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ABSTRACT

Contrastive learning has proven instrumental in learning unbiased representations
of data, especially in complex environments characterized by high-cardinality and
high-dimensional sensitive information. However, existing approaches within this
setting require predefined modelling assumptions of bias-causing interactions that
limit the model’s ability to learn debiased representations. In this work, we pro-
pose a new method for fair contrastive learning that employs an attention mecha-
nism to model bias-causing interactions, enabling the learning of a fairer and se-
mantically richer embedding space. In particular, our attention mechanism avoids
bias-causing samples that confound the model and focuses on bias-reducing sam-
ples that help learn semantically meaningful representations. We verify the ad-
vantages of our method against existing baselines in fair contrastive learning and
show that our approach can significantly boost bias removal from learned repre-
sentations without compromising downstream accuracy.

1 INTRODUCTION

Machine learning models are continuing to achieve impressive results across diverse domains. Wider
adoption and development of such models pose immense opportunity, yet there simultaneously ex-
ists a substantial risk of societal harm in situations where models propagate forward biases encoded
in training data (Lv et al., 2023; Creager et al., 2019; Madras et al., 2018). In particular, existing
facial recognition systems demonstrate racial bias in their classifications, failing to recognize people
from certain ethnic groups (Cavazos et al., 2020). In addition, generative language models, such as
GPT-2, have been shown to reproduce gender bias in their generated text, for example in systemati-
cally assuming doctors are male and nurses are female among other socially biased outcomes (Kirk
et al., 2021; Bender et al., 2021).

One effective approach to resolving this problem is fair representation learning (Wang et al. (2019);
Khajehnejad et al. (2022); Zhang et al. (2023)). This approach recognizes that bias is encoded at
the data level and looks to learn representations of the data that preserve relevant semantic content
while removing sensitive information related to a specified protected attribute, such as race, gender,
age, geographic location, and so on. Specifically, contrastive learning has been used to learn fair
representations. This technique learns similar representations for positively-paired samples and dis-
similar representations for negatively-paired samples (Chuang et al. (2020); Tian et al. (2020); He
et al. (2020)). For example, a positive-pair in the vision setting may be augmentations of the same
image and a negative-pair may be any pair of distinct images (Chen et al., 2020). Thus, designing
positive and negative pairs in the right way informs the model what features are semantically mean-
ingful and what features are irrelevant in distinguishing samples. This approach then lends itself to
fairness when we design positives and negatives such that the model learns representations that are
invariant to the protected attribute, thereby removing sensitive information related to the protected
attribute from the learned representations.

Existing work in fair contrastive learning often assumes the protected attribute to be a binary vari-
able, such as gender or minority status. Popular fair contrastive learning methods include bias-label
flipping, bias-label augmenting, and parity-enforcing regularizers (Cheng et al., 2021; Ling et al.,
2022; Zhang et al., 2022; Shen et al., 2021; Barbano et al., 2022; Cheng et al., 2021; Hong & Yang,
2021). These approaches, while effective in the binary setting, are limited in their usability due to
their conceptualization of fairness as a binary problem in which samples can only belong to one
of two groups in terms of the protected attribute, such as male/female or majority/minority. As a
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result, they fail to generalize to the harder and more general problem setting of high-cardinality,
high-dimensional, and/or continuous protected attributes. Recently, Tsai et al. (2022) considers
the continuous protected attribute setting and proposes a conditional sampling procedure in which
negative pairs are sampled according to their similarity in the bias dimension. This approach, how-
ever, requires a pre-defined kernel function which imposes strong assumptions on the bias-causing
interactions among samples. This is because the chosen kernel function specifies exactly for any
given similarity between negative samples in the bias dimension the relevance of that sample for
contrasting with the positive pair. These strong assumptions on the bias-causing interactions among
samples limits the model’s ability to learn fair representations and additionally requires expensive
matrix inversion operations.

Contribution: We propose the Fairness-Aware (FARE) attention mechanism that attends towards
bias-reducing samples and avoids bias-causing samples that confound the model. We further lever-
age sparsification via locality-sensitive hashing (Shrivastava & Li, 2014; Andoni et al., 2015; Kitaev
et al., 2020) to discard extreme bias-causing samples in FARE and propose the Sparse Fairness-
Aware (SparseFARE) attention. Our approach is based on the assumption that using similar sam-
ples in the bias dimension should prevent the protected information from being used to differentiate
samples, thereby removing the sensitive information from the learned representations. FARE and
SparseFARE are designed to learn a similarity metric across the protected attributes that capture
the bias-causing interactions. To train FARE, we derive the new Fair Attention-Contrastive (FARE-
Contrast) loss that expresses the negative samples as the output of the FARE attention mechanism,
in which similarity scores of negative samples are conditioned by learned attention scores. Our
contribution is three-fold.

• We develop FARE, a novel fairness-aware attention mechanism that captures the bias-
causing interactions to reduce bias and learn semantically relevant embedding spaces.

• We sparsify FARE to enhance its ability to learn fair representation by discarding extreme
bias-causing samples, resulting in the SparseFARE attention.

• We derive the FAREContrast loss to train FARE.

We empirically demonstrate that compared to the baseline methods, FARE alleviates a significantly
larger amount of bias without compromising downstream accuracy and with lower computational
complexity.

Notation: Let calligraphic letters represent dataspaces (e.g X ), capital letters represent random
variables (e.g X), lower case letter represent their outcomes (e.g x), and P· represent distributions
of the variable in the subscript (e.g PX ). We abuse notation slightly and also denote matrices by
capital letters and vectors comprising matrices by lower case letters (e.g Q = [q1, . . . , qn]

⊤ where
Q ∈ Rn×k and qi ∈ Rk), in which cases we make clear that the capital and lower case letters
correspond to matrices and vectors rather than random variables and outcomes.

Organization: We structure this paper as follows: Section 2 establishes the necessary technical
background. Section 3 derives the FARE and SparseFARE attention mechanisms, as well as the
FAREContrast objective loss. Section 4 provides the empirical validation of our proposed attention-
based methods. Section 5 discusses related work. The paper ends with concluding remarks. Ad-
ditional details on experimental setup, further results, and other technical details are found in the
Appendix.

2 BACKGROUND

In this section, we summarize the technical preliminaries needed to develop our method, comprising
conditional contrastive learning and attention mechanisms.

