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Abstract001

Visual reasoning, a cornerstone of human in-002
telligence, encompasses complex perceptual003
and logical processes essential for solving di-004
verse visual problems. While advances in com-005
puter vision have produced powerful models006
for various perceptual tasks, leveraging these007
for general visual reasoning remains challeng-008
ing. Prior work demonstrates that augmenting009
LLMs with vision models via supervised fine-010
tuning improves performance, but faces key011
limitations such as expensive data generation,012
reliance on careful data filtering, and poor gen-013
eralization. To address these issues, we propose014
REVPT to enhance multi-modal LLMs’ abili-015
ties to reason about and use visual tools through016
reinforcement learning. We introduce a novel017
RL algorithm based on GRPO, designed to018
train models to reason with a suite of seven vi-019
sual tools. Our explorative results across mod-020
els ranging from 3B to 7B parameters show021
that our method achieves state-of-the-art per-022
formance on several perception-heavy bench-023
marks, including SAT, CV-Bench, BLINK, and024
BLINK-Hard, significantly outperforming su-025
pervised and text-based RL finetuning base-026
lines. We hope our explorative on RL-based027
visual tool-usage can bring insights to the com-028
munity.029

1 Introduction030

Visual reasoning is a core component of human031

intelligence. It enables us to solve a wide range of032

problems, from daily activities such as navigation033

to challenging geometry problems. Unlike ver-034

bal reasoning, visual reasoning is a more complex035

multifaceted process that requires not just straight-036

forward logical reasoning but also sound visual037

perception, which further relies on atomic abilities038

such as object recognition, edge detection, depth039

estimation, etc. Due to the complexity of visual040

perception, the computer vision community has de-041

veloped specialized models for different perceptual042

tasks, such as RecognizeAnything for object recog- 043

nition, DepthAnything for depth estimation, and 044

SegmentAnything for segmentation (Yang et al., 045

2024; Liu et al., 2023d; Zhang et al., 2023). 046

To leverage these advances in perception for 047

enhanced visual reasoning and problem-solving, 048

prior work attempts to augment (multimodal) lan- 049

guage models with vision specialists. For exam- 050

ple, VisProg first showcases that augmenting large 051

language models (LLMs) with various vision mod- 052

els boosts models’ performance on diverse visual 053

tasks (Gupta and Kembhavi, 2022). Similarly, 054

VisualSketchPad finds that prompting GPT-4o to 055

use sketching tools and depth models improves 056

its performance on challenging perception and vi- 057

sual math benchmarks by large margins (Hu et al., 058

2024a). More recently, a few works demonstrate 059

that open-source multimodal language models also 060

benefit from using visual tools and reasoning about 061

their outputs after supervised finetuning on tool-use 062

data (Qi et al., 2024; Liu et al., 2023c). 063

Nonetheless, there are a few limitations to learn- 064

ing to reason with visual tools with supervised fine- 065

tuning (SFT): first, it relies on expensive data cura- 066

tion. Prior work heavily relies on expensive com- 067

mercial models like GPT-4 to generate high-quality 068

tool-use and reasoning traces (Qi et al., 2024; Ma 069

et al., 2024; Shao et al., 2024a). Second, it often 070

requires careful data filtering. Previous efforts re- 071

veal that aggressive filtering based on data format, 072

answer correctness and other heuristics is crucial 073

to performance gains (Hu et al., 2024b; Ma et al., 074

2024). Most importantly, supervised finetuning 075

results in limited generalization: it relies on of- 076

fline trajectories that pre-define one particular set 077

of tools to use, lacks incentives for the model to 078

explore alternative tools or adapt to new environ- 079

ment outputs, and thus limits its generalization to 080

unseen tools or problems (Guo et al., 2025; Chen 081

et al., 2025; Chu et al., 2025). 082

To mitigate these limitations, we borrow inspi- 083
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Q: Considering the relative positions of the chair (annotated by the red box) and the 
tennis racket in the image provided, where is the located with respect to the tennis 
racket? Select from the following choices. (A) above(B) below
A:(A) above

GPT-4.1: The chair (annotated by the red box) is positioned above the 
tennis racket in the image. The answer is (A) above.

<think>The tennis racket is being held by the player, while the red box marks a chair 
in the background. To determine the spatial relationship, I will analyze their vertical 
positions in the image. The chair appears lower and farther away, suggesting it is 
below the tennis racket in terms of position.</think>
<answer>nThe chair is located below the tennis racket, as indicated by its position in 
the image. The answer is B. </answer>

R
e
la
ti
on

sh
ip

<think>The object detection tool has identified one 
bottle near the window, which appears to be a glass 
vase. …</think>
<answer>… The answer is 1</answer>

Q: How many bottles 
are in the image?

