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Supervised Fine-Tuning for Unsupervised KPI Anomaly Detection
for Mobile Web Systems

Anonymous Author(s)

ABSTRACT
With the rapid development of cellular networks, wireless base
stations (WBSes) have become crucial infrastructure for mobile
web systems. To ensure service quality, operators constantly moni-
tor the operation status of WBSes and deploy anomaly detection
methods to identify anomalies promptly. After the deployment of
anomaly detection methods, operators periodically collect feed-
back, which holds significant value in improving anomaly detec-
tion performance. In real-world industrial environments, the fre-
quency of false negative feedback is usually very low, and the newly
generated data’s distribution can differ significantly from that of
the original training data. Therefore, the feedback-based perfor-
mance improvement of the previously proposed methods is limited.
In this paper, we propose AnoTuner , which incorporates a false
negative augmentation mechanism to generate similar false nega-
tive feedback cases, effectively compensating for the low feedback
frequency. Additionally, we introduce a Two-Stage Active Learn-
ing (TSAL) mechanism that minimizes data contamination issues
caused by the difference between the distribution of feedback data
and that of the training data. Experiments conducted on the real-
world data collected from a top-tier global Internet Service Provider
(ISP) demonstrate that the performance improvement of AnoTuner
after feedback-based fine-tuning is significantly higher than that
of the best baseline method. Our codes are released anonymously
at https://anonymous.4open.science/r/AnoTuner/.

Relevance Statement: Our paper is highly relevant to the track
“Internet systems, applications, and Web of Things (WoT) applica-
tions”, focusing on maintaining the mobile web system reliability.
Instead ofmerely using aWeb artifact, our work addresses a genuine
Web-centric challenge: optimizing anomaly detection in WBSes.
By introducing AnoTuner , we offer a unique solution to real-world
data challenges faced by ISP. This study addresses a core concern
in today’s Internet infrastructure.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; • Net-
works→ Network management; • Information systems→ Data
mining.

KEYWORDS
Anomaly detection, Multivariate Time-Series, System Reliability

1 INTRODUCTION
A Wireless Base Station (WBS), also known as a cell tower or cel-
lular tower, is a fundamental component of mobile web systems.
It serves as a central hub for wireless communication within a
specific geographic area. With the rapid development of mobile net-
works, WBSes play a critical role in ensuring reliable and efficient
communication World-Wide Web [5, 7, 12, 13, 15, 18]. However,

the occurrence of anomalies or malfunctions in these WBSes can
significantly impact network performance, leading to degraded
user experience, service disruptions, and even massive economic
losses [3].

To ensure service quality, operators from Internet Service Providers
(ISPs) constantly monitor the operational status of WBSes and de-
ploy anomaly detection methods to identify anomalies promptly [3].
WBSes generate a substantial amount of monitoring data on a daily
basis. These data include Key Performance Indicators (KPIs) such as
wireless connection rate, interference level, Radio Resource Control
(RRC) connection requests, E-UTRAN Radio Access Bearer (E-RAB)
establishment success rate, Control Channel Element (CCE) uti-
lization rate, etc. They are in the form of multivariate time series
(MTS) reflecting the operational status of a WBS during a partic-
ular period [3]. Quick and accurate detection of MTS anomalies
contributes to the prompt identification of issues, preventing more
severe failures from occurring and enabling downstream methods
to swiftly pinpoint the causes of malfunctions, facilitating failure
mitigations as soon as possible [3, 10, 27].

After the deployment of an anomaly detectionmethod in practice,
it is common to collect feedback about the method. These feedback
data include false positives (false alarms) and false negatives (missed
alarms). The normal operation of WBSes is exceptionally vital for
ISPs. Therefore, operators often calibrate the model to be sensitive
to anomalies to reduce false negatives. This leads to a paradox: in
real-world industrial environments, operators are more concerned
with the information carried by false negatives, yet the feedback
data collected contains few instances of false negatives.

Feedback data serve as crucial sources of information for improv-
ing the anomaly detection methods’ performance. However, current
MTS anomaly detection methods struggle to utilize feedback, espe-
cially the feedback of false negatives, effectively. Specifically, due
to the enormous scale of WBSes, a massive amount of data is gener-
ated daily, making labeling data extremely expensive. Therefore, the
mainstream MTS anomaly detection methods, such as Donut [27],
LSTM-NDT [4], OmniAnomaly [23], AnomalyTrans [28], and In-
terfusion [11], are unsupervised. However, these methods waste
information carried by the labels in operators’ feedback. Semi-
supervised learning, which applies labeled and unlabeled data to
train an MTS anomaly detection model, seems to be a promising
direction to utilize operators’ feedback. Nevertheless, it fails to yield
satisfactory performance improvement when utilizing the feedback
data because of the following two challenges:

(1) Scarce data. Anomalies in WBS are infrequent, and due to oper-
ators’ preference for anomaly detection methods’ configurations,
false negative feedback data are even rarer. It is difficult for semi-
supervised MTS anomaly detection methods to learn effectively
from the scarce data of false negative feedback, which operators
are seriously concerned.

