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ABSTRACT

Understanding identifiability of latent content and style variables from unaligned
multi-domain data is essential for tasks such as domain translation and data gener-
ation. Existing works on content-style identification were often developed under
somewhat stringent conditions, e.g., that all latent components are mutually in-
dependent and that the dimensions of the content and style variables are known.
We introduce a new analytical framework via cross-domain latent distribution
matching (LDM), which establishes content-style identifiability under substantially
more relaxed conditions. Specifically, we show that restrictive assumptions such
as component-wise independence of the latent variables can be removed. Most
notably, we prove that prior knowledge of the content and style dimensions is not
necessary for ensuring identifiability, if sparsity constraints are properly imposed
onto the learned latent representations. Bypassing the knowledge of the exact
latent dimension has been a longstanding aspiration in unsupervised representation
learning—our analysis is the first to underpin its theoretical and practical viability.
On the implementation side, we recast the LDM formulation into a regularized
multi-domain GAN loss with coupled latent variables. We show that the reformula-
tion is equivalent to LDM under mild conditions—yet requiring considerably less
computational resource. Experiments corroborate with our theoretical claims.

1 INTRODUCTION

In multi-domain learning, “domains” are typically characterized by a distinct “style" that sets their
data apart from others (Choi et al., 2020). Take handwritten digits as an example: writing styles of
different persons can define different domains. Shared information across all domains, such as the
identities of the digits in this case, is termed as “content". Learning content and style representations
from multi-domain data facilitates many important applications, e.g., domain translation (Huang et al.,
2018), image synthesis (Choi et al., 2020), and self-supervised representation learning (Von Kügelgen
et al., 2021; Lyu et al., 2022; Daunhawer et al., 2023); see more in Huang et al. (2018); Lee et al.
(2020); Choi et al. (2020); Wang et al. (2016); Yang et al. (2020); Wu et al. (2019).

Recent advances showed that understanding the identfiability of the latent content and style compo-
nents from multi-domain data allows to design more reliable, predicable, and trustworthy learning
systems (Hyvarinen et al., 2019; Lyu et al., 2022; Xie et al., 2023; Kong et al., 2022; Shrestha & Fu,
2024; Gresele et al., 2020; Gulrajani & Hashimoto, 2022). A number of works studied content/style
identifiability when the multi-domain data have sample-to-sample cross-domain alignment according
to shared contents. Specifically, identifiability was established for sample-aligned multi-domain
settings under the assumption that multi-domain data are linear and nonlinear mixtures of latent
content and style components, in the context of canonical correlation analysis (CCA), multiview
analysis and self-supervised learning (SSL); see Ibrahim et al. (2021); Sørensen et al. (2021); Wang
& Isola (2020); Von Kügelgen et al. (2021); Lyu et al. (2022); Karakasis & Sidiropoulos (2023);
Daunhawer et al. (2023)

When cross-domain samples are unaligned, it becomes significantly more challenging to establish
identifiability of the content and style components. The recent works in Xie et al. (2023); Sturma et al.
(2023); Kong et al. (2022); Timilsina et al. (2024) made meaningful progresses towards this goal.
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These works considered mixture models of content and style for each domain, similar to those in Lyu
et al. (2022); Von Kügelgen et al. (2021); Ibrahim et al. (2021); Sørensen et al. (2021); Karakasis
& Sidiropoulos (2023); Daunhawer et al. (2023), but without cross-domain alignment. The new
results in (Xie et al., 2023; Sturma et al., 2023; Kong et al., 2022; Timilsina et al., 2024) provide
theory-backed solutions to a suite of timely and important applications, e.g., cross-language retrieval,
multimodal single cell data alignment, causal representation learning, and image data translation and
generation.

Challenges. The content-style identifiability results in existing unaligned multi-domain learning
works are intriguing and insightful, but some challenges remain. First, the conditions used in their
proofs have a number of restrictions, which limits the proof’s applicability in many cases. For
example, Sturma et al. (2023); Timilsina et al. (2024) assume that the all data reside in a linear
subspace, which is over-simplification of reality; Xie et al. (2023); Kong et al. (2022) assume that
the content and style variables are component-wise independent and that a large number of domains
exist—both can be hard to fulfil. Second, the existing identifiability analyses in unaligned multi-
domain learning (Xie et al., 2023; Kong et al., 2022; Sturma et al., 2023; Timilsina et al., 2024)
(as well as those in aligned multi-domain learning) all need to know the dimensions of the content
and style variables, which are not available in practice. Selecting these dimensions often involves
extensive trial and error.

Contributions. In this work, we advance the analytical and computational aspects of content-style
learning from unaligned multi-domain data. Our detailed contributions are as follows:

(i) Enhanced Identifiability of Content and Style: We propose a content-style identification criterion
via constrained latent distribution matching (LDM). We show that the identifiability conditions under
LDM are much more relaxed relative to those in existing works. Specifically, our results hold for
nonlinear mixture models, as opposed to the linear ones used in Sturma et al. (2023); Timilsina
et al. (2024). Unlike Xie et al. (2023); Kong et al. (2022); Sturma et al. (2023), no elementwise
mutual independence assumption is needed in our proof. More importantly, our result holds for as
few as two domains (whereas Xie et al. (2023); Kong et al. (2022) needs the existence of a large
number of domains). The new results widens the applicability of content-style identifiable models in
a substantial way.

(ii) Content-Style Identifiability under Unknown Latent Dimensions: We consider the scenario where
the latent content and style dimensions are unknown—which is the case in practical settings. Note
that existing works determine the content and style dimensions often by heuristics, e.g., trial-and-error.
However, wrongly selected latent dimensions can largely degrade the performance of some tasks;
e.g., an over-estimated style dimension hinders the diversity of data in generation tasks (see Sec. 6).
We show that, by imposing proper sparsity constraints onto the LDM formulation, the content-style
identifiability is retained even without knowing the exact latent dimensions. To our knowledge, this
result is the first of the kind in the context of nonlinear mixture identification.

(iii) Efficient Implementation: We prove that the LDM formulation is equivalent to a sparsity-
constrained, latent variable-coupled muti-domain GAN loss, under reasonable conditions. Directly
realizing the LDM formulation would impose multiple complex modules, including the DM and
content-style separation modules, in the learned latent domain. Simultaneously learning the latent
space and optimizing these modules can be computationally involved. The GAN-based formulation
circumvents such complicated operations and thus substantially simplifies the implementation.

For theory validation, we perform experiments over a series of image translation and generation tasks.

Notation. Please see Appendix A.1 for detailed notation designation. A particular remark is that Px

and px(·) represent the probability measure of x and the probability density function (PDF) of x,
respectively. The “push forward” notation [f ]#Px means the distribution of f(x).

2 BACKGROUND

Content-Style Modeling in Multi-Domain Analysis. Consider the case where the data are acquired
over N domains X (n) ⊆ Rd, where n = 1, . . . , N . We assume that any sample from domain n can
be represented as a function (or, a nonlinear mixture) of content and style components, i.e.,

c ∼ Pc, s
(n) ∼ Ps(n) , x(n) = g(c, s(n)), (1)
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where Ps(n) and Pc are distributions of the style components in nth domain and the content compo-
nents, respectively. Let C ⊆ RdC and S(n) ⊆ RdS be the open set supports of Pc and Ps(n) . Then,
we define X (n) = {g(c, s(n))|c, s(n) ∈ C × S(n)} ⊆ Rd as the support of x(n) ∼ Px(n) . Let
X = ∪N

n=1X (n) ⊆ Rd and S = ∪N
n=1S(n) ⊆ RdS represent the whole data space and the whole style

space, respectively. We assume that the nonlinear function g : C ×S → X is a differentiable bijective
function. This is a common assumption in latent component identification works, e.g., Von Kügelgen
et al. (2021); Hyvarinen et al. (2019); Khemakhem et al. (2020), which basically says that every
data sample has an associated unique representation in a latent domain. A remark is that although
X ⊆ Rd and d might be greater than dS + dC, the bijective property can hold as X resides within a
low dimensional manifold (Von Kügelgen et al., 2021).

Learned

content

style

Figure 1: Cross-domain translation from
source domain s to target domain t.

The model in (1) is widely adopted (explicitly or implic-
itly) in multi-domain analysis; see examples from Huang
et al. (2018); Lee et al. (2020); Choi et al. (2020); Wang
et al. (2016); Yang et al. (2020); Wu et al. (2019). This
model makes sense when the “domains” are participated
using distinguishable semantic meaning; e.g., in Fig. 1,
“style” includes the writing manners (handwritten/printed)
and display background colors (black/gray). Under the
model in (1), learning g (and its inverse f ) as well as
the latent components c and s(n) is the key to facilitate
a number of important applications.

Application: Cross-Domain Translation. Learning content and style components from a sample in
the source domain (ci, s

(s)
i ) = f(x

(s)
i ) and a sample from the target domain (cj , s

(t)
j ) = f(x

(t)
j )

can assist translate x(s)
i to its corresponding representation in the target domain. This can be realized

by generating a new sample x
(s→t)
i,j = g(ci, s

(t)
j ); see Fig. 1 for illustration and Lyu et al. (2022);

Huang et al. (2018); Wang et al. (2016).

Application: Data Generation. If c and s(n) can be learned from the samples, then one can also learn
the distributions Pc and Ps(n) using off-the-shelf distribution learning tools, e.g., GAN (Goodfellow
et al., 2014). This way, one can draw samples from the distributions, i.e., cnew ∼ Pc, s

(n)
new ∼ Ps(n)

and generate new samples x(n)
new = g(cnew, s

(n)
new) with intended styles.

Other Applications. We should mention that the content-style modeling is also a critical perspective
for understanding representation learning paradigms, e.g., the SSL frameworks (Von Kügelgen et al.,
2021; Lyu et al., 2022; Daunhawer et al., 2023; Wang & Isola, 2020).

Content-Style Identifiability. In recent years, the identifiability of f , c and s(n) started drawing
attention, due to its usefulness in building more reliable/predictable systems.

Aligned Domains: Results from Self-Supervised Learning (SSL). The works (Von Kügelgen et al.,
2021; Daunhawer et al., 2023; Lyu et al., 2022; Karakasis & Sidiropoulos, 2023) studied content
identifiability in the context of representation learning, in particular, SSL and multiview learning.
It was shown that when N = 2, if content-shared pairs {x(1),x(2)} are available, then enforcing
f(x(1)) = f(x(2)), ∀ content-shared pairs (x(1),x(2)) can provably learn c, under reasonable
conditions. The learning criterion can be realized by various loss functions, e.g., Euclidean fitting-
based (Lyu et al., 2022; Karakasis & Sidiropoulos, 2023) and contrastive loss-based (Von Kügelgen
et al., 2021; Daunhawer et al., 2023) criteria. The identifiability of the style components was also
considered under similar aligned domain settings; see (Lyu et al., 2022; Eastwood et al., 2023).

Unaligned Domains: Progresses and Challenges. Aligned samples are readily available in applica-
tions such as data-augmented SSL (Von Kügelgen et al., 2021; Daunhawer et al., 2023; Lyu et al.,
2022). However, in other applications such as image style translation and image generation, aligned
samples are hard to acquire (Zhu et al., 2017). For unaligned multi-domain data, the identfiiability
issue of content and style has also been recently addressed. For example, the work of Sturma et al.
(2023) extended the linear ICA model to unaligned multi-domain settings, in the context of causal
learning. The work of Timilsina et al. (2024) took a similar linear mixture model but showed content-
style identifiability under more relaxed conditions. The work of Xie et al. (2023); Kong et al. (2022)
proved content-style identifiability under a more realistic nonlinear mixture model similar to that in
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(1). However, the main result there relies on a number of somewhat stringent conditions. That is, two
notable assumptions in Xie et al. (2023); Kong et al. (2022) boil down to (i) that all components in
z = (c, s(n)) are elementwise statistically independent given the domain index n; and (ii) that there
exist at least 2dS + 1 domains. These conditions can be hard to fulfil. See more detailed discussions
on existing results in Appendix B.

