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Abstract

Visual reasoning, a cornerstone of human in-
telligence, encompasses complex perceptual
and logical processes essential for solving di-
verse visual problems. While advances in com-
puter vision have produced powerful models
for various perceptual tasks, leveraging these
for general visual reasoning remains challeng-
ing. Prior work demonstrates that augmenting
LLMs with vision models via supervised fine-
tuning improves performance, but faces key
limitations such as expensive data generation,
reliance on careful data filtering, and poor gen-
eralization. To address these issues, we propose
REVPT to enhance multi-modal LLMs’ abili-
ties to reason about and use visual tools through
reinforcement learning. We introduce a novel
RL algorithm based on GRPO, designed to
train models to reason with a suite of seven vi-
sual tools. Our explorative results across mod-
els ranging from 3B to 7B parameters show
that our method achieves state-of-the-art per-
formance on several perception-heavy bench-
marks, including SAT, CV-Bench, BLINK, and
BLINK-Hard, significantly outperforming su-
pervised and text-based RL finetuning base-
lines. We hope our explorative on RL-based
visual tool-usage can bring insights to the com-
munity.

1 Introduction

Visual reasoning is a core component of human
intelligence. It enables us to solve a wide range of
problems, from daily activities such as navigation
to challenging geometry problems. Unlike ver-
bal reasoning, visual reasoning is a more complex
multifaceted process that requires not just straight-
forward logical reasoning but also sound visual
perception, which further relies on atomic abilities
such as object recognition, edge detection, depth
estimation, efc. Due to the complexity of visual
perception, the computer vision community has de-
veloped specialized models for different perceptual

tasks, such as RecognizeAnything for object recog-
nition, DepthAnything for depth estimation, and
SegmentAnything for segmentation (Yang et al.,
2024; Liu et al., 2023d; Zhang et al., 2023).

To leverage these advances in perception for
enhanced visual reasoning and problem-solving,
prior work attempts to augment (multimodal) lan-
guage models with vision specialists. For exam-
ple, VisProg first showcases that augmenting large
language models (LLMs) with various vision mod-
els boosts models’ performance on diverse visual
tasks (Gupta and Kembhavi, 2022). Similarly,
VisualSketchPad finds that prompting GPT-40 to
use sketching tools and depth models improves
its performance on challenging perception and vi-
sual math benchmarks by large margins (Hu et al.,
2024a). More recently, a few works demonstrate
that open-source multimodal language models also
benefit from using visual tools and reasoning about
their outputs after supervised finetuning on tool-use
data (Qi et al., 2024; Liu et al., 2023c).

Nonetheless, there are a few limitations to learn-
ing to reason with visual tools with supervised fine-
tuning (SFT): first, it relies on expensive data cura-
tion. Prior work heavily relies on expensive com-
mercial models like GPT-4 to generate high-quality
tool-use and reasoning traces (Qi et al., 2024; Ma
et al., 2024; Shao et al., 2024a). Second, it often
requires careful data filtering. Previous efforts re-
veal that aggressive filtering based on data format,
answer correctness and other heuristics is crucial
to performance gains (Hu et al., 2024b; Ma et al.,
2024). Most importantly, supervised finetuning
results in limited generalization: it relies on of-
fline trajectories that pre-define one particular set
of tools to use, lacks incentives for the model to
explore alternative tools or adapt to new environ-
ment outputs, and thus limits its generalization to
unseen tools or problems (Guo et al., 2025; Chen
et al., 2025; Chu et al., 2025).

To mitigate these limitations, we borrow inspi-



Q: How many bottles
are in the image?

A:l

GPT-4.1: 2

(X

<think>Let's analyze the .. T don't immediately see any
bottles. I will use object detection to check for any
hidden bottles.</think>

<tool_call>
object_detection
objects: [ bottles]
</tool_call>

<result>
<image>Detected 1
object(s) in image O:...
</result>

<think>The object detection tool has identified one
bottle near the window, which appears to be a glass
vase. ...</think>

<answer>... The answer is 1</answer>

v/

Q: Which object is
closer to the camera,
the lamp or the
refrigerator?

A: lamp

GPT-4.1:
refrigerator

<think>To determine which object is closer to the
camera, I need to analyze the spatial relationship ...Using
a depth estimation tool will help me accurately assess
their relative distances from the camera.<think>

<tool_call>
depth_estimation
</tool_call>

<result>

<image>Here is the
colored depth map for
image 0.

</result>

<think> In the depth map, warmer colors indicate
objects that are closer to the camera...</think>
<answer>Based on the depth map, the lamp is closer to
the camera ...</answer>

Q: Considering the relative positions of the chair (annotated by the red box) and the
tennis racket in the image provided, where is the located with respect to the tennis
racket? Select from the following choices. (A) above(B) below

A:(A) above

GPT-4.1: The chair (annotated by the red box) is positioned above the e
tennis racket in the image. The answer is (A) above.