2.1 CONDITIONAL CONTRASTIVE LEARNING

Contrastive methods learn an encoding of the data such that similar samples are near each other
while dissimilar samples are far from each other in the embedding space (Chen et al., 2020; He
et al., 2020; Hjelm et al., 2018). This is done by sampling a positive sample ypos and negative
sample yneg for any given x ∈ X , where the encoder learns a representation such that x and ypos are
near each other while x and yneg are distant. Conditional contrastive methods extend this approach
to allow for conditional sampling on an additional variable Z, which in the fairness setting is a
protected attribute (Tsai et al., 2022). In particular, the data pair (x, ypos) is sampled from PXY |Z=z
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as x and ypos are views of one another (obtained via augmentation) and (x, yneg) is sampled from
PX|Z=zPY |Z=z as x and yneg are two distinct samples (Oord et al., 2018; Tsai et al., 2021a).

The Fair-InfoNCE objective (Tsai et al. (2021b)) is then defined as:

sup
f

Ez∼PZ , (x,ypos)∼PXY |Z=z, {yneg}b
i=1∼P⊗b

Y |Z=z

[
log

ef(x,ypos)

ef(x,ypos) +
∑b

i=1 e
f(x,yneg,i)

]
(1)

where b denotes the batch size and f : X × Y → R is a mapping parameterized by neural networks
gθX , gθY , given by:

f(x, y) = cosine similarity
(
gθX (x), gθY (y)

)
/τ, (2)

where the networks are themselves parameterized by θX , θY and τ is a hyperparameter scaling the
cosine similarity (Chen et al., 2020). In many cases, as in ours, gθX = gθY . The function f from
2 is referred to as the scoring function between samples x, y and evaluates the similarity between
the learned embeddings of the neural network. Hence, the learning objective aims to maximize the
score for positive pairs and minimize the score for negative pairs.

We also express the exponential scoring function in terms of an inner product in a Reproducing
Kernel Hilbert Space (RKHS) with corresponding feature map (Tsai et al., 2022) as follows:

ef(x,y) = exp
(

cosine similarity(gθX (x), gθY (y))/τ
)
:=

〈
ϕ(gθX (x)), ϕ(gθY (y))

〉
H
, (3)

where ⟨·, ·⟩H is the inner product in RKHS H and ϕ is the feature map associated with H.1

2.2 ATTENTION MECHANISM

The scaled dot-product attention mechanism (Vaswani et al. (2017)) is given as:

Attention(Q,K, V ) = softmax
(
QK⊤

ρ

)
︸ ︷︷ ︸

P

V,

where Q = TWQ, K = SWK and V = UWV representing the queries, keys and values respec-
tively, which are obtained via learnable linear projections, WQ,WK ∈ Rdm×dk ,WV ∈ Rdm×dv , of
data matrices S ∈ Rn×dm , T ∈ Rn×dm , U ∈ Rn×dm where n is the sequence length, dm is the em-
bedding dimension and dv is the chosen hidden dimension of the projection subspaces. The softmax
operator is applied row-wise, and ρ is a temperature hyperparameter most often set to

√
d. We refer

to P ∈ Rn×n as the attention map, which contains information regarding the learned similarities
between individual keys and queries. In many cases, S = T = U , referred to as self-attention. Our
model is inspired by self-attention, where we take S = T = Z, where Z = [z1, . . . , zn]

⊤ is the
input sequence of protected attributes, but U ̸= Z. Instead, for our purposes, we take U ∈ Rn×n

with entries [U ]ij = ef(xi,yj) which is the matrix of similarity scores between samples xi, yj . Fur-
thermore, we pass this matrix straight into the attention computation without projecting it with WV ,
and so U = V (see Remark 2 in section 3.1). This is because we wish to use the attention map P to
provide contextual information to condition the similarity scores, ef(xi,yj), rather than the sensitive
attributes. Under this setup, the attention score pij and the output oi of the attention as follows:

pij = softmax((WQti)
⊤(WKsj)/ρ), oi =

n∑
j

pije
f(xi,yj). (4)

The output of the attention mechanism can therefore be interpreted as a conditionally weighted sum
over the values with weights provided by the attention scores. Section 3 illustrates how these atten-
tion scores capture bias-causing interactions, and so the attention outputs are equivalently the values
conditioned by their bias-causing potential, which serves the purpose of accentuating bias-reducing
samples and attenuating bias-causing samples, which helps to learn debiased representations.

1Note the exponential of the scoring function is a proper kernel, as the scoring function is a proper kernel
and the exponential of proper kernels are proper kernels as well.
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3 FAIRNESS MEETS ATTENTION

In this section, we present our Fairness-Aware (FARE) attention mechanism. FARE focuses on
negative samples to reduce bias and improve the semantic content of the learned representations. The
model passes the negative samples through an attention mechanism where the outputs are the linearly
weighted sum of negative samples according to their bias dimension and their semantic relevance,
where the weights are the attention scores (see Section 3.1). The attention matrix is then sparsified
such that high bias-inducing samples are given zero attention scores (see Section 3.2), resulting in the
Sparse Fairness-Aware attention (SparseFARE). FARE and SparseFARE are trained to minimize a
novel Fair Attention-Contrastive (FAREContrast) loss, which incorporates FARE/SparseFARE into
the Fair-InfoNCE objective in Eqn. 21 FAREContrast loss allows FARE-based methods to capture
the bias-causing interactions over samples while learning good representation for downstream tasks.

3.1 FARE: FAIRNESS-AWARE ATTENTION

The only available data is the batch of triplets {xi, yi, zi}bi=1, which are independently sampled
from the joint distribution P⊗b

XY Z with b being the batch size, and we do not have access to data pairs
from the conditional distribution PX|ZPY |Z . Therefore, we aim to bypass the conditional sampling
process from the Fair-InfoNCE objective in Eqn. 21. In particular, to transform the Fair-InfoNCE
objective into an alternative version that does not require conditional sampling, we estimate the
scoring function ef(x,y) for (x, y) ∼ PX|ZPY |Z in Eqn. 21 given only {xi, yi, zi}bi=1 ∼ P⊗b

XY Z . We
do this by employing kernel density estimators to view the desired similarity score as the output of an
attention mechanism, which leverages attention as kernelized non-linear similiarity score (Tsai et al.,
2019; Parzen, 1962; Rosenblatt, 1956). Given an anchor (xi, zi), FARE estimates the similarity
score between xi and y ∼ PY |Z=zi by conditionally weighting all samples in the batch, with weights
provided by learned attention scores over the protected attributes. We derive FARE below.