1
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(2) Biased data distribution. The distribution of the feedback data
collected after deploying an MTS anomaly detection method
can differ significantly from that of the training data because of
software/hardware upgrades and configuration changes [14, 19,
29] (see Section 2.2 for more details). This discrepancy may cause
model contamination during the feedback-based performance
improvement.
To address the above challenges, we propose AnoTuner , a Su-

pervised Anomaly Tuner for Unsupervised KPI Anomaly Detec-
tion. AnoTuner is trained in an unsupervised manner and can be
fine-tuned using the feedback data with our novel Label-Aware
Evidence Lower BOund (LAELBO) loss function. Powered by
the Conditional Variational Auto-Encoder (CVAE) [22] framework,
AnoTuner possesses powerful data generation capabilities. Specif-
ically, we design a false negative augmentation mechanism,
generating more similar feedback based on existing false nega-
tive feedback to alleviate the scarcity of such feedback data. More-
over, we design a Two-Stage Active Learning (TSAL) mecha-
nism that samples a small amount from historical data to miti-
gate the discrepancy between feedback data distribution and train-
ing data distribution, effectively avoiding data contamination. Ex-
periments using real-world data collected from a top-tier global
ISP show that the performance improvement of AnoTuner after
feedback-based fine-tuning is significantly higher than that of the
best baseline semi-supervised method, and this is achieved using
the feedback data that constitutes only 0.74% of the test set. Due
to double-blind reviewing, our codes are released anonymously at
https://anonymous.4open.science/r/AnoTuner/.

Our contributions can be summarized as follows:
• We conducted a systematic study on the impact of feedback on

improving the performance of MTS anomaly detection methods
forWBSes. Based on that, we propose a novel Label-Aware ELBO
(LAELBO) loss function to utilize the feedback data effectively.
• We propose a false negative augmentation mechanism to address

the problem of the small data volume of false negative feedback
when fine-tuning the MTS anomaly detection model, addressing
the first challenge.

• We design a TSAL mechanism that effectively addresses the
performance degradation issue caused by the biased data distri-
bution, addressing the second challenge.

• Extensive evaluation experiments have been conducted using
the real-world data of a large-scale ISP to verify AnoTuner’s
performance.

2 PRELIMINERY
2.1 Background
In order to ensure the service quality of WBSes, operators monitor
and collect various KPIs for each base station on a regular basis.
In a WBS, if the pattern of one or several KPIs deviates from its
historical norm or if there is a distortion in the physical relationship
between the KPIs, it is typically considered that an anomaly has
occurred. The causes of these anomalies can be diverse, such as
an incorrect software update, physical damage to the base station
itself, or malicious attacks on the base station. After interviews with
ISP operators, we have identified 25 widely used KPIs for WBSes
listed in Appendix A.

Such data can be formalized as multivariate time series data
shown in Figure 1, which can reflect the operational status of each
WBS. Operators typically deploy anomaly detectionmethods for the
WBSes. Traditional anomaly detection methods are usually based
on rules.With the advancement of machine learning techniques and
their demonstrated powerful performance across various domains,
machine learning methods have become the primary approach for
WBS anomaly detection in the industry [3, 6, 12, 15, 17].
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Figure 1: An example of a WBS’s multivariate time series.
The red rectangles mark the anomaly interval.

However, in a real-world industrial environment, completing a
method’s training process does not signify the end of the method’s
deployment. Deployed methods will inevitably encounter issues
in production, generating false positives (false alarms) and false
negatives (missed alarms). When utilizing rules for anomaly detec-
tion, operators often patch existing rules based on these feedback
data. However, such an approach is infeasible for methods based on
machine learning. For machine learningmethods, the standard prac-
tice in the industry is to collect sufficient feedbacks over a relatively
short period, say a week, to fine-tune the model and to retrain the
model over a more extended period, such as a quarter [10]. Given
that model training costs significantly more than fine-tuning, ISPs
tend not to retrain anomaly detection models very often. Therefore,
if fine-tuning using feedback fails to resolve the issue effectively,
the problem of the model will persist until the next retraining ses-
sion. During this period, similar false positives or negatives may
reoccur, undoubtedly causing a great deal of unnecessary trouble
for operators and reducing the credibility of the anomaly detection
results.

2.2 Motivation
Anomaly detection plays a crucial role in the reliable operation of
WBSes. Accurate anomaly detection can help operators promptly
identify potential issues in the WBSes and mitigate them as soon
as possible, preventing minor anomalies from escalating into se-
vere failures. Moreover, the results of anomaly detection can be
forwarded to downstream methods for subsequent analysis, such
as feeding into root cause localization methods to automatically
pinpoint the causes of WBS failures.

2
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Fine-tuning anomaly detection methods using feedback data
has been a practice since the era of rule-based anomaly detection.
Patches for rules can effectively resolve similar issues based on
the feedback data. Moreover, in the era of machine learning, fine-
tuning with feedback data is also a common behavior. However, in
WBS anomaly detection, due to the low frequency of anomalies and
biased feedback data distribution [10], existing methods struggle
to effectively utilize online feedback in WBSes.

There are three main reasons why we focus on the fine-tuning of
anomaly detection models based on feedback, especially feedback
of false negatives. Firstly, feedback derived from real-world applica-
tions of anMTS anomaly detectionmethod significantly contributes
to the enhancement of the method. Fine-tuning the method through
feedback is an excellent way to incorporate the domain knowledge
of operators into the method. Figure 2 shows a real-world experi-
ment that we conducted. We collected a week’s worth of feedback
on our deployed anomaly detection method (i.e. AnoTuner) from a
certain region of a top-tier global ISP and fine-tuned the method
accordingly. After this feedback-based fine-tuning, both the number
of false positive and false negative points of the model significantly
decreased. Notably, these feedback data used for fine-tuning only
constituted 0.6% of the total dataset.

False Positive False Negative
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200

400

600

800

1000

1200

1400

N
um

be
r

1178
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787

296

Before Fine-Tuning
After Fine-Tuning

Figure 2: Comparison of the numbers of false positives and
false negatives before and after feedback-based fine-tuning.

Secondly, the reliable operation of WBSes is crucial for ISPs,
hence, the impact of false negatives onWBSes is particularly severe.
For instance, if an anomaly in a base station is not timely identified
due to a false negative, it could lead to delayed mitigations, causing
the anomaly to escalate into a severe failure. Therefore, it is worth-
while to pay extra attention to false negative feedback in anomaly
detection for WBSes.