<think>The tennis racket is being held by the player, while the red box marks a chair

in the background. To determine the spatial relationship, I will analyze their vertical
positions in the image. The chair appears lower and farther away, suggesting it is o
below the tennis racket in terms of position. </think>

<answer>nThe chair is located below the tennis racket, as indicated by its position in
the image. The answer is B. </answer>

Figure 1: Example outputs of REVPT-3B. REVPT-3B is able to solve problems through thinking and selectively

employing visual tools via GRPO training.

ration from recent work on enhancing LLM rea-
soning with reinforcement learning (RL) (Zhang
et al., 2025; Guo et al., 2025; Huang et al.,
2025; Zhan et al.,, 2025; Shen et al., 2025)
and propose Reinforced Visual Perception with
Tools (REVPT), to enhance multimodal language
model’s visual problem-solving skills by training
them to reason with visual tools via RL. REVPT
consists of cold-start and GRPO process to enable
efficient reinforcement learning on multimodal lan-
guage models with 6 visual tools. Unlike SFT,
where all the tool-use reasoning traces need to be
generated and filtered in advance, we only need
to select the appropriate visual questions to per-
form RL on. Moreover, instead of supervising the
model with one correct tool-use trajectory for each
question, RL allows the model to explore and learn
from different possible solutions and incentivizes

the model to output the best one.

Our explorative experiments with models of dif-
ferent parameter scales—3B and 7B—demonstrate
that REVPT-3B enables state-of-the-art perfor-
mance, consistently outperforming SFT baselines
across five perception-intensive benchmarks, in-
cluding MMVP, CV-Bench, BLINK, and BLINK-
Hard. Notably, our approach surpasses the orig-
inal Instruct version models by significant mar-
gins, achieving 6.88% and 4.33% improvements
on CV-Bench and MMVP respectively. Further-
more, our models outperform commercial models
GPT-4.1 and Gemini-2.0-Flash on the challenging
BLINK-Hard benchmark by 3-4 percentage points.
We believe that REVPT, alongside our fully open-
sourced code, datasets, and evaluation platform,
will serve as a valuable resource for the broader
research community.



2 Thinking with Images and Tools

In this section, we introduce REVPT, a reinforce-
ment learning framework designed to train multi-
modal language models for visual perception tasks.
It is built upon the GRPO algorithm (Shao et al.,
2024b), aiming to enhance the model’s ability to
tackle complex visual problems by integrating vi-
sual processing tools as reasoning steps.

Given a multi-modal query, REVPT agent first
generates a reasoning process about analyzing the
query and deciding whether to call tools or answer
directly. Then, by iteratively analyzing the results
from the tools, the model generates a final response
to the query. The overall architecture and process
flow are illustrated in Figure 2.

Through GRPO training, the model has demon-
strated the capacity to leverage appropriate tools
and accurately interpret processed images, thereby
overcoming limitations previously encountered.
Our implementation is based on the veRL (Sheng
et al., 2024) framework.

2.1 Preliminary: GRPO

Group Relative Policy Optimization (GRPO)
presents an alternative approach in the landscape of
reinforcement learning algorithms. A key distinc-
tion of GRPO is its departure from the actor-critic
paradigm, exemplified by algorithms like Proximal
Policy Optimization (PPO). Instead, GRPO eval-
uates policy performance by directly comparing
a collection of candidate responses generated by
the current policy. The core mechanism of GRPO
begins with a given prompt or query, q. For this
query, the policy, denoted as 7y, is used to sam-
ple a set of N distinct candidate responses, rep-
resented as {01, 02,...,0n}. Each of these sam-
pled responses o; is then assessed using a reward
function, R(q, 0;), which quantifies the quality or
appropriateness of the response o; in relation to the
initial query q. To assess relative quality within the
sampled group, GRPO calculates an advantage A;
for each response by normalizing its reward:

r; —mean{ri,r2,...,TN}
Std{T‘l,TQ, T 77"]\]}

Ai= )

where A; represents the advantage of the candidate
response o; relative to other sampled responses.
GRPO encourages the model to generate responses
with higher advantages within the group by updat-

ing the policy 7y using the following objective:
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Here, the clip function limits the probability ratio
of response o; under the current and old policies,
and Dk, is a Kullback-Leibler divergence term
penalizing large deviations from a reference policy
Tref, both contributing to stable training.

2.2 Vision Tools

The efficacy of leveraging visual tools for visual
reasoning has been well-established. Our frame-
work integrates several such high-performing vi-
sual tools, enabling their execution and subse-
quent result incorporation during the MLLM in-
ference process to construct a comprehensive roll-
out. While Table 1 offers a detailed summary of
each tool’s parameters and specifications, their core
functionalities and representative use cases are elab-
orated upon below.

e LLMDET (Fu et al., 2025): This tool is capa-
ble of open-vocabulary detection. It takes an
input image I;;, and a textual query e, to lo-
cate instances of described objects, submitting
their boundaries B,,:. It helps model localize
objects in the image.

