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Abstract

We address the problem of stochastic combinatorial semi-bandits, where a player
selects among P actions from the power set of a set containing d base items. Adap-
tivity to the problem’s structure is essential in order to obtain optimal regret upper
bounds. As estimating the coefficients of a covariance matrix can be manageable
in practice, leveraging them should improve the regret. We design “optimistic”
covariance-adaptive algorithms relying on online estimations of the covariance
structure, called OLS-UCB-C and COS-V (only the variances for the latter). They
both yield improved gap-free regret. Although COS-V can be slightly suboptimal,
it improves on computational complexity by taking inspiration from Thompson
Sampling approaches. It is the first sampling-based algorithm satisfying a O(

√
T )

gap-free regret (up to poly-logs). We also show that in some cases, our approach
efficiently leverages the semi-bandit feedback and outperforms bandit feedback
approaches, not only in exponential regimes where P ≫ d but also when P ≤ d,
which is not covered by existing analyses.

1 Introduction

In sequential decision-making, the bandit framework has been extensively studied and was instrumen-
tal to several applications, e.g. A/B testing (Guo et al., 2020), online advertising and recommendation
services (Zeng et al., 2016), network routing (Tabei et al., 2023), demand-side management (Brégère
et al., 2019), etc. Its popularity stems from its relative simplicity, allowing it to model and analyze a
wide range of challenging real-world settings. Reference books like Bubeck and Cesa-Bianchi (2012)
or Lattimore and Szepesvári (2020) offer a wide perspective on the subject.

In this framework, a decision-maker or player must make choices and receives associated rewards,
but it lacks prior knowledge of its environment. This naturally leads to an exploration-exploitation
trade-off: the player must explore different actions to determine the best one, but an inefficient
exploration strategy may harm the cumulative rewards. Efficient algorithms rely on exploiting the
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environment’s structure, such as estimating the parameters of a reward function instead of exploring
every action.

This paper focuses on the stochastic combinatorial semi-bandit framework. At each round, the player
chooses a subset of base items and receives a feedback for each item chosen. The action set is
included in the base items’ power set, and can therefore be exponentially big and difficult to explore.
The main challenge in this framework is to effectively combine the information collected through
different actions (that may share common base items).

Problem formulation. We consider a set of d ∈ N∗ base items, each item i ∈ [d] = {1, . . . , d}
yielding stochastic rewards. A player accesses these rewards through a set A ⊆ {0, 1}d of P ∈ N∗

actions, each corresponding to a subset of at most m ≥ 5 items(a). We refer to actions a ∈ A using
their components vector a = (ai)i∈[d] ∈ {0, 1}d where for all j ∈ [d], aj = 1 if and only if action a
contains base item j.

The player interacts with an environment over a sequence of T ∈ N∗ rounds. At each round t ∈ [T ],
the player chooses an action At ∈ A, the environment samples a reward vector Yt ∈ Rd, the player
observes the realization for every item contained in At, and receives their sum. The interactions
between the player and the environment are summarized in Framework 1.

Framework 1 Stochastic Combinatorial Semi-Bandit
For each t ∈ {1, . . . , T}:

• The player chooses an action At ∈ A.
• The environment samples a vector of rewards Yt ∈ Rd from a fixed unknown distribution.
• The player receives the reward ⟨At, Yt⟩ =

∑
i At,iYt,i.

• The player observes Yt,i for all i ∈ [d] s.t. At,i = 1.

Assumptions. We make the following assumptions. For all t ∈ [T ], Yt is independent of the past
rewards and the player’s decision σ(A1, Y1, . . . , At−1, Yt−1, At). There exists a mean reward vector
E[Yt] = µ ∈ Rd and a second order moment matrix S = E[YtY

⊤
t ] ∈ Md(R). The positive semi-

definite covariance matrix is denoted Σ ∈Md(R), with Σ = S− µµ⊤.There exists a known vector
B ∈ Rd

+ such that for all t ∈ [T ] and i ∈ [d], |Yt,i| ≤ Bi/2 almost surely (and |Yt,i − µi| ≤ Bi).

The objective of the decision-maker is to minimize the expected cumulative pseudo-regret defined as:

E[RT ] = E
[∑T

t=1⟨a∗ −At, µ⟩
]
=
∑T

t=1 ∆At
, (1)

where ⟨·, ·⟩ denotes the usual inner product in Rd, a∗ ∈ argmaxa∈A⟨a, µ⟩ is an optimal action, and
∆a = ⟨a∗ − a, µ⟩ is the sub-optimality gap for action a ∈ A.

1.1 Existing work and limitations

Combinatorial semi-bandit problems have been extensively studied by the bandit community since
their introduction by Chen et al. (2013). Here, we only highlight key earlier works related to this paper.
For a comprehensive introduction to this literature, we refer the interested reader to the monograph
by Lattimore and Szepesvári (2020).

A first line of works considers deterministic algorithms based on the optimistic principle and upper
confidence bounds (UCBs). Chen et al. (2013) first designed CUCB, computing UCBs for the items’
average rewards, converting these into UCBs for the actions’ rewards, and choosing the action with
the highest one. It was later analyzed by Kveton et al. (2015), who proved a regret upper bound
uniform over all possible covariance matrices Σ (hence, paying the worst-case). Combes et al. (2015)
highlighted the importance of designing Σ-adaptive algorithms by showing that the regret could be
improved by a factor of m when the items’ average rewards are independent. Subsequently, Degenne
and Perchet (2016) developed OLS-UCB, an algorithm intended to leverage the covariance structure.
However, OLS-UCB requires prior knowledge of a positive semi-definite covariance-proxy matrix
Γ, such that for all t ≥ 1 and for all u ∈ Rd, E[exp(⟨u, Yt − µ⟩)] ≤ exp( 12∥u∥

2
Γ). Estimating Γ in

(a)Throughout the paper, the term item (or base item) refers to an element in the set [d], while an action denotes
a subset of base items in A.
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practice is challenging and leads to regret bounds depending on it instead of the “true” covariance
matrix Σ, potentially resulting in significantly looser bounds. This issue was addressed by Perrault
et al. (2020b), who proposed a covariance-adaptive algorithm, ESCB-C, with asymptotically optimal
gap-dependent regret upper bounds. Yet, it suffers from an additive constant of order ∆−2

min , which
prevents its conversion into an Õ(

√
T )(b) gap-free bound. Thus, none of the above works proposes

a Õ(
√
T ) gap-free and covariance-adaptive regret bound, which is one of the key contributions of

this paper. A common drawback of these works is also their potentially prohibitive computational
complexity, due to the need to solve a maximization step over a large action set A ⊆ {0, 1}d that
can be exponentially large. Some works, such as Cuvelier et al. (2021) or Liu et al. (2022), propose
solutions to achieve polynomial time complexity, for example by applying UCB at the item level only
rather than the action level. However, these approaches only work for independent rewards or under
specific assumptions on their distribution, making the analysis for generic and unknown distributions
extremely challenging. Another approach to tackle the computational burden in combinatorial
semi-bandits is to resort to sampling algorithms, which we detail below.

A second line of works for stochastic combinatorial semi-bandits considers randomized algorithms
inspired by Thompson Sampling (TS) for multi-armed bandits (Thompson, 1933). These algorithms
involve sampling a random vector µ̃t ∈ Rd at each round t + 1 ∈ [T − 1] from a distribution
representing a “belief” over the parameter µ, taking a decision At+1 ∈ argmaxa∈A⟨a, µ̃t⟩, and
updating the belief distribution using the observations. The main appeal of these approaches lies in
their computational complexity, especially when solving a linear maximization problem in particular
action spaces (such as matroids). Recent works have designed and analyzed such algorithms. Notably,
Wang and Chen (2018) consider independent item’s rewards. Perrault et al. (2020a) refine it and
assume a known variance-proxy Γ and therefore suffers from the same drawbacks as Degenne and
Perchet (2016). Their technical analysis also yields a gap-dependent regret bound with an undesirable
∆−m

min term, preventing a Õ(
√
T ) gap-free rate. A central contribution in our paper is the combination

of the computational efficiency for sampling algorithms with the covariance-adaptivity Õ(
√
T )

gap-free from our UCB approach.

Besides, the literature concerning our setting has historically mostly focused on cases where the
action set is exponentially large, namely P ≫ d, and the way to get quasi-optimal regret rates in these
instances. However, outside of these regimes, the commonly derived regret bounds are too rough and
fail to show the benefit of the semi-bandit feedback. While the conventional stochastic combinatorial
semi-bandit regret upper bound grows as Õ(

√
mdT ) (Kveton et al., 2015), a Õ(

√
mPT ) could

be achieved using bandit feedback only (Auer et al., 2002b). Intriguingly, the latter appears to
outperform the semi-bandit rate as soon as P < d, making the extra information obtained through a
richer feedback seemingly useless. Fine-grained analyses, clearly taking the structure into account,
are therefore needed.

1.2 Contributions

A new deterministic optimism-based algorithm (Section 2). We present OLS-UCB-C (Online
Least Squares Upper Confidence Bound with Covariance estimation), relying on the optimism
principle. The analysis of OLS-UCB-C sketched in Section 5.2 shows the following properties:

• First optimal gap-free regret upper bound. OLS-UCB-C yields a similar gap-dependent regret
bound as ESCB-C from Perrault et al. (2020b) up to logarithmic factors, and the first optimal
covariance-adaptative gap-free Õ(

√
T ) regret bound (Theorem 1).

• Improved performance over UCB in all regimes of P/d. Under some conditions on the
covariance matrix Σ, we prove that OLS-UCB has a uniformly better regret than UCB, showing
that properly leveraging semi-bandit feedback indeed consistently offers an advantage on
(simple) bandit algorithms, which is not straightforward from existing analyses.

• Improved complexity over concurrent algorithms. OLS-UCB-C circumvents the convex opti-
mization problem that ESCB-C requires to solve at each round and is therefore more efficient,
despite suffering in the very large P regime as many other deterministic algorithms.

The first stochastic optimism-based algorithm (Section 3). We introduce COS-V (Combinatorial
Optimistic Sampling with Variance estimation), a TS-inspired algorithm exploiting the “frequentist”
confidence regions derived in Section 4. It satisfies the following:

(b)We denote Õ for O when T → ∞, up to poly-logarithmic terms.
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• Improved complexity for P ≫ 1 compared to other deterministic semi-bandit algorithms.
COS-V can be efficient in the very large P regime, which is the main blind spot of OLS-UCB-C.

• First gap-free Õ(
√
T ) regret upper bound for a sampling algorithm. The analysis we provide

in Section 5.3 exploits the common structure of the OLS-UCB-C and COS-V algorithms. It
enables the derivation of a gap-dependent bound for COS-V that does not involve the ∆−m

term we typically find in the analysis for other TS algorithms (Wang and Chen, 2018; Perrault
et al., 2020a), consequently leading to a new Õ(

√
T ) variance-adaptive gap-free regret upper

bound for a sampling algorithm.

A novel gap-free lower bound (Section 2.2). We show a gap-free lower bound on the regret for
stochastic combinatorial semi-bandits, explicitly involving the structure of the problem (the items
forming each action) and the covariance matrix Σ. This lower bound highlights the optimality of the
gap-free upper bound we establish for OLS-UCB-C.

Technical details are deferred to Section 4, Section 5, and the Appendix.

Table 1: Asymptotic Õ(·) regret bounds and per-round time complexities up to poly-logarithmic terms in d, for
the following deterministic algorithms: UCB (Auer et al., 2002a), UCBV (Audibert et al., 2009), CUCB (Kveton
et al., 2015), OLS-UCB-C (Degenne and Perchet, 2016), ESCB-C (Perrault et al., 2020b), and OLS-UCB-C (ours);
as well as the two stochastic algorithms: CTS-Gaussian (Perrault et al., 2020a) and COS-V (ours).
Notations: a refers to actions; i and j refer to items; m denotes the maximum number of items per action; B is
a vector of bounds on the items’ rewards; Γ is a covariance-proxy matrix; γ is the maximum of “correlations-
proxy”; we abbreviate max{x, 0} to (x)+ for any x ∈ R ; Copt

1/T refers to the complexity of the optimisation
step needed in ESCB-C.

Fdbck. Algorithm Info. Time Complexity Gap-Free Asymptotic Regret

Bndt. UCB B P
(
T
∑

a(a
⊤B)2

)1/2
UCBV ∅ P

(
T
∑

a a
⊤Σa

)1/2

S-Bndt.

CUCB B mP
(
Tmd

)1/2∥B∥∞
OLS-UCB(a) Γ m2 + Pd2 ∅
ESCB-C ∅ m2 + P Copt

1/T ∅
OLS-UCB-C ∅ m2 + Pd2

(
T
∑

i maxa/i∈a

∑
j∈a(Σi,j)+

)1/2
S-Bndt. CTS-Gaussian(b) Γ poly(d) ∅

COS-V(b) ∅ poly(d)
(
Tm

∑
i∈[d] Σi,i

)1/2

2 Covariance-adaptative deterministic algorithm: OLS-UCB-C

In this section, we design a new algorithm that efficiently leverages the semi-bandit feedback. It
approximates the coefficients of the covariance matrix Σ online. The approximation is symmetric
by construction and yields a coefficient-wise upper bound of Σ, but it is not necessarily positive
semi-definite, a constraint that can be challenging to impose in practice.

2.1 Algorithm: OLS-UCB-C

We present OLS-UCB-C described in Alg. 2 and detail below the successive steps it performs.

Initial exploration. The algorithm first explores by choosing every base item i ∈ [d] and every
“reachable” couple (i, j) ∈ [d]2 at least once.

(a)Note that OLS-UCB incur a ∆−2 term in its gap-dependent bound. This was overlooked by the authors but
yields a T 2/3 gap-free bound.