Thirdly, the proportion of false negative and false positive feed-
back on the MTS anomaly detection methods is imbalanced. The
quantity of false positive feedback is typically 2 to 10 times that of
false negative feedback. The imbalance between false negatives and
false positives exacerbates the issue of feedback scarcity, making
the scarcity of false negatives even more pronounced. Given that a
machine learning-based anomaly detectionmethod generally learns
patterns from large amounts of data, this imbalance has resulted in
the underutilization of false negative feedback, thereby wasting the
valuable information that could be used to improve the method’s
performance.

3 METHODOLOGY
In this section, we introduce our innovative approach to address the
challenges encountered in Section 1. We first provide an overview
of our method, followed by a detailed description of our design
improvements in the anomaly detection model and the LAELBO

loss function to better utilize feedback data. Subsequently, we ana-
lyze the false negative feedback in the WBS and present our False
Negative Augmentation technique to mitigate the scarce data prob-
lem. Finally, we introduce the Two-Stage Active Learning (TSAL)
utilized to eliminate the Biased Distribution issue.

3.1 Model overview
The overall workflow of AnoTuner is as depicted in Figure 3. The
workflow of AnoTuner is divided into three phases: unsupervised
training and deployment, feedback collection, and supervised fine-
tuning.

During the feedback collection process, operators periodically
provide feedback on false positives or false negatives reported by
the anomaly detection method. In practical environments, this cycle
is typically one week.

In the feedback-based fine-tuning phase, AnoTuner differs signif-
icantly from current anomaly detection methods. Firstly, we do not
use the feedback data directly for fine-tuning but go through two
crucial steps: false negative augmentation, and TSAL. We describe
these two steps in detail below. It is worth noting that these two
steps are related to the design of our base model and cannot be
directly applied to other anomaly detection methods. Neverthe-
less, they can still provide a reference value for the design of other
anomaly detection methods.

Next, we will provide a detailed description of our base model
design, false negative augmentation, and TSAL.

3.2 Label-Aware ELBO Loss Function
Our model adopts the framework of the Conditional Variational
Auto-Encoder (CVAE) [22], trained via an widely used encode-
decode method. The fine-tuning process in AnoTuner differs from
the training process. The training process of AnoTuner is unsuper-
vised, while the fine-tuning process is supervised. This is because if
the same unsupervised mode used during training is still applied in
the fine-tuning process, the model cannot effectively learn from the
false negative data, as the false negative data itself represents anom-
aly patterns that the model mistakenly learned from the training set.
To achieve supervised fine-tuning, we have made improvements
to the loss function of the CVAE loss function called Label-Aware
Evidence Lower BOund (ELBO), as shown in (2).

The original ELBO loss function of the CVAE typically comprises
two components: the reconstruction loss and the KL divergence.

Given a data point 𝑥 , its associated condition 𝑐 , and its latent
variable 𝑧, the objective of the CVAE is to maximize the ELBO given
by:

ELBO = E𝑞𝜙 (𝑧 |𝑥,𝑐 ) [log 𝑝𝜃 (𝑥 |𝑧, 𝑐)] − KL(𝑞𝜙 (𝑧 |𝑥, 𝑐) | |𝑝𝜃 (𝑧 |𝑐)) (1)

= E𝑞𝜙 (𝑧 |𝑥,𝑐 ) [log 𝑝𝜃 (𝑥 |𝑧, 𝑐)] −
∫

𝑞𝜙 (𝑧 |𝑥, 𝑐) log
𝑞𝜙 (𝑧 |𝑥, 𝑐)
𝑝𝜃 (𝑧 |𝑐)

𝑑𝑧

Where:

• 𝑞𝜙 (𝑧 |𝑥, 𝑐) is the posterior probability distribution defined by the
encoder, with parameters represented by 𝜙 .

• 𝑝𝜃 (𝑥 |𝑧, 𝑐) is the generative model defined by the decoder, with
parameters represented by 𝜃 .

3
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Figure 3: The overall workflow of AnoTuner.

• 𝑝𝜃 (𝑧 |𝑐) is the prior probability distribution of the latent variable
𝑧, usually chosen to be a standard normal distribution.
• KL(𝑞𝜙 (𝑧 |𝑥, 𝑐) | |𝑝 (𝑧)) is the KL divergence, measuring the differ-

ence between two probability distributions.
In practice, we typically do not compute the ELBO directly but

minimize its negative value, which is equivalent to maximizing the
ELBO.

In the proposed model, the given condition serves as an intrin-
sic feature of the data and does not encapsulate any labeling in-
formation. Consequently, the standard ELBO is not applicable to
our framework. The fundamental principle of our approach is the
categorization based on labels 𝑦. For instances where 𝑦 = 0, our
objective is to minimize the reconstruction error, thereby approxi-
mating the distributions 𝑞𝜙 (𝑧 |𝑥, 𝑐) and 𝑝𝜃 (𝑥 |𝑐) closely. Conversely,
for 𝑦 = 1, our goal is to amplify the reconstruction error, ensuring
that the distributions 𝑞𝜙 (𝑧 |𝑥, 𝑐) and 𝑝𝜃 (𝑥 |𝑐) diverge significantly.

L(𝑥, 𝑐) = − E𝑧∼𝑞𝜙 (𝑧 |𝑥,𝑐 ) [log𝑝𝜃 (𝑥 |𝑧, 𝑐,𝑦 = 0)]
+ E𝑧∼𝑞𝜙 (𝑧 |𝑥,𝑐 ) [log 𝑝𝜃 (𝑥 |𝑧, 𝑐,𝑦 = 1)] (2)

−
∫
(2𝑦 − 1)𝑞𝜙 (𝑧 |𝑥, 𝑐) log

𝑞𝜙 (𝑧 |𝑥, 𝑐)
𝑝𝜃 (𝑧 |𝑐)

𝑑𝑧

It is noteworthy that the label-aware ELBO is only used in
feedback-based fine-tuning.