For any Z = z, given y ∼ PY |Z=z , we estimate ϕ(gθY (y)) by Ey∼PY |Z=z
[ϕ(gθY (y))] as follows:

ϕ(gθY (y)) ≈ Ey∼PY |Z=z
[ϕ(gθY (y))] =

∫
ϕ(gθY (y))P (y|z)dy =

∫
ϕ(gθY (y))

P (y, z)

P (z)
dy. (5)

We then plug Eqn. 5 into Eqn. 2 for the data pair (xi, zi) to estimate ef(xi,y) when y ∼ PY |Z=zi as

ê
f(xi,y)
conditioned ≈

〈
ϕ(gθX (xi)),

∫
ϕ(gθY (y))

P (y, z)

P (z)
dy

〉
H

= tr
(
ϕ(gθX (xi))

⊤
∫

ϕ(gθY (y))
P (y, z)

P (z)
dy

)
= ϕ(gθX (xi))

⊤
∫

ϕ(gθY (y))
P (y, z)

P (z)
dy. (6)

Here we denote the conditional estimation of the scoring function ef(x,y) for (x, y) ∼ PX|ZPY |Z

by ê
f(x,y)
conditioned.

Kernel density estimator. To estimate P (y, z) and P (z), we employ the kernel density estimation
approach (Parzen, 1962; Rosenblatt, 1956). In particular, by using the isotropic Gaussian kernel
with bandwidth σ, we obtain the following estimators of P (y, z) and P (z):

P̂σ(y, z) =
1

b

b∑
j=1

φσ(y − yj)φσ(z − zj), P̂σ(z) =
1

b

b∑
j=1

φσ(z − zj), (7)

where φσ(·) is the isotropic multivariate Gaussian density function with diagonal covariance matrix
σ2I. Given Eqn. 6 and the kernel density estimators in Eqns. 7, we attain the following conditional
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estimation of the scoring function:

ê
f(xi,y)
conditioned = ϕ(gθX (xi))

⊤
∫

ϕ(gθY (y))
P̂ (y, z)

P̂ (z)
dy

= ϕ(gθX (xi))
⊤
∫

ϕ(gθY (y))

∑b
j=1 φσ(y − yj)φσ(z − zj)∑b

j=1 φσ(z − zj)
dy

= ϕ(gθX (xi))
⊤
∑b

j=1 φσ(z − zj)
∫
ϕ(gθY (y))φσ(y − yj)dy∑b

j=1 φσ(z − zj)

=

∑b
j=1

[
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]
φσ(z − zj)∑b

j=1 φσ(z − zj)
. (8)

Connection to Attention Mechanism. In Eqn. 8, we replace φσ by the formula of the isotropic
multivariate Gaussian density function with diagonal covariance matrix σ2I and obtain

ê
f(xi,y)
conditioned =

∑b
j=1

[
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]
exp

(
−∥z − zj∥2/2σ2

)∑b
j=1 exp (−∥z − zj∥2/2σ2)

=

∑b
j=1

[
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]
exp

(
−(∥z∥2 + ∥zj∥2)/2σ2

)
exp

(
z⊤zj/σ

2
)∑b

j=1 exp (−(∥z∥2 + ∥zj∥2)/2σ2) exp (z⊤zj/σ2)
(9)

If we further assume that zj , j = 1, 2, . . . , b are normalized and choose σ2 = ρ, where ρ is the
attention temperature hyperparameter in Eqn. 4, the conditionally estimated scoring function is then

ê
f(xi,y)
conditioned =

∑b
j=1

[
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]
exp

(
z⊤zj/ρ

)∑b
j=1 exp (z

⊤zj/ρ)

=

b∑
j=1

softmax
(
z⊤zj/ρ

) [
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]
. (10)

Plugging in the observed outcome of the protected attribute, z = zi, and allowing zi and zj to
be transformed by learnable linear transformation, WQ,WK , the conditionally estimated similarity
score ef(xi,y) when y ∼ PY |Z=zi is then given by

ê
f(xi,y)
conditioned =

b∑
j=1

softmax
(
(WQzi)

⊤WKzj/ρ
)︸ ︷︷ ︸

pij

[
ϕ(gθX (xi))

⊤ϕ(gθY (yj))
]︸ ︷︷ ︸

ef(xi,yj)

, (11)

which is the output of an attention mechanism with values given by the unconditioned similarity
scores between samples, ef(xi,yj), and attention scores pij computed over the protected attributes
(zi, zj). Thus, the similarity scoring function estimation between xi and y ∼ PY |Z=zi can be
approximated by an attention output. We summarize this new result in the following proposition.

Proposition 1 (Conditional Estimation of ef(xi,y) when y ∼ PY |Z=zi ).
Given {xi, yi, zi}bi=1 ∼ P⊗b

XY Z , the finite-sample estimation of ef(xi,y) is∑b
j=1 softmax

(
(WQzi)

⊤WKzj/ρ
) [

ϕ(gθX (xi))
⊤ϕ(gθY (yj))

]
, which is the output of an at-

tention mechanism.

Hence, the attention scores pij condition the similarity scores ef(xi,yj), i.e., for any data pair (xi, yj),
their similarity is accentuated/attenuated depending on the attention between the protected attributes
(zi, zj). At a high level, when zi is dissimilar from zj , xj is likely to cause a bias in the learned
representations, and we expect the attention mechanism to divert its focus from that sample. Con-
versely, when zi is similar to zj , xj is likely to reduce the bias in the learned representations, and
the attention mechanism should place more focus on that sample. However, rather than specifying
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the extent to which similarities over the bias dimension should mask out samples via a pre-defined
kernel as in Tsai et al. (2022), we allow the attention mechanism to learn this metric given the task.
This flexibility allows the model to focus on samples that are bias-reducing and shift its emphasis
away from samples that are bias-causing while simultaneously adapting towards the overall task of
learning semantically meaningful representations.

We are now ready to give a full definition of FARE.