* SAM (Kirillov et al., 2023):This tool can gener-
ate fine-grained segmentation masks. SAM can
be invoked for automatic segmentation, where it
takes an input image Z;,, and outputs a set of seg-
mentation masks M ,,; for all detected objects
within the image.Alternatively, it can perform
point-prompted segmentation, taking an input
image Z;,, and one or more user-defined points
‘P on the image to output asegmentation mask
Myt for the object indicated by the provided
point. This tool assists in precisely delineating
object boundaries.

» Z0ooMIN: This tool facilitates focused analysis
by taking an input image Z;,, and a specified re-
gion of interest R to output a magnified view
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Figure 2: An overall pipeline of our REVPT. (Top): Model-generated tool requests are managed by a local
environment-based Tool Controller, which independently deploys vision tool services (e.g., Depth, Object Detection).
These tools’ outputs are then fed back to the LVLM for iterative reasoning. (Bottom): When processing a visual
reasoning problem, REVPT employs K-turn rollouts where the model interacts with the tool environment to learn

an adaptive policy, culminating in the final model.

Ztocus of that region. It helps the model to con-
centrate on pertinent areas, thereby mitigating
the influence of irrelevant information and ampli-
fying salient features.

* EDGEDETECTION: This tool is designed to
identify and delineate the perimeters of objects
and significant textural variations, this tool trans-
forms an input image Z;, into a feature map
Eout that emphasizes these structural edges. This
grants models a sharper perception of object sil-
houettes, surface patterns, and other intrinsic
structural data.

* DEPTHANYTHING(Yang et al., 2024): This tool
computes spatial depth from a monocular visual
input. Given an image Z;, , it generates a cor-
responding depth map D,,; which encodes the
estimated distance of scene elements from the
observer. We use DEPTH_ANYTHING_V?2 to
serve as the tool. This capability equips mod-
els with a more nuanced understanding of three-
dimensional arrangements and the relative posi-
tioning of objects.

* DRAWLINE: This function serves to superim-

pose linear annotations onto an image. Utilizing
an input image Z;,, and precise line parameters
Lspec (such as origin and termination points), it
produces an augmented image Z;.q.,n, featuring
these graphical overlays. The lies in visually
accentuating particular linear connections, trajec-
tories, or critical measurements for the model’s
analytical consideration.

2.3 Cold Start

Initially, our objective is to train a multimodal agent
using the R1-Zero method. However, during the
training process, we observe a progressive decline
in the agent’s propensity to utilize tools. This phe-
nomenon likely stemmed from the fact that solving
visual tasks did not inherently require tool usage,
and reasoning based on processed images repre-
sented a distribution shift from the model’s initial
training data. Consequently, we opt to incorporate
cold-start data during the initial training phases.
This strategy aim to facilitate the model’s initial ac-
quisition of tool utilization skills for solving visual
problems.



Table 1: Vision Tools Overview. This table lists vision tools integrated within REVPT, detailing their arguments,

result formats, and description for their core funtion.

Tool Arguments Result Description
LLMDET Image + Text Prompt Annotated Image + Boxes Zero-shot Object Detection
SAM Image + Point(Optional) Annotated Image Auto Segmentation
ZOOMIN Image + Coordinates + Factor Cropped Image Region Cropping
EDGEDETECTION  Image Edge Map Edge Detection Using Scharr Algorithm
DEPTHANYTHING Image Depth Map Depth Estimation
DRAWLINES Image + Point Coordinate + Mode  Annotated Image Draw Lines
Original Dataset Get Wrongly Answered With Thinking &
4 Vs :__@___ " Action & Observation
A2 Muti-lmage &} ~“§3 / 3 J——
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Figure 3: Reinforced visual tool-usage training requires high-quality and verified data. We transform TACO and
SAT dataset into multiple-choice quesiton, then filter out easy questions with Qwen2.5-VL-7B.

Currently, we employ GPT-4.1 as the agent to
synthesize high-quality data for tool-augmented
reasoning in visual problem solving. We require
the GPT model to follow a predefined format when
answering questions. Specifically, it should first
engage in a reasoning process, considering the po-
tential utility of external tools, and then employ a
multi-turn generation strategy to address the prob-
lem. We explicitly encourage the model in our
prompt to generate more tool-assisted rollouts. Sub-
sequently, we filter out rollout trajectories gener-
ated by the GPT model that contain errors.

After synthesizing tool-integrated reasoning
data, we perform supervised fine-tuning on it. De-
note the query as @', the rollout trajectory 7° as
a sequence of actions a} and observations oi. We
optimize the cross-entropy loss:

N
1 S
Lspr(0) = N E log Py(7" | Q°) (6)
i=1

N nt
1 A o .
=% ZZlong(a“ Q' a’y, Ol<t)
i=1 t=1
(7)

By minimizing LgpT, the model acquires a robust

Cold-Start policy for sequential vision-tool invo-
cation, providing a solid foundation for the subse-
quent reinforcement learning phase.