(b)Assuming A has matroid structure, the computational complexity is improved compared to a O(P ) for
large P .
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Algorithm 2 OLS-UCB-C
Input δ > 0, B ∈ Rd

+.
for t = 1, . . . , T do

if
{
a ∈ A|min(i,j)∈a nt,(i,j) < 1

}
̸= ∅

then
Choose any At in the above set.

else
Compute µ̂t−1 from (2).
Compute Σ̂t−1 from (3) and (4).
Compute Ẑt−1 from (5).
Choose At ∈ A from (6).
Environment samples Yt ∈ Rd.
Receive reward ⟨At, Yt⟩ =

∑
i At,iYt,i.

end if
end for

Rewards means estimation. At each round t+
1 ∈ [T − 1], the algorithm uses an empirical mean
µ̂t for µ defined as

µ̂t = N−1
t

∑t
s=1 dAs

Ys, (2)

where da = diag(a) ∈ Md(R) is the diago-
nal matrix of the elements in a ∈ A; nt,(i,j) is
the number of times items i and j (with possi-
bly i = j) have been chosen together; Nt =
diag((nt,(i,i))i∈[d]) ∈Md(R) is the diagonal ma-
trix of item counts.

Rewards covariances estimation. The covari-
ances are estimated by

χ̂t,(i,j) = Ŝt,(i,j) − µ̂t,iµ̂t,j , (3)

where Ŝt,(i,j) = 1
nt,(i,j)

∑t
s=1 As,iAs,jYs,iYs,j .

The algorithm uses Σ̂t, a coefficient-wise upper-confidence bound of Σ whose coefficients are
defined for a fixed δ > 0 as

Σ̂t,(i,j) = χ̂t,(i,j) +
BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)
, (4)

where ht,δ =
(
1 + 2 log(1/δ) + 2 log

(
t log(t)2d(d+ 1)

)
+ log(1 + t)

)1/2
.

Optimistic action choice. Following the ‘optimistic’ principle of UCB-like algorithms, the estimated
rewards (⟨µ̂t, a⟩)a∈A are inflated by bonuses, yielding corresponding upper confidence bounds.
The bonuses involve the history through a regularized empirical design matrix (with empirical
covariances):

Ẑt =

t∑
s=1

dAs
Σ̂tdAs

+ dΣ̂t
Nt + ∥B∥2I , (5)

where dΣ̂t
= diag(Σ̂t) ∈Md(R), I is the identity matrix and Σ̂t is the coefficient-wise upper bound

for the covariance matrix defined in (4). Formally, OLS-UCB-C chooses

At+1 ∈ argmax
a∈A

{
⟨a, µ̂t⟩+ ft,δ

∥∥N−1
t a

∥∥
Ẑt

}
, (6)

where f t,δ = 6 log(1/δ) + 6
(
log(t) + (d+ 2) log(log(t))

)
+ 3d

(
2 log(2) + log(1 + e)

)
.

Efficiency improvement. While Perrault et al. (2020b) use an axis-realignment technique to derive
their confidence regions, our approach builds ellipsoidal confidence regions. This simplifies the
computation of an upper confidence bound for each action as we have a closed-form expression. In
comparison, Perrault et al. (2020b) need to solve linear programs in convex sets at each iteration.

2.2 Regret upper bounds

Theorem 1. Let T ∈ N∗ and δ > 0.

Then, OLS-UCB-C (Alg. 2) satisfies the gap-dependent regret upper bound

E[RT ] = Õ

(
log(m)2

d∑
i=1

max
a∈A/i∈a,∆a>0

σ2
a,i

∆a

)
,

where σ2
a,i =

∑
j∈a max{Σi,j , 0}, and the gap-free regret upper bound

E[RT ] = Õ

(
log(m)

√
T

√∑d
i=1 max

a∈A/i∈a
σ2
a,i

)
.

The proof is outlined in Section 5 and the specific details are presented in Appendix E.
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Optimal gap-free bound. This result shows that OLS-UCB-C yields the same gap-dependent regret
upper bound as ESCB-C (Perrault et al., 2020b) (up to poly-logarithmic factors) and more importantly
yields a novel covariance-adaptive and optimal Õ(

√
T ) gap-free bound, as shown by the following

lower-bound proven in Appendix A. Unfortunately, only the positive coefficients of Σ are considered
in our bound but the inclusion of negative correlations could be advantageous to reduce the rate at
which the regret increases. However, it could complicate the analysis greatly and is thus deferred to
future research.
Theorem 2. Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗, and Σ ⪰ 0 a covariance
matrix. Then, there exists a stochastic combinatorial semi-bandit with d base items, and a reward
distribution with covariance matrix Σ on which for any policy π, the pseudo regret satisfies

E[RT ] ≥
1

8

(
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σi,j

)1/2

.

Improvement over CUCB. Our gap-free and gap-dependent bounds outperform those of CUCB
(Kveton et al., 2015) no matter the covariance structure, as (Tmd)1/2∥B∥∞ ≳ (Tr(Σ)T )1/2.(c)

Besides, in the particular case of a diagonal Σ, our gap-free upper bound gains a factor at least
√
m

over the one of CUCB. In this scenario, σ2
a,i = Σi,i for all a ∈ A and i ∈ a. Our gap-dependent and

gap-free upper bounds are then roughly bounded as
d∑

i=1

Σi,i

min
a∈A/i∈a

∆a
and

√
Tr(Σ)T ,

respectively.

Improvement over UCBV. Assuming that Σi,j ≥ 0 for all i, j, our upper-bound uniformly improves
the one of UCBV of order

(
T
∑

a a
⊤Σa

)1/2
, since in this case

∑d
i=1 maxa∈A\i∈A σ2

a,i ≤
∑

a ∥a∥Σ.
Existing semi-bandit analyses could only leverage semi-bandit feedback in the regime P ≫ d, which
is natural in combinatorial bandits but not systematic in real-world applications.

3 New sampling algorithm for combinatorial semi-bandits: COS-V

Algorithm 3 COS-V
Input δ > 0, B ∈ Rd

+.
for t ∈ [T ] do

if
{
a ∈ A s.t min(i,j)∈a nt,(i,j) < 1

}
̸= ∅

then
Choose At in the above set.

else
Compute µ̂t−1 (2).
Compute (Σ̂t−1,(i,i))i∈[d] (4).
Compute (Ẑt−1,(i,i))i∈[d] from (5).
Sample µ̃t−1 from (7)
Choose At ∈ argmaxa∈A⟨a, µ̃t−1⟩.
Environment samples Yt ∈ Rd.
Receive reward ⟨At, Yt⟩ =

∑
i At,iYt,i.

end if
end for

In this section, we introduce a randomized algo-
rithm inspired from TS, enabling to get potentially
computational complexity at the cost of not lever-
aging off-diagonal covariances.

The difficulty in designing and analysing TS algo-
rithms generally stems from controlling the ran-
dom exploration. To that end, we parametrize the
exploration distribution using the same estimators
as OLS-UCB-C.

3.1 Algorithm: COS-V

We propose a sampling strategy using “frequentist”
estimators, COS-V, described in Algorithm 3.

The algorithm begins with the same exploration
phase as OLS-UCB-C. Thereafter at each round
t+ 1 ∈ [T − 1], we sample parameters (µ̃i,t)i∈[d]

using 1-dimensional normal distributions biased
toward the positive orthant. Formally, for all i ∈ [d], we sample

µ̃t,i ∼ N
(
µ̂t,i + (1 + gt,δ)ft,δ

Ẑ
1/2

t,(i,i)

nt,(i,i)
, f2

t,δ
Ẑt,(i,i)

n2
t,(i,i)

)
, (7)

where gt,δ =
(
1 + 2 log

(
2dt log(t)2/δ

))1/2
and ft,δ is the same as for OLS-UCB-C.

(c)We denote ≳ for ≥ up to a constant factor.
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3.2 Regret upper bound

Theorem 3. Let T ∈ N∗, and δ > 0.

Then, COS-V (Alg. 3) satisfies the gap-dependent regret upper bound

E[RT ] = Õ

(
log(m)2

d∑
i=1

mΣi,i

∆i,min

)
, (8)

where ∆i,min = min{∆a, a ∈ A such that i ∈ a}, and the gap-free regret upper bound

E[RT ] = Õ

(
log(m)

√
T

√
m
∑d

i=1 Σi,i

)
. (9)

The proof is outlined in Section 5 and the specific details can be found in Appendix F.

Novel variance-dependent bound. Theorem 3 presents the first variance-dependent bound for a
sampling-based semi-bandit algorithm. Unfortunately, integrating the covariances Σi,j in the leading
term is still an open problem. Possible leads include exploring other biasing strategies for sampling,
or using oversampling approaches like Abeille and Lazaric (2017) which inflate the confidence
regions in the linear bandits setting.

Novel gap-free regret bound. An important novelty of our gap-dependent bound Eq. (16) is the
absence of ∆−m

min terms present in the previous analyses of CTS (Wang and Chen, 2018; Perrault et al.,
2020a). In particular, this improvement yields the first Õ(

√
T ) gap-free regret upper bound for a

sampling strategy.

4 Mean and covariance estimation

In this section, we present concentration results for µ̂t (rewards means) and Σ̂t (rewards covariances,
estimated with χ̂t) used in OLS-UCB-C and COS-V, which are central to prove Theorem 1 and
Theorem 3 (sketched in Section 5).

4.1 Covariance-aware confidence region for the average reward

Average reward estimation. Let a ∈ A, t ≥ d(d+ 1)/2, as introduced in Section 2.1, the least
square estimator for the mean reward vector µ using all the data gathered after round t is

µ̂t = N−1
t

∑t
s=1 dAs

Ys = µ+N−1
t

∑t
s=1 dAs

ηs ,

where the ηs denote the deviations Ys − µ.

Confidence region design. We design confidence regions inspired from LinUCB literature (Rus-
mevichientong and Tsitsiklis, 2010; Filippi et al., 2010; Abbasi-Yadkori et al., 2011) and the work
of Degenne and Perchet (2016). Major differences with those works include using Bernstein’s style
concentration inequalities involving the covariance matrix Σ, assuming a multidimensional noise
term, and combining them with a covering argument to relax dependence in d (peeling trick from
Degenne and Perchet, 2016). We introduce the regularized design matrix defined by

Zt = Vt +NtdΣ + ∥B∥2I ,
where Vt =

∑t
s=1 dAs

ΣdAs
is the design matrix (of which the OLS-UCB-C and COS-V use an

empirical version). Let St = Nt(µ̂t − µ), the deviations of ⟨a, µ̂t⟩ are bounded as

|⟨a, µ̂t − µ⟩| ≤ ∥N−1
t a∥Zt

∥St∥Z−1
t

. (10)

Designing a confidence region for ∥St∥Z−1
t

therefore allows to control the deviations |⟨a, µ̂t − µ⟩|
uniformly on A. Let δ > 0, we define the event

Gt =
{
∥St∥Z−1

t
≤ ft,δ

}
, (11)

with ft,δ = 6 log(1/δ) + 6[log(t) + (d+ 2) log(log(t))] + 3d[2 log(2) + log(1 + e)].

This event can also be written Gt =
{
∥µ̂t − µ∥NtZ

−1
t Nt

≤ ft,δ
}

and is therefore equivalent to µ̂t

belonging to an ellipsoid around the true reward mean vector µ.
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Confidence region probability. The following result proven in Appendix B presents an upper
bound for P(Gct ).
Proposition 1. Let t ≥ d(d+ 1)/2 and δ > 0. Then, P(Gct ) ≤ δ/(t log(t)2) .

Proving this result relies on an argument adapted from Faury et al. (2020) and a covering trick from
Degenne and Perchet (2016).

4.2 Confidence interval for covariances estimator

Rewards covariances estimator. Let t ≥ d(d+ 1)/2 and a “reachable” couple (i, j) ∈ [d]2 . The
coefficients of Σ can be estimated online by χ̂t as introduced in Section 2.1

χ̂t,(i,j) = Ŝt,(i,j) − µ̂t,iµ̂t,j .

Rewards covariances upper confidence bound. Let δ > 0. We use the following coefficient-wise
upper estimates of Σ in our algorithms

Σ̂t,(i,j) = χ̂t,(i,j) +
BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)
,

with ht,δ =
(
1 + 2 log(1/δ) + 2 log

(
t log(t)2d(d+ 1)

)
+ log(1 + t)

)1/2
.

Favorable event design. We define Ct as the event where all the coefficients of Σ̂t are indeed upper
bounding those of Σ:

Ct =
{
∀(i, j) ∈ [d]2 “reachable”, Σ̂t,(i,j) ≥ Σi,j

}
. (12)

Favorable event probability. The following result proven in Appendix C presents an upper bound
for P(Cct ).
Proposition 2. Let t ≥ d(d+ 1)/2 and δ > 0. Then, P(Cct ) ≤ δ/(t log(t)2) .

5 Regret upper bounds

In this section, we provide a sketch of the proof for Theorem 1 and Theorem 3. For both OLS-UCB-C
and COS-V, the idea to bound the regret is to find a sequence of favorable events (Et)t≥d(d+1)/2 that
are true with high probability, and under which the regret grows logarithmically with time.

5.1 Template bound

Let (Et)t∈[T ] be a sequence of events, then for both OLS-UCB-C and COS-V standard derivations yield

E[RT ] ≤ ∆max

(
d(d+ 1)/2 +

∑T−1
t=d(d+1)/2 P(Ect )

)
+ E

[∑T−1
t=d(d+1)/2 1{Et}∆At+1

]
. (13)

Assuming that the sequence of events (Et)t≥d(d+1)/2 happens with high enough probability, it is
sufficient to control what happens conditionally to it. In particular, Proposition 6 in Appendix D
states that if we can bound ∆2

At+1
with a linear combination of terms evolving as n−k

t,(i,j) for every
couple (i, j) ∈ At+1 and different k ≥ 1, then we can infer a worst-case behaviour, which yields
Theorem 1 and Theorem 3.

In the following, we will refer to the term
∑T−1

t=d(d+1)/2 P(Ect ) as the unfavorable event probability
and to the term E

[∑T
t=d(d+1)/2 1{Et}∆At+1

]
as the high-probability regret.

5.2 Regret of OLS-UCB-C

For OLS-UCB-C we consider the sequence of events Et = {Gt ∩ Ct} for all t ≥ d(d + 1)/2,
corresponding the confidence regions of (µ̂t)t≥d(d+1)/2 and of (Σ̂t,(i,j))t≥d(d+1)/2, (i,j)∈[d]2 defined
in Section 4. Under these events, we can upper-bound the high-probability regret from Eq. (13) with
the following proposition (proven in Appendix E.1).
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Proposition 3. Let δ > 0. Then, OLS-UCB-C yields

E
[ T−1∑
t=d(d+1)/2

∆At+11
{
Gt ∩ Ct

}]
= O

(
log(T )2 log(m)2

d∑
i=1

max
a∈A/i∈a

σ2
a,i

∆a

)
,

as T →∞, where σ2
a,i =

∑
j∈a(Σi,j)+.