Subsequent experiments have shown that in the context of anom-
aly detection forWBSes,AnoTuner not only exhibits state-of-the-art
performance but also can effectively utilize feedback for fine-tuning.

3.3 False Negative Augmentation
In the context of anomaly detection in WBSes, operators are re-
luctant to have the method miss any anomalies. As a result, the
method is adjusted to be very sensitive to anomalies, leading to

a relatively large number of false alarms. This results in a much
smaller proportion of false negative data compared to false posi-
tives in the feedback. However, experimental results show that false
negative feedback is crucial for fine-tuning. To better utilize false
negative data for fine-tuning, an intuitive approach is to generate
more similar cases using the existing feedback.

The idea of using existing data to generate more similar data
is commonly referred to as data augmentation in the field of ma-
chine learning. In computer vision, data augmentation has been
widely applied because images have relatively easy-to-understand
physical meanings [2, 21, 26, 32]. One can use various digital im-
age processing techniques to manipulate the images, generating
more data while preserving their physical meanings. However, the
data generated by WBSes is MTS data. Traditional data augmen-
tation methods struggle to generate new data while ensuring the
correctness of temporal and inter-KPI dependencies, which are
characteristics of MTS data. This leads to traditional data augmen-
tation introducing a large amount of noise into MTS data, unable
to generate high-quality data.

To address this problem, we design a deep learning-based condi-
tional generation for MTS. Thanks to our CVAE-based architecture,
our AnoTuner can not only perform anomaly detection but is also
inherently capable of generating time series data. Therefore, we
do not need to train a separate generation model to produce more
data; we can directly use the trained AnoTuner for generation. It
is also worth noting that the primary cause of false negatives is
the incorporation of anomalous data or noise into the training data.
The model incorrectly learns the pattern of the anomalies during
the unsupervised training stage, resulting in the reconstructed data
being indistinguishable from the original data. This fact precisely
illustrates that AnoTuner can effectively generate data similar to the

4
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false negative data without worrying about a significant difference
between the generated and real data.

Our process for false negative augmentation begins with encod-
ing the false negative feedback data using the AnoTuner encoder,
which results in the mean, 𝜇, and standard deviation, 𝜎 , of the
distribution. Subsequently, we generate a set of latent variables,
denoted as {𝑧1, 𝑧2, ..., 𝑧𝑛}, by performing multiple samplings from a
standard Gaussian distribution N(0, 1). The original false negative
feedback data is then decomposed using STL, yielding seasonal
and trend components. These components are combined to derive
a conditional variable, 𝑐 . In the final step, each latent variable 𝑧𝑖
is concatenated with the conditional variable and dispatched to
the AnoTuner decoder for decoding, thereby producing the gen-
erated data. Concerning the volume of data to generate for false
negative, our subsequent experiments suggest that the model ac-
complishes more effective learning when the ratio of false negative
to false negative feedback data is approximately 1, see more details
in Section 4.4.

Our experiments indicate that this false negative augmentation
for false negative can not only generate high-quality feedback data
but can also enhance the fine-tuning performance of the anomaly
detection model.

3.4 Two-Stage Active Learning (TSAL)
A significant challenge encounteredwith feedback-based fine-tuning
is the bias in feedback data. Our experimental analysis has identified
two primary sources of this biased data distribution in feedback.

The first source of bias is the imbalance between false negative
and false positive data. The second source of bias arises from the fact
that the feedback data we use comprises data points that the current
algorithm fails to process effectively because of software/hardware
upgrades and configuration changes [14, 19, 29]. The biased data
distribution can contaminate the model during fine-tuning leading
to performance decay.

We have solved this first issue by false negative augmentation in
Section 3.3. To address the second issue, we propose a Two-Stage
Active Learning (TSAL). The core idea of this mechanism is to
balance the discrepancy in feedback data distribution by sampling a
small amount of historical data, making the data more in line with
the independent and identically distributed assumption in machine
learning. This mechanism is divided into two stages: the first is the
cluster-based filter, and the second is bias-eliminating sampling.

The primary goal of the cluster-based filter in the first stage is to
identify data from the historical data that differs from the existing
feedback data. The first challenge we need to tackle in this stage is
the subsequence clustering of MTS data. For this purpose, we are
inspired by OmniCluster [30], a SOTA approach to MTS clustering.
Instead of separately training an OmniCluster, we use the encoder
from AnoTuner to encode both historical and current feedback data.

There are two reasons for this decision. Firstly, the core objective
of training OmniCluster is to obtain an encoder, and the encoder of
AnoTuner , after its training phase, already exhibits robust feature
extraction capabilities, enabling it to adequately encode time series.
Secondly, the goal of our clustering is to identify data thatAnoTuner
perceives as different from the existing feedback data. Therefore,
usingAnoTuner’s encoder for encoding is more likely to accomplish

this goal. After encoding, we apply the OmniCluster structure to
cluster all the historical data. We then attempt to assign feedback
data to these existing clusters, and selected clusters that have not
been assigned for the next stage.