The Dimension Knowledge Challenge. Notably, all the existing works in this domain (under both
aligned and unaligned settings) assume that the dimensions of c and s(n) are known. However, in
mixture model learning, such knowledge is hard to acquire (especially in the nonlinear mixture case).
As we will show, using wrongly selected dC and dS can be rather detrimental to content-style learning
tasks—e.g., an over-estimated style dimension could lead to a serious lack of diversity in generated
new samples. Consequently, the dimensions are often selected by extensive trial and error in practice.

3 MAIN RESULT

In this work, we revisit content-style learning from a latent distribution matching (LDM) viewpoint.
Recall that c and s(n) represent the content and the style of the nth domain, respectively. We assume:

Assumption 3.1 (Block Independence). The block variables c ∈ RdC and {s(n) ∈ RdS}Nn=1 are
statistically independent, i.e., p(c, s(1), . . . , s(N)) = pc(c)

∏N
n=1 ps(n)(s(n)).

The assumption was used in various multi-domain models (Lyu et al., 2022; Eastwood et al., 2023;
Wang et al., 2016; Choi et al., 2020; Timilsina et al., 2024). It makes sense when the styles can be
combined with contents in an “arbitrary” way without affecting the contents (e.g., the writing style of
digits can change freely without affecting the identity of the digits). Next, we will use this assumption
to build our learning criterion. We propose the following learning criterion:

find f : X → RdC+dS injective
s.t. [fC]#P

x(i)
= [fC]#P

x(j)
, i ̸= j,∀i, j ∈ [N ], (distribution matching) (2a)

[fS]#P
x(n) |= [fC]#P

x(n)
,∀n ∈ [N ], (block-indep. enforcing) (2b)

where fC(x
(n)) ∈ RdC represents the first dC outputs of f that are designated to represent the content

components, fS(x
(n)) ∈ RdS represents the learned style from domain n, Eq. (2a) matches the distri-

butions of fC(x
(i)) and fC(x

(j))—i.e., the learned contents from domains i and j, respectively—and
Eq. (2b) imposes a block independence constraint on the learned content fC(x

(n)) and style fS(x
(n))

from each domain following Assumption (3.1).

3.1 WARM UP: ENHANCED IDENTIFIABILITY WITH KNOWN LATENT DIMENSIONS

We first show that the content-style identifiability under (1) and known dC and dS can be substantially
enhanced relative to existing works. We will remove the need for the dimension knowledge in the next
subsection. To establish identifiability via solving Problem (2), we make the following assumption:
Assumption 3.2 (Domain Variability). Let A ⊆ Z := C × S be any measurable set that satisfies
(i) Pz(n) [A] > 0 for any n ∈ [N ] and (ii) A cannot be expressed as B × S for any set B ⊂ C. Then,
there exists a pair of iA, jA ∈ [N ] such that the following holds:

Pz(iA) [A] ̸= Pz(jA) [A], . (3)

Note that for any A, we only need one pair of (iA, jA) to satisfy the condition, and the pair can change
over different A’s. Essentially, Eq. (3) requires that the styles have sufficiently diverse distributions.
This assumption is a standard characterization for the distributional diversity of the domains in the
literature; see Xie et al. (2023); Kong et al. (2022) and its variant Timilsina et al. (2024).

Under Assumptions 3.1 and (3.2), denote f̂ as a solution to Problem (2). Then, we have:
Theorem 3.3 (Identifiability under Known Latent Dimensions). Under Eq. (1), suppose that As-
sumptions 3.1 and 3.2 hold, and that the f̂ is differentiable. Then, we have f̂C(x

(n)) = γ(c) and
f̂S(x

(n)) = δ(s(n)),∀n ∈ [N ], where γ : C → RdC and δ : S → RdS are injective functions.

4
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The proof of Theorem 3.3 is in Appendix C. Theorem 3.3 purports that the solution of Problem (2)
identifies the model (1)—including the content/style components and the inverse mapping of the
generative function g (up to γ and δ). Theorem 3.3 uses conditions that are significantly more relaxed
relative to those in existing works Xie et al. (2023); Sturma et al. (2023); Kong et al. (2022); Timilsina
et al. (2024). First, instead of assuming the elements of z(n) = (c, s(n)) are statistically independent
as in Xie et al. (2023); Sturma et al. (2023); Kong et al. (2022), our proof is based on the assumption
that the content and styles are block independent (cf. Assumption 3.1). This block-independence
assumption, which is the key for style identifiability, is similar to those in Lyu et al. (2022) and
Timilsina et al. (2024)—but the former assumes aligned domains and the latter can only work under
linear mixture models (see Theorem B.2 in Appendix B.2). Second, Theorem 3.3 does not need the
existence of N = 2dS + 1 domains as in Xie et al. (2023); Kong et al. (2022) (see Theorem B.3 in
Appendix B.3)—our result can hold over as few as N = 2 domains. As a result, our Theorem 3.3
applies to a considerably wider range of cases relative to those in existing works.

3.2 IDENTIFIABILITY WITHOUT DIMENSION KNOWLEDGE

Theorem 3.3 still uses the knowledge of dC and dS. In this subsection, we propose a modifed learning
criterion that does not use the exact dimension information. To proceed, let d̂C and d̂S denote the
user-specified latent dimensions for f , i.e., f : X → Rd̂C+d̂S , fC : X → Rd̂C and fS : X → Rd̂S .
Note that these dimensions need not to be exact. We consider the following learning criterion:

minimize
f : injective

N∑
n=1

E
[∥∥∥fS

(
x(n)

)∥∥∥
0

]
(4a)

subject to [fC]#P
x(i)

= [fC]#P
x(j)

,∀i, j ∈ [N ], (4b)

[fS]#P
x(n) |= [fC]#P

x(n)
,∀n ∈ [N ], (4c)

Problem (4) minimizes the “effective dimension” of the extracted style component, while satisfying
the distribution matching and independence constraints. The idea is to use excessive d̂C and d̂S so that
one has enough dimensions to represent the content and style information. Note that trivial solutions
could occur when using over-estimated d̂C and d̂S. For instance, when fC is a constant function, fS

can still be an injective function of x(n) given large enough d̂S. This pathological solution satisfies
both constraints (4b) and (4c). We use the sparsity objective in (4a) to “squeeze out” the redundant
dimensions in fS. This prevents the content information from “leaking” into the learned fS. We
formalize this intuition in the following theorem:
Theorem 3.4 (Identifiability without Dimension Knowledge). Assume that the conditions in Theo-
rem 3.3 hold. Let f̂ represent a solution of Problem (4) and f̂ is differentiable. Assume the following
conditions hold: (a) d̂C ≥ dC and d̂S ≥ dS. (b) 0 < pz(n)(z) < ∞,∀z ∈ Z = C × S,∀n ∈ [N ].
Then, there exists injective functions γ : C → Rd̂C and δ : S → Rd̂S ,∀n ∈ [N ] such that
f̂C(x

(n)) = γ(c) and f̂S(x
(n)) = δ(s(n)),∀n ∈ [N ].

The proof of Theorem 3.4 is in Appendix D. Theorem 3.4 means that using Problem (4), there is no
need to know dS or dC in advance. Also, note that no extra assumptions on c and s(n) are needed on
top of those in Theorem 3.3. Hence, the identifiability result has significant practical implications for
content-style identification, where the latent dimension in practice is always hard to acquire.

4 IMPLEMENTATION: SPARSITY-REGULARIZED MULTI-DOMAIN GAN

At first glance, a conceptually straightforward realization of the learning criterion in Problem (2)
could take the following form:

minimize
f : injective

N∑
i=1

N∑
j>i

LDM(fC(x
(i)),fC(x

(j))) + λ

N∑
i=1

Lindep(fC(x
(i)),fS(x

(i))), (5)

where the first term and the second term promotes the distribution matching (DM) constraint (2a)
and the independence constraint (2b), respectively. Similarly, Problem (4) can be implemented in a
straightforward manner by adding a sparsity regularization term to Problem (5).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 4.1. Problem (5) is potentially viable but can be costly: Both the LDM modules and the block
independence regularization on the learned components often needs rather nontrivial optimization
(see (Lyu et al., 2022)). Enforcing f to be injective also needs extra regularization, e.g., autoencoder
type regularization (Lyu et al., 2022; Zhu et al., 2017) and entropy-type regularization (Von Kügelgen
et al., 2021; Daunhawer et al., 2023).

In light of Remark 4.1, instead of using Problem (5), we reformulate Problems (2) and (4) as follows:

min
q,eC,eS

max
d(n)

N∑
n=1

E
[
log

(
d(n)

(
x(n)

))
+ log

(
1− d(n)

(
q
(
eC(rC), e

(n)
S (r

(n)
S )

)))]
(6a)

subject to e
(n)
S (r

(n)
S ) has minimal ∥e(n)S (r

(n)
S )∥0, ∀r(n)S . (6b)

The above approximates Problems (2) and (4) when the constraint (6b) is absent and active, respec-
tively. In practice, the sparsity constraint can be approximated using sparsity regularization terms
(e.g., ℓ1 norm) easily. Denote d̂C and d̂S are the estimates of dC and dS, respectively. The idea is
to learn invertible nonlinear mappings eC and e

(n)
S that transform independent Gaussian variables

(i.e., rC and r
(n)
S ) to represent content c and style s(n), respectively. Generate rC ∼ N (0, I d̂C

) and

construct an invertible eC such that eC(rC) ∈ Rd̂C . Similarly, construct invertible e
(n)
S such that

e
(n)
S (r

(n)
S ) ∈ Rd̂S with r

(n)
S ∼ N (0, I d̂S

). Then, the content and style are mixed by q to match the
distribution of x(n) using a logistic loss (i.e., GAN-type DM). In other words, the formulation looks
for eC, e(n)S and q such that Px(n) = Pq(n) , q(n) = q(eC(rC), e

(n)
S (r

(n)
S )), ∀n ∈ [N ]. This way,

instead of directly learning f , we learn the generative process g using q. Our next theorem shows
that q is indeed the inverse of f (up to some ambiguities).

To proceed, denote Ĉ and Ŝ(n) as the sets representing the range of êC and ê
(n)
S , respectively. Then,

the effective domain of q̂ is Ĉ × Ŝ where Ŝ = ∪nŜ(n). We show that:

Theorem 4.2. Let (q̂, êC, ê
(n)
S , d̂) be any differentiable optimal solution of Problem (6). Let C and

S be simply connected open sets. Let 0 < pz(n)(z) < ∞,∀z ∈ Z = C × S . Under the assumptions
in Theorem 3.3, we have the following:

(a) If d̂C = dC and d̂S = dS and (6b) is absent, then q̂ : Ĉ × Ŝ → X is bijective and f̂ = q̂−1 is
also a solution of Problem (2).

(b) If d̂C > dC, d̂S > dS and q̂ : Ĉ × Ŝ → X is bijective, f̂ = q̂−1 is also a solution of Problem (4)1.

Problem (6) has a number of practical advantages over the direct implementation in Problem (5).
Particularly, it avoids complex operations in the latent domain. In LDM, performing DM on fC(x

(i))
and fC(x

(j)) poses quite a nontrivial optimization process. This is because both of the inputs to
the DM modules (i.e., fC(x

(i)) for all i ∈ [N ]) change from iteration to iteration—yet the DM
module (e.g., GAN and Wasserstein distance-based DM (Goodfellow et al., 2014; Arjovsky et al.,
2017)) itself often involves complex optimization with its own parameters updated on the fly. The
new formulation performs GAN-based DM in the data domain and keeps one input (the real data) to
every GAN module fixed. This reduces a lot of agony in optimization parameter tuning. Problem (6)
also does not need any explicit constraint/regularization to enforce the block independence of fC and
fS (which could be resource consuming (Lyu et al., 2022; Gretton et al., 2007)), as eC and e

(n)
S are

constructed to be block independent.