Definition 1 (Fairness-Aware Attention). Fairness-aware attention (FARE) is an attention mecha-
nism that computes the finite-sample estimation of the similarity scores ef(xi,y) when y ∼ PY |Z=zi

for i = 1, 2, . . . , b with b being the batch size. Given {(xi, yi, zi)}bi=1 ∼ P⊗b
XY Z , FARE is defined as

FARE({(xi, yi, zi)}bi=1) = ê
f(xi,y)
conditioned =

b∑
j=1

softmax
(
(WQzi)

⊤WKzj/ρ
) [

ϕ(gθX (xi))
⊤ϕ(gθY (yj))

]
(12)

FARE estimates the similarity between any given anchor and negative sample, where the similarity
is conditioned according to the protected attribute and the extent to which any sample is likely to
bias the representations. By focusing attention on samples according to their bias-inducing charac-
teristics, FARE is able to learn fair representations.

Remark 1. In Proposition 1, the attention score pij = softmax
(
(WQzi)

⊤WKzj/ρ
)
, i, j =

1, 2, . . . , b, provides a context to estimate the similarity score between xi and y ∼ PY |Z=zi , thus
allowing FARE to attain a contextual representation. It has been shown that the ability of the atten-
tion mechanism to capture rich and diverse contextual representation is key to the impressive perfor-
mance of recent deep learning models, including transformers and graph neural networks (Tenney
et al., 2019; Vig & Belinkov, 2019; Clark et al., 2019; Voita et al., 2019; Hewitt & Liang, 2019).

Remark 2. We do not include a learnable value transformation matrix WV for the values. Rather
we pass the unconditioned similarity scores, ef(xi,yi), straight into the attention mechanism. This
is because a transformation WV would allow the optimization procedure to take a shortcut and
avoid minimizing the objective loss by just sending the value weights to infinity, obtaining 0 loss
and thereby preventing the encoder from learning useful representations. More details are given in
Appendix E.

3.2 SPARSEFARE: SPARSE FAIRNESS-AWARE ATTENTION

In the previous section, we proposed the use of attention for debiasing representations, we now
discuss the role of sparsification towards this goal. If we have prior knowledge on the proportion of
samples that need not be considered at all since they are relatively extreme in the bias dimension,
then we can discard those samples before computing attention. For example, if color is the protected
attribute, then samples with opposing colors such as black/white may be considered extreme in the
bias dimension relative to each other. This allows the attention mechanism to be more efficient and
debias more aggressively as samples can be given an attention score of exactly 0. We implement
the sparse fairness-aware attention (SparseFARE) via locality-sensitive hashing (LSH) (Kitaev et al.
(2020)).

Locality-Sensitive Hashing. A hashing scheme is locality-sensitive if for all vectors, z, assigned
hashes h(z), similar vectors are assigned the same hash with high probability and dissimilar vectors
are assigned the same hash with low probability (Kitaev et al., 2020). We follow the LSH scheme in
(Andoni et al., 2015), which employs random projections R ∈ Rdz×b/2 where [R]ij ∼ N(0, 1) and
assigns hashes by h(z) = argmax(concat(zR,−zR)).

Locality-Sensitive Hashing Attention for Fairness. The basis of the debiasing scheme is the
assumption that for anchor (xi, zi) and negative sample (yj , zj), yj is likely to increase the bias of
the representations when zi is dissimilar to zj . If we determine some threshold for ignoring (yj , zj)
when zi and zj are sufficiently dissimilar, then we can leverage the LSH scheme to ensure with high
probability that h(yj) ̸= h(xi). Subsequently, if we only permit attention to be calculated within
hash buckets (or potentially within hash buckets and across adjacent buckets), we should ignore
samples at the relative extremes of Z with high probability to speed up our fairness mechanism and
perform more aggressive debiasing by discarding extreme bias-causing samples.
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Sequence of keys/queries:
{zj}bj=1

Anchor

LSH scheme
returns buckets of similar z

Anchor

Attend within bucket
and across neighbouring

buckets
Anchor

Discard before
attention computation

Figure 1: Sparse Fair-Aware Attention (SparseFARE) using LSH to discard bias-causing samples.
Relative to the anchor’s protected attribute status (blue), the fairness-aware attention (FARE) first
groups the samples according to their bias attribute and discards any samples that are likely to be
highly bias-inducing (brown). Attention scores between similar and bias-reducing samples are then
computed.

For index i of a given query qi, we denote the attention support as Si = {j : h(kj) = h(ki)}, which
is the set of keys hashed to the same bucket and therefore take part in the attention computation with
qi.2 Figure 1 illustrates this scheme.

SparseFARE Formalization. Given the LSH scheme for fairness, we now provide the full formu-
lation of the SparseFARE.
Definition 2 (Fairness-Aware Attention with Sparsification). Sparse fairness-aware attention
(SparseFARE) is a variant of FARE in which the attention map over protected attributes is spar-
sified by removing entries that are highly bias-inducing. Given {(xi, yi, zi)}bi=1 ∼ P⊗b

XY Z , Sparse-
FARE computes the finite-sample estimation of the similarity scores ef(xi,y) when y ∼ PY |Z=zi for
i = 1, 2, . . . , b with b being the batch size as follows:

SparseFARE({(xi, yi, zi)}bi=1) = ê
f(xi,y)
conditioned

=
∑
j∈Si

softmax
(
(WQzi)

⊤WKzj/ρ−m(j, Si)
) [

ϕ(gθX (xi))
⊤ϕ(gθY (yj))

]
,

where Si = {j : h(zj) = h(zi)} is the attention support of i and m(j, Si) =

{
∞ if j /∈ Si

0 otherwise
.