A: 1

GPT-4.1: 2

Counting

<think>Let's analyze the … I don't immediately see any 
bottles. I will use object detection to check for any 
hidden bottles.</think>

<tool_call>
object_detection
objects: [ bottles]
</tool_call>
<result>
<image>Detected 1 
object(s) in image 0:…
</result>

<think> In the depth map, warmer colors indicate 
objects that are closer to the camera…</think>
<answer>Based on the depth map, the lamp is closer to 
the camera …</answer>

Q: Which object is 
closer to the camera, 
the lamp or the 
refrigerator?
A: lamp

GPT-4.1:
refrigerator

Depth

<think>To determine which object is closer to the 
camera, I need to analyze the spatial relationship …Using 
a depth estimation tool will help me accurately assess 
their relative distances from the camera.<think>

<tool_call>
depth_estimation
</tool_call>
<result>
<image>Here is the 
colored depth map for 
image 0.
</result>

Figure 1: Example outputs of REVPT-3B. REVPT-3B is able to solve problems through thinking and selectively
employing visual tools via GRPO training.

ration from recent work on enhancing LLM rea-084

soning with reinforcement learning (RL) (Zhang085

et al., 2025; Guo et al., 2025; Huang et al.,086

2025; Zhan et al., 2025; Shen et al., 2025)087

and propose Reinforced Visual Perception with088

Tools (REVPT), to enhance multimodal language089

model’s visual problem-solving skills by training090

them to reason with visual tools via RL. REVPT091

consists of cold-start and GRPO process to enable092

efficient reinforcement learning on multimodal lan-093

guage models with 6 visual tools. Unlike SFT,094

where all the tool-use reasoning traces need to be095

generated and filtered in advance, we only need096

to select the appropriate visual questions to per-097

form RL on. Moreover, instead of supervising the098

model with one correct tool-use trajectory for each099

question, RL allows the model to explore and learn100

from different possible solutions and incentivizes101

the model to output the best one. 102

Our explorative experiments with models of dif- 103

ferent parameter scales—3B and 7B—demonstrate 104

that REVPT-3B enables state-of-the-art perfor- 105

mance, consistently outperforming SFT baselines 106

across five perception-intensive benchmarks, in- 107

cluding MMVP, CV-Bench, BLINK, and BLINK- 108

Hard. Notably, our approach surpasses the orig- 109

inal Instruct version models by significant mar- 110

gins, achieving 6.88% and 4.33% improvements 111

on CV-Bench and MMVP respectively. Further- 112

more, our models outperform commercial models 113

GPT-4.1 and Gemini-2.0-Flash on the challenging 114

BLINK-Hard benchmark by 3-4 percentage points. 115

We believe that REVPT, alongside our fully open- 116

sourced code, datasets, and evaluation platform, 117

will serve as a valuable resource for the broader 118

research community. 119
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2 Thinking with Images and Tools120

In this section, we introduce REVPT, a reinforce-121

ment learning framework designed to train multi-122

modal language models for visual perception tasks.123

It is built upon the GRPO algorithm (Shao et al.,124

2024b), aiming to enhance the model’s ability to125

tackle complex visual problems by integrating vi-126

sual processing tools as reasoning steps.127

Given a multi-modal query, REVPT agent first128

generates a reasoning process about analyzing the129

query and deciding whether to call tools or answer130

directly. Then, by iteratively analyzing the results131

from the tools, the model generates a final response132

to the query. The overall architecture and process133

flow are illustrated in Figure 2.134

Through GRPO training, the model has demon-135

strated the capacity to leverage appropriate tools136

and accurately interpret processed images, thereby137

overcoming limitations previously encountered.138

Our implementation is based on the veRL (Sheng139

et al., 2024) framework.140

2.1 Preliminary: GRPO141

Group Relative Policy Optimization (GRPO)142

presents an alternative approach in the landscape of143

reinforcement learning algorithms. A key distinc-144

tion of GRPO is its departure from the actor-critic145

paradigm, exemplified by algorithms like Proximal146

Policy Optimization (PPO). Instead, GRPO eval-147

uates policy performance by directly comparing148

a collection of candidate responses generated by149

the current policy. The core mechanism of GRPO150

begins with a given prompt or query, q. For this151

query, the policy, denoted as πθ, is used to sam-152

ple a set of N distinct candidate responses, rep-153

resented as {o1, o2, . . . , oN}. Each of these sam-154

pled responses oi is then assessed using a reward155

function, R(q, oi), which quantifies the quality or156

appropriateness of the response oi in relation to the157

initial query q. To assess relative quality within the158

sampled group, GRPO calculates an advantage Ai159

for each response by normalizing its reward:160

Ai =
ri −mean{r1, r2, . . . , rN}

std{r1, r2, . . . , rN} (1)161

where Ai represents the advantage of the candidate162

response oi relative to other sampled responses.163

GRPO encourages the model to generate responses164

with higher advantages within the group by updat-165

ing the policy πθ using the following objective: 166

JGRPO(θ) = E
[
{oi}Ni=1 ∼ πθold(q)

]
(2) 167

=
1

N

N∑
i=1

{min[s1 ·Ai, s2 ·Ai] 168

−βDKL[πθ||πref ]} (3) 169

s1 =
πθ(oi|q)
πθold(oi|q)

(4) 170

s2 = clip

(
πθ(oi|q)
πθold(oi|q)

, 1 + ϵ, 1− ϵ

)
(5)