2.4 Reward Design

Vision tasks often possess ground truth data, facil-
itating the use of rule-based rewards to evaluate
a model’s responses. This approach circumvents
the introduction of neural network-based reward
models, thereby preventing reward hacking.

e Correctness Checking. We restructure the
dataset into a multiple-choice format. The model
is required to put the final answer’s option in the
box, enabling reliable rule-based verification of
correctness. If the answer match the ground truth,
it gets through checking.

* Format Checking. In each turn, the re-
sponse should enclose its thinking process
in <think></think> and enclose its tool call
in <tool_call></tool_call> or answer in <an-
swer></answer>. If the response matches the
pattern, it gets through format checking. Given
the query q and the rollout o, the reward is de-
fined as:



1 ,If FormatCorrect(o)
N AnswerCorrect(o)

Reward(q,0) = {

—1 ,otherwise

3 Experiment
3.1 Experiment Setups

Models. We conduct most our experiments on
Qwen2.5-VL-3B-Instruct (Wang et al., 2024a) for
their strong visual perception and tool-calling capa-
blity. We also select an early checkpoint based on
7B model and include some results in Appendix.

Dataset Construction. A high quality cold-start
dataset and difficult dataset for RL training is very
improtant for model to learn test-time scaling it-
self (Yu et al., 2025). Therefore, we filter the SAT
dataset (Ray et al., 2024) and Taco (Ma et al., 2024)
training set with Qwen2.5-7B-Instruct and retain
the samples it answers incorrectly. Then, we split
it into 1:9 for code-start data synthetic and traning
data. To construct high-quality code-start dataset,
we leverage GPT-4.1 to synthetic tool trajectory
and retain the subset that it answer correctly. Fi-
nally, we get 7k cold-start dataset with well-curated
reasoning chain and tool trajectory.

Baseline. We compare REVPT against the fol-
lowing models and approaches: (1) Commercial
Models: We select GPT-4.1 (OpenAl, 2025) and
Gemini-2.0-Flash (Google, 2024) as strong multi-
modal baselines. Both are evaluated in a zero-shot
setting without external tools as strong generalist
benchmarks. (2) TACO: Learns to invoke 15 ex-
ternal tools (e.g., OCR, depth, etc.) by generating
Chain-of-Thought-and-Action (CoTA) sequences
via supervised learning on synthetic data. TACO
typically executes tools within a single process,
contrasting with our RL-based approach and dis-
tributed architecture (Ma et al., 2024). (3) Qwen-
Base: We implement two base models without
any tool usage, employing different prompt for-
mats for a robust evaluation. (4) Qwen-SAT-SFT:
Two models after supervised finetuning with the
SAT training set (13k samples) as a strong baseline.
We also include an enhanced SFT baseline with
rephrased answers generated by the model itself as
reported by previous research (Wang et al., 2024b).
(5) Qwen-SFT (cold start): The model state af-
ter cold-start training. (6) Text-based RL: An RL
agent trained similarly to REVPT but without any
visual feedback from tools. This follows the native

GRPO training for MLLM in VisualThinker-R1-
Zero (Zhou et al., 2025).

Evaluation. We select 4 multi-modal benchmarks
covering diverse capabilities with a focus on visual
perception and reasoning tasks. This includes CV-
Bench (Tong et al., 2024a), Blink (Fu et al., 2024),
MMVP (Tong et al., 2024b), Blink-Hard (Bigverdi
etal., 2024). We choose subset with only one image
as input.

Experiment Details. We conduct model train-
ing using configurations with 8 x NVIDIA A800
GPUs. We leverage LLaMA-Factory (Zheng et al.,
2024) as Supervised Fine-tuning platform and Verl
as visual tool-base RL platform (Sheng et al., 2024).
The training process involved two phases: (1) Cold-
start Period: Models are trained for 2 epochs with
a learning rate of 1e-5 and a global batch size of 64.
(2) RL Period: For this phase, models are trained
for 100 steps (Loss Curve in Figure 4). We clarify
that reinforeced learning with visual tool do not
reach converge and reward is very unstable.

3.2 Experiment Results

REVPT outperform supervised finetuning and
text-based RL. As shown in Table 2, our method
significantly outperforms the original model on
both CV-Bench and BlinkHard benchmarks, while
also demonstrating improvements over SFT cold
start models. The performance gains are particu-
larly pronounced in depth and distance tasks, with
improvements of 9.5% and 13.23% respectively
compared to the base model, indicating that rein-
forcement learning effectively teaches the model to
utilize tools and interpret tool-generated informa-
tion. Notably, our vision tool-based RL approach
substantially outperforms the converged text-based
RL by 12.7% on CV-Bench, demonstrating how the
model leverages smaller model tools as guidance to
acquire more fundamental perception information,
thereby enhancing its perceptual capabilities.