3.3 FARECONTRAST: FAIR ATTENTION-CONTRASTIVE CRITERION FOR CONTRASTIVE
LEARNING

We now present the Fair Attention-Contrastive (FAREContrast) criterion for fair contrastive learning
with FARE. We obtain FAREContrast by replacing the summation over negative samples in the Fair-
InfoNCE in Eqn. 21 with the output of FARE. FAREContrast is then defined as

sup
f

E{(xi,yi,zi)}b
i=1∼P⊗b

XY Z

[
log

ef(xi,yi)

ef(xi,yi) + FARE({(xi, yi, zi)}bi=1)

]
. (13)

The goal of the FAREContrast criterion is to adapt the Fair-InfoNCE objective such that we avoid
conditional sampling. We do this because our FARE attention mechanism avoids conditional sam-
pling of negative pairs by using attention to consider the whole batch and selectively weight samples
according to their protected attribute status, in this way focussing on bias-reducing samples for con-
trasting. Hence we only consider {(xi, yi, zi)}bi=1 ∼ P⊗b

XY Z . Furthermore, we only need FARE for
negative samples since only the negatives need to be conditioned for contrasting with the positive
pair. The positive pair will necessarily be identical in the bias-dimension as we do not perform
augmentations that change the protected attribute. Our method debiases representations by then

2We denote the attention support as purely intra-bucket here for simplicity. In reality, we will typically
allow cross-attention to adjacent buckets as well
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Model Accuracy (↑) Bias Removal (↑)

Baseline Models

InfoNCE (Oord et al., 2018) 84.1 ±1.8 48.8± 4.5
Fair-InfoNCE (Tsai et al. (2022)) 85.9± 0.4 64.9± 5.1
CCLK (Tsai et al. (2022)) 86.4± 0.9 64.7± 3.9

Attention-based Models

FARE (ours) 85.7± 0.9 68.4± 4.3
SparseFARE (ours) 86.4 ± 1.3 74.0 ± 3.8

Table 1: Results on colorMNIST. Bias removal is measured by MSE, where high MSE indicates
more color information has been removed from the learned representations.

only showing the positive pair negative samples that have similar protected attribute status, such that
the protected information is not used to distinguish samples. Hence FAREContrast is obtained by
replacing the summation over negative samples in Fair-InfoNCE with FARE.

4 EXPERIMENTS

In this section, we numerically justify the advantage of FARE in learning debiased and semantically
meaningful representations over the baseline methods including InfoNCE (Oord et al., 2018), Fair-
InfoNCE (Tsai et al., 2022), SimCLR (Chen et al., 2020) and the conditional contrastive learning
with kernel model (CCLK) (Tsai et al., 2022). We aim to show that: (i) our methods are able to learn
representations with sensitive information removed, and (ii) our learned representations maintain
relevant semantic content.

Datasets. We conduct our experiments on the ColorMNIST dataset (Tsai et al., 2022) and CelebA
dataset (Liu et al., 2018). ColorMNIST contains 60,000 handwritten digits with a continuous RGB
color randomly assigned to the background of each digit. The color is taken to be the protected
attribute. CelebA contains 202,599 images of celebrities with 40 binary annotations indicating hair
color, gender, and many other attributes. We take Attractive as target and Young and Male as sensi-
tive attributes simultaneously.

Model Acc. (↑) EO (↓)

SimCLR (Chen et al., 2020) 77.7 39.6

Kernel-based Models (Tsai et al., 2022)

CCLK-Cosine 70.2 22.4
CCLK-RBF 69.9 21.8
CCLK-Linear 71.1 21.1
CCLK-Polynomial 71.0 20.8
CCLK-Laplacian 70.0 20.8

Attention-based Models

FARE (ours) 73.7 23.5
SparseFARE (ours) 70.4 18.7

Table 2: CelebA Results. Fare and SparseFARE
in comparison with kernel baselines under various
kernel specifications.

Evaluation Protocol. To evaluate representa-
tion quality, we adopt the common technique of
freezing the encoder and training a linear clas-
sifier using the true labels on the encoded rep-
resentations and measuring accuracy. To eval-
uate bias removal in the continuous setting of
ColorMNIST, we follow the protocol of Tsai
et al. (2022) and train a linear layer on the en-
coded representations to predict each samples’
protected attribute. We use the mean squared
error (MSE) of predicting the color as a proxy
for the extent to which the sensitive information
has been removed, where higher loss indicates
more sensitive information has been removed.
For CelebA, we measure fairness in this binary
scenario using the common metric Equalized
Odds (Hardt et al., 2016) where a lower score
indicates a fairer model. Additional empirical
results and experimental details are provided in
the Appendix A.

Results. Table 1 shows experimental results on the colorMNIST dataset. Our FARE and Sparse-
FARE outperform the baseline methods in terms of bias removal while achieving comparable and
better top-1 accuracies. In particular, taking accuracy and bias removal together, SparseFARE is able
to weakly Pareto dominate all comparative models, learning substantially less biased representations
without compromising downstream accuracy.
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Table 2 shows the results of the attention-based models on the CelebA dataset. We find that Sim-
CLR achieves highest accuracy while SparseFARE achieves the best fairness. Given that Young
and Male are both highly correlated with Attractive, it is intuitive that SimCLR attains top accu-
racy, as SimCLR does not attempt to remove information relating to these two attributes and so is
able to leverage the correlation between attributes and target to make more accurate predictions.
SparseFARE Pareto dominates all kernel models in terms of fairness and accuracy except for Lin-
ear and Polynomial, which achieve marginally higher accuracy. SparseFARE nonetheless attains a
better fairness-accuracy tradeoff curve than these two kernels and so for any given level of accuracy,
sparseFARE obtains fairer results (see Appendix D).

Efficiency Analysis. Our attention-based methods are more computationally efficient than the
kernel-based baselines. CCLK, by requiring matrix inversion, costs O(b3), while FARE costs O(b2)
and SparseFARE costs O(b log(b)) (see Appendix B).

5 RELATED WORK

The majority of the literature on fair contrastive learning has considered only binary protected at-
tributes (Park et al. (2022); Chai & Wang (2022)). With binary protected attributes, debiasing can
be achieved by forming positive pairs as samples with opposing bias classes (Cheng et al. (2021);
Hong & Yang (2021); Shen et al. (2021)). Another approach is to form positive pairs by using aux-
iliary models to learn optimal augmentations that obfuscate the bias class of the sample (Ling et al.
(2022); Zhang et al. (2022)). This paper proposes an attention-based framework to deal with more
general notions of fairness that accommodate high cardinality or continuous protected attributes,
whereby we learn semantically meaningful representations such that the protected information has
been removed. Tsai et al. (2022) also consider this setting and use kernel similarity functions to
weigh negative samples along the bias dimension for contrastive learning. Our approach differs
from their method by using an attention mechanism to learn the bias-causing interactions among
samples without specifying a pre-defined kernel.

