruction error(i)← ||x(i) − g ◦ f(x(i))||
if reconstruction error(i) > θ then

x(i) is anomalous.
else

x(i) is normal.
end if

end for

3 ROBUST COLLABORATIVE LEARNING

We consider training an ML model in a federated learning setting, wherein each vendor maintains
a private dataset of its own hardware. A global ML model is trained under the coordination of a
central server based upon multiple local models that are provided by different vendors. A server can
get only a sum of the local models and does not see local models individually. Based on the global
model, the maintenance events in optical networks are predicted and the corresponding materials are
prepared accordingly.

3.1 THREATS

An important challenge in FL is to prevent a server or other vendors from reconstructing the private
data of any vendor while collaborating at any circumstances. While a secure aggregation protocol
in FL addresses the strong privacy of the data of the vendors, the FL framework creates a new attack
surface during the model training process. Since the vendors have full control over local training
processes, they may submit arbitrary updates to change the global model without being detected.
Among the broad range of attacks on FL, following attacks are most relevant to our use case.

Model inversion attack An attacker can intercept the updated local models and extract the private
training data from the models. For example, in Fredrikson et al. (2015), authors demonstrated
a model inversion attack that could extract images from a face recognition system, which look
suspiciously similar to images from the underlying training data. The model inversion attacks can
be mitigated by applying differential privacy techniques; adding noise to the local models before
sending them to the server. However, such noise will degrade the overall model performance, which
is not preferable to our use case.

Local model poisoning attack This attack injects poisoned instances into the training data, or di-
rectly manipulates model updates during the aggregation protocol. Instead of locally trained models,
these Byzantine vendors may upload the poisoned local models which are highly deviated from the
global model. As a result, the attacker can tamper with the weights of the global model or inject a
backdoor into it, misclassifying specific inputs into the target class as intended by the attacker.

Active corruption A secure aggregation protocol enables each vendor to submit a local model
securely and the server learns nothing but the sum of the local models. In this attack, some corrupted
vendors may arbitrarily deviate from the secure aggregation protocol. Some vendors do not follow
the protocol honestly and provide wrong values to the server or other vendors.
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Figure 2: Secure collaborative learning using Secret Sharing in FL

3.2 DEFENSES

We present two defending methods against attacks in FL: MPC-based secure aggregation against
the model inversion attack and anomaly detection against the model poisoning attack and the active
corruption attack.

MPC-based Secure aggregation Suppose that the server and vendors (clients) behave honestly
but curiously (semi-honest model). That is, all participants follow the protocol exactly as instructed
but also try to retrieve the private data of other vendors, if possible. Under this scenario, a simple
n-out-of-n additive secret sharing scheme can be used to prevent the model inversion attack as well
as keep the privacy of local models.

Suppose N is the number of clients and each client has its own local model fi where 1 ≤ i ≤ N .
The client i generates a random linear mask si and sends fi + si to the server. Also, the client i
divides si into N additive shares, {pi1, . . . , piN}, in such a way that si =

∑N
j=1 pij . Note the size

of si is similar to those of shares. These N shares are distributed to other clients in such a way that
each client receives a unique share out of N shares. In result, the client i receives {p1i, . . . , pNi}.
Finally, the client i sends the sum of the shares

∑n
j=1 pji to the server. This process is repeated for

all clients.

By aggregating one-time padded local models and the sum of the shares, the server can calculate the
sum of the local models as follows:

N∑
i=1

(fi + si)−
N∑
i=1

N∑
j=1

pji =

N∑
i=1

fi +

N∑
i=1

(si −
N∑
j=1

pij) =

N∑
i=1

fi (8)

A pseudo code of the secure aggregation protocol is given in Appendix A.1. An overview of the
secure collaborative learning procedure is shown in Fig. 2.