Performance Tradeoffs in Perception-
specialized Training. Our training on the
curated perception subset from SAT and TACO sig-
nificantly reduced the model’s general performance
capabilities. Direct SFT results reveal substantial
degradation across several Blink capabilities. More
concerning, in our 7B model experiments (detailed
in the Table ??), we detect even larger performance
declines on the more general MMstar benchmark,
with scores approximately 10% below the baseline
instruct model. These findings highlight the



Table 2: Comparison performance between different models on vision-centric benchmarks

Model | CV-Bench |

BLINK Ivpryp! BLINK-HARD

‘Count Relation Depth Distance Avg. ‘Counting IQ Test Localization Depth Reflectance Relation Avg. ‘

| 3 4 5

Gemini-2.0-Flash 7195 86.92 87.50 82.17 81.50] 7583  32.67 62.30 79.84 38.81 7343 59.52| 79.34 |72.58 66.13 66.13
GPT-4.1 67.77 92.00 9450 89.50 84.76] 7520  54.00 73.20 76.80 73.20 54.40 67,80‘ 88.00 ‘7177 62.90 63.71
Qwen2.5-VL-3B-Instruct| 68.65 7492 76.00 71.67 72.55| 68.33 6.67 49.18 64.52 38.81 83.92 50.95| 64.67 |61.29 54.03 46.77
Qwen2.5-VL-3B-SFT 60.53 6123 79.50 78.33 69.07| 40.00 24.67 56.56 50.00 31.34 68.53 44.89| 65.42 |52.42 46.77 42.74
Qwen2.5-VL-3B-GRPO | 64.85 69.85 7233 5933 66.53| 60.83  24.00 43.44 49.19 29.85 79.72  47.54| 40.33 |50.00 48.39 45.97
R1-3B-cold-start 69.29 86.31 84.17 7250 77.60] 57.50  27.52 51.64 66.94 26.87 73.43 50.06| 62.33 [63.71 50.81 46.77
R1-3B 69.92 88.15 85.50 7550 79.23| 54.17 25.33 50.82 66.13 32.09 75.52 50.19] 69.00 |73.27 66.67 61.22
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Figure 4: Our reward rapidly upgrade and reach con-
verge.
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Figure 5: Our model effectively learns tool utilization
post-cold-start, enhancing visual perception capabilities.
Current RL data shows bias toward object detection
and depth estimation over zoom and segmentation tools.
Future work will address data balance and generalized
perception objectives.
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critical relationship between reinforcement
learning sample distribution and resulting model
capabilities. Our key insight is that developing
effective visual tool-using agents requires not
only sophisticated interaction environments
but also carefully balanced, comprehensive,
and high-quality datasets that preserve general
capabilities while enhancing targeted skills.

Limitations of Visual Tool Integration. During
our experimental process, we observe that these

visual tools often hindered rather than enhanced
model performance, sometimes degrading or in-
terfering with the model’s reasoning capabilities.
In some cases, the model needed to correct erro-
neous tool outputs to arrive at accurate answers.
For instance, in Figure 6, the model misclassify a
mattress as a pillow, resulting in an incorrect re-
sponse despite the model’s inherent capability to
solve the problem correctly. Furthermore, we dis-
cover that enhancement of perception capabilities
through tool use is significantly influenced by the
model’s inherent abilities. In Figure 8, though the
depth estimation tool returned a color-coded depth
map (where warm colors indicate proximity and
cool colors indicate distance), the model—despite
acknowledging this information and analyzing it
during reasoning—ultimately produced an incor-
rect answer. We attribute this phenomenon to the
model’s original perception capabilities constrain-
ing its ability to effectively and accurately utilize
external tools, limiting tool-use efficacy and cor-
rectness.

4 Related Works

Multimodal language models. Recently, there
have been many advances on open-source multi-
modal models (Awadalla et al., 2023; Chen et al.,
2023; Liu et al., 2023b,a, 2024; Dai et al., 2024;
Li et al., 2022, 2023; Deitke et al., 2024). These
efforts include training multimodal models to take
in multiple images, engage in multi-turn conver-
sations, and even understand videos (Liu et al.,
2024; Jiang et al., 2024; Li et al., 2024). For ex-
ample, LLaVA-Next achieves strong multi-image
understanding through large-scale interleaved vi-
sual instruction tuning with M4-Instruct (Liu et al.,
2024). Similarly, Mantis introduces a new large-
scale multi-image instruction tuning dataset Mantis-
Instruct for multi-image training (Jiang et al., 2024).
These efforts pave the foundation for our work on
learning vision-language models with image-text
interleaved reasoning traces. over perceptual out-



Q: How many cushions
are in the image?

ReVPT: I see a bed
with several pillows and
a decorative cushion on
it. To be thorough, T'll
count each distinct
cushion that is clearly
visible in the image.

<think> Using an object detection tool, five
cushions were identified. <\think>

There are three cushions visible in the image: two brown and one
white. This conclusion is supported by both the object detection
results and visual confirmation. <answer>3<\answer>

However, upon visual inspection,
there appear to be only three main
cushions that stand out: two brown
ones and one white one. The
remaining items seem to be part of
the pillow arrangement rather than
individual cushions.