Conclusion of the proof. Injecting results from Proposition 3 (high-probability regret) as well as
Proposition 1 and Proposition 2 (unfavorable event probability) into the template bound (13), we get

E[RT ] = O

(
log(T )2 log(m)2

∑
i∈[d]

max
a∈A/i∈a

σ2
a,i

∆a

)
, (14)

for OLS-UCB-C as T → ∞. This provides the gap-dependent bound of Theorem 1. The gap-free
bound is detailed in Appendix E.4. It is enabled by the fact that our gap-dependent bound does not
incur any term in ∆−2

min, unlike Perrault et al. (2020b); Degenne and Perchet (2016).

5.3 Regret of COS-V

For the analysis of our stochastic algorithm COS-V, we need to consider events related to the sampling
distributions in addition to the events G′t and Ct introduced in the precedent section. For this purpose,
we denote the eventHt defined as

Ht =

{
∀i ∈ [d],

∣∣∣∣(µ̂t,i + (1 + gt,δ)ft,δ
(Ẑt,i)

1/2

nt,i

)
− µ̃t,i

∣∣∣∣ ≤ gt,δft
(Ẑt,i)

1/2

nt,i

}
. (15)

The high-level idea of the eventHt is to ensure that the sampled rewards µ̃t,i upper-bound the true
mean µi while not being too far for all the items i ∈ a∗. Showing that the event Ht indeed occurs
with high-probability (Lemma 7 in Appendix F) and setting the events Et = {Gt ∩ Ct ∩Ht}, we can
upper-bound the high-probability regret in the following proposition (proof is in Appendix F.2).

Proposition 4. Let δ > 0. Then COS-V yields

E
[ T−1∑
t=d(d+1)

∆At+1
1
{
Gt ∩ Ct ∩Ht

}]
= O

(
log(T )3 log(m)2

( d∑
i=1

mΣi,i

∆i,min

))
.

Conclusion of the proof. Injecting results from Proposition 4 (high-probability regret) as well as
Lemma 7, Proposition 1 and Proposition 2 (unfavorable event probability) into the template bound
(13) yields

E[RT ] = O

(
log(T )3 log(m)2

∑
i∈[d]

mΣi,i

∆i,min

)
, (16)

as T →∞. This provides the gap-dependent bound of Theorem 3. As it does not incur any term in
∆−m

min as in Wang and Chen (2018); Perrault et al. (2020a), this result can be used to derive a Õ(
√
T )

gap-free bound for a sampling-based combinatorial semi-bandit algorithm.

6 Concluding remarks

We propose and analyze two algorithms for combinatorial semi-bandits. OLS-UCB-C is a deterministic,
covariance-adaptive algorithm. Compared to other existing approaches, our algorithm is typically less
computationally demanding and yields the first Õ(

√
T ) gap-free regret rate that explicitly depends

on the covariance of the base item rewards and the structure. COS-V is a variance-adaptive, TS-like
algorithm. Its complexity is significantly lower under certain types of constraints, but its regret is
suboptimal as it assumes worst-case correlations. However, leveraging the analysis of OLS-UCB-C, it
also yields the first Õ(

√
T ) gap-free regret upper bound among sampling-based approaches.
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Appendix

The Supplementary is organized as follows:

− Appendix A proves the lower bound from Theorem 2,
− Appendix B outlines proofs concerning the concentration of the average estimator (Proposi-

tions 1)
− Appendix C presents those for the covariance estimator (Proposition 2),
− Appendix D establishes general propositions used to upper-bound the number of times each

item is chosen,
− Appendix E and Appendix F detail proofs for OLS-UCB-C and COS-V,
− Appendix G presents some experimental results.

A Proof of the lower bound (Theorem 2)

Theorem 2. Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗, and Σ ⪰ 0 a covariance
matrix. Then, there exists a stochastic combinatorial semi-bandit with d base items, and a reward
distribution with covariance matrix Σ on which for any policy π, the pseudo regret satisfies

E[RT ] ≥
1

8

(
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σi,j

)1/2

.

Proof. We follow the methodology of Auer et al. (2002b), modifying it to account for the different
variances among actions.

Let d,m ∈ N∗ such that d/m ≥ 2 is an integer, T ∈ N∗, and a covariance matrix Σ ⪰ 0. We consider
the structure where A = {a1, . . . , ad/m} ⊂ {0, 1}d contains d/m disjoint actions each having m
base elements. We consider that for all p ∈ [d/m], (ap)i∈[d] =

(
1
{
(p− 1)m < i ≤ pm

})
i∈[d]

. Let
π be a policy. As all the actions are disjoints, we can reduce ourselves to a multi-armed bandit with
d/m actions, where for all p ∈ [d/m] the variance of the p-th action is ⟨ap,Σp⟩.

Let Σ′ ∈Md/m(R) be the diagonal matrix where for all p ∈ [d/m], Σ′
p,p = a⊤p Σap. Let c > 0, and

∆ = 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T
, (17)

where Σ′
min = minp∈[d/m] Σ

′
p,p.

We denote G0 ∼ N (0,Σ′) a (d/m)-dimensional centered Gaussian distribution with covariance
matrix Σ′. Let p ∈ [d/m], we consider the mean vector µ(p) ∈ Rd/m having coordinate 0 everywhere
and ∆ at coordinate p, for all i ∈ [d/m], µ(p)

i = ∆1{i = p}. We introduce the Gaussian reward
distributions Gp ∼ N (µ(p),Σ′) and denote Tp =

∑T
t=1 1{At = p}. Then, using policy π, and

considering the reward distributions Gp and G0, the average number of times action p has been
chosen satisfies∣∣∣Eπ,Gp

[Tp]− Eπ,G0
[Tp]

∣∣∣ ≤ T TV
(
(π,G0), (π,Gp)

)
≤ T

√
1

2
KL
(
(π,G0), (π,Gp)

)
, (18)

where TV denotes the total variation distance, KL denotes the Kullback–Leibler divergence and
the last inequality uses Pinsker’s inequality. Then, using the divergence decomposition between
multi-armed bandits (Lemma 15.1 in Lattimore and Szepesvári, 2020),

KL
(
(π,G0), (π,Gp)

)
=

d/m∑
k=1

Eπ,G0

[
Tk

]
KL
(
N (0,Σ′),N (µ(p),Σ′)

)
=

d/m∑
k=1

Eπ,G0

[
Tk

] (µ(p)
k

)2
2Σ′

k,k

.
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Reinjecting this expression into Eq. (18), we get

Eπ,Gp [Tp] ≤ Eπ,G0 [Tp] +
T

2

√√√√d/m∑
k=1

(
µ
(p)
k

)2
Σ′

k,k

Eπ,G0 [Tk]

= Eπ,G0 [Tp] +
T

2

√
1

Σ′
p,p

∆2Eπ,G0 [Tp]

= Eπ,G0 [Tp] + c

√√√√TEπ,G0 [Tp]
Σ′

min

Σ′
p,p

d/m∑
k=1

Σ′
k,k ← reinjecting Eq. (17)

≤ Eπ,G0
[Tp] + c

√√√√TEπ,G0
[Tp]

d/m∑
k=1

Σ′
k,k .

Now, summing over the actions p,

d/m∑
p=1

Eπ,Gp
[Tp] ≤

d/m∑
p=1

Eπ,G0
[Tp] + c

√√√√T

d/m∑
k=1

Σ′
k,k

d/m∑
p=1

√
Eπ,G0

[Tp]

≤ T + c

√√√√T

d/m∑
k=1

Σ′
k,k

√
d

m

√√√√d/m∑
p=1

Eπ,G0
[Tp] ← Cauchy–Schwarz

≤ T + cT

√√√√ d

m

d/m∑
k=1

Σ′
k,k . (19)

We denote R
(p)
T the average cumulative regret incurred with the reward distribution Gp, then

d/m∑
p=1

R
(p)
T = ∆

d/m∑
p=1

(T − Eπ,Gp [Tp])

= 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T

(
d

m
T −

d/m∑
p=1

Eπ,Gp
[Tp]

)
← reinjecting Eq. (17)

≥ 2c

√
Σ′

min

∑d/m
k=1 Σ

′
k,k

T

(
d

m
T − T − cT

√√√√ d

m

d/m∑
k=1

Σ′
k,k

)
← from Eq. (19)

= 2c
√

Σ′
min

d

m

√√√√T

d/m∑
k=1

Σ′
k,k

(
1− m

d
− c

√√√√ 1

d/m

d/m∑
k=1

Σ′
k,k

)

≥ 2c
√

Σ′
min

d

m

√√√√T

d/m∑
k=1

Σ′
k,k

(
1− m

d
− c
√
Σ′

min

)
.

Taking c = 1
2

1√
Σ′

min

(1− m
d ),

d/m∑
p=1

R
(p)
T ≥ d

m

√√√√T

d/m∑
k=1

Σ′
k,k

1

2

(
1− m

d

)2

≥ 1

8

d

m

√√√√T

d/m∑
k=1

Σ′
k,k ← as m/d ≤ 1/2 .
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Therefore, there exists at least one instance p∗ ∈ [d/m] such that

R
(p∗)
T ≥ 1

8

√√√√T

d/m∑
k=1

Σ′
k,k .

Now, decomposing
d/m∑
k=1

Σ′
k,k =

d/m∑
k=1

(∑
i∈ak

∑
j∈ak

Σi,j

)
=
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σi,j ,

we get

R
(p∗)
T ≥ 1

8

√
T
∑
i∈[d]

max
a∈A,i∈a

∑
j∈a

Σi,j .

B Concentration of the average rewards estimations (Proposition 1)

Proposition 1. Let t ≥ d(d+ 1)/2 and δ > 0. Then, P(Gct ) ≤ δ/(t log(t)2) .

Proof. Let t ≥ d(d+ 1)/2 and δ > 0.

We have

ft,δ = 6 log(1/δ) + 6
(
log(t) + (d+ 2) log(log(t))

)
+ 3d

(
2 log(2) + log(1 + e)

)
= 6 log

(
t log(t)2

δ

(
log(t)

log(1 + (e− 1))

)d

+

(
6d log(2) + 3d log(2 + (e− 1))

))
.

Covering argument (Peeling trick). The peeling trick consists in separating the space of trajectories
up to round t into an exponentially large number of parts, each having an exponentially small
probability.

Formally, let 0 < ϵ < 1. For each p ∈ Nd we associate the set

Dp =
{
x ∈Rd s.t. ∀i ∈ [d], (1 + ϵ)pi ≤ xi < (1 + ϵ)pi+1

}
. (20)

As an abuse of notation, we denote by (t ∈ Dp) the event
((

nt,(i,i) + 1
)
i∈[d]

∈ Dp

)
.

Setting Pt,ϵ =
⌊ log(t)
log(1+ϵ)

⌋
, we define for each p ∈ [Pt,ϵ]

d

Ñp = diag
((

(1 + ϵ)pi
)
i∈[d]

)
∈Md(R) ,

Zt,p = Vt + ÑpdΣ + ∥B∥2I . (21)

In particular, under the event (t ∈ Dp), Nt ⪯ (1 + ϵ)Ñp.

Using this covering, we decompose

P(Gct ) = P

(∥∥∥∥ t∑
s=1

dAs
ηs

∥∥∥∥
Z−1

t

> ft,δ

)

=
∑

p∈[Pt,ϵ]d

P

((
∥St∥Z−1

t
> ft,δ

)
∩ (t ∈ Dp)

)

≤
∑

p∈[Pt,ϵ]d

P

((
∥St∥Z−1

t,p
> ft,δ

)
∩ (t ∈ Dp)

)
.

We now apply the following Lemmas.
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Lemma 1. Let t ≥ d(d+ 1)/2, 0 < ϵ < 1, p ∈ [Pt,ϵ]
d, and δ > 0. Then,

P

(
∥St∥Z−1

t,p
> 6 log

( Normp

Normt,p

)
+ 6 log(1/δ)

)
≤ δ , (22)

where

Normp =

∫
λ∈Rd

1
{
∥Z1/2

0,p λ∥ ≤
1

2

}
exp{−∥λ∥2Z0,p

}dλ ,

Normt,p =

∫
λ∈Rd

1
{
∥Z1/2

t,p λ∥ ≤ 1

2

}
exp{−∥λ∥2Zt,p

}dλ .

Lemma 2. Let t ≥ d(d+ 1)/2, 0 < ϵ < 1 and p ∈ [Pt,ϵ]
d. Then,

log
( Normp

Normp,t

)
≤ d log(2) +

1

2
log

(
det(Zt,p)

det(Z0,p)

)
. (23)

Moreover, under event (t ∈ Dp),

log
( Normp

Normp,t

)
≤ d log(2) +

1

2
d log(2 + ϵ) . (24)

In our case, setting ϵ = e− 1, they yield

P(Gct ) ≤
∑

p∈[Pt,ϵ]d

P

({
∥St∥Z−1

t,p
> 6 log

(
t log(t)2

δ
log(t)d

)
+

(
6d log(2) + 3d log(1 + e)

)}

∩ (t ∈ Dp)

)

≤
∑

p∈[Pt,ϵ]d

P

({
∥St∥Z−1

t,p
> 6 log

(
t log(t)2

δ
log(t)d

)
+ 6 log

(
Normp

Normt,p

)}

∩ (t ∈ Dp)

)
← Lemma 2

≤
∑

p∈[Pt,ϵ]d

P

(
∥St∥Z−1

t,p
> 6 log

(
t log(t)2

δ
log(t)d

)
+ 6 log

(
Normp

Normt,p

))

≤
∑

p∈[Pt,ϵ]d

δ
1

t log(t)2
1

log(t)d
← Lemma 1

= δ
1

t log(t)2
1

log(t)d
log(t)d

=
δ

t log(t)2
.