Algorithm 1 Bias-Eliminating Sampling

Input: Clusters C = {𝐶1,𝐶2, ...,𝐶𝑛}, Feedback data T𝑓 𝑏 ;
Output: T ∗

𝑓 𝑏
dataset used for fine-tuning;

1: assign each data point in T𝑓 𝑏 to C;
2: get unassigned clusters C0 = {𝐶0

1,𝐶
0
2, ...,𝐶

0
𝑘
} and assigned clus-

ters C1 = {𝐶1
1,𝐶

1
2, ...,𝐶

1
𝑙
};

3: if C1 ≠ ∅ then
4: find 𝐶1

𝑖
, which have the least assigned feedback;

5: 𝑚 ← the number of assigned feedback in 𝐶1
𝑖
;

6: T ∗
𝑓 𝑏
← T𝑓 𝑏

7: for 𝑗 = 1 to 𝑘 do
8: randomly sample |𝐶0

𝑗
| 𝑚|𝐶1

𝑖
| points in 𝐶

0
𝑗
to T ∗

𝑓 𝑏
;

9: end for
10: else
11: 𝑚 ← |T𝑓 𝑏 |;
12: 𝐶0

𝑖
← argmin

𝐶∈C0
|𝐶 |

13: for 𝑗 = 1 to 𝑘 do
14: randomly sample |𝐶0

𝑗
| 𝑚|𝐶0

𝑖
| points in 𝐶

0
𝑗
to T ∗

𝑓 𝑏
;

15: end for
16: end if

The main goal of bias-eliminating sampling in the second stage
is to judiciously sample from the data selected in the first stage,
thereby reducing the distribution bias in the final dataset used for
fine-tuning. Our design philosophy regarding the sample size in
each cluster is to emulate the distribution of the complete dataset as
closely as possible. The number of samples drawn from each cluster
is determined by the count of data points in the cluster. If there is
no cluster assigned to the feedback data, the minimum number of
samples drawn from a cluster equals the total quantity of feedback.
The whole process is shown as Algorithm 1.

After sampling, operators are assigned to label each cluster’s
centroid, determining whether it is an anomaly and extending this
judgment to all data within the respective cluster. Although this
labeling approach inevitably introduces some errors, labeling each
sample individually would be labor-intensive and thus impractical.

4 EVALUATION
In this section, we evaluate AnoTuner by utilizing the dataset col-
lected from a real-world production environment of a leading ISP.
Our goal is to answer the following research questions:
• RQ1: Can AnoTuner effectively utilize feedback for fine-tuning

and achieve excellent anomaly detection performance at the
same time?

• RQ2: How is the quality of the data generated by the false neg-
ative augmentation mechanism? Can these data contribute to
fine-tuning?

• RQ3: Can the TSAL effectively address the issue of feedback data
bias?
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4.1 Dataset and Evaluation Metric
To verify the effectiveness of our approach, we collected monitoring
data from 200 wireless base stations in a certain region provided
by a top-tier ISP over a two-week period. The data from the first
week serves as the training set, while the data from the second
week are used as the test set. Furthermore, we engaged experts
in operations and maintenance to label the test set. The dataset
includes 25 KPIs covering multiple dimensions ofWBS performance
(see Appendix A for more details).

The statistic of the dataset mentioned above is shown in Table 3.
Metrics like precision, recall, and the F1-Score are often employed

in evaluating time series anomaly detection. Given that operators in
practical situations typically disregard point-wise alerts, we adopt
an adjustment approach widely used in previous studies [1, 9, 11,
20, 23, 27]. The detail of the adjustment strategy can be found in
Appendix C

Since there are multiple WBSes in our dataset, we average the
precision and recall across each base station and the F1-Score is
calculated based on the average precision and recall.

4.2 Setup
In order to effectively evaluate the performance of AnoTuner , we
chose state-of-the-art (SOTA) MTS anomaly detection models with
diverse network architectures as our baselines.
• ACVAE [10]: This semi-supervised multi-dimensional time se-

ries anomaly detection model is based on two Variational Auto-
Encoder (VAE) networks. It features a supervised fine-tuning
mechanism, making it the current SOTA model for anomaly
detection with a feedback-based fine-tuning mechanism.

• LSTM-NDT [4]: This is an unsupervised anomaly detection
model based on Long Short-Term Memory (LSTM), widely used
in industrial production environments.

• OmniAnomaly [23]: Utilizing a Stochastic Recurrent Neural
Network as its core, this MTS anomaly detection method exhibits
robustness specifically for equipment in data center networks.

• Interfusion [11]: This is an unsupervised anomaly detection
model based on Hierarchical VAE. It has the capability to simul-
taneously capture the spatio-temporal relationships of multi-
dimensional time series.

• AnomalyTrans [28]: This model is based on a Transformer
structure and has improved multi-head attention specifically for
multi-dimensional time series anomaly detection. It is currently
the SOTA model for unsupervised anomaly detection.
It is noteworthy that apart from ACVAE [10], the other anom-

aly detection baseline models lack meticulously designed fine-
tuning mechanisms. Therefore, we can only default to using con-
ventional fine-tuning methods on these models. Moreover, although
PUAD [31] is designed with a fine-tuning mechanism, it mainly
targets univariate time series anomaly detection and is thus not
applicable to anomaly detection in WBSes.

4.3 RQ1: Overall Performance
We first evaluate our model’s capacity to effectively utilize feedback
data for fine-tuning while ensuring excellent anomaly detection
performance. Initially, we trained our model preliminarily using the
training set within our dataset. As for the test set, we reserve the

first 30% in terms of time for feedback data collection, leaving the
rest 70% for testing without feedback-based fine-tuning. The main
purpose of this partitioning is to simulate real-world WBS anomaly
detection scenarios. After employing feedback-based fine-tuning,
what operators are most concerned about is the performance in
the subsequent online environment. Consequently, our final per-
formance evaluation is conducted using the latter 70% of the test
set, while the 30% of the data used for feedback collection is not
included in the final performance assessment.

Moreover, to assess the model’s capability to learn from feed-
back data, we divide our experiments into four groups: without
feedback tuning (w/o fine-tuning), tuning with false positives only
(FP fine-tuning), tuning with false negatives only (FN fine-tuning),
and tuning with both FP and FN feedback (FP+FN fine-tuning). The
final experimental results are as shown in Table 1.