Another quite interesting observation is that, the proof of Theorem 4.2 (a) shows that the bijectivity
constraint on q is automatically fulfilled when an additional condition (i.e., that C and S are simply
connected) is met. This means that the LDM formulation would need extra modules, e.g., E∥r ◦
f(x)−x∥2, to impose injectivity constraints, even when dS and dC are known. When dC and dS are
unknown, solving Problem (6) per se does not ensure q to be bijective. Nonetheless, we observed

1Problem (4) requires f̂ to be injective. Here, although the f̂ learned by Problem (6) seems to be bijective
(due to f̂ = q̂−1) instead of only injective, the bijectivity is w.r.t. the domains X → Ĉ × Ŝ. The function is
indeed only injective when considered w.r.t. X → Rd̂C+d̂S ; see Sec. A.2 “Injection, bijection, and surjection”.
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Table 1: Evaluation of the data generation task. Standard deviation reported using ± for style diversity

Method FID (↓) Style Diversity (↑) Training time, hours (↓)

AFHQ CelebA-HQ CelebA-7 AFHQ CelebA-HQ CelebA-7 AFHQ CelebA-HQ CelebA-7

Transitional-cGAN 38.00 8.12 70.45 – – – 29.65 32.56 12.53
StyleGAN-ADA 8.17 5.89 72.10 – – – 28.46 32.26 11.55

I-GAN 6.28 5.91 5.18 0.16 ± 0.02 0.07 ± 0.03 0.07 ±0.03 29.53 28.76 12.51
Proposed 6.19 5.70 5.27 0.50 ± 0.03 0.36 ± 0.04 0.26 ± 0.06 27.36 27.78 12.28

that not explicitly enforcing bijectivity in implementations does not affect the performance in practice.
Similar phenomenon was observed in nICA implementations; see, e.g., (Hyvarinen & Morioka, 2017;
Hyvarinen et al., 2019).

5 RELATED WORKS

Nonlinear ICA. Learning content and style components from a nonlinear mixture model is reminis-
cent of nonlinear independent analysis (nICA) (Hyvärinen & Pajunen, 1999; Hyvarinen & Morioka,
2017; Hyvarinen et al., 2019). Most nICA works were developed under single domain settings,
with some recent generalizations to multiple views/domains (Gresele et al., 2020; Hyvarinen et al.,
2019). Nonetheless, nICA requires that all the latent variables are (conditionally) independent. This
is considered a somewhat restrictive assumption in content-style learning.

Content-Style Models in Aligned Multi-Domain Learning. Aligned multi-domain content-style
learning is a key technique in data-augmented SSL and representation learning. There, it was shown
that elementwise (conditional) independence is not needed, if the goal is to isolate content from style
(Von Kügelgen et al., 2021; Lyu et al., 2022; Karakasis & Sidiropoulos, 2023). It was further shown
that block independence (similar to Assumption 3.1) is the key to identify the style (Lyu et al., 2022;
Daunhawer et al., 2023). However, all these works require cross-domain data alignment.

Content-Style Identification in Unaligned Multi-Domain Learning. Identifiability of unaligned
multi-domain learning was studied in the context of various applications, e.g., image translation
(Shrestha & Fu, 2024), data synthesis (Xie et al., 2023), cross-domain information retrieval Timilsina
et al. (2024), and domain adaptation (Kong et al., 2022; Gulrajani & Hashimoto, 2022; Timilsina
et al., 2024). In applications, content-style disentanglement has been applied in various tasks, such as
(Hong et al., 2024; Huang et al., 2022; Dai et al., 2023). However, only a handful of works (Kong
et al., 2022; Xie et al., 2023; Timilsina et al., 2024) have investigated the identifiability aspects. The
work (Kong et al., 2022) postulated a similar content-style model as in (Xie et al., 2023) and came
up with identifiability conditions similar to those in (Xie et al., 2023). The mostly related work to
ours is (Xie et al., 2023), as both works are interested in content-style identification under (1). Our
implementation in Problem (6) partially recovers the marginal distribution matching criterion in (Xie
et al., 2023), despite the fact that our learning criteria started with an LDM perspective. Nonetheless,
our method enjoys much less restrictive model assumptions for content-style identifiability. Our
multi-domain GAN also admits more relaxed neural architecture (see Appendix G).

Content-Style Learning without Knowing Latent Dimensions. The SSL work (Von Kügelgen
et al., 2021) presented a proof that essentially established that the content can be learned without
knowing the exact dimension dC. However, their result was under the assumption that the domains
are aligned. In addition, the proof could not hold when style learning is also involved. Our proof
solved these challenges. The work in (Xie et al., 2023) used a mask-based formulation to remove the
requirement of knowing dC and dS. The mask-based formulation has the flavor of sparsity promoting
as in our proposed method. However, they still need to know dC + dS, which is unlikely available in
practice. In addition, the mask-based method in (Xie et al., 2023) did not have theoretical supports.

6 NUMERICAL EXAMPLES

Multi-Domain Data Generation. For the data generation task, we validate our theoretical claims
using three real world datasets: animal faces (AFHQ) (Choi et al., 2020), CelebA-HQ (Karras et al.,
2018), and CelebA (Liu et al., 2015) with 3, 2, and 7 domains, respectively (see Appendix G.6).

The baselines here are I-GAN (Xie et al., 2023), StyleGAN-ADA (Karras et al., 2020) and
Transitional-cGAN (Shahbazi et al., 2021).
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(c) Proposed

Figure 2: Samples generated by learning content (pose of cat) and style (type of cat) from AFHQ.

Following Xie et al. (2023), we use StyleGAN2-ADA (Karras et al., 2020) to represent our
generative function q in (6a). We set d̂C = 384 and d̂S = 128 in all the experiments. We
use an ℓ1 regularization term λ∥e(n)S (r

(n)
S )∥1 to approximate the sparsity constraint in (6b).

di
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different style samples

(a) I-GAN (Xie et al., 2023)

different style samples
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ffe

re
nt
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(b) Proposed

Figure 3: Samples generated by combining the same content
c with s(n) for various n’s in AFHQ and CelebA-HQ.

Note that other sparsity-promoting
regularization (such as the ℓp function
with p < 1) can also be easily used
under our framework, which shows
similar effectiveness (see Appendix
H.4). We find that the algorithm is
not very sensitive to the choice λ as
any positive λ encourages sparsity of
e
(n)
S (r

(n)
S ). We use λ = 0.3 for all

the experiments. More detailed exper-
imental settings are in Appendix G.

Fig. 2 shows the qualitative results
for content-style identification using
various methods for the cat domain
(n = 1) of AFHQ. For each row, we
fix the content part c = eC(rC) (i.e.,
pose of the cat) and randomly sam-
ple different styles s(1) = e

(1)
S (r

(1)
S )

where r
(1)
S ∼ N (0, I d̂S

) to generate
the images x(1) = q(c, s(1)). This
way, the samples s(1)i for i = 1, 2, . . .
correspond to various types of cats.
Fig.2 (a) shows that the I-GAN appears to generate the same type of cat even when repeatedly sam-
pled from their learned distribution of s(1). This suggests that the style components are not extracted
properly. Fig. 2 (b) shows the result of using the proposed method without any sparsity regularization.
As explained earlier, this can lead to learning constant content part with all information captured
by the style part. Fig. 2(b) corroborates with the intuition since we see little to no pose variation
in the sampled contents (i.e., the three rows). Fig. 2 (c) shows the result of proposed method, i.e.,
Problem (6). One can see that both content and style parts demonstrate sufficient diversity, indicating
well learned content and style distributions. Appendix H shows similar results for other domains and
datasets.

Fig. 3 shows the generated samples of x(n) for different n’s using models learned from the AFHQ
and CelebA-HQ datasets, which correspond to different species of animals (cat, dog, and tiger) and
different genders of people, respectively. The top three rows in each figure correspond to the three n’s
(i.e., three domains) of the AFHQ dataset, whereas the bottom two rows correspond to two n’s of the
CelebA-HQ dataset. For the jth row associated with each dataset, we sample three different styles
s
(nj)
i , i ∈ {1, 2, 3} and combine it with a fixed content c to generate the image x

(nj)
i = q(c, s

(nj)
i )

in the jth row and ith column.
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Both the baseline I-GAN and our method can combine a fixed c̄ with s
(nj)
i for different i to create

content (pose)-consistent new data (see all the rows). However, one can see that the baseline I-GAN
was not able to sample different styles in each domain. It seems that every domain n always repeatedly
samples the same style components s̄(n) as the same images always appear in the same row. The
proposed method can generate quite diverse style samples in all the domains. Additional results are
in the Appendix H.

Translation # 1 Translation # 2Source Image

(a) Proposed

Translation # 1 Translation # 2Source Image

(b) I-GAN (Gen)

Figure 4: Translation Task: Combining content (pose)
randomly sampled styles from the dog domain.

Figure 5: Guided translation by combining content (first
column) with style (second column) of the images.

Table 1 shows the FID (Heusel et al., 2017),
style diversity scores, and training time of
the different methods. We use LPIPS dis-
tance (Zhang et al., 2018) between pairs
of images with the same c̄ and differ-
ent style samples from s(n) to measure
the style diversity. The diversity scores
are averaged over 6,000 images across
all domains, where every 10 images con-
tain the same content with different styles.
Note that the baselines StyleGAN-ADA
and Transitional-cGAN do not learn
content-style models, and thus the style
diversity scores of theirs are not reported.
One can see that the FID scores of the meth-
ods are similar, meaning that all methods
generate realistic looking images. However,
the style diversity of the proposed method
is 3 to 5 times higher than the baseline
over all datasets. The conditional genera-
tive models (Transitional-cGAN and
StyleGAN-ADA) sometimes encountered
convergence issues on specific datasets as
reflected by their FID scores. Finally, the
training time of all the methods are in the
similar range, the proposed method being
slightly faster for AFHQ and CelebA-HQ
datasets.

Multi-Domain Translation.

Existing methods use a dedicated system
for multi-domain translation (Choi et al.,
2018; 2020; Yang et al., 2023). However,
since a multi-domain generative model can
already disentangle content and style (cf.
Theorems-4.2 of this work), one can sim-
ply use the generative model for domain
translation.

Given an image x(i) in the source domain i, in order to extract the corresponding content c or
style s(i) , one can simply solve (ĉ, ŝ) = argminc,s div(q(c, s),x(i)), where div is some distance
metric/divergence measure. There exists many approaches to solving the problem, often referred to
as GAN inversion (Xia et al., 2022). In our case, we simply use the Adam optimizer for this inversion
step. For div, we use a pre-trained VGG16 (Simonyan & Zisserman, 2014) neural network. More
details are in Appendix G. To generate the desired translation, the GAN inversion-extracted content
can be combined with a randomly sampled style s(t) = e

(t)
S (r

(t)
S ), r

(t)
S ∼ N (0, I d̂S

) from the target
domain t. Additionally, one can also extract style from an image in target domain and combine it
with extracted content from the source domain for guided translation.

The baselines used are the method in (Xie et al., 2023), StarGANv2 (Choi et al., 2020), and
SmoothGAN (Liu et al., 2021). Note that (Xie et al., 2023) proposed a separate system for the domain
translation that uses its pre-trained multi-domain generative model to train a separate translation

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Quantitative evaluation of all methods for the translated images.

Method FID (↓) Style Diversity (↑) Training time ( hours)

AFHQ CelebA-HQ AFHQ CelebA-HQ Generation Translation Total

StarGANv2 16.83 13.67 0.45 ± 0.03 0.45 ± 0.03 – 50.83 50.83
SmoothGAN 53.68 29.69 0.14 ± 0.04 0.09 ± 0.03 – 30.90 30.90
I-GAN (Tr) 19.57 15.26 0.46 ± 0.03 0.29 ± 0.05 29.53 67.46 96.99

Proposed 13.74 16.61 0.53 ± 0.03 0.41 ± 0.03 27.36 – 27.36

model (see Appendix F). However, since the aforementioned GAN inversion procedure is also
applicable to their generative model as it extracts content and style, we use two versions of their
system, namely, I-GAN (Gen) for the method based on GAN inversion and I-GAN (Tr) for the
separate translation system proposed in (Xie et al., 2023).