Autoencoder based anomaly detection The autoencoder is trained with a dataset D =
{w1, w2. . . wN} incorporating the model weights sent by trusted clients (i.e normal weights) and
stored at the server. The dimensionality of the model weight wk is reduced to produce a low-
dimensional input in order to reduce the computational complexity due to the high dimension of the
model weight. The generated input is fed then to the autoencoder for training, whereby the encoder
compresses the input into a lower-dimensional latent vector which is then reconstructed by the de-
coder. After the training phase, the autoencoder is able to recognize the normal weights and mark
any weight that deviates from the data seen during the training as an anomaly. The reconstruction
error between the input weight and the reconstructed weight is used as an anomaly score. If the
anomaly score exceeds a pre-defined threshold, the weight is recognized as anomalous potentially
sent by a malicious client, and thereby it is removed and not considered for the update of the global
model. The threshold is optimized in order to improve the detection capability of the autoencoder
for different poisoning model attacks.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DATA

The experimental data is derived from various accelerated aging tests performed for different semi-
conductor laser devices operating under several operating conditions and carried out under high
temperature ( ≥ 50°C) to strongly increase the laser degradation and thereby speed up the device
failure. The output power (i.e degradation parameter) is monitored under constant current, until
15,000 h. The failure or degradation criteria of the device is defined as the decrease of the output
power by 20% of its initial value. Few devices are degraded or failed either during the aging test or
after the end of the test. In total, a dataset of 6,786 samples incorporating the sequences of monitored
output measurements is built. We assign to each sample the state of the device (normal or degraded
(i.e anomalous ) by applying the aforementioned failure criteria. The said data is then normalized
and randomly divided into a training data (comprising of 80% of the samples) and a test dataset
(the remaining 20% for testing). The training dataset incorporates only samples of normal devices,
whereas the test dataset includes samples of both normal and degraded devices. The training data is
split then into N=10 clients with different parts of 450, 500, 554, 700, 382, 520, 450, 445, 300, and
380 respectively, leading to heterogeneous federated setting.

4.2 GLOBAL MODEL

Given that the data is highly unbalanced due to the small number of failed devices, adopting su-
pervised methods can be unfeasible due to the lack of adequate number of normal and fault data.
Therefore, an unsupervised method namely the GRU-based autoencoder (GRU-AE) is used as global
model. GRU is adopted to capture the laser degradation trend in sequential input. The GRU-AE is
trained with normal data underlying the normal behavior of the laser device, and tested with obser-
vations of normal and failed devices. Note that the input sequences fed to the GRU-AE include the
output power measurements collected only till 5,000 h in order to train the model to early predict the
degradation and that it is tested with sequences of normal and degraded devices failed after 5,000
h to evaluate the early prediction capability. The input of the global model consists of a 6-length
sequence of historical output power measurements combined with the operating conditions features
namely the temperature and the current, impacting the degradation trend. The architecture of global
model is composed of two GRU layers containing each 64 cells. Rectified Linear Unit (ReLU) is
selected as an activation function for the hidden layers of the model. The training of the global
model is carried out in an iterative process as follows:

• The server distributes the global model wG
t to N clients.

• Each client k trains the model locally using its local data Dk, and updates the weight wk
t

for α epochs of Adam with mini-batch size of β to compute wk
(t+1).

• The server securely aggregates each client’s wk
(t+1) using MPC.

• An autoencoder-based anomaly detection method is used to detect anomalous weights sent
by the clients.

• The update of the global modelwG
(t+1) is computed by a weighted averaging of only normal

weights.

The above-described process is repeated for multiple communication rounds Nround (e.g. number
of aggregation) to improve the performance of the global model. For our experiments, α, β and
Nround are set to 10, 16 and 100 respectively.

4.3 ANOMALOUS WEIGHT DETECTION METHOD

A convolutional autoencoder implemented at the server is used to identify the anomalous weights
and thereby detect the potentially malicious clients. The model contains an encoder and a decoder
sub-model with 5 layers. The encoder takes as an input a vector of length 64. It encodes the input
into low dimensional features through a series of 2 convolutional layers containing 64 and 32 filters
of size 3×1 with a stride of 2 and 1, respectively. The decoder is inversely symmetric to the encoder
part. It consists of 3 transposed convolutional layers used to up-sample the feature maps. The last
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Figure 3: The optimal threshold selection based on the precision, recall and F1 score scores yielded
by the GRU-based autoencoder

transposed convolutional layer with 1 filter of size 3 × 1 and a stride of 1 is used to generate the
output. ReLU is selected as an activation function for the hidden layers of the model. The loss
function is set to the MSE, which is adjusted by using the Adam optimizer.

4.4 EXPERIMENTAL RESULTS

Prediction Capability Evaluation We evaluate the traditional centralized approach by applying
the GRU-AE to a centralized aggregated data containing the datasets of all the clients. The degrada-
tion prediction capability of the GRU-AE is optimized by selecting an optimal threshold θ ensuring
the best precision and recall tradeoff. Figure 3 illustrates the precision, recall and F1 score curves
along with θ. If the chosen threshold is too high, many degraded laser devices will be classified
as normal devices, resulting in higher false positive. Whereas if the selected threshold is too low,
many normal devices will be classified as abnormal, leading to higher false negative. Therefore, the
optimal threshold that maximizes F1 score is chosen. The same selected threshold to distinguish the
normal devices from the degraded ones is used for the FL approach.