171

Here, the clip function limits the probability ratio 172

of response oi under the current and old policies, 173

and DKL is a Kullback-Leibler divergence term 174

penalizing large deviations from a reference policy 175

πref, both contributing to stable training. 176

2.2 Vision Tools 177

The efficacy of leveraging visual tools for visual 178

reasoning has been well-established. Our frame- 179

work integrates several such high-performing vi- 180

sual tools, enabling their execution and subse- 181

quent result incorporation during the MLLM in- 182

ference process to construct a comprehensive roll- 183

out. While Table 1 offers a detailed summary of 184

each tool’s parameters and specifications, their core 185

functionalities and representative use cases are elab- 186

orated upon below. 187

• LLMDET (Fu et al., 2025): This tool is capa- 188

ble of open-vocabulary detection. It takes an 189

input image Iin and a textual query qtext to lo- 190

cate instances of described objects, submitting 191

their boundaries Bout. It helps model localize 192

objects in the image. 193

• SAM (Kirillov et al., 2023):This tool can gener- 194

ate fine-grained segmentation masks. SAM can 195

be invoked for automatic segmentation, where it 196

takes an input image Iin and outputs a set of seg- 197

mentation masks Mout for all detected objects 198

within the image.Alternatively, it can perform 199

point-prompted segmentation, taking an input 200

image Iin and one or more user-defined points 201

P on the image to output asegmentation mask 202

Mout for the object indicated by the provided 203

point. This tool assists in precisely delineating 204

object boundaries. 205

• ZOOMIN: This tool facilitates focused analysis 206

by taking an input image Iin and a specified re- 207

gion of interest R to output a magnified view 208
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Figure 2: An overall pipeline of our REVPT. (Top): Model-generated tool requests are managed by a local
environment-based Tool Controller, which independently deploys vision tool services (e.g., Depth, Object Detection).
These tools’ outputs are then fed back to the LVLM for iterative reasoning. (Bottom): When processing a visual
reasoning problem, REVPT employs K-turn rollouts where the model interacts with the tool environment to learn
an adaptive policy, culminating in the final model.

Ifocus of that region. It helps the model to con-209

centrate on pertinent areas, thereby mitigating210

the influence of irrelevant information and ampli-211

fying salient features.212

• EDGEDETECTION: This tool is designed to213

identify and delineate the perimeters of objects214

and significant textural variations, this tool trans-215

forms an input image Iin into a feature map216

Eout that emphasizes these structural edges. This217

grants models a sharper perception of object sil-218

houettes, surface patterns, and other intrinsic219

structural data.220

• DEPTHANYTHING(Yang et al., 2024): This tool221

computes spatial depth from a monocular visual222

input. Given an image Iin , it generates a cor-223

responding depth map Dout which encodes the224

estimated distance of scene elements from the225

observer. We use DEPTH_ANYTHING_V2 to226

serve as the tool. This capability equips mod-227

els with a more nuanced understanding of three-228

dimensional arrangements and the relative posi-229

tioning of objects.230

• DRAWLINE: This function serves to superim-231

pose linear annotations onto an image. Utilizing 232

an input image Iin and precise line parameters 233

Lspec (such as origin and termination points), it 234

produces an augmented image Idrawn featuring 235

these graphical overlays. The lies in visually 236

accentuating particular linear connections, trajec- 237

tories, or critical measurements for the model’s 238

analytical consideration. 239

2.3 Cold Start 240

Initially, our objective is to train a multimodal agent 241

using the R1-Zero method. However, during the 242

training process, we observe a progressive decline 243

in the agent’s propensity to utilize tools. This phe- 244

nomenon likely stemmed from the fact that solving 245

visual tasks did not inherently require tool usage, 246

and reasoning based on processed images repre- 247

sented a distribution shift from the model’s initial 248

training data. Consequently, we opt to incorporate 249

cold-start data during the initial training phases. 250

This strategy aim to facilitate the model’s initial ac- 251

quisition of tool utilization skills for solving visual 252

problems. 253
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Table 1: Vision Tools Overview. This table lists vision tools integrated within REVPT, detailing their arguments,
result formats, and description for their core funtion.

Tool Arguments Result Description

LLMDET Image + Text Prompt Annotated Image + Boxes Zero-shot Object Detection
SAM Image + Point(Optional) Annotated Image Auto Segmentation
ZOOMIN Image + Coordinates + Factor Cropped Image Region Cropping
EDGEDETECTION Image Edge Map Edge Detection Using Scharr Algorithm
DEPTHANYTHING Image Depth Map Depth Estimation
DRAWLINES Image + Point Coordinate + Mode Annotated Image Draw Lines

Figure 3: Reinforced visual tool-usage training requires high-quality and verified data. We transform TACO and
SAT dataset into multiple-choice quesiton, then filter out easy questions with Qwen2.5-VL-7B.

Currently, we employ GPT-4.1 as the agent to254

synthesize high-quality data for tool-augmented255

reasoning in visual problem solving. We require256

the GPT model to follow a predefined format when257

answering questions. Specifically, it should first258

engage in a reasoning process, considering the po-259

tential utility of external tools, and then employ a260

multi-turn generation strategy to address the prob-261

lem. We explicitly encourage the model in our262

prompt to generate more tool-assisted rollouts. Sub-263

sequently, we filter out rollout trajectories gener-264

ated by the GPT model that contain errors.265

After synthesizing tool-integrated reasoning266

data, we perform supervised fine-tuning on it. De-267

note the query as Qi, the rollout trajectory τ i as268

a sequence of actions ait and observations oit. We269

optimize the cross-entropy loss:270

LSFT(θ) = − 1

N

N∑
i=1

logPθ

(
τ i | Qi

)
(6)271

= − 1

N

N∑
i=1

ni∑
t=1

logPθ

(
ait, | Qi, ai<t, o

i
<t

)
(7)