This aligns with my initial
observation. I'm confident that the
correct number of distinct
cushions is three.

Figure 6: Erroneous outputs from object detection tools disrupt the model’s reasoning chain, ultimately lead to

incorrect final predictions.

puts from vision specialists.

Multimodal tool-use. Recently, there has been
increasing interest in enhancing multimodal lan-
guage models with improved tool-use capabili-
ties (Liu et al., 2023c; Qi et al., 2024; Shao et al.,
2024a; Ma et al., 2024). LLaVa-Plus demonstrated
the feasibility of training such models to utilize vi-
sion tools (Liu et al., 2023c). Visual Program Dis-
tillation transfers tool-use and reasoning skills into
a multimodal model using chain-of-thought (CoT)
data derived from programs (Hu et al., 2024b).
Similarly, Visual CoT introduces a synthetic CoT
dataset aimed at boosting the reasoning abilities
of multimodal models (Shao et al., 2024a). More
recently, LLaVa-CoT incorporates both perception
and reasoning capabilities inspired by GPT-40 (Xu
et al., 2025). CogCoM identifies six key manipula-
tion strategies and trains multimodal models with
synthetic chain-of-manipulation (CoM) data (Qi
et al., 2024), while TACO contributes 273K multi-
modal reasoning traces derived from the outputs of
15 visual tools (Ma et al., 2024).

Multimodal Language Model Reasoning with
RL. DeepSeek-R1 (Guo et al., 2025) has demon-
strated that simple rule-based reinforcement learn-
ing can effectively induce strong reasoning behav-
iors. This R1-style reasoning paradigm has shown
success in multimodal language models (Shen et al.,
2025; Lu et al., 2025; Zhan et al., 2025; Huang
et al., 2025; Feng et al., 2025; Li et al., 2025).
VLM-R1 (Shen et al., 2025) applies reward-driven

fine-tuning to improve visual reasoning and gen-
eralization beyond supervised baselines. Vision-
R1 (Zhan et al., 2025) introduces human-free align-
ment through vision-guided rewards, while another
Vision-R1 (Huang et al., 2025) leverages CoT-style
tasks and reward shaping to boost multi-step rea-
soning. UI-R1 (Lu et al., 2025) enhances action pre-
diction in GUI agents via GRPO-based RL, achiev-
ing strong performance with compact models. In
the video domain, Video-R1(Feng et al., 2025) im-
proves temporal reasoning through T-GRPO and
mixed-modality rewards, and VideoChat-R1 (Li
et al., 2025) reinforces spatio-temporal understand-
ing across diverse video question types.

5 Conclusion

In this work, we explore tool-usage reinforcement
learning to enable models to utilize external vision
tools for test-time scaling. We propose REVPT,
a training suite designed to integrate tool-usage
with reinforcement learning, enabling models to
optimize tool selection and interleaved text-image-
tool reasoning through direct interaction and re-
ward feedback. Our experiments across multiple
multimodal benchmarks demonstrate that REVPT
successfully raises performance beyond the base
model’s capabilities, achieving results significantly
higher than those obtained through supervised fine-
tuning and text-only RL. We hope that REVPT,
along with our fully open-sourced code, dataset,
and platform, will serve as a valuable resource for
the research community.



Limitations and Future Work

Although our method demonstrates exceptional
post-training performance on Qwen2.5-VL-3B, nu-
merous opportunities remain for exploring tool de-
sign optimization, data distribution ratios, and re-
ward configuration refinements. Furthermore, our
training methodology presents additional avenues
for investigation—we currently train on the curated
dataset for only a single epoch and plan to extend
the training duration in future iterations. In our
exploratory experiments with the 7B model vari-
ant, we observed performance improvements on
CV-bench; however, we detected significant per-
formance degradation on the more general MM-
star benchmark. We attribute this decline to our
dataset composition, which primarily emphasizes
perception-oriented samples from SAT and TACO
datasets rather than more diverse general-purpose
examples, consequently diminishing performance
across broader capabilities. Future work will ad-
dress these data diversity considerations to main-
tain comprehensive multimodal reasoning abili-
ties.
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A Dataset Construction Details

We leverage the SAT dataset and the CoTA dataset
from TACO for our training.

The SAT (Ray et al., 2024) dataset is a synthetic
VQA dataset designed to enhance the spatial rea-
soning capabilities of Multimodal Large Language
Models (MLLMs).

The CoTA dataset from TACO (Ma et al., 2024)
is a synthetic dataset comprising Chain-of-Thought-
Action data generated by GPT-40. However, we
leverage it solely as a VQA filter for potential tool
utilization.