B.1 Proof of Lemma 1

Lemma 1. Let t ≥ d(d+ 1)/2, 0 < ϵ < 1, p ∈ [Pt,ϵ]
d, and δ > 0. Then,

P

(
∥St∥Z−1

t,p
> 6 log

( Normp

Normt,p

)
+ 6 log(1/δ)

)
≤ δ , (22)

where

Normp =

∫
λ∈Rd

1
{
∥Z1/2

0,p λ∥ ≤
1

2

}
exp{−∥λ∥2Z0,p

}dλ ,

Normt,p =

∫
λ∈Rd

1
{
∥Z1/2

t,p λ∥ ≤ 1

2

}
exp{−∥λ∥2Zt,p

}dλ .
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Proof. We adapt the proofs from Faury et al. (2020), which adapts Abbasi-Yadkori et al. (2011) itself.
Let t ≥ d(d+ 1)/2, 0 < ϵ < 1, p ∈ [Pt,ϵ]

d, and δ > 0.

Let λ ∈ Rd such that ∥λ∥ ≤ 1
2∥B∥ and s ∈ [t]. We denote F ′

t−1 = σ(A1, Y1, . . . , At−1, Yt−1, At).

Then, ∥λ⊤dAs
ηs∥ ≤ 1/2 and

E
[
exp

(
λ⊤dAs

ηs − λ⊤dAs
ΣdAs

λ
)∣∣∣∣F ′

s−1

]
≤ 1

which yields that
(
Mk(λ)

)
k∈N∗

=
(
exp

(
λ⊤Sk − ∥λ∥2Vk

))
k∈N∗

is a F ′
k-supermartingale.

Let p ∈ [Pt,ϵ]
d, we consider the density gp of a d-dimensional Gaussian with covariance matrix

1
2

(
ÑpdΣ + ∥B∥2I

)−1
= 1

2Z
−1
0,p, truncated in the ellipsoid

{
x ∈ Rd, ∥Z1/2

0,p x∥ ≤ 1
2

}
,

gp(x) =
1
{
x ∈ Rd, ∥Z1/2

0,p x∥ ≤ 1
2}

Normp
exp

(
− ∥x∥2Z0,p

)
,

where Normp is the normalisation constant.

We integrate
(
Mk(λ)

)
k∈N∗

for λ ∼ gp, and define (M̄p,k)k∈N∗ as

M̄p,k =

∫
λ∈Rd

Mk(λ)dλ =

∫
λ∈Rd

1{∥Z1/2
0,p λ∥ ≤ 1

2}
Normp

exp
(
λ⊤Sk − ∥λ∥2Zk,p

)
dλ ,

which is still a supermartingale.

Let λ∗
t,p ∈ argmax{Z1/2

0,p ∥λ∥≤ 1
4}
(λ⊤St − ∥λ∥2Zt,p

). Then

M̄p,k =
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zk,p

)

Normp

∫
∥Z1/2

0,p λ∥≤ 1
2

exp

(
(λ− λ∗

t,p)
⊤St − ∥λ∥2Zk,p

+ ∥λ∗
t,p∥2Zk,p

)
dλ

=
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zt,p

)

Normp

∫
∥Z1/2

0,p λ+Z
1/2
0,p λ∗

t,p∥≤ 1
2

exp

(
λ⊤Sk − ∥λ∥2Zk,p

− 2λ⊤Zk,pλ
∗
t,p

)
dλ

≥
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zt,p

)

Normp

∫
∥Z1/2

0,p λ∥≤ 1
4

exp

(
λ⊤Sk − ∥λ∥2Zk,p

− 2λ⊤Zk,pλ
∗
t,p

)
dλ

=
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zk,p

)

Normp

∫
∥Z1/2

0,p λ∥≤ 1
4

exp

(
λ⊤
(
Sk − 2Zk,pλ

∗
t,p

)
− ∥λ∥2Zk,p

)
dλ

=
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zk,p

)

Normp
Normk,p∫

λ∈Rd

1
{
∥Z1/2

0,p λ∥ ≤ 1
4

}
Normk,p

exp

(
λ⊤
(
Sk − 2Zk,pλ

∗
t,p

)
− ∥λ∥2Zk,p

)
dλ ,

where we can recognize gk,p the density of a d-dimensional Gaussian with covariance matrix 1
2Z

−1
k,p,

truncated in the ellipsoid
{
x ∈ Rd, ∥Z1/2

0,p x∥ ≤ 1
4

}
,

gk,p(x) =
1
{
∥Z1/2

0,p x∥ ≤ 1
4

}
Normk,p

exp
(
− ∥x∥2Zk,p

)
,

with Normk,p the normalisation constant.
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Besides, Jensen’s inequality yields∫
λ∈Rd

1{∥Z1/2
0,p λ∥ ≤ 1

4}
Normk,p

exp

(
λ⊤
(
Sk − 2Zk,pλ

∗
t,p

)
− ∥λ∥2Zk,p

)
dλ

=

∫
Rd

gk,p(λ) exp

(
λ⊤
(
Sk − 2Zk,pλ

∗
t,p

))
dλ

≥ exp

(∫
Rd

gt,p(λ)λ
⊤
(
Sk − 2Zk,pλ

∗
t,p

)
dλ

)

= exp

((
Sk − 2Zk,pλ

∗
t,p

)⊤ ∫
Rd

gt,p(λ)λdλ

)
= 1 .

Therefore, for all k ∈ N∗

1 ≥ M̄p,k ≥
Normk,p

Normp
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zk,p

) .

Markov’s inequality yields

δ ≥ P
(
M̄p,k ≥

1

δ

)
≥ P

(
Normk,p

Normp
exp(λ∗⊤

t,pSk − ∥λ∗
t,p∥2Zk,p

) ≥ 1

δ

)

= P

(
λ∗⊤
t,pSk − ∥λ∗

t,p∥2Zk,p
≥ log

( Normp

Normk,p

)
+ log(1/δ)

)
.

Taking k = t in particular gives

δ ≥ P

(
max

∥Z1/2
0,p λ∥≤ 1

4

λ⊤St − ∥λ∥2Zt,p
≥ log

( Normp

Normt,p

)
+ log(1/δ)

)
.

The constraint on λ in the inner expression prevent to use the usual optimal value for subgaussian r.v.
which could give a bound for ∥St∥2Z−1

t,p

. Instead, we introduce

λt,p =
1

4

Z−1
t,p St

∥St∥Z−1
t,p

,

for which

∥Z1/2
0,p λt,p∥ ≤

1

4
∥Z1/2

0,pZ
−1/2
t,p ∥

∥St∥Z−1
t,p

∥St∥Z−1
t,p

≤ 1

4
.

Then

δ ≥ P

(
1

4
∥St∥Z−1

t,p
− 1

16
∥St∥Z−1

t,p
≥ log

( Normp

Normt,p

)
+ log(1/δ)

)

= P

(
∥St∥Z−1

t,p
≥ 16

3
log
( Normp

Normt,p

)
+

16

3
log(1/δ)

)

≥ P

(
∥St∥Z−1

t,p
≥ 6 log

( Normp

Normt,p

)
+ 6 log(1/δ)

)
.
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B.2 Proof of Lemma 2

Lemma 2. Let t ≥ d(d+ 1)/2, 0 < ϵ < 1 and p ∈ [Pt,ϵ]
d. Then,

log
( Normp

Normp,t

)
≤ d log(2) +

1

2
log

(
det(Zt,p)

det(Z0,p)

)
. (23)

Moreover, under event (t ∈ Dp),

log
( Normp

Normp,t

)
≤ d log(2) +

1

2
d log(2 + ϵ) . (24)

Proof. Let t ≥ d(d + 1)/2, 0 < ϵ < 1 and p ∈ [Pt,ϵ]
d. Then, following steps from Faury et al.

(2020) yields

Normp =

∫
λ∈Rd

1
{
∥Z1/2

0,p λ∥ ≤
1

2

}
exp{−∥λ∥2Z0,p

}dλ

=
1√

det(Z0,p)

∫
λ∈Rd

1
{
∥λ∥ ≤ 1

2

}
exp{−∥λ∥2}dλ ,

and

Normt,p =

∫
λ∈Rd

1
{
∥Z1/2

0,p λ∥ ≤
1

4

}
exp{−∥λ∥2Zt,p

}dλ

=
1√

det(Zt,p)

∫
λ∈Rd

1
{
∥Z1/2

0,pZ
−1/2
t,p λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ .

Noting that ∥Z1/2
0,pZ

−1/2
t,p ∥ ≤ 1, we deduce

Normt,p ≥
1√

det(Zt,p)

∫
Rd

1
{
∥λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ .

Therefore,

Normp

Normt,p
≤

√
det(Zt,p)

det(Z0,p)

∫
Rd 1

{
∥λ∥ ≤ 1

2

}
exp{−∥λ∥2}dλ∫

Rd 1
{
∥λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ

.

We treat the integrals as

∫
Rd 1

{
∥λ∥ ≤ 1

2

}
exp{−∥λ∥2}dλ∫

Rd 1
{
λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ

=

∫
Rd

(
1
{
∥λ∥ ≤ 1

4

}
+ 1

{
1
4 < ∥λ∥ ≤ 1

2

})
exp{−∥λ∥2}dλ

∫
Rd 1

{
λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ

= 1 +

∫
Rd 1

{
1
4 < ∥λ∥ ≤ 1

2

}
exp{−∥λ∥2}dλ∫

Rd 1
{
∥λ∥ ≤ 1

4

}
exp{−∥λ∥2}dλ

≤ 1 +
exp(−1/16)
exp(−1/16)

∫
Rd 1

{
1
4 < ∥λ∥ ≤ 1

2

}
dλ∫

Rd 1
{
∥λ∥ ≤ 1

4

}
dλ

= 2d .
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Thus

log

(
Normp

Normt,p

)
≤ d log(2) +

1

2
log

(
det(Zt,p)

det(Z0,p)

)

= d log(2) +
1

2
log

(
det
(
I+ Z

−1/2
0,p VtZ

−1/2
0,p

))

≤ d log(2) +
1

2
log

( ∏
i∈[d]

(
1 +

nt,(i,i)Σi,i

(1 + ϵ)piΣi,i + ∥B∥

))

≤ d log(2) +
1

2
log

( ∏
i∈[d]

(
1 +

nt,(i,i)

(1 + ϵ)pi

))
.

In particular under event (t ∈ Dp),

log

(
Normp

Normt,p

)
≤ d log(2) +

d

2
log(2 + ϵ) .

C Concentration of the covariances estimations (Proposition 2)

Proposition 2. Let t ≥ d(d+ 1)/2 and δ > 0. Then, P(Cct ) ≤ δ/(t log(t)2) .

It is a direct application of the following proposition:

Proposition 5. Let δ ∈ (0, 1). Then with probability 1− δ, for all t ≥ d(d+ 1)/2 and (i, j) ∈ [d]2

“reachable”,

|χ̂t,(i,j) −Σi,j | ≤
BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)
.

where ht,δ = (1 + 2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t))1/2.

Proof. Let δ > 0, t ≥ d(d+A)/2. We remind

Ct =
{
∀(i, j) ∈ [d]2 “reachable”, Σ̂t,(i,j) ≥ Σi,j

}
.

Let (i, j) ∈ [d]2 “reachable”. Then

χ̂t,(i,j) = Ŝt,(i,j) − µ̂t,iµ̂t,j

=
1

nt,(i,j)

t∑
s=1

As,iAs,jYs,iYs,j −
( 1

nt,i

t∑
s=1

As,iYs,i

)( 1

nt,i

t∑
s=1

As,jYs,j

)
,

And,

χ̂t,(i,j) −Σi,j =
1

nt,(i,j)

t∑
s=1

As,iAs,jYs,iYs,j − Si,j −

[( 1

nt,i

t∑
s=1

As,iYs,i

)( 1

nt,j

t∑
s=1

As,jYs,j

)
− µiµj

]

=
1

nt,(i,j)

t∑
s=1

As,iAs,j

[
Ys,iYs,j − Si,j

]
−

[(
1

nt,i

t∑
s=1

As,i

[
Ys,i − µi

])( 1

nt,j

t∑
s=1

As,j

[
Ys,j − µj

])

+ µj

(
1

nt,i

t∑
s=1

As,i

[
Ys,i − µi

])
+ µi

(
1

nt,j

t∑
s=1

As,j

[
Ys,j − µj

])]
.
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A triangle inequality yields

|χ̂t,(i,j) −Σi,j | ≤

∣∣∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j

[
Ys,iYs,j − Si,j

]∣∣∣∣∣+
∣∣∣∣ 1

nt,i

t∑
s=1

As,i

[
Ys,i − µi

]∣∣∣∣ ∣∣∣∣ 1

nt,j

t∑
s=1

As,j

[
Ys,j − µj

]∣∣∣∣
+

Bj

2

∣∣∣∣ 1

nt,i

t∑
s=1

As,i

[
Ys,i − µi

]∣∣∣∣+ Bi

2

∣∣∣∣ 1

nt,j

t∑
s=1

As,j

[
Ys,j − µj

]∣∣∣∣ .
We make repeated use of the following Lemma

Lemma 3. Let (Ht)t∈N∗ be a filtration, (Ut)t∈N∗ be anHt adapted martingales bounded by C ∈ R∗
+

with E[U1] = 0, and (1{Vt})t∈N∗ be a predictable process and δ > 0.

Then with probability at least 1− δ, for all t

P

( ∑t
s=1 1{Vs}Us

1 +
∑t

s=1 1{Vs}
>

C√
1 +

∑t
s=1 1{Vs}

√√√√2 log(1/δ) + log(1 +

t∑
s=1

1{Vs})

)
≤ δ .

Therefore, with probability at least 1− δ/2, for all (i, j) and t,∣∣∣∣∣ 1

nt,(i,j)

t∑
s=1

As,iAs,j

[
Ys,iYs,j − Si,j

]∣∣∣∣∣ ≤
∣∣∣∣∣ 1

nt,(i,j) + 1

t∑
s=1

As,iAs,j

[
Ys,iYs,j − Si,j

]∣∣∣∣∣+ BiBj

4(nt,(i,j) + 1)

≤ BiBj

4

1√
nt,(i,j) + 1

√
2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t)

+
BiBj

4nt,(i,j)

≤ BiBj

4
√
nt,(i,j)

√
2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t)

+
BiBj

4nt,(i,j)
.