272

By minimizing LSFT, the model acquires a robust273

Cold-Start policy for sequential vision-tool invo- 274

cation, providing a solid foundation for the subse- 275

quent reinforcement learning phase. 276

2.4 Reward Design 277

Vision tasks often possess ground truth data, facil- 278

itating the use of rule-based rewards to evaluate 279

a model’s responses. This approach circumvents 280

the introduction of neural network-based reward 281

models, thereby preventing reward hacking. 282

• Correctness Checking. We restructure the 283

dataset into a multiple-choice format. The model 284

is required to put the final answer’s option in the 285

box, enabling reliable rule-based verification of 286

correctness. If the answer match the ground truth, 287

it gets through checking. 288

• Format Checking. In each turn, the re- 289

sponse should enclose its thinking process 290

in <think></think> and enclose its tool call 291

in <tool_call></tool_call> or answer in <an- 292

swer></answer>. If the response matches the 293

pattern, it gets through format checking. Given 294

the query q and the rollout o, the reward is de- 295

fined as: 296
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Reward(q, o) =

{
1 , If FormatCorrect(o)

∧ AnswerCorrect(o)

−1 , otherwise

297

3 Experiment298

3.1 Experiment Setups299

Models. We conduct most our experiments on300

Qwen2.5-VL-3B-Instruct (Wang et al., 2024a) for301

their strong visual perception and tool-calling capa-302

blity. We also select an early checkpoint based on303

7B model and include some results in Appendix.304

Dataset Construction. A high quality cold-start305

dataset and difficult dataset for RL training is very306

improtant for model to learn test-time scaling it-307

self (Yu et al., 2025). Therefore, we filter the SAT308

dataset (Ray et al., 2024) and Taco (Ma et al., 2024)309

training set with Qwen2.5-7B-Instruct and retain310

the samples it answers incorrectly. Then, we split311

it into 1:9 for code-start data synthetic and traning312

data. To construct high-quality code-start dataset,313

we leverage GPT-4.1 to synthetic tool trajectory314

and retain the subset that it answer correctly. Fi-315

nally, we get 7k cold-start dataset with well-curated316

reasoning chain and tool trajectory.317

Baseline. We compare REVPT against the fol-318

lowing models and approaches: (1) Commercial319

Models: We select GPT-4.1 (OpenAI, 2025) and320

Gemini-2.0-Flash (Google, 2024) as strong multi-321

modal baselines. Both are evaluated in a zero-shot322

setting without external tools as strong generalist323

benchmarks. (2) TACO: Learns to invoke 15 ex-324

ternal tools (e.g., OCR, depth, etc.) by generating325

Chain-of-Thought-and-Action (CoTA) sequences326

via supervised learning on synthetic data. TACO327

typically executes tools within a single process,328

contrasting with our RL-based approach and dis-329

tributed architecture (Ma et al., 2024). (3) Qwen-330

Base: We implement two base models without331

any tool usage, employing different prompt for-332

mats for a robust evaluation. (4) Qwen-SAT-SFT:333

Two models after supervised finetuning with the334

SAT training set (13k samples) as a strong baseline.335

We also include an enhanced SFT baseline with336

rephrased answers generated by the model itself as337

reported by previous research (Wang et al., 2024b).338

(5) Qwen-SFT (cold start): The model state af-339

ter cold-start training. (6) Text-based RL: An RL340

agent trained similarly to REVPT but without any341

visual feedback from tools. This follows the native342

GRPO training for MLLM in VisualThinker-R1- 343

Zero (Zhou et al., 2025). 344

Evaluation. We select 4 multi-modal benchmarks 345

covering diverse capabilities with a focus on visual 346

perception and reasoning tasks. This includes CV- 347

Bench (Tong et al., 2024a), Blink (Fu et al., 2024), 348

MMVP (Tong et al., 2024b), Blink-Hard (Bigverdi 349

et al., 2024). We choose subset with only one image 350

as input. 351

Experiment Details. We conduct model train- 352

ing using configurations with 8 × NVIDIA A800 353

GPUs. We leverage LLaMA-Factory (Zheng et al., 354

2024) as Supervised Fine-tuning platform and Verl 355

as visual tool-base RL platform (Sheng et al., 2024). 356

The training process involved two phases: (1) Cold- 357

start Period: Models are trained for 2 epochs with 358

a learning rate of 1e-5 and a global batch size of 64. 359

(2) RL Period: For this phase, models are trained 360

for 100 steps (Loss Curve in Figure 4). We clarify 361

that reinforeced learning with visual tool do not 362

reach converge and reward is very unstable. 363

3.2 Experiment Results 364

REVPT outperform supervised finetuning and 365

text-based RL. As shown in Table 2, our method 366

significantly outperforms the original model on 367

both CV-Bench and BlinkHard benchmarks, while 368

also demonstrating improvements over SFT cold 369

start models. The performance gains are particu- 370

larly pronounced in depth and distance tasks, with 371

improvements of 9.5% and 13.23% respectively 372

compared to the base model, indicating that rein- 373

forcement learning effectively teaches the model to 374

utilize tools and interpret tool-generated informa- 375

tion. Notably, our vision tool-based RL approach 376

substantially outperforms the converged text-based 377

RL by 12.7% on CV-Bench, demonstrating how the 378

model leverages smaller model tools as guidance to 379

acquire more fundamental perception information, 380

thereby enhancing its perceptual capabilities. 381

Performance Tradeoffs in Perception- 382

specialized Training. Our training on the 383

curated perception subset from SAT and TACO sig- 384

nificantly reduced the model’s general performance 385

capabilities. Direct SFT results reveal substantial 386

degradation across several Blink capabilities. More 387

concerning, in our 7B model experiments (detailed 388

in the Table ??), we detect even larger performance 389

declines on the more general MMstar benchmark, 390

with scores approximately 10% below the baseline 391

instruct model. These findings highlight the 392
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Table 2: Comparison performance between different models on vision-centric benchmarks