Our paper also connects to the growing literature surrounding kernel and attention. Most existing
work has looked at decomposing the attention computation and enriching or explaining this mecha-
nism by interpreting it as a kernel function. Tsai et al. (2019) propose novel attention mechanisms
based on differing kernel functions and Song et al. (2021) propose enriching attention with implicit
kernel estimation, while Tao et al. (2023) explain attention through nonlinear SVD of asymmetric
kernels and Wright & Gonzalez (2021) view attention as infinite-dimensional non-mercer binary
kernel machines. In contrast, our work derives an attention mechanism from a kernel-based method
to learn a task-specific similarity metric that can capture the bias-interaction structure and assist the
training procedure to learn better-debiased representations.

Lastly, sparse attention has been studied in the context of efficient transformers. Sparsity in attention
mechanisms has been implemented via sparse factorization (Child et al.), via local windows (Beltagy
et al. (2020)), and via locality-sensitive hashing (Kitaev et al. (2020)). While our work leverages
locality-sensitive hashing, it does not do so merely to save on computational costs. Rather, locality-
sensitive hashing supplements the debiasing scheme by sparsifying the entries of the attention map
corresponding to extreme bias-inducing samples. To the best of our knowledge, ours is among
the early works of using locality-sensitive hashing, or sparsification in general, for learning fair
representations.

6 CONCLUDING REMARKS

In this paper, we present the Fairness-Aware (FARE) attention mechanism, the Sparse Fairness-
Aware (SparseFARE) attention mechanism, and the corresponding Fair Attention-Contrastive (Fare-
Contrast) criterion for learning fair representations. We address the difficult problem setting of high
cardinality or continuous protected attributes and show that FARE and SparseFARE are able to learn
a similarity metric over protected attributes that captures the bias-causing interactions among sam-
ples, while also focusing on bias-causing samples that are confounding the model. As a result, our
attention-based approach is able to learn debiased and semantically meaningful representations. A
limitation of our method is that they only capture one attention pattern between protected attributes,
thereby providing only one single context to condition the similarity scores. It is indeed necessary to
extend FARE and SparseFARE to a multi-head attention setting to capture more diverse contextual
representations. We leave this interesting research direction as future work.
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Learning”
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A EXPERIMENTAL DETAILS

This section provides the details of the model and training for experiments in Section 4.

A.1 TRAINING AND EVALUATION

ColorMNIST. Samples in the colorMNIST dataset are 32x32 resolution handwritten digit images,
where the digit is represented in black and the background is some known assigned color which is
representable as a continuous RGB color vector. The train-test split is 60,000 training images to
10,000 test images. The augmentation scheme is randomized resized crop followed by a random
horizontal flip. We pre-train using the LARS optimizer (You et al. (2017)) and cosine annealing for
the learning rate scheduler. The full FARE attention mechanism with sparsification uses 8 rounds
of hashing, a bucket size of 64, and backwards and forwards cross-bucket attention. The linear
classifier is trained using L-BFGS as optimizer over 500 iterations. We pre-train with a batch size
of 256 for 50 epochs.

Figure 2: colorMNIST dataset (Tsai et al., 2022)
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We follow the recent contrastive learning literature (Chen et al. (2020), Robinson et al. (2020), Wu
et al. (2020)) and pre-train the full model before discarding everything except the backbone encoder
at evaluation time.

CelebA. The train-test split is the default as provided by PyTorch. Images are resized to 128×128.
Resnet-18 (He et al., 2016) is the encoder and we use the same 2-layer MLP and random augmen-
tation strategies as Chen et al. (2020). Same as with colorMNIST, we pre-train with the LARS
optimizer and use cosine annealing. We use a batch size of 512 and the LSH scheme uses buckets
of size 128 with 8 rounds of hashing and backwards and forwards cross-bucket attention. We train
the full model for 100 epochs and evaluate with a single linear layer trained on the frozen encodings
for 10 epochs using Adam as optimizer.

To evaluate the fairness of the representations, we adopt the Equalized Odds (EO) metric (Hardt
et al., 2016). Following Jung et al. (2022) and Zhang et al. (2022), we compute the metric over
multiple sensitive attributes by:

max
∀si,sj∈S

∑
∀y,ŷ

∣∣∣∣Psi

(
Ŷ = ŷ|Y = y

)
− Psj

(
Ŷ = ŷ|Y = y

) ∣∣∣∣, (14)

where
∑

is the averaged sum, Y is the target label, Ŷ is the predicted label, and si, sj ∈ S are
values of sensitive attributes. A smaller EO means a fairer model.

A.2 BASELINES

ColorMNIST. The relevant baselines for comparison are the InfoNCE model (InfoNCE) (Oord
et al., 2018), the Fair-InfoNCE model with clustering (Fair-InfoNCE) (Tsai et al., 2022) and the
conditional contrastive learning with kernel model (CCLK) (Tsai et al. (2022)).

The InfoNCE model uses the InfoNCE loss function 15 without performing any conditional sam-
pling. The Fair-InfoNCE model uses the Fair-InfoNCE loss function 21 and performs conditional
sampling by first clustering the protected attribute so as to discretize it and then sampling from
within the same cluster as the anchor. We report this model’s results according to its best perform-
ing cluster size as determined by its authors, which is found to be a 10-cluster partition. CCLK uses
a kernel similarity metric for weighing negative samples in the batch according to their similarity in
the bias-dimension. We report its results according to its best performing kernel choice as chosen
by its authors which was the cosine kernel.

The InfoNCE objective (Oord et al., 2018) used in the baseline model InfoNCE is given by:

sup
f

E(x,ypos)∼PXY , {yneg}n
i=1∼P⊗n

Y

[
log

ef(x,ypos)

ef(x,ypos) +
∑b

i=1 e
f(x,yneg,i)

]
(15)

CelebA. We compare with SimCLR (Chen et al., 2020) and all kernel implementations of CCLK
provided by Tsai et al. (2022). For each kernel model, the kernel in the name refers to the what
kernel similarity metric is chosen for measuring the similarity across protected attributes, which
then determines the relevance of that sample for being contrasted with the positive sample. For
example, CCLK-RBF uses the RBF kernel to compute similarity between two protected attributes.