Fig. 4 (a) and (b) show the result of translation from wild domain (n = 3) to dog domain (n = 2)
using randomly sampled style components. The content ĉ(3)i , i ∈ [3] extracted for samples in the
wild domain is combined with randomly sampled styles s(2)j , j ∈ [2] in the dog domain to synthesize
the translated images. Our translations in each row contain the same content (i.e., pose of wild) as
the input source image, but different styles (i.e., dog species). However, I-GAN (Gen) seems to
produce unrealistic samples in some cases (first row). Their style diversity also appears to be limited.

Fig. 5 shows results of guided-translation for all methods for all pairs of domains in the AFHQ
domain. Content extracted from the images in the first column is combined with the style from the
second column. One can see that the proposed method preserves the style information better than the
baselines.

Further experiments on multi-domain translation are presented in Appendix H.2.

Table 2 shows that the image quality (see FID) and diversity (see style diversity) of the translated
images are competitive or better than the baselines (see qualitative results in Fig. 9 and 10 of
Appendix H.). One can also see that the training time (on a single Tesla V100 GPU) of proposed
method is at least 22 and 69 hours shorter than the competitive baselines StarGANv2 and I-GAN
(Tr), respectively.

7 CONCLUSION

We revisited the problem of content-style identification from unaligned multi-domain data, which
is a key step for provable domain translation and data generation. We offered a LDM perspective.
This new viewpoint enabled us to prove identifiability results that enjoy considerably more relaxed
conditions compared to those in previous research. Most importantly, we proved that content and style
can be identified without knowing the exact dimension of the latent components. To our knowledge,
this stands as the first dimension-agnostic identifiability result for content-style learning. We showed
that the LDM formulation is equivalent to a latent domain-coupled multi-domain GAN loss, and
the latter features a simpler implementation in practice. We validated our theorems using image
translation and generation tasks.

Limitations. Our work focused on sufficient conditions for content-style identifiability, yet the
necessary conditions were not fully understood—which is also of great interest. Additionally, our
model considers that the domains are in the range of the same generating function. The applicability
is limited to homogeneous multi-domain data, e.g., images with the same resolution. An interesting
extension is to consider heterogeneous multi-domain models that can deal with very different types
of data (e.g., text and audio). Additionally, our work is also limited to continuous data modalities
like images, audio, etc. Discrete data modalities like text will require extension of both theory and
implementation. This challenge presents another important future work. Finally, another limitation
of our work is that the proposed method is based on the GAN framework which is known to be
unstable during training. Therefore, novel implementation methods based on more stable distribution
matching modules such as flow matching are also of interest as a future work.
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Supplementary Material of “Content-Style Learning from Unaligned Domains:
Identifiability under Unknown Latent Dimensions”

A PRELIMINARIES

A.1 NOTATION

• A set A is said to have strictly positive measure under Px if and only if Px[A] > 0.

• For a (random) vector x, x(i) and [x]i denote the ith element of x, and x(i : j) and [x]i:j
denotes [x(i), x(i+ 1), . . . , x(j)].

• The notation [N ] = {1, 2, . . . , N}.

• ID ∈ RD×D denotes identity matrix of size D ×D.

• For a differentiable function f : RM → RN , the Jacobian of f with respect to its input x,
denoted by Jf (x), is the matrix of partial derivatives as follows:

Jf (x) =


∂[f(x)]1

∂x1
. . . ∂[f(x)]1

∂xM

...
. . .

...
∂[f(x)]N

∂x1
. . . ∂[f(x)]N

∂xM


• det(X) denotes the determinant of matrix X .

• x |= y denotes that x is statistically independent of y.

• |x| denotes the absolute value of x

• ∥x∥0 denotes the number of non-zero elements in x.

• ϵ-ball: Given a metric space X ⊆ RD for some D ∈ N, Nϵ(z) denotes the ϵ-neighborhood
of z ∈ X defined as

Nϵ(z) = {ẑ ∈ X | ∥z − ẑ∥2 < ϵ}.

• Image set: For a function m : W → Z , and a set A ⊆ W , m(A) = {m(w) ∈ Z | w ∈
A}

• For an injective function f : X → Y , we denote f−1 : f(X ) → Y as the left inverse of f ,
i.e., f−1 ◦ f(x) = x,∀x ∈ X .

• Pre-Image set: For a general function m : W → Z , we overload the notation m−1 to
represent the pre-image; i.e., for a set A ⊆ Z , m−1(A) = {w ∈ W | m(w) ∈ A}. If m
is injective, then m−1 is simply the left inverse of m; i.e., m−1 ◦m is identity.

• For a function f : X → Y and a probability measure Px defined on X , [f ]#Px denotes the
push forward measure defined by [f ]#Px [A] = Px[f

−1(A)] for any measurable A ⊆ Y .

• dim(X ) denotes the covering dimensio of the set X (see Appendix A.2).

A.2 DEFINITIONS AND USEFUL FACTS

We employ standard definitions and facts from real analysis. We refer the readers to (Carothers, 2000;
Rudin, 1976) for precise definition and more details.

Injection, bijection, and surjection.

Consider a function f : X → Y . Then

• f is injective, if for all x1,x2 ∈ X , x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

• f is surjective, if for all y ∈ Y , ∃x ∈ X such that f(x) = y.

• f is bijective or invertible, if f is both injective and surjective.

Also consider the following useful facts:
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1. f is injective if and only if there exist a function g : f(X ) → X such that g ◦ f(x) =
x,∀x ∈ X , i.e., g ◦ f is an identity function.

2. If f : X → Y is injective, then f : X → f(X ) is bijective.
3. If f ◦ g is injective, and g is surjective, then f is injective.
4. If f ◦ g is bijective, then g is surjective and f is injective.
5. If f : X → Y is bijective, then f : X → Z is injective, where Y ⊂ Z , Y ̸= Z .

An important remark is that since injective functions can be “inverted” (fact 1 above), there is no
loss of information of the input, i.e., the input information can “reconstructed” from the output.
Hence, for the purpose of identifiability, it is sufficient to identify the latent variables upto injective
transformations.

Simply Connected Sets.

First, a set C (in X ) is connected if and only if there does not exist any disjoint non-empty open sets
A,B ⊆ X such that A ∩ C ̸= ϕ,B ∩ C ≠ ϕ, and C ⊂ A ∪ B.

A connected set is called simply connected if any simple closed curve on the set can be shrunk to a
point continuously while staying inside the set.

Homeomorphism.

A function f : X → Y is a homeomorphism if it is a continuous bijection and has continuous inverse.
If there exists a homeomorphism between X and Y , then X and Y are called homeomorphic.

Some useful properties are as follows:

1. RM is not homeomorphic to RD for D ̸= M .
2. Open balls in RD are homeomorphic to RD.
3. Invariance of Domain: If X is an open subset of RD and f : X → RD is an injective

continuous map, then Y = f(X ) is open in RD, and f is a homeomorphism between X and
Y .

Covering dimension (Engelking, 1978).

An open cover of a set X is a collection of open sets such that X lies inside their union.

A refinement of a cover Y of a set X is a new cover Z of X such that every set in Z is contained in
some set in Y .

The (Lebesgue) covering dimension, denoted by dim(X ), of a set X is the smallest number n such
that for every open cover, there is a refinement in which every point in X lies in the intersection
of no more than n+ 1 covering sets. For our purposes (subsets of Euclidean spaces), the covering
dimension is the ordinary Euclidean deimension, e.g., one for lines and curves, two for planes, and so
on.

Some propoerties of the covering dimension are as follows:

1. Homeomorphic spaces have the same covering dimension.
2. If X is an open subset in RD, then dim(X ) = D.
3. For two open sets X ⊆ RD,Y ⊆ RM , dim(X × Y) = dim(X ) + dim(Y).
4. For a continuous funtion f and open set X , dim(f(X )) ≤ dim(X ).
5. The set Aq ⊂ RD of q-sparse vectors, i.e., Aq = {x ∈ RD|∥x∥0 ≤ q} has dimension

dim(Aq) = q. This is because it is the union of a finite number
(
D
q

)
of q-dimensional

hyperplanes (i.e., hyperplanes with all elements 0, except q elements at fixed positions).

B DETAILED DISCUSSIONS ON EXISTING IDENTIFIABILITY RESULTS

In this section, we review the existing content-style identifiability results from Sturma et al. (2023);
Timilsina et al. (2024); Kong et al. (2022); Xie et al. (2023).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.1 IDENTIFIABILITY RESULT IN STURMA ET AL. (2023)

The works of (Timilsina et al., 2024; Sturma et al., 2023) considered a linear mixture-based generative
model as follows:

x(n) = G(n)z(n), z(n) = [c⊤, (s(n))⊤]⊤, n ∈ {1, 2}, (7)

where c ∈ RdC , s(n) ∈ Rd
(n)
S , and G(n) ∈ R(dC+d

(n)
S )×(dC+d

(n)
S ) is an invertible mixing matrix for

the nth domain.
Theorem B.1 (Identifiability from Sturma et al. (2023)). Under (7), assume that the following
are met: (i) The conditions for ICA identifiability (Comon, 1994) is met by each domain,
including that the components of z(n) = [c⊤, (s(n))⊤]⊤ are mutually statistically independent
and contain at most one Gaussian variable. In addition, each z

(n)
i has unit variance; (ii)

P
z
(n)
i

̸= P
z
(n)
j

,P
z
(n)
i

̸= P−z
(n)
j

∀i, j ∈ [dC + d
(n)
S ], i ̸= j. Then, assume that (im, jm) are

obtained by ICA followed by cross domain matching distribution matching, i.e., enforcing

ĉ
(1)
m

(d)
=== ĉ

(2)
m for m = 1, . . . , dC. Denote ĉ

(1)
m = e⊤im ẑ(1) and ĉ

(2)
m = e⊤jm ẑ(2). We have the

following:

ĉ(n)m = kc
(n)
π(m), m ∈ [dC], (8)

where k ∈ {+1,−1} and π is a permutation of {1, . . . , dC}.

Obviously, the result here relies on the element-wise independence among the entries of z(n).

B.2 IDENTIFIABILITY RESULT IN TIMILSINA ET AL. (2024)

Timilsina et al. (2024) proposed to solve the following problem in order to extract the content and
style for model in (7):

find Q
(n)
C ∈ RdC×(dC+d

(n)
S ),Q

(n)
S ∈ Rd

(n)
S ×(dC+d

(n)
S ) n = 1, 2, (9a)

subject to Q
(1)
C x(1) (d)

=== Q
(2)
C x(2), (9b)

Q
(n)
C x(n) |=Q

(n)
S x(n) n = 1, 2, (9c)

Q
(n)
C E

[
x(n)(x(n))⊤

]
(Q

(n)
C )⊤ = I n = 1, 2, (9d)

Q
(n)
S E

[
x(n)(x(n))⊤

]
(Q

(n)
S )⊤ = I n = 1, 2, (9e)

where a
(d)
=== b denotes that the distribution of a and b are the same. The following identifiability

result was established of the solution of (9):

Theorem B.2 (Identifiability from Timilsina et al. (2024)). Let Q̂
(n)

C and Q̂
(n)

S denote the
solution of (9). Under (7), assume that the following are met:

1. For any two linear subspaces P(n) ⊂ RdC+d
(n)
S , n = 1, 2, with dim(P(n)) = d

(n)
S ,

P(n) ̸= 0 × Rd
(n)
S and linearly independent vectors {y(n)

i ∈ RdC+d
(n)
S }dC

i=1, n =

1, 2, the sets A(n) = conv{0,y(n)
1 , . . . ,y

(n)
dC

} + P(n), n = 1, 2, are such that if
Pc,s(n) [A(n)] > 0 for n = 1 or n = 2, then there exists a k ∈ R such that the joint
distributions Pc,s(1) [kA(1)] ̸= Pc,s(2) [kA(2)], where kA(n) = {ka | a ∈ A(n)}.