Model CV-Bench BLINK MMVP BLINK-HARD

Count Relation Depth Distance Avg. Counting IQ Test Localization Depth Reflectance Relation Avg. 3 4 5

Gemini-2.0-Flash 71.95 86.92 87.50 82.17 81.50 75.83 32.67 62.30 79.84 38.81 73.43 59.52 79.34 72.58 66.13 66.13
GPT-4.1 67.77 92.00 94.50 89.50 84.76 75.20 54.00 73.20 76.80 73.20 54.40 67.80 88.00 71.77 62.90 63.71

Qwen2.5-VL-3B-Instruct 68.65 74.92 76.00 71.67 72.55 68.33 6.67 49.18 64.52 38.81 83.92 50.95 64.67 61.29 54.03 46.77
Qwen2.5-VL-3B-SFT 60.53 61.23 79.50 78.33 69.07 40.00 24.67 56.56 50.00 31.34 68.53 44.89 65.42 52.42 46.77 42.74
Qwen2.5-VL-3B-GRPO 64.85 69.85 72.33 59.33 66.53 60.83 24.00 43.44 49.19 29.85 79.72 47.54 40.33 50.00 48.39 45.97
R1-3B-cold-start 69.29 86.31 84.17 72.50 77.60 57.50 27.52 51.64 66.94 26.87 73.43 50.06 62.33 63.71 50.81 46.77
R1-3B 69.92 88.15 85.50 75.50 79.23 54.17 25.33 50.82 66.13 32.09 75.52 50.19 69.00 73.27 66.67 61.22

Figure 4: Our reward rapidly upgrade and reach con-
verge.

Figure 5: Our model effectively learns tool utilization
post-cold-start, enhancing visual perception capabilities.
Current RL data shows bias toward object detection
and depth estimation over zoom and segmentation tools.
Future work will address data balance and generalized
perception objectives.

critical relationship between reinforcement393

learning sample distribution and resulting model394

capabilities. Our key insight is that developing395

effective visual tool-using agents requires not396

only sophisticated interaction environments397

but also carefully balanced, comprehensive,398

and high-quality datasets that preserve general399

capabilities while enhancing targeted skills.400

Limitations of Visual Tool Integration. During401

our experimental process, we observe that these402

visual tools often hindered rather than enhanced 403

model performance, sometimes degrading or in- 404

terfering with the model’s reasoning capabilities. 405

In some cases, the model needed to correct erro- 406

neous tool outputs to arrive at accurate answers. 407

For instance, in Figure 6, the model misclassify a 408

mattress as a pillow, resulting in an incorrect re- 409

sponse despite the model’s inherent capability to 410

solve the problem correctly. Furthermore, we dis- 411

cover that enhancement of perception capabilities 412

through tool use is significantly influenced by the 413

model’s inherent abilities. In Figure 8, though the 414

depth estimation tool returned a color-coded depth 415

map (where warm colors indicate proximity and 416

cool colors indicate distance), the model—despite 417

acknowledging this information and analyzing it 418

during reasoning—ultimately produced an incor- 419

rect answer. We attribute this phenomenon to the 420

model’s original perception capabilities constrain- 421

ing its ability to effectively and accurately utilize 422

external tools, limiting tool-use efficacy and cor- 423

rectness. 424

4 Related Works 425

Multimodal language models. Recently, there 426

have been many advances on open-source multi- 427

modal models (Awadalla et al., 2023; Chen et al., 428

2023; Liu et al., 2023b,a, 2024; Dai et al., 2024; 429

Li et al., 2022, 2023; Deitke et al., 2024). These 430

efforts include training multimodal models to take 431

in multiple images, engage in multi-turn conver- 432

sations, and even understand videos (Liu et al., 433

2024; Jiang et al., 2024; Li et al., 2024). For ex- 434

ample, LLaVA-Next achieves strong multi-image 435

understanding through large-scale interleaved vi- 436

sual instruction tuning with M4-Instruct (Liu et al., 437

2024). Similarly, Mantis introduces a new large- 438

scale multi-image instruction tuning dataset Mantis- 439

Instruct for multi-image training (Jiang et al., 2024). 440

These efforts pave the foundation for our work on 441

learning vision-language models with image-text 442

interleaved reasoning traces. over perceptual out- 443
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Object Detection

Q: How many cushions 
are in the image?

ReVPT: I see a bed
with several pillows and
a decorative cushion on
it. To be thorough, I’ll
count each distinct
cushion that is clearly
visible in the image.