With probability at least 1− δ/2, for all i and t,∣∣∣∣ 1

nt,i

t∑
s=1

As,i

[
Ys,i − µi

]∣∣∣∣ ≤ ∣∣∣∣ 1

nt,i + 1

t∑
s=1

As,i

[
Ys,i − µi

]∣∣∣∣+ Bi

2nt,(i,i)

≤ Bi

2
√
nt,(i,i)

√
2 log(1/δ) + 2 log(2d) + log(1 + t) +

Bi

2nt,(i,i)
.

Therefore, reinjecting those expressions yields that with probability at least 1− δ, for all (i, j) and t,

|χ̂t,(i,j) −Σi,j | ≤
BiBj

4
√
nt,(i,j)

√
2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t) +

BiBj

4nt,(i,j)

+
BiBj

(
2 log(1/δ) + 2 log(2d) + log(1 + t)

)
4
√
nt,(i,i)nt,(j,j)

+
BiBj

4nt,(i,i)nt,(j,j)

+
BiBj

4

( 1

nt,(j,j)
√
nt,(i,i)

+
1

nt,(i,i)
√
nt,(j,j)

)√
2 log(1/δ) + 2 log(2d) + log(1 + t)

+
BiBj

4

( 1
√
nt,(i,i)

+
1

√
nt,(j,j)

)√
2 log(1/δ) + 2 log(2d) + log(1 + t)

≤ BiBj

4
√
nt,(i,j)

√
2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t) +

BiBj

4nt,(i,j)

+
BiBj

(
2 log(1/δ) + 2 log(2d) + log(1 + t)

)
4
√
nt,(i,i)nt,(j,j)

+
BiBj

4nt,(i,i)nt,(j,j)

+
BiBj

2

( 1
√
nt,(i,i)

+
1

√
nt,(j,j)

)√
2 log(1/δ) + 2 log(2d) + log(1 + t) .

20



To simplify this expression, using nt,(i,j) ≤ min{nt,(i,i), nt,(j,j)} and nt,(i,j) ≤
√
nt,(i,i)nt,(j,j)

yields

|χ̂t,(i,j) −Σi,j | ≤ 5
BiBj

4

1
√
nt,(i,j)

√
2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t)

+
BiBj

4

1

nt,(i,j)

(
1 + 2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t)

)
+

BiBj

4

1

n2
t,(i,j)

.

Denoting ht,δ =
(
1 + 2 log(1/δ) + 2 log

(
t log(t)2d(d + 1)

)
+ log(1 + t)

)1/2
, we have with

probability at least 1− 2δ
d(d+1)t log(t)2

|χ̂t,(i,j) −Σi,j | ≤
BiBj

4

( 5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)
.

A union bound yields the desired results.

C.1 Proof for Lemma 3

Lemma 3. Let (Ht)t∈N∗ be a filtration, (Ut)t∈N∗ be anHt adapted martingales bounded by C ∈ R∗
+

with E[U1] = 0, and (1{Vt})t∈N∗ be a predictable process and δ > 0.

Then with probability at least 1− δ, for all t

P

( ∑t
s=1 1{Vs}Us

1 +
∑t

s=1 1{Vs}
>

C√
1 +

∑t
s=1 1{Vs}

√√√√2 log(1/δ) + log(1 +

t∑
s=1

1{Vs})

)
≤ δ .

Proof. Let t ≥ 2. Then Ut is C sub-Gaussian and for all λ ∈

E

[
exp

(
λ1{Vt}Ut −

λ2C2

2
1{Vt}

)∣∣∣∣∣Ht−1

]
≤ 1

Then (Wt(λ))t∈N∗ =
(
exp(λ

∑t
s=1 1{Vs}Us − λ2C2

2

∑t
s=1 1{Vs})

)
t∈N∗

is a supermatringale.

We use the Method of Mixtures by integrating for a λ ∼ N (0, 1/C2). This yield∫
λ∈R

C√
2π

exp
(
− λ2C2

2

)
Wt(λ)dλ

=
C√
2π

∫
λ∈R

exp

(
λ

t∑
s=1

1{Vs}Us −
λ2C2

2
(1 +

t∑
s=1

1{Vs})
)
dλ

=
C√
2π

∫
λ∈R

exp

( (∑t
s=1 1{Vs}Us

)2
2C2(1 +

∑t
s=1 1{Vs})

− 1

2

(
λ−

∑t
s=1 1{Vs}Us

C2(1 +
∑t

s=1 1{Vs})
)2
C2(1 +

t∑
s=1

1{Vs})
)
dλ

= exp

( (∑t
s=1 1{Vs}Us

)2
2C2(1 +

∑t
s=1 1{Vs})

)
1√

1 +
∑t

s=1 1{Vs}
≤ 1 .

Therefore,

P

( ∑t
s=1 1{Vs}Us

1 +
∑t

s=1 1{Vs}
>

C√
1 +

∑t
s=1 1{Vs}

√√√√2 log(1/δ) + log(1 +

t∑
s=1

1{Vs})

)
≤ δ .
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Using the stopping time construction from Abbasi-Yadkori et al. (2011) yields the property for
all t.

D Behaviour in the high-probability events (Section 5)

The following proposition states that under some assumptions on the sequence of events (Et), the
regret can be bounded by problem-dependent quantities (including Σ, T , or d). They are not all
explicitly stated in Proposition 6 to make it adaptive to both algorithms but are hidden in the constants.
Proposition 6. Let r ∈ N, e ∈ (1,+∞)r. Let (Et)t≥d(d+1)/2 be a sequence of events such that for
all t ≥ d(d+ 1)/2, under Et,

∆2
At+1

C
≤

∑
i∈At+1

CAt+1,i

nt,(i,j)
+
∑
s∈[r]

[ ∑
(i,j)∈At+1

Cs

nes
t,(i,j)

]
, (25)

where C and (Cs)s∈[r] are problem-dependent positive constants. CAt+1,i is a positive constant
depending on At+1 and i so that, for all a ∈ A, Ca,i ≤ 2mΣi,i. Let c ∈ R∗

+ and (cs)s∈[r] ∈ (R∗
+)

r

be positive constants such that 1/c+
∑

s∈[r] 1/cs = 1.

Then,
T−1∑

t=d(d+1)/2

∆At+1
1{Et}

≤ 96c1C log(m)2
∑
i∈[d]

(
max

a∈A/i∈a

Ca,i

∆a

)

+

r∑
s=1

[
1
{
es = 2

}
346
(
csCCs log(m)

)1/2
md2

(
1 + log

(∆max

∆min

))

+ 1
{
1 < es < 2

}
60.301/es

(
csCCs log(m)

)1/es
d2m2/es∆

1−2/es
min

+ 1
{
2 < es

}
60.301/es

(
csCCs log(m)

)1/es es
es − 2

d2m2/es∆1−2/es
max

]
. (26)

where (αk)k∈N∗ , (βk)k∈N∗ and k0 ∈ N∗ are defined in Appendix D.1.

Proof. The proof is classical and involves a decomposition of the events Et (see Kveton et al. (2015);
Degenne and Perchet (2016); Perrault et al. (2020b)). By considering each of the r sub-sum in
Eq. (25) and designing sets of event that can happen only a finite number of times.

We introduce two sequences (αk)k∈N∗ and (βk)k∈N∗ , both begin at 1 and strictly decrease to 0
(see Appendix D.1 for their definitions). These sequences are introduced to be able to consider the
different terms of Eq. (25) separately.

Let (cs)s∈[r] ∈ (R∗
+)

r such that
∑

s∈[r] 1/cs = 1.

Let t ≥ d(d+ 1)/2, k ∈ N∗. We define the set

St,k =
{
i ∈ At+1, nt,(i,i) ≤ c1mαk

C

∆2
At+1

C2
At+1,i

Σ∗
i,i

}
, (27)

and the event

At,k =

{ ∑
i∈St,k

Σ∗
i,i

CAt+1,i
≥ βkm; ∀l < k,

∑
i∈S1

t,l

Σi,i

CAt+1,i
< βlm

}
. (28)

A notable difference from previous approaches is the use of Σ∗
i,i/Ca,i in A1

t,k instead of set cardinals.
This enables the explicit appearance of the Ca,i coefficients, which will involve the σ2

a,i for the
application of this proposition to our algorithms.
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For s ∈ [r], we define

Ss
t,k =

{
(i, j) ∈ At+1, nes

t,(i,j) ≤ csm
2αk

C

∆2
At+1

Cs

}
(29)

and the events

As
t,k =

{
|Ss

t,k| ≥ βkm
2; ∀l < k, |Ss

t,l| < βlm
2
}
. (30)

The following Lemma, proven in Appendix D.2, decomposes (Et)t≥d(d+1)/2 using these events.

Lemma 4. Let’s consider the assumptions of Proposition 6. Let At,k and (As
t,k)s∈[r] be the events

defined in Eq. (28) and Eq. (30). Let k0 ∈ N∗ such that 0 < mβk0
< 1

2m and t ≥ d(d+ 1)/2.

1{Et} ≤
k0∑
k=1

1{At,k}+
r∑

s=1

k0∑
k=1

1{As
t,k} .

Using it, we decompose

T−1∑
t=d(d+1)/2

∆At+1
1{Et} ≤

T−1∑
t=d(d+1)/2

[
k0∑
k=1

∆At+1
1{At,k}+

r∑
s=1

k0∑
k=1

∆At+1
1{As

t,k}
]

=

T−1∑
t=d(d+1)/2

[
∆At+1

k0∑
k=1

1{At,k}
]
+

r∑
s=1

T−1∑
t=d(d+1)/2

[
∆At+1

k0∑
k=1

1{As
t,k}
]
.

(31)

We begin with the first term of Eq. (31). Let t ≥ d(d+ 1)/2, and k ∈ [k0]. Then,

At,k =

{ ∑
i∈S1

t,k

Σi,i

CAt+1,i
≥ βkm; ∀l < k,

∑
i∈S1

t,l

Σi,i

CAt+1,i
< βl

}
⊆
{

1

βkm

∑
i∈S1

t,k

Σi,i

CAt+1,i
≥ 1

}
.

Therefore,

1{At,k} ≤
1

βkm

∑
i∈[d]

Σi,i

CAt+1,i
1
{
At,k ∩ {i ∈ St,k}

}
. (32)

Summing over t and k, and including the gaps yields

T−1∑
t=d(d+1)/2

∆At+1

k0∑
k=1

1{A1
t,k} (33)

≤
T∑

t=d(d+1)/2

∆At+1

k0∑
k=1

1

βkm

∑
i∈[d]

Σi,i

CAt+1,i
1
{
A1

t,k ∩ {i ∈ St,k}
}
← by Eq. (32)

≤
∑
i∈[d]

Σi,i

T∑
t=d(d+1)/2

k0∑
k=1

1

βkm

∆At+1

CAt+1,i
1{i ∈ St,k}

=
∑
i∈[d]

Σi,i

k0∑
k=1

1

βkm

T∑
t=d(d+1)/2

∆At+1

CAt+1,i
1

{
nt,(i,i) ≤ c1mαk

C( ∆At+1

CAt+1,i

)2
Σi,i

}
.← by Eq. (27)

(34)

Let i ∈ [d], we consider all the actions associated to it. Let qi ∈ N∗ be the number of actions
associated to item i. Let l ∈ [qi], we denote eli ∈ A the l-th action associated to item i, sorted by

decreasing
∆

el
i

C
el
i
,i

, with
C

e0
i
,i

∆
e0
i

= 0 by convention. Then
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T−1∑
t=d(d+1)/2

∆At+1

CAt+1,i
1

{
nt,(i,i) ≤ c1mαk

C( ∆At+1

CAt+1,i

)2
Σi,i

}

≤
T−1∑
t=0

qi∑
l=1

∆eli

Celi,i

1

{
nt,(i,i) ≤ c1mαk

C( ∆
el
i

C
el
i
,i

)2
Σi,i

, At+1 = eli

}

=

T−1∑
t=0

qi∑
l=1

∆eli

Celi,i

1

{
nt,(i,i)

Σi,i

c1mαkC
≤ 1( ∆

el
i

C
el
i
,i

)2 , At+1 = eli

}

=

T−1∑
t=0

qi∑
l=1

∆eli

Celi,i

l∑
p=1

1

{
1( ∆

e
p−1
i

C2

e
p−1
i

,i

)2 < nt,(i,i)
Σi,i

c1mαkC
≤ 1( ∆e

p
i

C2
e
p
i
,i

) , At+1 = eli

}
← decomposing the event

≤
T−1∑
t=0

qi∑
l=1

l∑
p=1

∆epi

Cepi ,i

1

{
1( ∆

e
p−1
i

C
e
p−1
i

,i

)2 < nt,(i,i)
Σi,i

c1mαkC
≤ 1( ∆e

p
i

C2
e
p
i
,i

) , At+1 = eli

}
← as

∆eli

Celi,i

≤
∆epi

Cepi ,i

=

qi∑
p=1

∆epi

Cepi ,i

T−1∑
t=0

qi∑
l=p

1

{
1( ∆

e
p−1
i

C
e
p−1
i

,i

)2 < nt,(i,i)
Σi,i

c1mαkC
≤ 1( ∆e

p
i

C2
e
p
i
,i

) , At+1 = eli

}

≤
qi∑

p=1

∆epi

Cepi ,i

T−1∑
t=0

qi∑
l=1

1

{
1( ∆

e
p−1
i

C
e
p−1
i

,i

)2 < nt,(i,i)
Σi,i

c1mαkC
≤ 1( ∆e

p
i

C2
e
p
i
,i

) , At+1 = eli

}
← we extend the sum over l

=

qi∑
p=1

∆epi

Cepi ,i

T−1∑
t=0

1

{
1( ∆

e
p−1
i

C2

e
p−1
i

,i

)2 < nt,(i,i)
Σi,i

c1mαkC
≤ 1( ∆e

p
i

Ce
p
i
,i

)2 , i ∈ At+1

}
← we simplify the inner sum

≤
qi∑

p=1

∆epi

Cepi ,i

(⌊(
Cepi ,i

∆epi

)2
c1mαkC

Σi,i

⌋
−
⌊(Cep−1

i ,i

∆ep−1
i

)2
c1mαkC

Σi,i

⌋)
← the event can only happen a given nbr. of times

=

(⌊(
Ce

qi
i ,i

∆e
qi
i

)2
c1mαkC

Σi,i

⌋
∆e

qi
i

Ce
qi
i ,i

+

qi−1∑
p=1

⌊(
Cepi ,i

∆epi

)2
c1mαkC

Σi,i

⌋(
∆epi

Cepi ,i

−
∆ep+1

i

Cep+1
i ,i

))
← summation by parts

≤ c1mαkC

Σi,i

(
Ce

qi
i ,i

∆e
qi
i

+

qi−1∑
p=1

(
Cepi ,i

∆epi

)2( ∆epi

Cepi ,i

−
∆ep+1

i

Cep+1
i ,i

))
← everything is positive

≤ c1mαkC

Σi,i

(
Ce

qi
i ,i

∆e
qi
i

+

∫ ( ∆
e1
i

C
e1
i
,i

)
( ∆

e
qi
i

C
e
qi
i

,i

) 1

x2
dx

)