2. One of the following assumptions is satisfied:

(a) The individual elements of the content components are statistically independent

and non-Gaussian. In addition, ci
(d)

̸= kcj ,∀i ̸= j,∀k ∈ R and ci
(d)

̸= −ci,∀i, i.e.,
the marginal distributions of the content elements cannot be matched with each
other by mere scaling.
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(b) The support C, is a hyper-rectangle, i.e., C = [−a1, a1] × · · · × [−adC
, adC

].

Further, suppose that ci
(d)

̸= kcj ,∀i ̸= j,∀k ∈ R and ci
(d)

̸= −ci,∀i.

Then, we have Q̂
(n)

C x(n) = Θc and Q̂
(n)

S x(n) = Ξ(n)s(n), for some invertible Ξ(n) for all
n = 1, 2.

The first condition is similar to the domain variability condition considered in Kong et al. (2022); Xie
et al. (2023) and our Assumption 3.2, but with a more specific form that is adjusted according to the
linear mixture model in (7).

B.3 IDENTIFIABILITY RESULT IN XIE ET AL. (2023); KONG ET AL. (2022)

Note that the results in Sec. B.1 and B.2 are only applicable in the linear mixing system case (see
(7)). However, the linear model is hardly practical for complex data modalities like images. In the
nonlinear case, Xie et al. (2023); Kong et al. (2022) showed the following:

Theorem B.3 (Identifiability from (Xie et al., 2023; Kong et al., 2022)). Denote z = (c, s) ∈
C × S and u as the latent variables and an auxiliary variablea, respectively. Assume the
following assumptions hold:

(A1) (Smooth and Positive Density): log p(z|u) is second-order differentiable and p(z|u) > 0.

(A2) (Conditional independence): p(z|u) =
∏dS+dC

i=1 p(zi|u).

(A3) (Linear independence): For any s ∈ S ⊆ RdS , there exists 2dS + 1 values of u, i.e., uj

with j = 0, 1, . . . , 2dS such that the 2dS vectors w(s,uj)−w(s,u0) are linearly independent,
where w(s,u) =

(
∂q1/∂s1, . . . , ∂qdS/∂sdS

, ∂
2q1/∂s2

1, . . . , ∂
2qdS/∂s2

dS

)
and qi = log p(si|u).

(A4) (Domain variability): For any set A ∈ Z such that (i) Pz|u′ [A] > 0 for any u′ ∈ U
and (ii) A cannot be expressed as B × S for any set B ⊂ C, there exist u1,u2 ∈ U such that
Pz|u1

[A] ̸= Pz|u2
[A] where Pz|ui

[A] =
∫
z∈A P (z|ui)dz.

Then, by matching the model distribution in (1) with the marginals Px(n) jointly, the component-
wise and block-wise identifiability of s and c are guaranteed, respectively, both up to invertible
nonlinear transformations.

aThe auxiliary variable u is a notion from the nICA literature (Hyvarinen & Morioka, 2017; Hyvarinen
et al., 2019; Khemakhem et al., 2020). In the context of multi-domain learning, u often represents the
domain index.

The result is interesting and insightful—particularly, the domain variability condition (A4) is also
used in our analysis. However, some major challenges still remain: First, (A2) requires that all
components of z(n) = (c, s(n)) are statistically independent given n (corresponding to u). The use
of this condition is because the identifiability proof is reminiscent of nICA (Khemakhem et al., 2020;
Hyvarinen et al., 2019). But elementwise independence is a nontrivial assumption. As shown in our
analysis, for block-wise identifiability of c and s(n), elementwise independence among individual
entries of z = (c, s) is not necessary. In addition, (A3) needs that at least N = 2dS + 1 domains
exist (as u represents the domain index in this context), which is hardly practical—many domain
translation tasks were performed over N = 2 domains (Choi et al., 2020).

C PROOF OF THEOREM 3.3

We restate the theorem here:
Theorem 3.3 Under Eq. (1), suppose that Assumptions 3.1 and 3.2 hold. Then, we have
f̂C(x

(n)) = γ(c) and f̂S(x
(n)) = δ(s(n)),∀n ∈ [N ], where γ : C → RdC and δ : S → RdS

are injective functions.

Proof Outline. The proof pipeline of Theorem 3.3 can be divided into two parts: content identification
and style identification. The content identification part includes two steps: (i) showing that f̂C does

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

not depend upon the style part, and thus is a function (denoted by γ) of the content only and (ii)
showing that γ is injective. For the first step, we use the domain variability assumption and matched
content distribution to conclude that the preimage sets (under f̂ ◦ g) for any extracted content cover
the entire style domain. This will imply that the extracted content is invariant of the style part. In the
second step, we use the property of the determinant of the jacobian of f̂ ◦ g to derive that γ should
be injective. For style identification, we use the independence constraint and the result of content
identification part to conclude that the extracted style does not depend upon the content part. And
finally we use the injectivity of f̂ to show that δ should also be injective.

Proof. The proof is as follows:

C.1 CONTENT IDENTIFICATION

Let z(n) = (c, s(n)) and Z = C × S. Let ĉ(n) = f̂C(x
(n)),∀n ∈ [N ], and ŝ(n) = f̂S(x

(n)),∀n ∈
[N ]. The proof consists of the following two steps:

Step 1. First, we show that under the assumptions in Theorem 3.3, ĉ(n) does not depend upon s(n).

Step 2. Next, we show that ĉ(n) is transformed from the true shared component c via an injective
function γ : C → RdC for all n ∈ [N ].

Step 1: We want to establish the following:

∂ĉ
(n)
i

∂s
(n)
j

= 0,∀i ∈ [dC], j ∈ [dS]. (10)

This can be shown using similar arguments in the domain adaptation work (Kong et al., 2022). To be
specific, let h : Z → RdC+dS be defined as follows:

h := f̂ ◦ g.

Let Ĉ = hC(Z). Due to the distribution matching constraint (2a), the following holds for any
AC ⊆ Ĉ:

Pĉ(i) [AC] = Pĉ(j) [AC], ∀i, j ∈ [N ]

(a)⇐⇒ Pz(i)

[
h−1
C (AC)

]
= Pz(j)

[
h−1
C (AC)

]
(11)

where h−1
C (AC) := {z | hC(z) ∈ AC} is the preimage of hC(·) := [h(·)]1:dC . The equivalence in

(a) holds because Pĉ(n) [AC] = PhC(z(n))[AC] = Pz(n) [h−1
C (AC)],∀n ∈ [N ].

Sufficient Condition of (10): In order to show (10) holds almost surely, it suffices to show that

∀c ∈ Ĉ, ∃ BC ̸= ϕ and BC ⊆ C
s.t. h−1

C (c) = BC × S. (12)

Eq. (12) implies that no matter what the value of the private variable s(n) is, as long as the shared
variable c ∈ BC, the extracted ĉ = c. This implies that small changes in sj∀j ∈ [dS], while keeping
all other variables fixed, does not result in any change in ĉi,∀i ∈ [dC]—which means that (10) holds.

Further, the following condition is sufficient to ensure that (12) holds:

∀c ∈ Ĉ,∀ϵ > 0, ∃ GC ̸= ϕ and GC ⊆ C,
h−1
C (Nϵ(c)) = GC × S, (13)

where Nϵ(c) = {c′ ∈ Ĉ | ∥c − c′∥2 < ϵ} is an open set. To see how (13) implies (12), we
use contradiction. Suppose that (13) does not imply (12). Then there exists an ñ ∈ [N ] and
z̃ = (c̃, s̃(ñ)) ∈ Z with

c̃ ∈ BC := {z1:dC : z ∈ h−1
C (c)},
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and s̃(ñ) ∈ S such that hC(z̃) ̸= c. Since hC(·) is a continuous function there exists ϵ̂ > 0 such that
hC(z̃) ̸∈ Nϵ̂(c)

=⇒ z̃ ̸∈ h−1
C (Nϵ̂(c))

However, (13) states that
h−1
C (Nϵ̂(c)) = GC × S,

for some GC ⊆ C. Since BC ⊆ GC by their respective definitions, it implies that c̃ ∈ GC. And
therefore,

(c̃, s̃(ñ)) ∈ h−1
C (Nϵ̂(c)),

which is a contradiction. Hence, (13) implies (12). Therefore, it is sufficient to show (13) in order to
prove (10).

Proving (10): Proving (13) (equivalently (10)) can be accomplished using contradition. From (13),
it is sufficient to show that h−1

C (AC) = BC × S for a certain BC ⊆ C.

Suppose that h−1
C (AC)) ̸= BC ×S for any BC ⊆ C. Then, we can divide h−1

C (AC) into two disjoint
subsets, namely, G and F . The G part can be represented as BC × S for a certain set BC ⊆ C (it is
possible that G = ϕ). The F part cannot be written as DC × S for any DC ⊆ C. Note that F ≠ ϕ
due to the fact that h−1

C (AC) ̸= BC × S, and has a strictly positive measure. Then, the following
follows from (11):

Pz(i)

[
h−1
C (AC)

]
= Pz(j)

[
h−1
C (AC)

]
⇐⇒ Pz(i) [G] + Pz(i) [F ] = Pz(j) [G] + Pz(j) [F ]

⇐⇒ Pc[BC]Ps(i)|c[S|BC] + Pz(i) [F ] = Pc[BC]Ps(j)|c[S|BC]

+ Pz(j) [F ]

(a)⇐⇒ Pz(i) [F ] = Pz(j) [F ] (14)
where (a) holds because we have Ps(n)|c[S|BC] = 1,∀n ∈ [N ]. However, (14) cannot hold due to
Assumption 3.2. This is a contradication.

Step 2:

Consider the Jacobian of h

Jh(c, s) =

[
JhC(c) JhC(s)
JhS(c) JhS(s)

]
. (15)

In step 1, we have shown that JhC(s) = 0. This implies that

ĉ(n) = γ(c),∀n ∈ [N ] (16)

for some function γ : C → RdC . Now, we want to show that γ is injective.

Note that h : Z → RdC+dS is a differentiable injective function because it is a composition of
differentiable injection f̂ and bijection g.

This implies that |det(Jh(c, s))| = |det(JhC
(c))||det(JhS

(s))| ̸= 0,∀(c, s) ∈ C × S. Hence
|det(JhC

(c))| ≠ 0,∀c ∈ C, which in turn implies that γ is injective.

C.2 STYLE IDENTIFICATION

Our goal is to show that hS(c, s
(n)) = δ(s(n)) for some injective function δ. As before, we first

show that hS(c, s
(n)) is only a function of s(n), i.e., hS(c, s

(n)) = δ(s(n)) for some function δ.
Then, we show that δ has to be injective.

To proceed, note that the statistical independence constraint ĉ(n) |= ŝ
(n) implies the following:

ĉ(n) |= ŝ
(n)

=⇒ p(ĉ(n), ŝ(n)) = p(ĉ(n))p(ŝ(n))

=⇒ I(ŝ(n); ĉ(n)) = 0,
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where I(X;Y ) denotes the mutual information between X and Y . Since we have already established
ĉ(n) = γ(c) for some injective function γ, we express c = γ−1(ĉ(n)) (where γ−1 is the left inverse
of γ; see Appendix A.1). Then, ŝ(n) → ĉ(n) → γ−1(ĉ(n)) = c is a Markov chain. This is because,
when conditioned on ĉ(n), c = γ−1(ĉ(n)) is a constant, which is independent with ŝ(n). Next,
the data processing inequality in information theory (Cover, 1999, Theorem 2.8.1) (and corollary
following the theorem) implies that

I(ŝ(n); ĉ(n)) ≥ I(ŝ(n);γ−1(ĉ(n))) = I(ŝ(n); c)

As mutual information is always non-negative, we have I(ŝ(n); c) = 0. This implies that hS(c, s
(n))

does not depend upon c. In other words, as pointed out in (Eastwood et al., 2023, Theorem 2, Step 3),
we have hS(c, s

(n)) = δ(s(n)),∀n for some function δ.