The experimental results indicate that before fine-tuning, the
anomaly detection F1-Scores and recalls for AnoTuner , ACVAE,
AnomalyTrans, and OmniAnomaly can all exceed 0.9. However,
after feedback-based fine-tuning, the results change noticeably.
AnomalyTrans, OmniAnomaly, and Interfusion all show a decline
in the F1-Score after tuning, regardless of whether FP or FN is used
for the fine-tuning. The reasons for this situation are twofold. Firstly,
these methods lack particular fine-tuning mechanisms and can only
use conventional fine-tuning methods for unsupervised anomaly
detection, failing to effectively learn from FN data. Secondly, the
feedback data are biased and small-scale, leading to model over-
fitting towards the knowledge contained in the feedback, thereby
reducing the robustness of anomaly detection.

When jointly fine-tuning with both FN and FP feedback, the
F1-Score of AnoTuner increases by 0.0448, while ACVAE, which
also possesses a feedback-based fine-tuning mechanism, only in-
creases by 0.0086. The increase in the F1-Score of AnoTuner after
fine-tuning is about five times that of ACVAE. This affirms that in
the context of anomaly detection in WBSes, AnoTuner can more
effectively utilize feedback data. ACVAE’s fine-tuning mechanism
mainly learns abnormal patterns through FN data. However, with-
out false negative augmentation, it is difficult for ACVAE to learn
insights from the scarce FN feedback. We deduce that the primary
reasons why AnoTuner can effectively utilize feedback are the reso-
lution of two crucial issues: false negative augmentation mitigates
the missing vital information due to the small quantity of FN data,
while TSAL tackles the problem of model contamination caused by
biased feedback data in fine-tuning.

In summary, compared to SOTA unsupervised anomaly detection
models and the semi-supervised model ACVAE, AnoTuner utilizes
feedback better and is more suitable for conducting anomaly detec-
tion in WBSes.

4.4 RQ2: Contribution of False Negative
Augmentation

The primary goal of the false negative augmentation is to address
the issue of a low proportion of false negatives in the already scarce
feedback. False negative augmentation can effectively generalize
from existing FN data, generating high-quality FN feedback data
while ensuring data time and spatial relations.
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Table 1: The precision (𝑃 ), recall (𝑅) and F1-Score (𝐹1) ofAnoTuner and baselinemethods.AnoTuner and ACVAE have a particular
mechanism for feedback fine-tuning.

Method w/o fine-tuing FP fine-tuing FN fine-tuing FP+FN fine-tuing
𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1

LSTM-NDT 0.8234 0.8926 0.8566 0.8499 0.9074 0.8777 0.6851 0.785 0.7317 0.8269 0.8690 0.8474
OmniAnomaly 0.8964 0.9064 0.9014 0.8718 0.8432 0.8573 0.8529 0.7964 0.8237 0.7293 0.7044 0.7167
Interfusion 0.8923 0.8786 0.8854 0.9330 0.8321 0.8796 0.8996 0.8164 0.8560 0.9159 0.8187 0.8646
AnomalyTrans 0.9170 0.9129 0.9149 0.8922 0.9337 0.9125 0.8587 0.8731 0.8658 0.8735 0.8955 0.8841

ACVAE 0.9158 0.8856 0.9005 0.9022 0.8800 0.8910 0.9230 0.8942 0.9084 0.9222 0.8964 0.9091

AnoTuner 0.8922 0.9411 0.9160 0.9105 0.9510 0.9303 0.9329 0.9707 0.9514 0.9451 0.9770 0.9608

To evaluate the contribution of false negative augmentation, we
first conduct an ablation study. Under the experimental setup of
Section 4.3, we compare the results with and without the use of
false negative augmentation and compare them with a widely-used
temporal augmentation method for time series anomaly detection,
RSTL [25]. The experiment results are shown in Figure 4.

Precision Recall F1-Score
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00 w/ FNA w/o FNA w/ RSTL

Figure 4: The performance of AnoTuner under three scenar-
ios: with false negative augmentation (w/ FNA), without false
negative augmentation (w/o FNA), and using RSTL.

The results demonstrate that the high-quality data generated
by false negative augmentation effectively enhance the effect of
feedback-based fine-tuning, leading to an improvement in themodel’s
performance on the final test set. To further analyze the underly-
ing reasons, we conducted an analysis of the data generated by
the model. We find that the key to false negative augmentation’s
success lies in its ability to maintain the temporal and inter-KPI
characteristics of the generated data. The anomaly in Figure 5a is
that the second curve does not show a similar decline to the first
and third KPIs. Figure 5b represents data generated by the false
negative augmentation mechanism in AnoTuner , while Figure 5c
depicts data generated by RSTL. A comparison reveals that the data
generated by AnoTuner can better ensure the correlation between
different KPIs, thus maintaining the physical relationships among
various base station KPIs. In contrast, RSTL can generate appar-
ent errors in the interrelationship between the KPIs, distorting the
physical meanings of the base station data and thereby preventing
the anomaly detection model learning from the data.

We attribute the observed outcome to three main factors. Firstly,
RSTL is primarily designed for single-KPI time series and thus lacks
the appropriate mechanism to ensure correct interrelationships
between KPIs in MTS data augmentation. The second reason, as
we see it, is that RSTL lacks a comprehensive understanding of the
complete dataset. AnoTuner , on the other hand, can view a large
amount of WBS data during the training stage, thereby facilitating

(a) raw FN data (b) by AnoTuner (c) by RSTL

Figure 5: The comparison of the generated FN data by
AnoTuner and RSTL for a FN case (the FN occurs in the red
rectangle).

a better learning of the physical meanings between KPIs. The third
point is that these are false negatives (FNs) generated by AnoTuner
itself, suggesting that AnoTuner has inadvertently learned this type
of anomalous data pattern during training, thereby generating very
high-quality examples.
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Figure 6: The performance of AnoTuner after fine-tuning at
different ratios of FN/FP under the control of false negative
augmentation.