The CoTA data comprises trajectories of thought,
action, and observation. We derive QA pairs from
this data using Qwen3-30B-A3B. For open-ended
questions within this set, we employ Qwen2.5-VL-
32B to synthesize multiple-choice options, thereby
transforming the entirety of the CoTA data into a
MCQA format. Subsequently, we task Qwen2.5-
VL-7B with answering all the questions and retain
only those that are answered incorrectly. These
erroneous examples are more likely to exhibit both
correct and incorrect responses during the sampling
of rollouts in GRPO training. The resulting dataset
is then randomly split into a cold-start dataset and a
RL dataset in a 1:9 ratio. For the cold-start dataset,
we utilize GPT-4.1 as the agent to synthesize tool-
integrated reasoning rollouts, filtering out any roll-
outs that lead to incorrect answers.

The SAT data is inherently in a MCQA for-
mat. We randomly shuffled the answer options and
subsequently filtered out data instances for which
Qwen2.5-VL-7B provided an incorrect response.

B Experiment Setup Details

B.1 Benchmark and Dataset Details

In this paper, we evaluate five multi-modal bench-
marks covering diverse visual reasoning capabil-
ities: CV-Bench (Tong et al., 2024a), Blink (Fu
et al., 2024), Blink-Hard (Bigverdi et al., 2024),
MMVP (Tong et al., 2024b), and a 1,000 randomly
selected subset from SAT (Ray et al., 2024). Our
dataset construction incorporates single-image sam-
ples from both SAT (Ray et al., 2024) and Taco
(Ma et al., 2024). The following sections pro-
vide detailed descriptions of these benchmarks and
datasets:

* CV-Bench (Tong et al., 2024a): A vision-centric
benchmark containing 2,638 manually-inspected
examples for evaluating MLLMs. It repurposes
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standard vision benchmarks (ADE20K (Zhou
etal., 2017), COCO (Lin et al., 2014), Omni3D
(Brazil et al., 2023)) to assess fundamental 2D
and 3D understanding capabilities including spa-
tial relationships, object counting, depth order-
ing, and relative distance estimation. Questions
are programmatically constructed and manually
verified for clarity and accuracy.

Blink (Fu et al., 2024): A benchmark with 3,807
multiple-choice questions reformatting 14 classic
computer vision tasks to test fundamental visual
perception abilities. Despite humans achieving
95.70% accuracy, even top models like GPT-4V
and Gemini achieve only 51.26% and 45.72% ac-
curacy respectively. Blink highlights significant
gaps between human-level visual perception and
current MLLM capabilities.

Blink-Hard (Bigverdi et al., 2024): A chal-
lenging benchmark focused on visual perception
tasks requiring deeper 3D understanding and spa-
tial reasoning. It evaluates whether MLLMs can
produce and reason with intermediate representa-
tions like depth maps and bounding boxes. The
benchmark serves as a testbed for approaches like
Perception Tokens that assist models in tackling
complex visual reasoning problems.

MMYVP (Tong et al., 2024b): Contains 300 ques-
tions based on 150 pairs of “CLIP-blind” images
that appear similar to CLIP models despite clear
visual differences. The benchmark categorizes
questions across nine visual patterns and reveals
systematic shortcomings in MLLMs’ visual per-
ception abilities, with even top models showing
performance gaps of over 50% compared to hu-
mans.

SAT (Ray et al., 2024): Contains 218K question-
answer pairs covering 22K synthetic scenes
testing both static and dynamic spatial reason-
ing. Unlike benchmarks focused on static rela-
tionships, SAT (Ray et al., 2024) incorporates
perspective-taking and egocentric action recog-
nition. Generated using a photo-realistic physics
engine, it can be scaled and extended to include
new scenarios.

Taco (Ma et al., 2024): A framework and dataset
with over 1 million synthetic chains-of-thought-
and-action traces (filtered to 293K high-quality
examples). TACO (Ma et al., 2024) enables mod-
els to perform step-by-step reasoning while in-
voking external tools (OCR, depth estimation,



calculators) to solve complex visual problems,
showing performance improvements of up to
15% on challenging multimodal tasks.

B.2 Training Details

We fine-tune Qwen2.5-VL-3B on eight A800
GPUs. The detailed training parameters for cold-

start and reinforcement learning are listed in Ta-
ble 3 and Table 4

Table 3: Training hyperparameters

Name Value
bf16 True
tf32 True
per_device_train_batch_size 4
gradient_accumulation_steps 2

Ir le-5
weight_decay 0
warmup_ratio 0.1
Ir_scheduler_type cosine
max_seq_len 16384

Table 4: Training hyperparameters

Name Value
bf16 True
tf32 True
per_device_train_batch_size 8
ppo_mini_batch_size 128
num_generation 8
kl_loss_coef le-3
Ir le-6
weight_decay 0
warmup_ratio 0.03
Ir_scheduler_type cosine
max_seq_len 16384

The hyperparameters used for the agent are
detailed in Table 5. During training with the
veRL framework, we observed a degradation in
the response quality when batch-inferencing with
Qwen2.5-VL by vllm as the batch size increased.
Consequently, we imposed a limit on the batch size
used for each inference step.
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Table 5: Agent config

Name Value

max_turns 4
max_tokens_per_turn 700
inference_batch_size 8

C Case Study

We show some case studies that our model success-
fully using tools in Figure 7 and 9. We also include
some failure cases that visual tools return wrong
output and disturb model’s reasoning chain in 8.