Finally, to see that δ is injective, we use contradiction. Suppose that δ is not injective. Then there
exists s1, s2 ∈ S and s1 ̸= s2 such that

δ(s1) = δ(s2). (17)

However,
h(c, s1) = (hC(c, s1),hS(c, s1)) = (γ(c), δ(s1))

Similarly,
h(c, s2) = (hC(c, s2),hS(c, s2)) = (γ(c), δ(s2))

However, Eq. (17) implies that
h(c, s1) = h(c, s2)

which is a contradiction to the injectivity of h. Hence, δ is an injective function.

D PROOF OF THEOREM 3.4

The theorem is re-stated as follows:

Theorem 3.4 Assume that the conditions in Theorem 3.3 hold. Let f̂ represent any solution
of Problem (4). Assume the following conditions hold: (a) d̂C ≥ dC and d̂S ≥ dS. (b)
0 < pz(n)(z) < ∞,∀z ∈ Z = C × S,∀n ∈ [N ]. Then, there exists injective functions
γ : C → Rd̂C and δ : S → Rd̂S ,∀n ∈ [N ] such that ĉ = f̂C(x

(n)) = γ(c) and f̂S(x
(n)) =

δ(s(n)),∀n ∈ [N ].

Proof Outline. The proof of Theorem 3.4 follows the following pipeline

1. Content identification:
Step 1 Showing that the extracted content ĉ(n) does not depend upon the style part s(n).
Step 2 Showing that the sparsity regularization forces the extracted style part to be free of any

content information; and that, consequently, the extracted content has to be an injective
function of the true content.

2. Style identification: showing that the extracted style is an injective function of the true style.

We will fist show that unknown dimensionality does not affect Step 1 of content identification; i.e.,
when d̂C ≥ dC, ĉ(n) will be independent of s(n) using the arguments from the proof of Theorem 3.3.
The most important part of the proof is Step 2 of content identification, which requires completely
different analytical approaches compared to that used for Theorem 3.3. For this, we first use
contradiction to show that if γ were not injective, the injectivity of h will imply that hS depends upon
c within a set of strictly positive measure. This will imply that the extracted style contains information
from both the style as well as the content part, which will require E∥ŝ(n)0 ∥ > dS. However, a feasible
solution to Problem (4) can be constructed using the inverse of g which has E∥ŝ(n)0 ∥ = dS.

This will contradict our assumption that f̂ is an optimal solution to Problem (4). Hence, γ should be
injective. Finally, style identification follows the same proof as that of Theorem 3.3.
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Proof. The proof is as follows:

Content Identification.

Step 1: We want to show that

∂ĉ
(n)
i

∂s
(n)
j

= 0,∀i ∈ [d̂C], j ∈ [dS], (18)

which will imply that hC(c, s) = γ(c) for some function γ.

For this, the proof of Step 1 of content identifiability of Theorem 3.3 holds without any modification
since all arguments of the proof are dimension-agnostic.

Step 2: We want to show that γ is an injective function. For the sake of contradiction, assume that γ
is not injective. Then there exists c ∈ C and c̃ ∈ C, c ̸= c̃, such that γ(c) = γ(c̃). This is equivalent
to

hC(c, s) = hC(c̃, s). (19)

However, we know that h : Z → Rd̂C+d̂S is an injective function, since it is a composition of injective
and bijective function. This implies that

h(c, s) ̸= h(c̃, s) (20)

Eq. (19) and (20) imply that

hS(c, s) ̸= hS(c̃, s) (21)

Since hS is a differentiable function, (21) implies that there exists ℓ ∈ [d̂S], r ∈ [dC] and c⋆ ∈
C, s⋆ ∈ S, such that

∂[hS]ℓ
∂cr

(c⋆, s⋆) ̸= 0. (22)

Also, hS being differentiable implies that the above partial derivative is continuous. Hence, there
exists ϵ > 0, such that the above non-equality holds on Nϵ(z

⋆) ⊆ Z , where z⋆ = (c⋆, s⋆). In
addition, with a small enough ϵ, because of the continuity of ∂[hS]ℓ

∂cr
, [hS]ℓ is strictly monotonic (either

increasing or decreasing) within the set Nϵ(z
⋆), with respect to cr. This implies that [hS]ℓ is a locally

monotonic function w.r.t. its input cr at any z ∈ Nϵ(z
⋆).

However, this will imply [hC]i,∀i ∈ [d̂C] cannot depend upon cr when restricted to Nϵ(z
⋆), i.e.,

∀z ∈ Nϵ(z
⋆) and all i ∈ [d̂C],

∂[hC]i
∂cr

(z) = 0. (23)

This is because, if ∂[hC]i
∂cr

(z) ̸= 0 for some z ∈ Nϵ(z
⋆) and i ∈ [d̂C], then there exists a η > 0 such

that [hC]i is strictly monotonic within Nη(z), with respect to cr.

Consider the non-empty open set R = Nϵ(z
⋆) ∩ Nη(z) ∩ Z . Due to the assumption that 0 <

pz(n)(z) < ∞,∀z ∈ Z , R has strictly positive measure. However, [hC]i and [hS]ℓ are simultaneously
changing monotonically everywhere in R with respect cr, which implies that [hS]ℓ |= [hC]i does not
hold. This contradicts the independence constraint (2b). Hence (23) has to hold.

Now, Eq. (23) implies that
hC(c−r, cr, s) = hC(c−r, c̃r, s̃),

for any two points (c, s), (c̃, s̃) ∈ Nϵ(z
⋆). Here, c−r represents all components of c excluding cr.

Next, the injectivity of h indicates that for any (c, s), (c̃, s̃) ∈ Nϵ(z
⋆), if cr ̸= c̃r or s ̸= s̃, then

hS(c−r, cr, s) ̸= hS(c−r, c̃r, s̃). (24)

Next, we show that Eq. (24) results in a contradiction to the fact that f̂ is an optimal solution of
Problem (4). This contradiction will conclude that γ is injective, as Eq. (24) was obtained by the
assumption that γ is not injective.
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Note that one can construct a feasible solution f̃ of Problem (4) satisfying the following:

f̃C(x
(n)) =


[g−1]C(x

(n))
0
...
0

 ∈ Rd̂C and f̃S(x
(n)) =


[g−1]S(x

(n))
0
...
0

 ∈ Rd̂S ,∀n ∈ [N ],x(n) ∈ X (n),

which implies that ∀n,

E[∥f̃S(x
(n))∥0] = dS. (25)

This means that the optimal value of Problem (4b) is smaller than or equal to dS, as at least one
solution can be constructed to attain this value.

Now, consider our learned ŝ(n) = [f̂ ◦ g(x(n))]S = hS(x
(n)). We will show the following chain of

inequalities ∀n ∈ [N ]:

Eŝ∼P
ŝ(n)

[∥ŝ∥0] =
∫
hS(Z)

∥ŝ∥0 dPŝ(n)

=

∫
hS(Z)\hS(Nϵ(z⋆))

∥ŝ∥0 dPŝ(n) +

∫
hS(Nϵ(z⋆))

∥ŝ∥0 dPŝ(n)

(a)

≥
∫
hS(Z)\hS(Nϵ(z⋆))

dS dPŝ(n) +

∫
hS(Nϵ(z⋆))

(dS + 1) dPŝ(n)

= dS(Pŝ(n) [hS(Z)]− Pŝ(n) [hS(Nϵ(z
⋆))]) + (dS + 1)Pŝ(n) [hS(Nϵ(z

⋆))]

= dS + Pŝ(n) [hS(Nϵ(z
⋆))]

> dS. (26)

where (a) used the to-be-proven facts that ∥ŝ∥0 ≥ dS almost everywhere on hS(Z) and that
∥ŝ∥0 ≥ dS + 1 almost everywhere on hS(Nϵ(z

⋆)). Note that if (26) holds, we reach a contradiction
that f̂ is an optimal solution of Problem (4), as the solution in (25) can attain a smaller objective
value. We prove the facts used in (a) in the following:

First, to see that ∥ŝ∥0 ≥ dS, a.e. (on hS(Z)), suppose for the sake of contradiction that ∥ŝ∥0 < dS
on a set of strictly positive measure, say Q ⊆ hS(Z), i.e.,

[hS]#P
z(n)

(Q) > 0

=⇒ Pz(n) [h−1
S (Q)] > 0.

Since Pz(n) admits a PDF with 0 < pz(n)(z) < ∞,∀z ∈ Z , h−1
S (Q) should contain an open ball

Z ⊆ Z . However dim(Z) = dC + dS since Z is homeomorphic to RdC+dS (see Appendix A). Let
Aq = {a ∈ Rd̂S+d̂C | ∥a∥0 ≤ q}, i.e., the set of all vectors with at most q non-zero elements. Note
that dim(Aq) = q. Then Q ⊆ AdS−1. Hence dim(Q) ≤ dS − 1.

Next, h is also an injective function from Z to Q × γ(C). Note that dim(γ(C)) ≤ dC because γ
is a continuous function and dim(C) = dC. But this implies that dim(Q × γ(C)) = dim(Q) +
dim(γ(C)) < dC + dS.

However, this contradicts that h is an injective function from Z to Q×γ(C) because the domain of h
has larger dimension than the co-domain Q× γ(C). Hence [hS]#P

z(n)
(Q) = 0 and ∥ŝ∥0 ≥ dS, a.e.

Second, to show that ∥ŝ∥0 ≥ dS + 1 almost everywhere on hS(Nϵ(z
⋆)), consider the set S × Cr,

where Cr is the support of cr. Eq. (24) implies that M = (S × Cr) ∩ Nϵ(z
⋆) is homeomorphic to

a subset of hS(Nϵ(z
⋆)). To see this, consider a fixed (c, s) ∈ Nϵ(z

⋆). Then, define a continuous
function

t(cr, s) = hS(c−r, cr, s),

i.e., hS with fixed partial input c−r. Eq. (24) implies that t is an injective function over M. Now,
note that we have t(M) ⊆ hS(Nϵ(z

⋆)), and that t defines a homeomorphism between M and t(M).
Hence M is homeomorphic to a subset of hS(Nϵ(z

⋆)). This implies that dim(hS(Nϵ(z
⋆)) ≥

dim(M). However, dim(M) = dS + 1 because M is an open set in RdS+1 as S is an open
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set in RdS , Cr is an open set in R, and thus (S × Cr) ∩ Nϵ(z
⋆) is an open set in RdS+1. Hence,

dim(hS(Nϵ(z
⋆)) ≥ dim(M) = dS + 1. This concludes the proof of the inequalities in (26).

Finally Eŝ(n) [∥ŝ∥0] > dS,∀n ∈ [N ] contradicts that f̂ is an optimal solution to Problem (4). Hence,
γ is an injective function.

Style Identification.

Finally, hS cannot depend upon c by the same reason as outlined in Sec. C.2. This implies that
hS(c, s) = δ(s), for some function δ : S → Rd̂S . Similarly, δ is injective by the same reason
outlined in Sec. C.2.

This concludes the proof.

E PROOF OF THEOREM 4.2

E.1 RELATIONSHIP BETWEEN THE DATA AND LATENT SPACES.

Before proceeding with the proof of Theorem 3.4, we clarify the relationship between the data and
latent spaces to provide a clearer understanding of the theorem and its proof.

First, note that C and S are open sets in RdC and RdS , respectively. Thus, X = g(C × S) forms
a dC + dS-dimensional manifold within Rd. In Theorem 4.1(b), by assuming q : Ĉ × Ŝ → X is
bijective, we effectively assume that Ĉ × Ŝ is a dC + dS-dimensional manifold within Rd̂C+d̂S . This
holds because Ĉ × Ŝ = q−1 ◦ g(C × S), and since q−1 ◦ g, a composition of two bijections, is itself
a bijection. Consequently, although the ambient space Rd̂C+d̂S is higher dimensional than C × S,
the spaces Ĉ × Ŝ , C × S , and X all have the same manifold dimension of dC + dS, allowing for the
definition of bijective mappings between them.