B CONNECTION BETWEEN KERNEL-BASED SCORING FUNCTION
ESTIMATION IN (TSAI ET AL., 2022) AND ATTENTION

The CCLK model uses the following kernel-based scoring function estimation:
Proposition 2 (Kernel-Based Scoring Function Estimation (Tsai et al., 2022)). Given
{xi, yi, zi}bi=1 ∼ P b

XY Z , the similarity score of the data pair (xi, y) given the anchor zi is computed
via the finite-sample kernel estimation ef(xi,y) when y ∼ PY |Z=zi as follows:

ef(xi,y) =
[
KXY (KZ + λI)−1KZ

]
ii
, (16)

for i = 1, . . . , b, [KXY ]ij := ef(xi,yj), and [KZ ]ij := ⟨γ(zi), γ(zj)⟩G , where γ is some kernel
feature embedding, G is the corresponding Reproducing Kernel Hilbert Space (RKHS), and ⟨·, ·⟩G
is an inner product in space G.
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First, in comparison to Eqn. 2, FARE and sparseFARE avoid matrix inversion. FARE’s atten-
tion computation has complexity O(b2) (Vaswani et al., 2017) and sparseFARE has complexity
O(b logb) (Kitaev et al., 2020), which improve significantly over O(b3) in Eqn. 2.

Second, our methods do not impose assumptions on the bias-causing interactions over protected
attributes. In particular, we avoid specifying any particular kernel and allow our attention mechanism
to learn the bias-causing interactions. To see this difference, we decompose the estimator in Eqn. 2
as follows:

[
KXY (KZ + λI)−1KZ

]
ii

(17)

= [KXY ]i∗[(KZ + λI)−1KZ ]∗i

=

b∑
j

w(zi, zj)e
f(xi,yj), (18)

where w(zi, zj) = [(KZ + λI)−1KZ ]ij are smoothed kernel similarity scores (Tsai et al., 2022).
Hence we see the (Tsai et al., 2022) estimator as performing a similar weighting of similarity scores
between samples, with weights provided by the similarities over the protected attributes. This ap-
proach differs from ours however since the kernel must be pre-specified in KZ . This imposes strong
assumptions on bias-causing interactions that limit the extent to which the model can learn fair rep-
resentations. Our method by contrast can be understood as replacing w(zi, zj) with attention score
p(zi, zj). The attention mechanism can more flexibly model the bias-causing interactions and learns
to focus-attention on bias-reducing samples that help learn the representation space.

We provide a proof adapted from (Tsai et al., 2022) of their kernel-based scoring function estimation
below.

Proof of kernel-based scoring function estimation. First, letting Φ = [ϕ(g(y1)), . . . ϕ(g(yb))]
⊤

be the matrix of kernel embeddings for encodings g(yi) with feature map ϕ and Γ =
[γ(z1), . . . , γ(zb)]

⊤ be the matrix of kernel embeddings for protected attribute outcomes z with fea-
ture map γ, Definition 3 provides the Kernel Conditional Embedding Operator (Song et al., 2013):

Definition 3. [Kernel Conditional Embedding Operator (Song et al., 2013)] The finite-sample ker-
nel estimation of Ey∼PY |Z=z

[
ϕ(g(y))

]
is Φ⊤(KZ + λI)−1Γγ(z) where λ is a hyperparameter.

Then, according to Definition 3, for any given Z = z, ϕ(g(y)) when y ∼ PY |Z=z can be estimated
by

Φ⊤(KZ + λI)−1Γγ(z) (19)

We look for the inner product between (5) and the encoding of (xi, zi) when y ∼ PY |Z=zi :

⟨ϕ(g(xi)),Φ
⊤(KZ + λI)−1Γγ(zi)⟩H = tr

(
ϕ(g(xi)

)⊤
Φ⊤(KZ + λI)−1Γγ(zi)

= [KXY ]i∗(KZ + λI)−1[KZ ]i∗ = [KXY ]i∗[(KZ + λI)−1KZ ]∗i

= [KXY (KZ + λI)−1KZ ]ii (20)

C COMPARISON OF FAIR-INFONCE AND FARECONTRAST

We present a discussion of the differences between the Fair-InfoNCE objective from Tsai et al.
(2021b) and the FAREContrast objective we use to train our attention-based FARE models. FARE-
Contrast is derived from Fair-InfoNCE by replacing the conditionally sampled negative pairs with
the output of the FARE attention mechanism. This leads to a difference firstly in sampling procedure
and secondly in the inclusion of learnable attention scores in the loss.

The Fair-InfoNCE (Tsai et al., 2021b) is given as:

sup
f

Ez∼PZ , (x,ypos)∼PXY |Z=z, {yneg}b
i=1∼P⊗b

Y |Z=z

[
log

ef(x,ypos)

ef(x,ypos) +
∑b

i=1 e
f(x,yneg,i)

]
, (21)
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and FAREContrast is given as:

sup
f

E{(xi,yi,zi)}b
i=1∼P⊗b

XY Z

[
log

ef(xi,yi)

ef(xi,yi) +
∑b

j=1 softmax ((WQzi)⊤WKzj/ρ) ef(xi,yj)

]
, (22)

where b denotes the batch size, f : X × Y → R is a mapping given by f(x, y) =

cosine similarity
(
gθX (x), gθY (y)

)
/τ , gθX , gθY are neural networks parameterized by θX , θY , and

τ is a hyperparameter scaling the cosine similarity.

We see that FAREContrast does not require conditional sampling of the negatively paired samples,
{yneg}bi=1 ∼ P⊗b

Y |Z=z for outcome of the of the protected attribute z. Instead, FARE considers
the whole batch and selectively weights samples according to their protected attribute status. One
issue with conditional sampling as in Eqn. 21 is data scarcity, whereby conditioning on Z = z can
lead to insufficient negative samples for contrasting (Tsai et al., 2022). This problem is exacerbated
when the protected attribute has high cardinality or is continuous, which is the problem setting
we aim to deal with. When there are insufficient negative samples, we incur risk of poorly learnt
representations and collapse (Chen et al., 2020; Chen & He, 2021). For this reason, we derive FARE
which considers the whole batch and uses learnt attention scores to accentuate/attenuate negative
samples according to their bias characteristics.

The second difference is then the attention weights included in FAREContrast. Including the atten-
tion weights in FAREContrast means that that FARE learns according to information coming from
the gradients and so can better focus on samples that help minimize the loss, thereby helping the
encoder to learn meaningful representations.