=
c1mαkC

Σi,i

(
C2

e
qi
i ,i

∆e
qi
i

+
C2

e
qi
i

∆e
qi
i

−
C2

e1i

∆e1i

)

≤ 2c1mαkC

Σi,i

Ce
qi
i ,i

∆e
qi
i

≤ 2c1mαkC

Σi,i

(
max

a∈A/i∈a

Ca,i

∆a

)
. (35)
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Reinjecting Eq. (35) into Eq. (34) yields
T−1∑

t=d(d+1)/2

∆At+1

k0∑
k=1

1{A1
t,k} ≤

∑
i∈[d]

Σi,i

k0∑
k=1

1

βkm

2c1mCαk

Σi,i

(
max

a∈A/i∈a

Ca,i

∆a

)

= 2c1C
( k0∑

k=1

αk

βk

)∑
i∈[d]

(
max

a∈A/i∈a

Ca,i

∆a

)
= 96c1C log(m)2

∑
i∈[d]

(
max

a∈A/i∈a

Ca,i

∆a

)
. (36)

We treat the r other terms in a similar way. Let s ∈ [r], t ≥ d(d+ 1)/2, and k ∈ [k0],

As
t,k =

{
|Ss

t,k| ≥ βkm
2; ∀l < k, |Ss

t,l| < βlm
2

}
⊆
{

1

βkm2
|S2

t,k| ≥ 1

}
.

Therefore,

1{As
t,k} ≤

1

βkm2

∑
(i,j)∈[d]2

1
{
As

t,k ∩ {(i, j) ∈ Ss
t,k}
}
. (37)

Summing over t and k yields
T−1∑

t=d(d+1)/2

∆At+1

k0∑
k=1

1{As
t,k}

≤
T−1∑

t=d(d+1)/2

∆At+1

k0∑
k=1

1

βkm2

∑
(i,j)∈[d]2

1
{
As

t,k ∩ {(i, j) ∈ Ss
t,k}
}
← by Eq. (37)

≤
∑

(i,j)∈[d]2

T−1∑
t=d(d+1)/2

k0∑
k=1

1

βkm2
∆At+1

1{(i, j) ∈ Ss
t,k}

=
∑

(i,j)∈[d]2

k0∑
k=1

1

βkm2

T−1∑
t=d(d+1)/2

∆At+1
1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

}
.← by Eq. (29)

(38)

Let (i, j) ∈ [d]2, we consider all the actions which are associated to it. Let q(i,j) ∈ N∗ be the number
of actions associated to the tuple (i, j). Let l ∈ [q(i,j)], this time, we denote el(i,j) ∈ A the l-th action
associated to tuple (i, j), sorted by decreasing ∆el

(i,j)
, with 1

∆
e0
(i,j)

= 0 by convention. Then,

T−1∑
t=d(d+1)/2

∆At+1
1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

}

≤
T−1∑
t=0

q(i,j)∑
l=1

∆el
(i,j)

1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

, At+1 = el(i,j)

}

=

T−1∑
t=0

q(i,j)∑
l=1

∆el
(i,j)

1

{
nt,(i,j)m

−2/es(csαkCCs)
−1/es ≤ 1

∆
2/es
el
(i,j)

, At+1 = el(i,j)

}

=

T−1∑
t=0

q(i,j)∑
l=1

∆el
(i,j)

l∑
p=1

1

{
1

∆
2/es

ep−1
(i,j)

< nt,(i,j)m
−2/es(csαkCCs)

−1/es ≤ 1

∆
2/es
ep
(i,j)

, At+1 = el(i,j)

}

≤
T−1∑
t=0

q(i,j)∑
p=1

∆ep
(i,j)

q(i,j)∑
l=p

1

{
1

∆
2/es

ep−1
(i,j)

< nt,(i,j)m
−2/es(csαkCCs)

−1/es ≤ 1

∆
2/es
ep
(i,j)

, At+1 = el(i,j)

}

25



≤
q(i,j)∑
p=1

∆ep
(i,j)

T−1∑
t=0

1

{
1

∆
2/es

ep−1
(i,j)

< nt,(i,j)m
−2/es(csαkCCs)

−1/es ≤ 1

∆
2/es
ep
(i,j)

, i ∈ At+1

}

≤
q(i,j)∑
p=1

∆ep
(i,j)

(⌊
m2/es(csαkCCs)

1/es

∆
2/es
ep
(i,j)

⌋
−
⌊
m2/es(csαkCCs)

1/es

∆
2/es

ep−1
(i,j)

⌋)

=

⌊
m2/es(csαkCCs)

1/es

∆
2/es

e
q(i,j)

(i,j)

⌋
∆

e
q(i,j)

(i,j)

+

q(i,j)−1∑
p=1

⌊
m2/es(csαkCCs)

1/es

∆
2/es
ep
(i,j)

⌋(
∆ep

(i,j)
−∆ep+1

(i,j)

)

≤ m2/es(csαkCCs)
1/es

(
∆

e
q(i,j)

(i,j)

)1−2/es
+

q(i,j)−1∑
p=1

(
∆p

e(i,j)

)−2/es

(
∆ep

(i,j)
−∆ep+1

(i,j)

)

≤ m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
+

∫ ∆
e1
(i,j)

∆
e
q(i,j)
(i,j)

x−2/esdx

)
.

If es = 2, then

T−1∑
t=d(d+1)/2

∆At+1
1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

}

≤ m(csαkCCs)
1/2

(
1 +

∫ ∆
e1
(i,j)

∆
e
q(i,j)
(i,j)

x−1dx

)

≤ m(csαkCCs)
1/2

(
1 + log

(∆max

∆min

))
.

Reinjecting this expression into yields Eq. (38), for es = 2

T−1∑
t=d(d+1)/2

∆At+1

k0∑
k=1

1{As
t,k} ≤

∑
(i,j)∈[d]2

∑
k∈[k0]

1

βkm2
m(csαkCCs)

1/2

(
1 + log

(∆max

∆min

))

= (csCCs)
1/2 d

2

m

(
1 + log

(∆max

∆min

)) ∑
k∈[k0]

α
1/2
k

βk

≤ 346
(
csCCs log(m)

)1/2
md2

(
1 + log

(∆max

∆min

))
. (39)

Else, for 1 < es < 2, then

T−1∑
t=d(d+1)/2

∆At+1
1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

}

≤ m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
+

∫ ∆
e1
(i,j)

∆
e
q(i,j)
(i,j)

x−2/esdx

)

= m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
+

es
es − 2

(
∆

1−2/es
e1
(i,j)

−∆
1−2/es

e
q(i,j)

(i,j)

))

≤ m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
− es

(
∆

1−2/es
e1
(i,j)

−∆
1−2/es

e
q(i,j)

(i,j)

))
≤ 3m2/es(csαkCCs)

1/es∆
1−2/es
min .
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This yield

T−1∑
t=d(d+1)/2

∆At+1

k0∑
k=1

1{As
t,k} ≤

∑
(i,j)∈[d]2

∑
k∈[k0]

1

βkm2
3m2/es(csαkCCs)

1/es∆
1−2/es
min

= 3(csCCs)
1/esd2m2/es−2∆

1−2/es
min

∑
k∈[k0]

α
1/es
k

βk

≤ 189.301/es
(
csCCs log(m)

)1/es
d2m2/es∆

1−2/es
min . (40)

Finally, for es > 2,

T−1∑
t=d(d+1)/2

∆At+1
1

{
nt,(i,j) ≤ m2/es(csαkCCs)

1/es
1

∆
2/es
At+1

}

≤ m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
+

∫ ∆
e1
(i,j)

∆
e
q(i,j)
(i,j)

x−2/esdx

)

= m2/es(csαkCCs)
1/es

((
∆

e
q(i,j)

(i,j)

)1−2/es
+

es
es − 2

(
∆

1−2/es
e1
(i,j)

−∆
1−2/es

e
q(i,j)

(i,j)

))

≤ m2/es(csαkCCs)
1/es

es
es − 2

(
∆max

)1−2/es
,

and
T−1∑

t=d(d+1)/2

∆At+1

k0∑
k=1

1{As
t,k} ≤

∑
(i,j)∈[d]2

∑
k∈[k0]

1

βkm2
m2/es(csαkCCs)

1/es
es

es − 2

(
∆max

)1−2/es

= (csCCs)
1/es

es
es − 2

d2m2/es−2∆1−2/es
max

∑
k∈[k0]

α
1/es
k

βk

≤ 63.301/es
(
csCCs log(m)

)1/es es
es − 2

d2m2/es∆1−2/es
max . (41)

All in all, we reinject Eq. (36), Eq. (39), Eq. (40) and Eq. (41) into Eq. (31), yielding

T−1∑
t=d(d+1)/2

∆At+1
1{Et}

≤
T−1∑

t=d(d+1)/2

[
∆At+1

k0∑
k=1

1{At,k}
]
+

r∑
s=1

T−1∑
t=d(d+1)/2

[
∆At+1

k0∑
k=1

1{As
t,k}
]

≤ 96c1C log(m)2
∑
i∈[d]

(
max

a∈A/i∈a

Ca,i

∆a

)

+

r∑
s=1

[
1
{
es = 2

}
346
(
csCCs log(m)

)1/2
md2

(
1 + log

(∆max

∆min

))

+ 1
{
1 < es < 2

}
63.301/es

(
csCCs log(m)

)1/es
d2m2/es∆

1−2/es
min

+ 1
{
2 < es

}
63.301/es

(
csCCs log(m)

)1/es es
es − 2

d2m2/es∆1−2/es
max

]
. (42)
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D.1 Definition of the sequences (αk) and (βk)

Let β = 1/5, x > 0. We define β0 = α0 = 1. For k ≥ 1, we define

βk = βk, αk = xβk . (43)

Let’s first look for an adequate k0 for Lemma 4, taking 1 ≤ k0 = ⌈ 2 log(
√
2m)

log(1/β) +1⌉ ≤ (2 log(m)+ 3)

is sufficient to have 0 < mβk0
< 1

2m . This choice particularly yields(
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)
=

(
k0−1∑
k=1

1− β

β
+

1

β

)
1

x

=

(
(k0 − 1)

1− β

β
+

1

β

)
1

x

=

(
4k0 + 1

)
1

x

< 1 ,

(44)

for x = 4k0 + 2.

Besides,
k0∑
k=1

αk

βk
= (4k0 + 2)k0 ≤ 16 log(m)2 + 52 log(m) + 42 ≤ 48 log(m)2 (45)

as m ≥ 5. Let c ∈ R, c > 1. Then
k0∑
k=1

α
1/c
k

βk
= (4k0 + 2)1/c

k0∑
k=1

(β1/c−1)k

≤ (8 log(m) + 14)1/c
k0∑
k=1

(5
c−1
c )k

≤ 301/c log(m)1/c
k0∑
k=1

5k

= 301/c log(m)1/c 5
5k0 − 1

5− 1

= 301/c log(m)1/c
5

4
(5k0 − 1)

= 301/c log(m)1/c
5

4

(
exp

(
log(5)

(2 log(√2m)

log(5)
+ 2
))
− 1

)

= 301/c log(m)1/c
5

4

(
50m2 − 1

)
≤ 63m2

(
301/c log(m)1/c

)
≤ 63.301/cm2 log(m)1/c .

D.2 Proof of Lemma 4

Lemma 4. Let’s consider the assumptions of Proposition 6. Let At,k and (As
t,k)s∈[r] be the events

defined in Eq. (28) and Eq. (30). Let k0 ∈ N∗ such that 0 < mβk0
< 1

2m and t ≥ d(d+ 1)/2.

1{Et} ≤
k0∑
k=1

1{At,k}+
r∑

s=1

k0∑
k=1

1{As
t,k} .
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Proof. Let’s consider the assumptions of 6, At,k and (As
t,k)s∈[r] be the events defined in Eq. (28)

and Eq. (30). Let k0 ∈ N∗ such that 0 < mβk0
< 1

2m and t ≥ d(d+ 1)/2.

We first prove that the events for k ≥ k0 cannot happen. Let k ≥ k0,

At,k =

{ ∑
i∈S1

t,k

Σ∗
i,i

CAt+1,i
≥ βkm; ∀l < k,

∑
i∈S1

t,l

Σi,i

CAt+1,i
< βlm

}
.

As βkm < βk0m < 1
2m ≤ mini,a

Σi,i

Ca,i
and (S1

t,l)l is a decreasing sequence of sets,∑
i∈St,k0

Σi,i

CAt+1,i
< βk0

m imply St,k0
= ∅ and

∑
i∈St,k

Σ∗
i,i

CAt+1
= 0 < βkm. Therefore, At,k

cannot happen and we denote

At =
⋃
k≥1

At,k =
⋃

k∈[k0]

At,k =
⋃

k∈[k0]

{ ∑
i∈St,k

Σi,i

CAt+1,i
≥ βkm; ∀l < k,

∑
i∈S1

t,l

Σi,i

CAt+1,i
< βlm

}
.

Likewise, for k > k0 and s ∈ [r],

As
t,k =

{
|Ss

t,k| ≥ βkm
2; ∀l < k, |Ss

t,k| < βlm
2

}
.