Additionally, we have studied the impact of the ratio of FN to
FP on fine-tuning, the results of which are shown in Figure 6. It
can be observed from the figure that optimal performance can be
achieved when the ratio of FN to FP feedback is approximately 1.
Therefore, in our AnoTuner , we regulate the false negative augmen-
tation mechanism to maintain the ratio of FN to FP feedback close
to 1.
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4.5 RQ3: Effectiveness of Two-Stage Active
Learning

Two-stage active learning (TSAL) is designed to address the problem
of degraded anomaly detection performance on online test datasets
after fine-tuning due to biased feedback data. In order to evaluate
the effectiveness of this mechanism, we conducted an ablation
experiment in which we compared the results with and without
the mechanism using the experimental setup of Section 4.3, and
the results of the experiments are shown in Figure 7.

Precision Recall F1-Score
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00 w/ TSAL w/o TSAL

Figure 7: AnoTuner performance after feedback-based fine-
tuning with (w/) and without (w/o) the use of TSAL

The result demonstrates that TSAL effectively improves the effect
of anomaly detection, which is mainly attributed to the fact that
the mechanism effectively solves the problem of biased feedback by
sampling from historical data, and makes the fine-tuning process
more consistent with the important assumption of the independent
identical distribution of machine learning, so the model is not easily
contaminated by biased data.

To further analyze how TSAL solves the problem of biased data,
we compare the distribution of data before and after active learning
and visualize it as shown in Figure 8.

History
Feedback

(a) before sampling

History
Feedback
Sampled

(b) after sampling

Figure 8: The distribution of the KPI visualized by t-SNE.
The grey dots represent the complete dataset, the red ones
signify feedback in anomaly detection, and the green ones
are obtained through bias-eliminating sampling.

We randomly sample 500 points from the entire dataset and
utilized t-SNE [24] for dimension reduction and conduct 2D visu-
alization. Subsequently, we randomly sample 20 points from the
feedback data. As can be observed from Figure 8a, there is a no-
ticeable disparity between the distribution of feedback data points
and that of the entire dataset. However, after TSAL, we randomly
sample 50 points from the given by the bias-eliminating sampling.
The distribution of the dataset used for fine-tuning significantly
resembles the distribution of the entire dataset. A distribution closer
to that of the entire dataset implies that the model is less likely

to be biased by the feedback data during the fine-tuning process,
thereby preventing an overall performance decline.

5 RELATEDWORK
Anomaly detection in WBSes falls within the domain of multivari-
ate time series anomaly detection. Anomaly detection has been
the subject of extensive research over the past decade, particularly
in the context of MTS data. Recently, a considerable number of
unsupervised deep learning methods have been proposed to target
anomaly detection in MTS data, aimed at identifying “data anom-
alies” within the raw MTS data based on certain assumptions

Generally, these unsupervisedmethods operate under the premise
that “normal patterns" of data originate from a deterministic proce-
dure, and therefore, it is feasible to understand the distribution (or
prediction) of these “normal patterns" from raw MTS data. Anom-
alies are subsequently characterized as data instances that deviate
from this learned normal distribution. Various strategies have been
employed to achieve this end, including LSTM-based methods like
LSTM-NDT [4], multi-head attention-based methods like Anoma-
lyTrans [28], and VAE-based methods such as OmniAnomaly [23],
Interfusion [11]. In all these cases, the prediction error or recon-
struction error, which signifies the extent of deviation of a data
instance from the learned normal patterns, is utilized for anomaly
detection.

Unsupervised methods, while useful, often struggle to effectively
utilize feedback data in their fine-tuning processes. Recognizing
this challenge, recent proposals have introduced semi-supervised
methods like PUAD [31] and ACVAE [10]. PUAD combines PU
learning techniques and time series clustering to allow the inclu-
sion of labeled data during the fine-tuning process. ACVAE initiates
two VAE networks simultaneously, with the anomaly network tak-
ing advantage of partially labeled anomaly data. Yet, these methods
still have limitations in anomaly detection for WBSes. PUAD is
specifically tailored for univariate time series anomalies, which
makes it unsuitable for WBS data that is typically composed of
MTS. Consequently, PUAD isn’t applicable to anomaly detection
for WBSes. ACVAE, which primarily learns from data center con-
figurations, also fails to use feedback data effectively. Thus, current
anomaly detection methods are still struggling to fully harness the
power of feedback data.

6 CONCLUSION
In this paper, we proposed AnoTuner , a supervised anomaly tuner
for unsupervised KPI anomaly detection. Our novel LAELBO loss
function and false negative augmentationmechanism enableAnoTuner
to effectively learn patterns from scarce false negative data. Addi-
tionally, the TSAL mechanism proves to be effective to counter the
bias introduced by the discrepancy between the distributions of
feedback data and that of training data. By sampling a small portion
of historical data, the bias could be mitigated, preventing model con-
tamination and thereby significantly enhancing the performance
of AnoTuner . Experiments on a real-world dataset collected from a
top-tier global ISP showcased AnoTuner’s performance, even with
the feedback data as limited as 0.74% of the test set. This demon-
strates the effectiveness of AnoTuner in utilizing feedback data to
enhance the model’s performance.
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A WBS KPI FOR ANOMALY DETECTION
After interviews with ISP operators, we have identified 25 widely
used KPIs for WBSes. We categorize these 25 metrics based on their
physical meanings. They can be divided into five categories: Busi-
ness, Physical Resource Block (PRB), Radio Access Bearer (RAB),
Handover (HO), and Radio Resource Control (RRC) as listed in
Appendix A.