E.2 THEOREM 4.2

The theorem is restated as follows:

Theorem 4.2 Let (q̂, êC, ê
(n)
S , d̂) be any differentiable optimal solution of Problem (6). Let C

and S be simply connected open sets. Let 0 < pz(n)(z) < ∞,∀z ∈ Z = C × S. Under the
assumptions in Theorem 3.3, we have the following:

(a) If d̂C = dC and d̂S = dS and (6b) is absent, then q̂ : Ĉ × Ŝ → X is bijective and f̂ = q̂−1

is also a solution of Problem (2).

(b) If d̂C > dC and d̂S > dS and q̂ : Ĉ × Ŝ → X is bijective, then f̂ = q̂−1 is also a solution of
Problem (4).

E.3 PROOF OF PART (A).

One can see that problem (6a) is equivalent to the following optimization problem:

find q, eC, {e(n)S }Nn=1 (27a)
subject to [q]#P

eC(rC),e(n)
S (r(n)

S )
= Px(n) , (27b)

rC ∼ N (0, IdC
), r

(n)
S ∼ N (0, IdS

). (27c)

First, the solution of (6a) satisfies the distribution matching constraint (27b) because of (Goodfellow
et al., 2014) [Theorem 1]. Next, define:

α(n)(rC, r
(n)
S ) = q̂(êC(rC), ê

(n)
S (r

(n)
S )).

Consider the following theorem from (Zimmermann et al., 2021).
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Proposition E.1 ( Sec. A.5. “Effects of the Uniformity Loss”, Proposition 5 (Zimmermann et al.,
2021)). Let M and N be simply connected and oriented C1 manifolds without boundaries and
h : M → N be a differentiable map. Further, let the random variable z ∈ M be distributed
according to z ∈ p(z) for a regular function p, i.e.,0 < p < ∞. If the push forward p#h(z) of p
through h is also a regular density, i.e., 0 < p#h < ∞, then h is a bijection.

In our case, Z and X is a simply connected and oriented C1 manifold without boundaries. In
addition, α(n) : RdS+dC → X is the differentiable map that we hope to use the above proposition
to characterize. Every element of the random vector r = (rC, r

(n)
S ) follows the standard normal

distribution. Hence, it is readily seen that 0 < pr(n)(r) < ∞,∀r ∈ RdC+dS . In addition, the
assumptions that 0 < pz(n)(z) < ∞,∀z ∈ Z with simply-connected Z and that g is a differentiable
bijection imply that 0 < px(n)(x) < ∞,∀x ∈ X ,∀n and that X is simply connected.

Following the above arguments, we can apply Proposition E.1 to conclude that α(n),∀n ∈ [N ] are
bijections. This, in turn, implies that q̂ is a surjection and êC and êS are injections. However, since q̂
is defined on the range of êC and êS, q̂ is a bijection. Consequently, êC and êS are also bijections.

To proceed, notice that (27b) implies that f̂ = q̂−1 satisfies the following:

[q̂−1
C ]#P

x(i)
= [q̂−1

C ]#P
x(j)

,∀i, j ∈ [N ],

where q̂−1
C is the output dimensions of q̂−1 that correspond to the content part. To see the above

equality, let x̂(n) = q̂(êc(rC)), ê
(n)
s (rS). Then,

q̂−1
C (x̂(n)) = q̂−1

C ◦ q̂(êc(rC), ê(n)s (rS)) = êc(rC).

Since x̂(n) ∼ Px(n) , this implies that

[q̂−1
C ]#P

x(n)
= [êc]#PrC

,∀n ∈ [N ]

Since the distribution [êc]#PrC
is independent of n, [q̂−1

C ]#P
x(n)

,∀n ∈ [N ] are matched. This means

that q̂−1 satisfies the constraint (2a). Similarly, since êc(rC) |= ê
(n)
s (r

(n)
S ),∀n ∈ [N ],

[q̂−1
C ]#P

x(n) |= [q̂
−1
S ]#P

x(n)
,∀n ∈ [N ].

Hence q̂−1 also satisfies the constraint (2b). Therefore, q̂−1 is an optimal solution of Problem (2)

It remains to show that a solution to Problem (27) under our data generative model in (1) exists.
When C ⊆ RdC and S ⊆ RdS are open sets and simply connected, and pc(c) > 0 and ps(n)(s) >
0,∀s ∈ S, c ∈ C, n ∈ [N ], there exists a smooth bijective function that transforms standard normal
distributions, i.e., N (0, IdC) and N (0, IdS), to the content and style distributions, Pc and Ps(n) ,
respectively. Such functions can be constructed by using Darmois construction (Darmois, 1951)
to first convert the normal distribution to uniform distribution, and then using inverse Darmois
construction to convert the uniform distribution to Pc (and Ps(n) ) (see (Hyvärinen & Pajunen, 1999)
for more details). Let κC : N (0, IdC

) → C and κS : N (0, IdS
) → S denote the aforementioned

functions. Then, a solution to Problem (27) is g, κC, and κ
(n)
S ,∀n ∈ [N ] for the optimization

functions q, eC, and e
(n)
S ∀n ∈ [N ], respectively. Hence, problem (27) is feasible. This concludes the

proof.

E.4 PROOF OF PART (B).

Problem (6) is equivalent to the following problem:

min
q,eC,{e(n)

S }N
n=1

1

N

N∑
n=1

E
[∥∥∥e(n)S (r

(n)
S )

∥∥∥
0

]
(28a)

subject to [q]#P
eC(rC),e

(n)
S

(r
(n)
S

)
= Px(n) , (28b)

rC ∼ N (0, IdC
), r

(n)
S ∼ N (0, IdS

) (28c)
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Following the same arguments as in the proof of Theorem Part (a), Eq. (28) implies that

[q̂−1
C ]#P

x(i)
= [q̂−1

C ]#P
x(j)

,∀i, j ∈ [N ]

The above implies that

[q̂−1
C ]#P

x(n)
= [êc]#PrC

,∀n ∈ [N ],

which means that q̂−1
C satisfies the constraint (4b).

Similarly, since êc(rC) |= ê
(n)
s (r

(n)
S ),∀n ∈ [N ],

[q̂−1
C ]#P

x(n) |= [q̂
−1
S ]#P

x(n)
,∀n ∈ [N ].

Hence q̂−1 also satisfies the constraint (4c). Therefore, q̂−1 is also a solution to Problem (4).

F BENCHMARKED MULTI-DOMAIN TRANSLATION SCHEMES

StarGAN and StarGAN v2. The representative multi-domain translation frameworks, namely,
StarGAN (Choi et al., 2018) and StarGAN v2 (Choi et al., 2020), learn a common translation function
that matches distribution between all pairs of domains. To be precise, let t : X × S → X represent
the translation function that takes in a sample x(s) in the source domain s, and a style component s(t)

from the target domain t, and outputs the translated sample x(s→t) from the target domain t as

x(s→t) = t(x(s), s(t)).

In (Choi et al., 2020) t is learnt by optimizing the following criteria:

LStarGAN = Lmatch + Linv,

where Linv promotes invertibility of the translation function, and is composed of cycle-consistency,
style diversity, and style invertibility terms, whereas Lmatch promotes distribution matching between
all pairs of domains after translation by t. Specifically,

Lmatch = (29)∑
s,t∈[N ]×[N ]

E
[
logds(x

(s)) + log
(
1− dt(τ (x

(s), s(t)))
)]

, (30)

where di is the discriminator for the ith domain. Here, all pairs of domains, (s, t) ∈ [N ]× [N ], are
considered for distribution matching. This can be potentially expensive for large N . The StarGAN
loss matches N(N − 1) pairs of distributions for N domains, which may not be affordable for large
N .

Learning Pipeline of (Xie et al., 2023). The work (Xie et al., 2023) proposed the following
pipeline. First, an multi-domain generative model is trained, which is similar to our system. Second,
instead of directly using the trained system, the work proposed to train a separate StarGAN with
new regularization. To be specific, the work proposed to use synthetic paired samples (x(s),x(t))
generated by their generative model to further regularize LStarGAN, which leads to the following
loss:

LStarGAN + Lsup

where the second term is defined as

Lsup = Ex(s),x(t)∼P
θ̂
∥t(x(s), s(t))− x(t)∥,

in which Pθ̂ represents distribution of the learned multi-domain generative model, and s(t) is obtained
from x(t) by using a separate style encoder.

As we mentioned, as one can show that the generators are in fact invertible in the learned generative
model (see Theorem 4.2), the above procedure can be circumvented. Using an off-the-shelf GAN
inversion solver assists translation without retraining a regularization StarGAN.
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G EXPERIMENTAL DETAILS

G.1 NEURAL NETWORK

We adopt the neural architecture of StyleGAN-ADA to represent the generator q as well as the
discriminator d in Problem (6). Specifically, StyleGAN-ADA generator consists of a mapping
network and a synthesis network (Karras et al., 2020). We use the synthesis network to represent q,
whereas the mapping network is discarded. For each of eC and {e(n)S }Nn=1, we use 3 layer MLP with
512 hidden units in each hidden layer. The input and output size of the MLPs for eC and {e(n)S }Nn=1

are d̂C = 384 and d̂S = 128, respectively. We feed the output of eC to the first 5 layers of the
synthesis network (i.e., q), and the output of e(n)S ,∀n ∈ [N ] are fed to the remaining layers of q.
Compared to (Xie et al., 2023), e(n)S ,∀n are much more simplified since they are no longer restricted
to component-wise invertible functions, which require special neural network design.

G.2 TRAINING HYPERPARAMETER SETTING

The hyperparameters used for GAN training in Problem (6) is similar to those used in StyleGAN-
ADA. Mainly, we use Adam (Kingma & Ba, 2015) with an initial learning rate of 0.0025 with a batch
size of 16. The hyperparameters in Adam that control the exponential decay rates of first and second
order moments are set to β1 = 0 and β2 = 0.99, respectively. For all datasets, we train the networks
for 300,000 iterations. Sparsity regularization weight in Problem (6) is set to 0.3 for all experiments.
We also use the data augmentation techniques proposed in (Karras et al., 2020) for improved GAN
training on limited data.

G.3 GAN INVERSION SETTING

We follow the optimization procedure in (Karras et al., 2020)2 for GAN Inversion. To summarize,
recall the GAN inversion problem for the multi-domain translation task:

(ĉ, ŝ) = argmin
c,s

div(q(c, s),x(i)), (31)

Eq. 31 is solved using gradient based optimization of c and s using Adam (Kingma & Ba, 2015)
with an initial learning rate of 0.1. The hyperparameters of Adam are set to β1 = 0.9, β2 = 0.999.
The optimization is carried out for 400 steps. The div function is realized by using mean squared
error in the feature space of pre-trained VGG16 (Simonyan & Zisserman, 2014) neural network, i.e.,

div(a, b) =
1

M
∥VGG(a)−VGG(b)∥22,

where M is the output dimension of VGG(·).

G.4 BASELINES FOR MULTI-DOMAIN GENERATION

We use I-GAN3 (Xie et al., 2023), StyleGAN-ADA2(Karras et al., 2020), and
Transitional-cGAN4 (Shahbazi et al., 2021) as baselines for multi-domain generation task.
Note that I-GAN is chosen because it is the most relevant to our work, whereas StyleGAN-ADA is
a very representative work among conditional GANs. Finally, Transitional-cGAN is a recent
and representative conditional GAN for limited data regime (note that the datasets used in our work
fall under limited data regime (Karras et al., 2020)). For all the baselines, training is done with their
default setting for all datasets. All the baselines are also trained for 300,000 iterations with a batch
size of 16 for a fair comparison, as well as to control the training time.