D ADDITIONAL RESULTS

D.1 LSH BUCKET SCHEME

Attention Scheme Top-1 Test Accuracy (↑) Bias Removal (↑)

Adjacent 86.4± 1.3 74.0± 3.8
Intra 84.9± 2.1 58.2± 9.8

Table 3: Sparsification Scheme on ColorMNIST Results. Bias removal is measured by MSE, where
high MSE indicates more color information has been removed from the learned representations.

Table 3 shows results for when the LSH scheme considers intra-bucket attention versus the stan-
dard adjacent bucket attention (where attention is computed across adjacent buckets). We see fairly
substantial drop in performance when restricting attention to within the same bucket, both in terms
of accuracy and fairness. Lower accuracy is intuitive given the intra-bucket attention removes three
quarters of negative samples, which depletes the model’s ability to learn meaningful representations.
At the same time, we see lower fairness, despite the heavy debiasing scheme. This may support the
conclusion that to learn effectively debiased representations, the model needs sufficiently many sam-
ples to learn to attend over and focus on bias-reducing samples. With too few samples in the batch,
the model is ignoring too many samples, including ones that would help it learn debiased represen-
tations.

D.2 FAIRNESS-ACCURACY TRADEOFF

The two metrics that capture both representation quality and fairness are Accuracy and Equalized
Odds (EO). Table 2 showed that SparseFARE Pareto dominates all kernel baselines in terms of
both fairness and accuracy, with the exception of CCLK-Linear and CCLK-Polynomial, which were
able to attain slightly higher accuracy. We therefore further compare SparseFARE to these two
models by plotting the fairness-accuracy tradeoff curves in Figure ??. The curves are produced by
plotting EO and Accuracy at four stages during training - after 25, 50, 75, and 100 epochs. We
see that for every level of accuracy, SparseFARE achieves better fairness (lower EO). This implies
that SparseFARE attains a better fairness-accuracy tradeoff. Additionally of interest, we find that
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SparseFARE is even able to simultaneously minimize EO while increasing accuracy, implying that
it can learn representations that do not necessarily need to compromise fairness for higher accuracy.

D.3 COMPARISON
WITH WORK IN PARTIAL
ACCESS TO SENSITIVE ATTRIBUTES

Model Test Accuracy (↑) EO (↓)

Supervised Models

CGL + G-DRO (Sagawa et al., 2019) 71.4 21.9
CGL + FSCL (Park et al., 2022) 74.0 25.6

Unsupervised Models

CGL + VFAE (Louizos et al., 2015) 72.7 28.7
CGL + GRL (Raff & Sylvester, 2018) 73.8 26.9
SimCLR (Chen et al., 2020) 77.7 39.6
FairCL (Zhang et al., 2022) 74.1 24.5

FARE (ours) 73.7 23.5
SparseFARE (ours) 70.4 18.7

Table 4: CelebA Results. Fare and SparseFARE in comparison with unsupervised and supervised
models under partial sensitive label access.

This paper uses the same experimental setup on
CelebA as Zhang et al. (2022) in terms of train-
ing procedure and evaluation protocol. Zhang
et al. (2022) differs, however, in the sense that
the authors assumes only partial access to sensi-
tive attributes and therefore use auxiliary mod-
els, for example an editor (Zhang et al., 2022)
or CGL (Jung et al., 2022), to solve this prob-
lem. Given the experimental setups are the
same, we include their results as well for ref-
erence, however we do not feature these results
in the main body given the important difference
regarding sensitive attribute access.

E FAIR ATTENTION-CONTRASTIVE
CRITERION

We do not include a learnable value transfor-
mation WV on the raw similarity scores such
that V = UWV where U = [ef(xi,yj)]ij as do-
ing so allows the optimization process to obtain
0 loss without learning meaningful representa-
tions. This is seen immediately from the crite-
rion, where allowing WV gives individual sim-
ilarity scores as wije

f(xi,yj) in the criterion:

sup
f

E{(xi,yi,zi)}b
i=1∼P b

XY Z

log
ef(xi,yi)

ef(xi,yi) +
∑
j∈Si

p(zi, zj)wijef(xi,yj)


hence the loss is minimised by sending wij →
∞ ∀i, j.

18



Under review as a conference paper at ICLR 2024

F ETHICAL CONSIDERATIONS

We note that there are two, interconnected
prevalent ethical issues in fair ML. The first
is that almost all fair ML literature simpli-
fies the problem of fairness to simple binaries
and the second is that fairness metrics (which
are typically built atop these binaries) and the
choice of which to use themselves involve value
judgements that can disadvantage certain peo-
ple. People have intersectional identities and
invariably belong to multiple groups simultane-
ously. When it comes to choosing fairness met-
rics, inherent to the majority of approaches in
fair ML is that the researcher or practitioner de-
cide what definition of fairness to use for their
model. It has been shown that various defini-
tions of fairness are not only mutually inconsis-
tent but also prioritise different groups in dif-
ferent scenarios (Garg et al., 2020). In a sense
then, solving for fairer ML models only pushes
the problem from the model and onto the practi-
tioner, as a ‘fairer’ model itself advantages and
disadvantages different groups under different settings.

These two ethical considerations motivate the
approach of our paper to conceptualise fair-
ness in a more general setting where sensi-
tive attributes can be continuous and multi-
dimensional and fairer models are measured in
terms of sensitive information removal. This
conception avoids the ethical issues of binaries
and fairness metrics.

We do note however that there still exist ethi-
cal concerns with our approach in terms of ex-
plainability. Measuring fairness by sensitive
information removal (by measuring loss from
a trained classifier) does not have an intuitive
scale or unit of measurement for discussing the
fairness or unfairness of a model. Although we
can compare two models in terms of which is
fairer, saying a model is fair because it scores
some number in MSE has little intuitive mean-
ing. Being unable to communicate the specifics
of how a learned representation has removed
sensitive information and how will affect down-
stream classifiers risks undermining confidence
in fair ML as well.

Despite the explainability issue, we nonetheless
believe that this approach represents a promis-
ing and exciting direction in fair ML that deal
with substantive existing ethical issues. We
hope that one area of future research may be
deriving theoretical frameworks that can de-
rive guarantees between sensitive information
removal from debiased representations and up-
per bounds on downstream fairness metrics.
This would develop a practical link to well-
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known ideas of fairness and how unfair out-
comes could appear in worst-case scenarios.
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