<think> Using an object detection tool, five 
cushions were identified. <\think>

However, upon visual inspection, 
there appear to be only three main 
cushions that stand out: two brown 
ones and one white one. The 
remaining items seem to be part of 
the pillow arrangement rather than 
individual cushions.
This aligns with my initial 
observation. I’m confident that the 
correct number of distinct 
cushions is three.

Processed Image

There are three cushions visible in the image: two brown and one 
white. This conclusion is supported by both the object detection 
results and visual confirmation. <answer>3<\answer>

Figure 6: Erroneous outputs from object detection tools disrupt the model’s reasoning chain, ultimately lead to
incorrect final predictions.

puts from vision specialists.444

Multimodal tool-use. Recently, there has been445

increasing interest in enhancing multimodal lan-446

guage models with improved tool-use capabili-447

ties (Liu et al., 2023c; Qi et al., 2024; Shao et al.,448

2024a; Ma et al., 2024). LLaVa-Plus demonstrated449

the feasibility of training such models to utilize vi-450

sion tools (Liu et al., 2023c). Visual Program Dis-451

tillation transfers tool-use and reasoning skills into452

a multimodal model using chain-of-thought (CoT)453

data derived from programs (Hu et al., 2024b).454

Similarly, Visual CoT introduces a synthetic CoT455

dataset aimed at boosting the reasoning abilities456

of multimodal models (Shao et al., 2024a). More457

recently, LLaVa-CoT incorporates both perception458

and reasoning capabilities inspired by GPT-4o (Xu459

et al., 2025). CogCoM identifies six key manipula-460

tion strategies and trains multimodal models with461

synthetic chain-of-manipulation (CoM) data (Qi462

et al., 2024), while TACO contributes 273K multi-463

modal reasoning traces derived from the outputs of464

15 visual tools (Ma et al., 2024).465

Multimodal Language Model Reasoning with466

RL. DeepSeek-R1 (Guo et al., 2025) has demon-467

strated that simple rule-based reinforcement learn-468

ing can effectively induce strong reasoning behav-469

iors. This R1-style reasoning paradigm has shown470

success in multimodal language models (Shen et al.,471

2025; Lu et al., 2025; Zhan et al., 2025; Huang472

et al., 2025; Feng et al., 2025; Li et al., 2025).473

VLM-R1 (Shen et al., 2025) applies reward-driven474

fine-tuning to improve visual reasoning and gen- 475

eralization beyond supervised baselines. Vision- 476

R1 (Zhan et al., 2025) introduces human-free align- 477

ment through vision-guided rewards, while another 478

Vision-R1 (Huang et al., 2025) leverages CoT-style 479

tasks and reward shaping to boost multi-step rea- 480

soning. UI-R1 (Lu et al., 2025) enhances action pre- 481

diction in GUI agents via GRPO-based RL, achiev- 482

ing strong performance with compact models. In 483

the video domain, Video-R1(Feng et al., 2025) im- 484

proves temporal reasoning through T-GRPO and 485

mixed-modality rewards, and VideoChat-R1 (Li 486

et al., 2025) reinforces spatio-temporal understand- 487

ing across diverse video question types. 488

5 Conclusion 489

In this work, we explore tool-usage reinforcement 490

learning to enable models to utilize external vision 491

tools for test-time scaling. We propose REVPT, 492

a training suite designed to integrate tool-usage 493

with reinforcement learning, enabling models to 494

optimize tool selection and interleaved text-image- 495

tool reasoning through direct interaction and re- 496

ward feedback. Our experiments across multiple 497

multimodal benchmarks demonstrate that REVPT 498

successfully raises performance beyond the base 499

model’s capabilities, achieving results significantly 500

higher than those obtained through supervised fine- 501

tuning and text-only RL. We hope that REVPT, 502

along with our fully open-sourced code, dataset, 503

and platform, will serve as a valuable resource for 504

the research community. 505
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Limitations and Future Work506

Although our method demonstrates exceptional507

post-training performance on Qwen2.5-VL-3B, nu-508

merous opportunities remain for exploring tool de-509

sign optimization, data distribution ratios, and re-510

ward configuration refinements. Furthermore, our511

training methodology presents additional avenues512

for investigation—we currently train on the curated513

dataset for only a single epoch and plan to extend514

the training duration in future iterations. In our515

exploratory experiments with the 7B model vari-516

ant, we observed performance improvements on517

CV-bench; however, we detected significant per-518

formance degradation on the more general MM-519

star benchmark. We attribute this decline to our520

dataset composition, which primarily emphasizes521

perception-oriented samples from SAT and TACO522

datasets rather than more diverse general-purpose523

examples, consequently diminishing performance524

across broader capabilities. Future work will ad-525

dress these data diversity considerations to main-526

tain comprehensive multimodal reasoning abili-527

ties.528
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A Dataset Construction Details785