As βk0
m2 < 1/2 < 1 and (Ss

t,l)l is a decreasing sequence of sets, then |Ss
t,k0
| < βk0

m2 imply
Ss
t,k0

= ∅ and |Ss
t,k| = 0 < βkm

2. Therefore, As
t,k cannot happen and we denote

As
t =

⋃
k≥1

As
t,k =

⋃
k∈[k0]

As
t,k =

⋃
k∈[k0]

{
|Ss

t,k| ≥ βkm
2; ∀l < k, |Ss

t,k| < βlm
2

}
.

The idea is now to prove that(
At ∪

r⋃
s=1

As
t

)c

= Ac
t ∩ ∩rs=1

(
As

t

)c
⊆ Ect .

We begin by considering (A1
t )

c,

(At)
c = ∩k0

k=1(At,k)
c

= ∩k0

k=1

({ ∑
i∈St,k

Σi,i

CAt+1,i
< βkm

} k−1⋃
l=1

{ ∑
i∈S1

t,l

Σi,i

CAt+1,i
≥ βlm

})

= ∩k0

k=1

{ ∑
i∈S1

t,k

Σi,i

CAt+1,i
< βkm

}
. (46)

Then, under (At)
c, denoting St,0 = At+1, as St,k0

= ∅ and the sets St,k are decreasing with respect
to k, ∑

i∈At+1

CAt+1,i

nt,(i,i)
=

k0∑
k=1

∑
i∈S1

t,k−1\S
1
t,k

CAt+1,i

nt,(i,i)

≤
k0∑
k=1

∑
i∈S1

t,k−1\S
1
t,k

CAt+1,i
1

3mαk

∆2
At+1

C

Σ∗
i,i

C2
At+1,i

← by Eq. (27)

=
∆2

At+1

c1mC

k0∑
k=1

1

αk

∑
i∈St,k−1\St,k

Σi,i

CAt+1,i

=
∆2

At+1

c1mC

k0∑
k=1

1

αk

( ∑
i∈S1

t,k−1

Σi,i

CAt+1,i
−
∑

i∈S1
t,k

Σi,i

CAt+1,i

)
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=
∆2

At+1

c1mC

k0−1∑
k=0

1

αk+1

( ∑
i∈S1

t,k

Σi,i

CAt+1,i
−

∑
i∈S1

t,k+1

Σi,i

CAt+1,i

)

=
∆2

At+1

c1mC

(
1

α1

∑
i∈S1

t,0

Σi,i

CAt+1,i
+

k0−1∑
k=1

(
1

αk+1
− 1

αk

) ∑
i∈S1

t,k

Σi,i

CAt+1,i

)

<
∆2

At+1

c1mC

(
m

α1
+

k0−1∑
k=1

mβk

(
1

αk+1
− 1

αk

))
← St,0 = At+1 and Eq. (46)

=
∆2

At+1

c1C

(
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)

≤ 1

c

∆2
At+1

C
.← by Eq. (44) (47)

Likewise for s ∈ [r],

(As
t )

c = ∩k0

k=1

{
|Ss

t,k| < βkm
2

}
. (48)

Denoting Ss
t,0 = At+1 ×At+1, as Ss

t,k0
= ∅,

∑
(i,j)∈At+1

Cs

nes
t,(i,j)

=

k0∑
k=1

∑
(i,j)∈St,k−1\St,k

Cs

nes
t,i

≤
k0∑
k=1

∑
(i,j)∈St,k−1\St,k

Cs
1

c2m2αk

∆2
At+1

C

1

Cs
← by Eq. (29)

=
∆2

At+1

csm2C

k0∑
k=1

1

αk

(
|St,k−1| − |St,k|

)
=

∆2
At+1

csm2C

k0−1∑
k=0

1

αk+1

(
|St,k| − |St,k+1|

)
=

∆2
At+1

csm2C

(
|St,0|
α1

+

k0−1∑
k=1

|St,k|
(

1

αk+1
− 1

αk

))

<
∆2

At+1

csm2C

(
1

α1
m2 +

k0−1∑
k=1

βkm
2

(
1

αk+1
− 1

αk

))
← by Eq. (48)

=
∆2

At+1

c2C

(
k0−1∑
k=1

βk−1 − βk

αk
+

βk0−1

αk0

)

≤ 1

c2

∆2
At+1

C
.← by Eq. (44) (49)

Therefore, under Ac
t ∩ ∩rs=1

(
As

t

)c
, summing Eq. (47) and Eq. (49)

∑
i∈At+1

CAt+1,i

nt,(i,j)
+
∑
s∈[r]

[ ∑
(i,j)∈At+1

Cs

nes
t,(i,j)

]
<

(
1

c
+
∑
s∈[r]

1

cs

)
∆2

At+1

C

=
∆2

At+1

C
,
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which contradict Eq. (25) and thus imply Ect . By contraposition, we have proved that Et imply
At ∩

⋃r
s=1

(
As

t

)
. Therefore,

1{Et} ≤
k0∑
k=1

1{At,k}+
r∑

s=1

k0∑
k=1

1{As
t,k} .

E Details for OLS-UCB-C (Section 5.2)

E.1 Proof of Proposition 3

Proposition 3. Let δ > 0. Then, OLS-UCB-C yields

E
[ T−1∑
t=d(d+1)/2

∆At+11
{
Gt ∩ Ct

}]
= O

(
log(T )2 log(m)2

d∑
i=1

max
a∈A/i∈a

σ2
a,i

∆a

)
,

as T →∞, where σ2
a,i =

∑
j∈a(Σi,j)+.

Proof. The objective is to use Proposition 6.

Proposition 6. Let r ∈ N, e ∈ (1,+∞)r. Let (Et)t≥d(d+1)/2 be a sequence of events such that for
all t ≥ d(d+ 1)/2, under Et,

∆2
At+1

C
≤

∑
i∈At+1

CAt+1,i

nt,(i,j)
+
∑
s∈[r]

[ ∑
(i,j)∈At+1

Cs

nes
t,(i,j)

]
, (25)

where C and (Cs)s∈[r] are problem-dependent positive constants. CAt+1,i is a positive constant
depending on At+1 and i so that, for all a ∈ A, Ca,i ≤ 2mΣi,i. Let c ∈ R∗

+ and (cs)s∈[r] ∈ (R∗
+)

r

be positive constants such that 1/c+
∑

s∈[r] 1/cs = 1.

Then,
T−1∑

t=d(d+1)/2

∆At+1
1{Et}

≤ 96c1C log(m)2
∑
i∈[d]

(
max

a∈A/i∈a

Ca,i

∆a

)

+

r∑
s=1

[
1
{
es = 2

}
346
(
csCCs log(m)

)1/2
md2

(
1 + log

(∆max

∆min

))

+ 1
{
1 < es < 2

}
60.301/es

(
csCCs log(m)

)1/es
d2m2/es∆

1−2/es
min

+ 1
{
2 < es

}
60.301/es

(
csCCs log(m)

)1/es es
es − 2

d2m2/es∆1−2/es
max

]
. (26)

where (αk)k∈N∗ , (βk)k∈N∗ and k0 ∈ N∗ are defined in Appendix D.1.

We need to check that its hypotheses are satisfied. Let t ≥ d(d+ 1)/2 and δ > 0, then we have the
Lemma.

Lemma 5. Let δ > 0 and t ≥ d(d+ 1)/2. Then under {Gt ∩ Ct}, OLS-UCB-C satisfies

∆2
At+1

f2
T,δ

∑
i∈At+1

4σ̄2
At+1,i

nt,(i,i)
+

∑
(i,j)∈At+1

(4d+ h2
t,δ)∥B∥2∞

n2
t,(i,j)

+
∑

(i,j)∈At+1

5ht,δ∥B∥2∞
n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

∥B∥2∞
n3
t,(i,j)

,

where σ̄2
At+1,i

= 2
∑

j∈At+1/Σj,j≤Σi,i
(Σi,j)+ ≤ 2σ2

At+1,i
.
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Therefore, we can choose r = 3, e = (2, 3/2, 3) and (Et) = (Gt ∩ Ct). Taking c = (4, 4, 4, 4) and
identifying the rest of the coefficients yields that OLS-UCB-C satisfies

T−1∑
t=d(d+1)/2

∆At+1
1{Gt ∩ Ct}

≤ 384f2
T,δ log(m)2

∑
i∈[d]

(
max

a∈A/i∈a

σ̄2
a,i

∆a

)

+ 692∥B∥∞fT,δ(4d+ h2
t,δ)

1/2 log(m)1/2

(
1 + log

(∆max

∆min

))
+ 1460∥B∥4/3∞ f

4/3
T,δ h

2/3
t,δ log(m)2/3d2m2/3∆

−1/3
min

+ 296∥B∥2/3∞ f
2/3
T,δ log(m)1/3d2m2/3∆1/3

max .

As

f t,δ = 6 log(1/δ) + 6
(
log(t) + (d+ 2) log(log(t))

)
+ 3d

(
2 log(2) + log(1 + e)

)
,

ht,δ =
(
1 + 2 log(1/δ) + 2 log

(
t log(t)2d(d+ 1)

)
+ log(1 + t)

)1/2
,

we deduce

T−1∑
t=d(d+1)/2

∆At+1
1{Gt ∩ Ct} = O

(
log(T )2 log(m)2

∑
i∈[d]

(
max

a∈A/i∈a

σ̄2
a,i

∆a

))
. (50)

E.2 Proof of Lemma 5

Lemma 5. Let δ > 0 and t ≥ d(d+ 1)/2. Then under {Gt ∩ Ct}, OLS-UCB-C satisfies

∆2
At+1

f2
T,δ

∑
i∈At+1

4σ̄2
At+1,i

nt,(i,i)
+

∑
(i,j)∈At+1

(4d+ h2
t,δ)∥B∥2∞

n2
t,(i,j)

+
∑

(i,j)∈At+1

5ht,δ∥B∥2∞
n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

∥B∥2∞
n3
t,(i,j)

,

where σ̄2
At+1,i

= 2
∑

j∈At+1/Σj,j≤Σi,i
(Σi,j)+ ≤ 2σ2

At+1,i
.

Proof. Let t ≥ d(d+ 1)/2 and δ > 0. OLS-UCB-C statisfies the following Lemma.

Lemma 6. Let t ≥ d(d+ 1)/2 and δ > 0. Then for OLS-UCB-C, under the event {Gt ∩ Ct},

∆At+1
≤ ft,δ

(
∥N−1

t At+1∥Zt
+ ∥N−1

t At+1∥Ẑt

)
.

Therefore, under {Gt ∩ Ct}, and

0 ≤ ∆At+1
≤ ft,δ

(
∥N−1

t At+1∥Zt
+ ∥N−1

t At+1∥Ẑt

)
∆2

At+1
≤ f2

t,δ

(
∥N−1

t At+1∥Zt
+ ∥N−1

t At+1∥Ẑt

)2
≤ 2f2

t,δ

(
∥N−1

t At+1∥2Zt
+ ∥N−1

t At+1∥2Ẑt

)
∆2

At+1

2f2
tδ

≤ ∥N−1
t At+1∥2Zt

+ ∥N−1
t At+1∥2Ẑt

. (51)
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From, here, we develop the right-hand side,

∥N−1
t At+1∥2Zt

= A⊤
t+1N

−1
t ZtN

−1
t At+1

=
∑

(i,j)∈At+1

(Zt)i,j
nt,(i,i)nt,(j,j)

.

As Zt =
∑t

s=1 dAs
Σ∗dAs

+ dΣ∗Nt + ∥B∥2I, we get

∥N−1
t At+1∥2Zt

=
∑

(i,j)∈At+1

nt,(i,j)Σi,j

nt,(i,i)nt,(j,j)
+

∑
i∈At+1

nt(i,i)Σi,i

n2
t,(i,i)

+
∑

i∈At+1

∥B∥2

n2
t,(i,i)

≤
∑

i∈At+1

(
2

∑
j∈At+1/Σj,j≤Σi,i

nt,(i,j)Σi,j

nt,(i,i)nt,(j,j)

)
+

∑
i∈At+1

∥B∥2

n2
t,(i,i)

,

by rearranging terms.

Now as for all (i, j) ∈ [d]2, nt,(i,j) ≤ min{nt,(i,i), nt,(j,j)}, then

∥N−1
t At+1∥2Zt

≤
∑

i∈At+1

1

nt,(i,i)

(
2

∑
j∈At+1/Σj,j≤Σi,i

Σi,j

)
+

∑
i∈At+1

∥B∥2

n2
t,(i,i)

.

Denoting σ̄2
At+1,i

= 2
∑

j∈At+1/Σj,j≤Σi,i
(Σi,j)+ yields

∥N−1
t At+1∥2Zt

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+

∑
i∈At+1

∥B∥2

n2
t,(i,i)

. (52)

The second term from the right-hand side of Eq. (51) is developed in the same manner but involves
more terms.

∥N−1
t At+1∥2Ẑt

= A⊤
t+1N

−1
t ẐtN

−1
t At+1

=
∑

(i,j)∈At+1

(Ẑt)i,j
nt,(i,i)nt,(j,j)

.

We remind that Ẑt =
∑t

s=1 dAsΣ̂tdAs + dΣ̂t
Nt + ∥B∥2I where for all (i, j) ∈ [d]2,

Σ̂t,(i,j) = χ̂t,(i,j) +
BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)
.
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Being under the event C, Proposition 2 yields Σ̂t,(i,j) ≤ Σi,j +
BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+ 1

n2
t,(i,j)

)
.