Table 2: An overview of WBS KPIs and their categories.

Type KPI Name #Number

Business

Paging Congestion Rate,Wireless Con-
nection Rate, Wireless Drop Rate, Han-
dover Success Rate, Upllink Traffic,
Downlink Traffic

6

PRB Uplink Utilization Rate, Downlink Uti-
lization Rate, Interference Level 3

RAB

Establishment Success Rate, Establish-
ment Failure Count, Establishment Re-
quest Count, Establishment Success
Count, Establishment Success Rate,
Normal Context Release Count for Re-
quests, Drop Rate, Traffic Volume

8

HO Handover Request Count, Handover
Success Count, Total Handover Count 3

RRC

Connection Request Count, Average
Connection Count, Maximum Connec-
tion Count, Connection Establishment
Success Rate, Connection Establish-
ment Success Count

5

B DETAIL OF DATASETS
In this paper, we involve three distinct datasets: one sourced from a
real-world environment of a top-tier global ISP, while the remaining
two are publicly available. For addressing RQ1-3, we sampled 200
WBSes from a top-tier global ISP, collecting the corresponding
monitoring data over a two-week period.

For validate the generality of AnoTuner , we employ two public
multivariate KPI anomaly detection datasets: SWaT (Secure Water
Treatment) [16] and WADI (Water Distribution) [8]. These two
datasets pertain to water treatment plant operations. Then have
been previously utilized for MTS anomaly detection in [8, 11]. Both
encompass routine sensor and actuator data from the plants, which
form the training set. For the testing set, a combination of normal
and anomalous data is present. The anomalies stem from deliberate
system attacks introduced to the datasets.

C EVALUATION METRIC
Metrics like precision, recall, and the F1-Score are often employed
in evaluating time series anomaly detection. Given that operators in
practical situations typically disregard point-wise alerts, we adopt
an adjustment approach widely used in previous studies [1, 9, 11,

Table 3: The statistic of three datasets: Wireless Base Station
(WBS), Secure Water Treatment (SWaT), and Water Distribu-
tion (WADI).

Dataset #Entities #Metrics #Train #Test Anomaly (%)

WBS 200 25 33600 33600 5.18%
SWaT 1 51 475200 449919 12.13%
WADI 1 118 789371 172801 5.85%

ground truth

point-wise result

adjusted result

1 0 0 1 0 1 0 0 0 0

0 0 0 01 1 1 1 1 1

1 0 1 1 1 1 0 0 0 0

Figure 9: An illustration of the adjustment strategy used in
the evaluation metrics. The anomaly points in the ground
truth are represented by red rectangles, while the adjusted
points are denoted by blue rectangles.

20, 23, 27]. Given a labeled, continuous anomaly segment, we deem
the segment as accurately detected if the method identifies any
anomaly within the segment. Consequently, every point within the
anomalous segment is regarded as a true positive (TP). If not, every
point in the segment is considered a false negative (FN). The points
situated outside the abnormal segments are left without adjustment.
This strategy is visualized in Figure 9.

D EXPERIMENT ENVIRONMENT
All our experimentswere conducted on a single-node server equipped
with 4 NVIDIA GeForce RTX 3090 GPUs, an Intel(R) Xeon(R) Gold
5218R CPU @ 2.10GHz with 128GB of memory. We implemented
our model with Python 3.10.

E GENERALITY OF ANOTUNER
The multivariate KPI anomaly detection has wide and significant
applications in numerous fields [10, 11, 23]. DespiteAnoTuner being
originally conceptualized for WBS scenarios, we postulate its effi-
cacy in diverse domains, contending that with minor adaptations,
its applicability extends far beyond its original design. Furthermore,
the architectural nuances of AnoTuner may potentially serve as
a vanguard for innovating anomaly detection methods in related
fields. To validate the generality of AnoTuner , we introduced two
public multivariate KPI anomaly detection datasets, SWaT [16] (Se-
cure Water Treatment) and WADI [8] (Water Distribution). x We
adhere to the original division of the training and test sets in the
dataset, and retain the settings from RQ1, utilizing the initial 30%
of the test set for feedback collection and the latter 70% for perfor-
mance evaluation. Taking cognizance of the prevalent evaluation
standards set by preceding works on these datasets, particularly
the frequent adoption of F1-Score as the primary metric [8, 11], we
too employ the F1-Score as our metric for evaluation. The pertinent
outcomes of our experiments are encapsulated in Table 4.
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Table 4: The F1-Score (𝐹1) ofAnoTuner on datasets from other
domains. The first 30% of the test set is used for feedback
collection and the latter 70% is used for performance evalua-
tion.

Dataset w/o fine-
tuning

FP fine-
tuning

FN fine-
tuning

FP+FN
fine-
tuning

SWaT 0.8623 0.9017 0.8874 0.9089
WADI 0.8017 0.8345 0.8472 0.8614

Our empirical evaluations underscore the adaptability of our
method, reflecting competitive results in anomaly detection across

different domains, and even nearing state-of-the-art performances
as seen in existing models for the said datasets [11]. An intrigu-
ing observation is the relatively subdued improvement due to FN
fine-tuning across domains when juxtaposed with its pronounced
impact in WBS scenarios. We deduce that the likes of SWaT and
WADI exhibit a more balanced sensitivity between FN and FP,
which is approximated at a ratio of 1:1. This balance precludes
the effective capitalization on False Negative Augmentation. Nev-
ertheless, the feedback-based fine-tuning using TSAL invariably
fortifies AnoTuner with an augmented capability to assimilate and
act upon feedback, leading to an appreciable increase of 5% to 7.5%
in F1-Score after fine-tuning. We remain sanguine that the archi-
tectural paradigms of our model can be instrumental in advancing
anomaly detection methods across various domains.
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