We leverage the SAT dataset and the CoTA dataset786

from TACO for our training.787

The SAT (Ray et al., 2024) dataset is a synthetic788

VQA dataset designed to enhance the spatial rea-789

soning capabilities of Multimodal Large Language790

Models (MLLMs).791

The CoTA dataset from TACO (Ma et al., 2024)792

is a synthetic dataset comprising Chain-of-Thought-793

Action data generated by GPT-4o. However, we794

leverage it solely as a VQA filter for potential tool795

utilization.796

The CoTA data comprises trajectories of thought,797

action, and observation. We derive QA pairs from798

this data using Qwen3-30B-A3B. For open-ended799

questions within this set, we employ Qwen2.5-VL-800

32B to synthesize multiple-choice options, thereby801

transforming the entirety of the CoTA data into a802

MCQA format. Subsequently, we task Qwen2.5-803

VL-7B with answering all the questions and retain804

only those that are answered incorrectly. These805

erroneous examples are more likely to exhibit both806

correct and incorrect responses during the sampling807

of rollouts in GRPO training. The resulting dataset808

is then randomly split into a cold-start dataset and a809

RL dataset in a 1:9 ratio. For the cold-start dataset,810

we utilize GPT-4.1 as the agent to synthesize tool-811

integrated reasoning rollouts, filtering out any roll-812

outs that lead to incorrect answers.813

The SAT data is inherently in a MCQA for-814

mat. We randomly shuffled the answer options and815

subsequently filtered out data instances for which816

Qwen2.5-VL-7B provided an incorrect response.817

B Experiment Setup Details818

B.1 Benchmark and Dataset Details819

In this paper, we evaluate five multi-modal bench-820

marks covering diverse visual reasoning capabil-821

ities: CV-Bench (Tong et al., 2024a), Blink (Fu822

et al., 2024), Blink-Hard (Bigverdi et al., 2024),823

MMVP (Tong et al., 2024b), and a 1,000 randomly824

selected subset from SAT (Ray et al., 2024). Our825

dataset construction incorporates single-image sam-826

ples from both SAT (Ray et al., 2024) and Taco827

(Ma et al., 2024). The following sections pro-828

vide detailed descriptions of these benchmarks and829

datasets:830

• CV-Bench (Tong et al., 2024a): A vision-centric831

benchmark containing 2,638 manually-inspected832

examples for evaluating MLLMs. It repurposes833

standard vision benchmarks (ADE20K (Zhou 834

et al., 2017), COCO (Lin et al., 2014), Omni3D 835

(Brazil et al., 2023)) to assess fundamental 2D 836

and 3D understanding capabilities including spa- 837

tial relationships, object counting, depth order- 838

ing, and relative distance estimation. Questions 839

are programmatically constructed and manually 840

verified for clarity and accuracy. 841

• Blink (Fu et al., 2024): A benchmark with 3,807 842

multiple-choice questions reformatting 14 classic 843

computer vision tasks to test fundamental visual 844

perception abilities. Despite humans achieving 845

95.70% accuracy, even top models like GPT-4V 846

and Gemini achieve only 51.26% and 45.72% ac- 847

curacy respectively. Blink highlights significant 848

gaps between human-level visual perception and 849

current MLLM capabilities. 850

• Blink-Hard (Bigverdi et al., 2024): A chal- 851

lenging benchmark focused on visual perception 852

tasks requiring deeper 3D understanding and spa- 853

tial reasoning. It evaluates whether MLMs can 854

produce and reason with intermediate representa- 855

tions like depth maps and bounding boxes. The 856

benchmark serves as a testbed for approaches like 857

Perception Tokens that assist models in tackling 858

complex visual reasoning problems. 859

• MMVP (Tong et al., 2024b): Contains 300 ques- 860

tions based on 150 pairs of “CLIP-blind” images 861

that appear similar to CLIP models despite clear 862

visual differences. The benchmark categorizes 863

questions across nine visual patterns and reveals 864

systematic shortcomings in MLLMs’ visual per- 865

ception abilities, with even top models showing 866

performance gaps of over 50% compared to hu- 867

mans. 868

• SAT (Ray et al., 2024): Contains 218K question- 869

answer pairs covering 22K synthetic scenes 870

testing both static and dynamic spatial reason- 871

ing. Unlike benchmarks focused on static rela- 872

tionships, SAT (Ray et al., 2024) incorporates 873

perspective-taking and egocentric action recog- 874

nition. Generated using a photo-realistic physics 875

engine, it can be scaled and extended to include 876

new scenarios. 877

• Taco (Ma et al., 2024): A framework and dataset 878

with over 1 million synthetic chains-of-thought- 879

and-action traces (filtered to 293K high-quality 880

examples). TACO (Ma et al., 2024) enables mod- 881

els to perform step-by-step reasoning while in- 882

voking external tools (OCR, depth estimation, 883
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calculators) to solve complex visual problems,884

showing performance improvements of up to885

15% on challenging multimodal tasks.886

B.2 Training Details887

We fine-tune Qwen2.5-VL-3B on eight A800888

GPUs. The detailed training parameters for cold-889

start and reinforcement learning are listed in Ta-890

ble 3 and Table 4891

Table 3: Training hyperparameters

Name Value

bf16 True
tf32 True
per_device_train_batch_size 4
gradient_accumulation_steps 2
lr 1e-5
weight_decay 0
warmup_ratio 0.1
lr_scheduler_type cosine
max_seq_len 16384

Table 4: Training hyperparameters

Name Value

bf16 True
tf32 True
per_device_train_batch_size 8
ppo_mini_batch_size 128
num_generation 8
kl_loss_coef 1e-3
lr 1e-6
weight_decay 0
warmup_ratio 0.03
lr_scheduler_type cosine
max_seq_len 16384

The hyperparameters used for the agent are892

detailed in Table 5. During training with the893

veRL framework, we observed a degradation in894

the response quality when batch-inferencing with895

Qwen2.5-VL by vllm as the batch size increased.896

Consequently, we imposed a limit on the batch size897

used for each inference step.898

Table 5: Agent config

Name Value

max_turns 4
max_tokens_per_turn 700
inference_batch_size 8

C Case Study 899

We show some case studies that our model success- 900

fully using tools in Figure 7 and 9. We also include 901

some failure cases that visual tools return wrong 902

output and disturb model’s reasoning chain in 8. 903
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Table 6: Comparison of Performance

Model CV-Bench MMStar
Count Relation Depth Distance Avg. Corse Fine Instance Logical Math Science Avg.