Then,

∥N−1
t At+1∥2Ẑt

≤
∑

(i,j)∈At+1

nt,(i,j)Σi,j

nt,(i,i)nt,(j,j)

+
∑

(i,j)∈At+1

nt,(i,j)

nt,(i,i)nt,(j,j)

BiBj

4

(
5ht,δ√
nt,(i,j)

+
h2
t,δ

nt,(i,j)
+

1

n2
t,(i,j)

)

+
∑

i∈At+1

nt(i,i)Σi,i

n2
t,(i,i)

+
∑

i∈At+1

B2
i

4nt,(i,i)

(
5ht,δ√
nt,(i,i)

+
h2
t,δ

nt,(i,i)
+

1

n2
t,(i,i)

)

+
∑

i∈At+1

∥B∥2

n2
t,(i,i)

≤
∑

i∈At+1

σ̄2
At+1,i

nt,(i,i)
+

∑
i∈At+1

∥B∥2

n2
t,(i,i)

+
∑

(i,j)∈At+1

5ht,δ∥B∥2∞
4

1

n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

h2
t,δ∥B∥2∞

4

1

n2
t,(i,j)

+
∑

(i,j)∈At+1

∥B∥2∞
4

1

n3
t,(i,j)

+
∑

i∈At+1

5ht,δ∥B∥2∞
4

1

n
3/2
t,(i,i)

+
∑

i∈At+1

h2
t,δ∥B∥2∞

4

1

n2
t,(i,i)

+
∑

i∈At+1

∥B∥2∞
4

1

n3
t,(i,i)

.

(53)

Reinjecting Eq. (52) and Eq. (53) into Eq. (51) yields

∆2
At+1

2f2
t,δ

≤ ∥N−1
t At+1∥2Zt

+ ∥N−1
t At+1∥2Ẑt

≤
∑

i∈At+1

2σ̄2
At+1,i

nt,(i,i)
+

∑
(i,j)∈At+1

(2d+ h2
t,δ/2)∥B∥2∞
n2
t,(i,j)

+
∑

(i,j)∈At+1

5ht,δ∥B∥2∞/2

n
3/2
t,(i,j)

+
∑

(i,j)∈At+1

∥B∥2∞/2

n3
t,(i,j)

.

The desired inequality just comes from fT,δ ≥ ft,δ

E.3 Proof of Lemma 6

Lemma 6. Let t ≥ d(d+ 1)/2 and δ > 0. Then for OLS-UCB-C, under the event {Gt ∩ Ct},

∆At+1
≤ ft,δ

(
∥N−1

t At+1∥Zt
+ ∥N−1

t At+1∥Ẑt

)
.

Proof. Let t ≥ d(d + 1)/2 and δ > 0. The error in estimating the mean reward for action a with
⟨a, µ̂t⟩ is bounded as ∣∣a⊤(µ̂t − µ)

∣∣ ≤ ∥N−1
t a∥Zt

∥∥∑t
s=1 dAs

ηs
∥∥
Z−1

t
.

The definition of Gt =
{ ∥∥∑t

s=1 dAsηs
∥∥
Z−1

t
≤ ft,δ

}
yields that in this event,

⟨At+1, µ̂t⟩ ≤ ⟨At+1, µ⟩+ ft,δ∥N−1
t At+1∥Zt

,

and
⟨a∗, µ⟩ − ft,δ∥N−1

t a∗∥Zt
≤ ⟨a∗, µ̂t⟩ .

By the definition of At+1 for OLS-UCB-C in (6),

⟨a∗, µ̂t⟩+ ft,δ∥N−1
t a∗∥Ẑt

≤ ⟨At+1, µ̂t⟩+ ft,δ∥N−1
t At+1∥Ẑt

.
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Combining the expressions gives

⟨a∗, µ⟩+ ft,δ(∥N−1
t a∗∥Ẑt

− ∥N−1
t a∗∥Zt) ≤ ⟨At+1, µ⟩+ ft,δ(∥N−1

t At+1∥Zt + ∥N−1
t At+1∥Ẑt

) .

Now, we use the fact that under Ct, Ẑt uses coefficient-wise upper bounds of Σ, which yields that

∥N−1
t a∗∥2Zt

≤ ∥N−1
t a∗∥2

Ẑt
.

Rearranging terms the desired result.

E.4 Proof of the gap-free bound

Theorem 1. Let T ∈ N∗ and δ > 0.

Then, OLS-UCB-C (Alg. 2) satisfies the gap-dependent regret upper bound

E[RT ] = Õ

(
log(m)2

d∑
i=1

max
a∈A/i∈a,∆a>0

σ2
a,i

∆a

)
,

where σ2
a,i =

∑
j∈a max{Σi,j , 0}, and the gap-free regret upper bound

E[RT ] = Õ

(
log(m)

√
T

√∑d
i=1 max

a∈A/i∈a
σ2
a,i

)
.

Proof. Let ∆ > 0, then
T−1∑

t=d(d+1)

∆At+1
1{Gt ∩ Ct} =

T−1∑
t=d(d+1)

∆At+1
1
{
Gt ∩ Ct ∩ (∆At+1

≤ ∆)
}

+

T−1∑
t=d(d+1)

∆At+1
1
{
Gt ∩ Ct ∩ (∆At+1

> ∆)
}

≤ T∆+

T−1∑
t=d(d+1)

∆At+11
{
Gt ∩ Ct ∩ (∆At+1 > ∆)

}
.

Adapting Proposition 6 to account for ∆At+1 > ∆ yields

T−1∑
t=0

∆At+11{Gt ∩ Ct ∩ (∆At+1 > ∆)} ≲ 1

∆
log(T )2 log(m)2

∑
i∈[d]

(
max

a∈A/i∈a
σ2
a,i

)
.

where ≲ is an inequality up to constant factors (when T varies).

Balancing T∆ and 1
∆ log(T )2 log(m)2

∑
i∈[d]

(
maxa∈A/i∈a σ

2
a,i

)
yields

E[RT ] = O

(
log(m) log(T )

√
T

√∑
i∈[d]

max
a∈A/i∈a

σ2
a,i

)
.

F Details for COS-V (Section 5.3)

F.1 Proof for Lemma 7

Lemma 7. Let δ > 0. Then COS-V satisfies
T∑

s=d(d+A)/2

P(Hc
t) ≤ δ

T∑
t=1

1

t log(t)2
.
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Proof. Let δ > 0, t ≥ d(d+ 1)/2. We remind

Ht =

{
∀i ∈ [d],

∣∣∣∣(µ̂t,i + (1 + gt,δ)ft,δ
(Ẑt,i)

1/2

nt,i

)
− µ̃t,i

∣∣∣∣ ≤ gt,δft
(Ẑt,i)

1/2

nt,i

}
, (54)

where gt,δ =
(
2 log

(
2dt log(t)2

)
+ log(1/δ)

)1/2
.

Conditionally to Ft = σ(A1, Y1, . . . , At, Yt), for all i ∈ [d]

µ̃t,i ∼ N
(
µ̂t,i + (1 + gt,δ)ft,δ

Ẑ
1/2

t,(i,i)

nt,(i,i)
, f2

t,δ
Ẑt,(i,i)

n2
t,(i,i)

)
.

Let i ∈ a∗. Then Gaussian concentration yields

PFt

(∣∣∣∣∣(µ̂t,i + (1 + gt,δ)ft,δ
Ẑ

1/2
t,(i,i)

nt,(i,i)

)
− µ̃t,i

∣∣∣∣∣ >√2 log(2dt log(t)2/δ)ft,δ
Ẑ

1/2
t,(i,i)

nt,(i,i)

)
≤ δ

dt log(t)2
,

and

P

(∣∣∣∣∣(µ̂t,i + (1 + gt,δ)ft,δ
Ẑ

1/2
t,(i,i)

nt,(i,i)

)
− µ̃t,i

∣∣∣∣∣ >√2 log(2dt log(t)2/δ)ft,δ
Ẑ

1/2
t,(i,i)

nt,(i,i)

)
≤ δ

dt log(t)2
.

by integration.

A union bound on i ∈ [d] and t ≥ d(d+ 1)/2 yields the result

T∑
t=d(d+1)/2

P(Hc
t) ≤

∑
t∈[T ]

δ

t(log(t)2
.

F.2 Proof for Proposition 4

Proposition 4. Let δ > 0. Then COS-V yields

E
[ T−1∑
t=d(d+1)

∆At+1
1
{
Gt ∩ Ct ∩Ht

}]
= O

(
log(T )3 log(m)2

( d∑
i=1

mΣi,i

∆i,min

))
.

Proof. Let δ > 0. We first make use of the following Lemma.

Lemma 8. Let t ≥ d(d+ 1)/2, δ > 0. Then for COS-V, under {Gt ∩ Ct ∩Ht},

∆At+1

f2
T,δg

2
T,δ

≤
∑

i∈At+1

40mΣi,i

nt,(i,i)
+

∑
i∈At+1

29mdh2
t,δ∥B∥2∞

n2
t,(i,i)

(55)

+
∑

i∈At+1

45mht,δ∥B∥2∞
n
3/2
t,(i,i)

+
∑

i∈At+1

9m∥B∥2∞
n3
t,(i,i)

. (56)

This enables to use a “modified” version of Proposition 6, which do not consider covariances.

Proposition 7. Let r ∈ N, e ∈ (1,+∞)r. Let (Et)t≥d(d+1)/2 be a sequence of events such that for
all t ≥ d(d+ 1)/2, under Et,

∆2
At+1

C
≤

∑
i∈At+1

Ci

nt,(i,j)
+
∑
s∈[r]

[ ∑
i∈At+1

Cs

nes
t,(i,j)

]
(57)

where C and (Cs)s∈[r] are problem-dependent positive constants. Ci is a positive constant depending
on i so that, Ci ≤ 2mΣi,i. Let c ∈ R∗

+ and (cs)s∈[r] ∈ (R∗
+)

r be positive constants such that
1/c+

∑
s∈[r] 1/cs = 1.
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Then,

T−1∑
t=d(d+1)/2

∆At+1
1{Et}

≤ 96c1C log(m)2
∑
i∈[d]

( Ci
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]
, (58)

where (αk)k∈N∗ , (βk)k∈N∗ and k0 ∈ N∗ are defined in Appendix D.1.

Applied to COS-V, this yields
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t=d(d+1)/2
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1
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}
≤ 15360f2
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2
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max ,

where

f t,δ = 6 log(1/δ) + 6
(
log(t) + (d+ 2) log(log(t))

)
+ 3d

(
2 log(2) + log(1 + e)

)
,

ht,δ = (1 + 2 log(1/δ) + 2 log(d(d+ 1)) + log(1 + t))1/2,
gt,δ = (1 + log(2dt log(t)2) + log(1/δ))1/2.

We deduce

E
[ T−1∑
t=d(d+1)

∆At+1
1
{
Gt ∩ C ∩ H

}]
= O

(
log(T )3 log(m)2

( d∑
i=1

mΣi,i

∆i,min

))
.

F.3 Proof for Lemma 8

Lemma 8. Let t ≥ d(d+ 1)/2, δ > 0. Then for COS-V, under {Gt ∩ Ct ∩Ht},

∆At+1

f2
T,δg

2
T,δ

≤
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i∈At+1

40mΣi,i

nt,(i,i)
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Proof. Let t ≥ d(d+ 1)/2 and δ > 0. Then

∆At+1
= ⟨a∗ −At+1, µ⟩
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Besides,
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∑
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∑
i∈a∗

(
µi − µ̂t,i + µ̂t,i − µ̃t,i
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Therefore, under {Gt ∩Ht ∩ Ct},

0 ≤ ∆At+1 ≤ ⟨At+1, µ̃t − µ⟩ .

We now develop the expression
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This finally yields
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G Experimental results

This section outlines some experimental results.

G.1 Theoretical regret upper bound

In this experiment, the objective is to show the effect of the smallest suboptimality gap ∆min over
theoretical gap-dependent regret upper bounds for ESCB-C and OLS-UCB-C. To that end, we sampled
100 environments with different ∆min, with a constant number of items d = 20, a horizon of T = 105

rounds, and randomly sampled structures. We represent theoretical upper bounds with respect to
1/∆min in Fig. 1.

For readability reasoning, we have rescaled and reweighted the different components of the sums
so that the leading term in the upper-bounds (1/∆min or 1/∆2

min for ESCB-C or OLS-UCB-C) is
greater/smaller than the rest, in a significant number of cases. In particular, all the theoretical upper
bounds have the form

RT ≤
C

∆min
+

C ′

∆2
min

+ CrRest ,

where C, C ′ and Cr are the tuned constants.

For OLS-UCB-C,
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For ESCB-C,
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∆
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When the minimal gap is too small (right part of Fig. 1), both upper-bounds are of the magnitude of
either 1/∆2

min or 1/∆min (depending on the algorithm). In this case, the theoretical regret bound
of OLS-UCB-C outperforms the one of ESCB-C (green dots vs. blue dots). On the other side, when
the gap is big enough, the remaining terms have more impact. In this case, ESCB-C has a better
theoretical guarantee (orange dots vs. red dots).
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Figure 1: Evolution of regret upper bounds.

G.2 Comparison between ESCB-C and OLS-UCB-C

We evaluate ESCB-C (approximated as proposed in Perrault et al., 2020b) and OLS-UCB-C on d = 5
items, P = 10 actions, T = 105 rounds and randomly sampled structures.

We represent the pseudo-regret evolutions in Fig. 2. The evolutions remain the same until 103 rounds.
After that, ESCB-C seemingly performs better than OLS-UCB-C which has a supplementary log(t)
factor and is more conservative. However, just before 105 rounds, we can observe a slight regime
change for ESCB-C while the pseudo-regret of OLS-UCB-C continues to increase smoothly. The
average regret of ESCB-C seems to have an inflexion point upward to meet the q75 curve.

Figure 2: Pseudo-regret for ESCB-C and OLS-UCB-C for randomly sampled environments (with q25
and q75 confidence intervals).
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When observing the final regret with respect to 1/∆min in Fig. 3, overall ESCB-C seems to outperform
OLS-UCB-C except on some corner cases. Those cases skew the distribution for ESCB-C. Especially,
for the case with the smallest suboptimality gap (the rightmost part of the figure), OLS-UCB-C
outperforms ESCB-C.

Figure 3: Pseudo-Regret with respect to 1/∆min.

The evolution of the pseudo-regret in this case with the smallest suboptimality gap is presented in
Fig. 4. While ESCB-C seems to fare better in the beginning, we actually see a sharp increase in its
pseudo-regret before 105 rounds. It could have been caused by the computational approximation of
ESCB-C (described in Perrault et al. (2020b)), and/or it could be the impact of the 1/∆2

min term.

Figure 4: Pseudo-Regret in the “worst” environment.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The answer NA means that the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics. The paper does not involve
human subjects or participants, and the data-related concerns are not applicable.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is mainly theoretical and is not directly tied to an application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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