The performance of the FL approach is compared to the centralized approach using as evaluation
metrics precision, recall, F1 score and accuracy. The results of the comparison shown in Table 1
prove that the FL framework achieves similar performance as the centralized approach.

Table 1: Comparison of FL and centralized approach

Approach Precision (%) Recall (%) F1 score(%) Accuracy (%)

FL 99.31 93.22 96.17 93.42
Centralized 99.31 93.54 96.34 93.71

Attack detection capability evaluation The anomalous weight detection model is compared to
defense-based methods namely krum (Blanchard et al., 2017), Trimmed Mean (Yin et al., 2018) and
Median. The reconstruction error achieved by the global model for each global round is adopted
as evaluation metric. Two adversarial attacks namely additive noise (i.e adding gaussian noise to
the model weight) and sign flip (i.e flipping the sign of the model weight) (Li et al., 2018) are
generated by 10% of clients for each round. The results shown in Figure 4 demonstrate that the
proposed method significantly outperforms the defense-based approaches for the considered attack
scenarios. It can be seen that the proposed method achieves similar performance as the FedAvg
algorithm without attack, which proves the effectiveness of the anomaly detection model in detecting
the anomalous weights. The performances of the defense-based methods are worse as they are not
effective in defending against attacks for not identically and independently distributed (iid) settings,
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(a) Additive noise attack (b) Sign flip attack

Figure 4: Comparison of the proposed detection-based method and defense-based approaches in
terms of reconstruct error of the global model under two adversarial attacks. Note that the legend in
Fig. 4a applies to Fig. 4b as well.

Figure 5: Evaluation of the performance

and the fraction of the malicious clients which is required by Krum and Trimmed Mean can not be
known a priori in FL.

We evaluate the performance of the global model in terms of F1 score by increasing the percentage
of malicious clients to 20%. The results depicted in Fig. 5 show that the model can still achieve good
performance even if the 20% of the clients are malicious, which proves that the anomaly detection
method is able to recognize the anomalous weights. Note that the training data for FL approach
is not big (4200 samples) and if 10% or 20% of clients are malicious, and the anomaly detection
method accurately detect them and remove the anomalous weights, the global model is trained in
such cases with fewer clients, thus fewer data, which might impact the performance of the model.

5 CONCLUSION

Optical networks require a high level of reliability and sustainability. Machine learning techniques
are expected to improve maintaining such networks efficiently. We showed that an accurate and
reliable ML model could be developed in collaborative learning without the disclosure of clients’
sensitive datasets even in a malicious setting. Our experiments confirm that (i) the presented FL
approach achieves a good prediction capability similar to the one yielded by the centralized ap-
proach, and (ii) the proposed autoencoder based anomaly detection model is efficient in recognizing
the anomalous weights potentially sent by malicious clients, and outperforms the defense-based
methods.
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A APPENDIX

A.1 AGGREGATION PROTOCOL

Suppose that a server (network provider) builds a global ML model for predictive maintenance with
N vendors. The pseudo code of the algorithm is given in Algorithm 2.
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Algorithm 2 Federated averaging algorithm using MPC

Input The N vendors are indexed by i; xi is the local training dataset; si is the linear mask; pij
is the j-th share of the linear mask si;
Output A global ML model F

for round t = 1, 2, · · · do
for i = 1, 2, . . . , N do

f t+1
i + st+1

i ← LocalUpdate(i, f ti )

qt+1
i ← LocalShares(i)

end for
F t+1 ←

∑N
i=1(f

t+1
i +st+1

i +qt+1
i ) =

∑N
i=1 f

t+1
i +

∑N
i=1(s

t+1
i +

∑N
j=1 p

t+1
ij ) =

∑N
i=1 f

t+1
i

end for

LocalUpdate(i, f):
B ← (split xi into batches of size B)
for each epoch B do

for batch b ∈ B do
f ← f − η ·A(f, b)

end for
f ← f + si

end for
return fi to the server.

LocalShares(i):
for j = 1, 2, . . . , N do

qi ←
∑N

j=1 pij
end for
return qi to the server.
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