Qwen2.5-VL-7B-Instruct 68.78 84.62 85.83 76.50 78.31 66.80 53.20 65.20 61.60 56.40 40.00 57.20
Qwen2.5-SFT 40.36 65.69 76.17 82.17 64.25 61.20 42.00 58.40 53.20 48.00 33.20 49.33
Qwen2.5-SFT-Cold-Start 70.18 87.08 82.50 73.83 77.98 60.00 53.20 59.20 55.60 55.20 29.60 52.13
TACO-qwen2-7B 63.32 81.08 59.83 57.26 65.52 68.00 50.40 60.40 42.40 45.60 30.40 49.53
ReVPT-7B 71.32 89.23 82.67 74.33 79.00 64.40 46.40 56.00 58.80 66.00 34.40 54.33

Question: Considering the relative positions of the bottle (annotated by the red box) and the fork in
the image provided, where is the bottle (annotated by the red box) located with respect to the fork?
(A) left (B) right
Answer: (B)

Assistant:
<think> bottle (red box) is located on the table near the center of the image. The fork is also
visible, likely placed on the table as well. To determine their relative positions, I should analyze
the locations of both objects. The bottle appears to be more towards the middle-right side of the
table, while the fork is closer to the center or slightly left. To confirm, I will use the edge detection
tool to better distinguish the boundaries and positions of these objects.</think>
<tool_call>{"name": "edge_detection", "arguments": {"image_id": 0}}</tool_call>’

User: <image>
<result>The edge map for image 0.</result>

Assistant:
<think>From the edge detection result, it is clear that the bottle (in the red box) is positioned more
towards the center-right area of the table. The fork is visible beside the bottle, further to the right.
This confirms that the bottle is to the right of the fork.</think>
<answer>Based on the image and the edge detection result, the bottle (red box) is located to the
right of the fork. Therefore, the answer is \boxedB. < /answer >

Figure 7: Case study for the tool type: Edge Detection.
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Question: Two points are circled on the image, labeled by A and B beside each circle. Which
point is closer to the camera? Select from the following choices.
(A) A is closer(B) B is closer
Answer: (B)

Assistant:
<think>Looking at the image, both points A and B are marked near the face of the doll. To
determine which one is closer to the camera, I need to analyze their positions relative to the viewerś
perspective. Point A appears lower on the dollś face compared to point B, which is higher up on
the forehead. However, this could be due to the camera angle or perspective. To be more certain, I
should use depth estimation to compare the actual spatial distances of points A and B from the
camera.</think>
<tool_call>{"name": "depth_estimation", "arguments": {"image_id": 0}}</tool_call>
User: <image>
<result>The edge map for image 0.</result>

Assistant:
<think>In the depth map, warmer colors indicate areas that are closer to the camera, while cooler
colors represent regions farther away. Observing the map, the region around point A (near the
lower part of the face) appears much warmer compared to the area around point B (higher on the
forehead). This confirms that point A is indeed closer to the camera than point B.</think>
<answer>Based on the depth map, point A is closer to the camera than point B. The warm color at
point A supports this conclusion.\boxed{A} < /answer >

Figure 8: Case study for the tool error: Depth Estimation.
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Question: A bounding box is an annotated rectangle surrounding an object. The edges of bounding
boxes should touch the outermost pixels of the object that is being labeled. Given the two bounding
boxes on the image, labeled by A and B, which bounding box more accurately localizes and
encloses the knife? Select from the following options.
(A) Box A (B) Box B
Answer: (B)

Assistant:
<think>Letś carefully examine the positions of the two bounding boxes, A and B. Box A is
around what appears to be a book or a stack of papers, while Box B is around a silver object that
resembles a knife. The knife is clearly visible and positioned in Box B, whereas Box A does not
contain any knife-like object. To confirm, Iĺl double-check the boundaries of both boxes and their
contents.</think>
<tool_call>{"name": "zoom_in", "arguments": {"image_id": 0, "bbox": [200, 490, 480, 720],
"factor": 1.5}}</tool_call>
User: <image>
<result>Zoomed image 0 on [200, 490, 480, 720] with 1.5x magnification.</result>

Assistant:
<think>The zoomed-in view shows the region where both bounding boxes A and B overlap. By
closely inspecting this area, I can see that Box B encompasses the handle and blade of a knife,
which is not present in Box A. This confirms my initial assessment. Therefore, Box B is the one
that correctly encloses the knife.</think>
<answer>The bounding box labeled B more accurately localizes and encloses the knife, as it
includes the knife’s handle and blade. Therefore, the correct answer is \boxed{B}. < /answer >

Figure 9: Case study for the tool type: Zoom In.
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