Table 6: Comparison of Performance

CV-Bench MMStar

Model Count Relation Depth Distance Avg. | Corse Fine Instance Logical Math Science Avg.

Qwen2.5-VL-7B-Instruct | 68.78 84.62 85.83 76.50 7831 | 66.80 5320  65.20 61.60 5640 40.00 57.20

Qwen2.5-SFT 40.36 65.69 76.17 82.17 6425 | 61.20 42.00 58.40 5320 48.00 3320 4933
Qwen2.5-SFT-Cold-Start | 70.18 87.08 82.50 73.83  77.98 | 60.00 53.20 59.20 55.60 5520 29.60 52.13
TACO-qwen2-7B 63.32 81.08 59.83 5726 65.52 | 68.00 5040  60.40 4240 4560 3040 4953
ReVPT-7B 71.32 89.23 82.67 7433 79.00 | 6440 4640  56.00 58.80  66.00 3440 54.33

Question: Considering the relative positions of the bottle (annotated by the red box) and the fork in
the image provided, where is the bottle (annotated by the red box) located with respect to the fork?
(A) left (B) right

Answer: (B)

Assistant:

<think> bottle (red box) is located on the table near the center of the image. The fork is also
visible, likely placed on the table as well. To determine their relative positions, I should analyze
the locations of both objects. The bottle appears to be more towards the middle-right side of the
table, while the fork is closer to the center or slightly left. To confirm, I will use the edge detection
tool to better distinguish the boundaries and positions of these objects.</think>
<tool_call>{"name": "edge_detection", "arguments": {"image_id": 0} }</tool_call>’

User: <image>

<result>The edge map for image 0.</result>

Assistant:

<think>From the edge detection result, it is clear that the bottle (in the red box) is positioned more
towards the center-right area of the table. The fork is visible beside the bottle, further to the right.
This confirms that the bottle is to the right of the fork.</think>

<answer>Based on the image and the edge detection result, the bottle (red box) is located to the
right of the fork. Therefore, the answer is \boxedB. < /answer >

Figure 7: Case study for the tool type: Edge Detection.

14




Question: Two points are circled on the image, labeled by A and B beside each circle. Which
point is closer to the camera? Select from the following choices.

(A) A is closer(B) B is closer

Answer: (B)

Assistant:

<think>Looking at the image, both points A and B are marked near the face of the doll. To
determine which one is closer to the camera, I need to analyze their positions relative to the viewers
perspective. Point A appears lower on the doll$ face compared to point B, which is higher up on
the forehead. However, this could be due to the camera angle or perspective. To be more certain, |
should use depth estimation to compare the actual spatial distances of points A and B from the
camera.</think>

<tool_call>{"name": "depth_estimation", "arguments": {"image_id": 0} }</tool_call>
User: <image>

<result>The edge map for image 0.</result>

Assistant:

<think>In the depth map, warmer colors indicate areas that are closer to the camera, while cooler
colors represent regions farther away. Observing the map, the region around point A (near the
lower part of the face) appears much warmer compared to the area around point B (higher on the
forehead). This confirms that point A is indeed closer to the camera than point B.</think>
<answer>Based on the depth map, point A is closer to the camera than point B. The warm color at
point A supports this conclusion.\boxed{ A} < /answer >

Figure 8: Case study for the tool error: Depth Estimation.
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Question: A bounding box is an annotated rectangle surrounding an object. The edges of bounding
boxes should touch the outermost pixels of the object that is being labeled. Given the two bounding
boxes on the image, labeled by A and B, which bounding box more accurately localizes and
encloses the knife? Select from the following options.

(A) Box A (B) Box B

Answer: (B)

Assistant:

<think>Let§ carefully examine the positions of the two bounding boxes, A and B. Box A is
around what appears to be a book or a stack of papers, while Box B is around a silver object that
resembles a knife. The knife is clearly visible and positioned in Box B, whereas Box A does not
contain any knife-like object. To confirm, Iil double-check the boundaries of both boxes and their
contents.</think>

<tool_call>{"name": "zoom_in", "arguments": {"image_id": 0, "bbox": [200, 490, 480, 720],

"factor": 1.5} }</tool_call>
User: <image>

<result>Zoomed image 0 on [200, 490, 480, 720] with 1.5x magnification.</result>

Assistant:

<think>The zoomed-in view shows the region where both bounding boxes A and B overlap. By
closely inspecting this area, I can see that Box B encompasses the handle and blade of a knife,
which is not present in Box A. This confirms my initial assessment. Therefore, Box B is the one
that correctly encloses the knife.</think>

<answer>The bounding box labeled B more accurately localizes and encloses the knife, as it
includes the knife’s handle and blade. Therefore, the correct answer is \boxed{B}. < /answer >

Figure 9: Case study for the tool type: Zoom In.
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