2https://github.com/NVlabs/stylegan2-ada-pytorch.git
3https://github.com/Mid-Push/i-stylegan.git
4https://github.com/mshahbazi72/transitional-cGAN.git
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G.5 BASELINES FOR MULTI-DOMAIN TRANSLATION

We use StarGANv25 (Choi et al., 2020), SmoothGAN6 (Liu et al., 2021), I-GAN (Gen)3 (Xie
et al., 2023) and I-GAN (Tr)3 (Xie et al., 2023) as baselines for the multi-domain translation task.
Note that I-GAN (Gen) refers to the method that uses the multidomain generative model proposed
by (Xie et al., 2023) to carry out the translation procedure via GAN inversion as described in Section
6. Whereas, I-GAN (Tr) is the separate domain translation system proposed by (Xie et al., 2023)
as described in Appendix F. Note that I-GAN (Tr) is trained using the paired samples generated
by I-GAN (see Sec. G.4).

G.6 DATASETS DETAILS

AFHQ. We use the AFHQ (Choi et al., 2020) dataset for both multi-domain generation and translation
tasks. The AFHQ dataset contains images of animal faces in three domains: cat, dog, and wild with
5066, 4679, and 4594 training images, and 494, 492, and 484 testing images. We resize all images to
256× 256 for training and testing.

CelebA-HQ. The CelebA-HQ dataset (Karras et al., 2018) for both multi-domain generation and
translation tasks. It contains high-resolution images of celebrity faces along with attributes such as
gender, hair color, etc. We split the dataset into two domains based on gender. The male domain
contains 18,875 images, whereas the female domain contains 11,025 images. We hold out 1000
images from each domain for testing and use the rest for training. Similar to AFHQ, we resize all
images 256× 256 for training and testing.

CelebA. The CelebA dataset (Liu et al., 2015) is used for multi-domain generation task. It contains
202,599 images of celebrity faces along with different attributes. We split the dataset into 7 domains
based on the following attributes: “Black hair”, “Blonde hair”, “Brown hair”, “Female”, “Male”,
“Old”, and “Young”. We resize all images to 64× 64 for training and testing.

G.7 REGARDING GAN TRAINING STABILITY

GAN training is known to be quite sensitive to hyperparameter setting, and even randomness in
initialization. However, in our experiments, we did not observe severe optimization issues or
performance degradation with minor changes in hyperparameters, e.g., λ, batch size, and random
initialization. Nonetheless, we did observe that using overly deep fully connected networks (>5
layers) for content encoder eC and style encoders e(n)S ,∀n could lead to convergence issues. Hence,
we fixed the number of layers of the content and style encoders to be 3 for all datasets except for the
MNIST digits experiment presented in Appendix H.1.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL DATASET: ROTATED AND COLORED MNIST

In this part, we present additional experiments on MNIST digits, where the domains are rotated
MNIST and colored MNIST. Here, the style corresponds to the color and rotations for the colored
and rotated MNIST, respectively. Whereas, the content is the identity of the digits.

Dataset. For the rotated MNIST domain, we apply rotation uniformly sampled from [-70, 70] degrees
to all the MNIST digits. For the colored MNIST domain, we apply randomly sampled color to the
MNIST digit. Specifically, for a given MNIST digit image, we uniformly sample a vector from
[0, 1]× [0, 1]× [0, 1], corresponding to the normalized RGB channel values. Then, we multiply each
pixel of the given image—which is also in the range [0, 1]—with the color value. We resize the
images in both domains into 32× 32 resolution. Both domains contain 60,000 training samples each.

Neural Networks. Since MNIST digits are of very low resolution compared to the AFHQ and
CelebA-HQ datasets, we use much smaller and simpler neural architectures to represent the generator
q, content encoder eC, style encoder q(n)

S , and the discriminator d(n). Mainly, both eC and e
(n)
S are

5https://github.com/clovaai/stargan-v2.git
6https://github.com/yhlleo/SmoothingLatentSpace.git
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represented by linear layers, i.e., matrices of dimensions d̂C × d̂C and d̂S × d̂S, respectively. The
architecture of q and d(n) are shown in Table 3 and 4. In the tables, Conv represents convolutional
layer, BN represents batch normalization, l-ReLU represents leaky ReLU activation with slope 0.2,
and Up represents nearest neighbor upsampling layer, and dropout represents dropout with probability
0.25.

Layer Description
Linear Concatenates content and style, maps to 128× 2× 2

Conv, BN, l-ReLU, Up 128 filters of 3× 3, stride 1, padding 1, upsample 2
Conv, BN, l-ReLU, Up 128 filters of 3× 3, stride 1, padding 1, upsample 2
Conv, BN, l-ReLU, Up 64 filters of 3× 3, stride 1, padding 1, upsample 2
Conv, BN, l-ReLU, Up 64 filters of 3× 3, stride 1, padding 1, upsample 2

Conv, Tanh 3 filters of 3× 3, stride 1, padding 1

Table 3: Architecture of q.

Layer Description
Embedding Embeds domain index into 32× 32 spatial dimensions
Concatenate (input image and domain embedding) 4× 32× 32 tensor

Conv, l-ReLU, dropout 64 filters of 3× 3, stride 2, padding 1
Conv, l-ReLU, dropout, BN 128 filters of 3× 3, stride 2, padding 1
Conv, l-ReLU, dropout, BN 256 filters of 3× 3, stride 2, padding 1

Linear, Sigmoid Fully connected layer, maps to 1 output

Table 4: Architecture of d(n).

Hyperparameter Setting. We use Adam optimizer with an initial learning rate of 0.0001 and
parameters β1 = 0.5, β2 = 0.999. We use a batch size of 128. We use ℓ1 regularization with
λ = 0.15. The models are trained for 500 epochs.

Result. Fig. 6 shows the result of generating samples across the two domains for the same content
input for the case of λ = 0.15 (i.e., Fig. 6(a)) and λ = 0 (i.e., Fig. 6(b)). Image in the nth row and ith
column is generated by combining content ci with style s(n)i , where n = 1, 2. It can be observed that
the proposed method generates the same digit for the same content information, with varying digit
styles (color and rotation) in their respective domains. However, when the sparsity regularization is
not used, the digit identity is not preserved across domains due to the content-leakage issue (see, e.g.,
the first, third, and fifth columns).

Fig. 7 shows the result of image generation for the case of λ = 0.15 (i.e., Fig. 7(a, b)) and λ = 0
(i.e., Fig. 7(c, d)) . Image in the ith row and jth column is generated by combining content ci and
s
(n)
j for a given domain n. Hence each row contains the same content and each column contains the

same style. Fig. 7(a,b) shows that content and style components are correctly learnt by the proposed
method, i.e., changing the content corresponds to changing the digit, whereas changing the style
corresponds to changing the color and rotation in colored MNIST and rotated MNIST, respectively.
However, when the sparsity regularization is not used, Fig. 7(c,d) shows the issue of content leakage
into the extracted style information. Specifically, chaning the style component results in not only the
change of color and rotation, but also the digit identity themselves. This validates Theorem 3.4 and
the discussions in Sec. 3.2.

H.2 MULTI-DOMAIN TRANSLATION.

In this section, we present qualitative results for multi-domain translation tasks by the proposed
method and the baselines.

Fig. 8 (a) and (b) shows guided translation from wild domain (n = 3) to cat (n = 1). The first
column contains two samples x(3)

i , i ∈ [2] in the wild domain, from which the content ĉ(3)i , i ∈ [2] is
extracted using GAN inversion. The first row contains two samples x(1)

j , j ∈ [2] in the cat domain,

from which the styles ŝ(1)j , j ∈ [2] are extracted. Finally, the translated image are synthesized using
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(a) Proposed (λ = 0.15)

(b) Without sparsity (λ = 0)

Figure 6: Result of sample generation across the two domains when the content is fixed. Images in
each column was generated using the same content (digit identity). The first row is expected to have
various colors and the second various rotations. Ideally, the digits in the two rows of the same column
should be the same.

(a) λ = 0.15 (b) λ = 0.15 (c) λ = 0 (d) λ = 0

Figure 7: Result of generation by varying both the content and style latent codes. Content is the digit
identity, whereas style is the color and rotation in the colored MNIST and rotated MNIST, respectively.
Average FID for the proposed method: 22.08; Average FID without sparsity regularization: 24.08.

q̂(ĉ
(3)
i , ŝ

(1)
j ). One can see that the translated images appear consistent with their respective input

contents (i.e., pose of wild) and styles (i.e., type of dog) for the proposed method, whereas I-GAN
(Gen) seems to ignore the style information.

Fig. 9 shows the result of target domain image-guided translation between Male and Female of the
CelebA-HQ datasets. Here, the first and second columns show the images in the source domain
x(s) and target domain x(t), respectively. We, first, extract the content ĉ(s) from x(s) and style
from s(t) using GAN inversion. Then, the translated image x(s→t) is generated using q(c(s), s(t)).
Fig. 9 shows that the proposed method generates translations that are more consistent with the style
(appearance) of the target domain images compared to the baselines (e.g., see first row).

Fig. 10 shows the result of randomly sampled translations between different pairs of domains in the
AFHQ and CelebA-HQ datasets. Here, the first column shows the images in the source domain x(s).
We extract the content ĉ(s) from x(s) using GAN inversion. Then, a style vector s(t) is randomly
sampled in the target domain t to generate the translated image x(s→t) = q(ĉ(s), s(t)). One can see
that the translation quality is competitive with the baselines. Moreover, in some cases, the translations
produced by the proposed method appear more natural compared to the baselines (e.g., see ears of
wild animals in the “dog to wild” translation task).
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(a) Proposed (b) I-GAN (Gen)

Figure 8: Translation Task: Combining content (pose) with styles of the image in the top row (the cat
domain)

Figure 9: Target image-guided translation between different pairs of domains. Content (pose) from
the image in the first column is combined with the style (appearance) of the image in the second to
generate the translated images.

H.3 MULTI-DOMAIN GENERATION.

In this section, we present additional qualitative results for multi-domain data generation by the
proposed method and the baselines.

Fig. 11 shows the generated images by varying content and style components in various domains
for the proposed method and the baseline. Image in the ith row and jth column is generated by
combining content ci and s

(n)
j for a given domain n. Hence each row contains the same content and

each column contains the same style. One can see that the proposed method has successfully learnt to
disentangle content (pose of the object) and style (appearance of the object) for all domains. Whereas,
for the baseline I-GAN, it seems that the style component is not properly learnt.

Fig. 12 shows the qualitative results for the CelebA dataset. As in Fig. 3, for the jth column
associated with domain nj , we generate three different styles s(nj)

i , i ∈ [3]. Then, the image xi,j

in the ith row and jth column is generated by q(c, s
(nj)
i ), using fixed content c. One can see that

the proposed method generates content (pose) aligned samples in different domains with varying
style. However, the baseline I-GAN seems to generate the same image for a given domain, as in
other experiments.
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(a) AFHQ dataset

(b) CelebA-HQ dataset. M: Male, F: Female

Figure 10: Randomly sampled style based translation between different pairs of domains. Content
(pose) from the image in the first column is combined with a randomly sampled style in the target
domain to generate the translated images.
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(a) I-GAN (Male) (b) Proposed (Male)

(c) I-GAN (Female) (d) Proposed (Female)

(e) I-GAN (Dog) (f) Proposed (Dog)

(g) I-GAN (Wild) (h) Proposed (Wild)

Figure 11: Different contents ci combined with different styles s(n)j in different domains n.32
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(a) I-GAN

(b) Proposed

Figure 12: Qualitative results for the CelebA dataset. All images are generated using the same content
c but different styles s

(n)
i , i ∈ [3], n ∈ [7], i.e., image xi,j in the (i, j)-th location in the grid is

xi,j = q(c, s
(j)
i ),∀i, j ∈ [3]× [7].
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H.4 OTHER SPARSITY PROMOTING REGULARIZATION

As mentioned in Section 6, any sparsity promoting regularization other than ℓ1 can also be used in
order to avoid the content leakage problem when the latent dimensions are unknown. In this section,
we show that using ℓp-norm with p < 1 can be similarly effective. To that end we use λ∥e(n)S (r

(n)
S ∥ 1

2
.

We set λ = 0.3 and fix all other setting to be the same as described in Sec. G.

Fig. 13 shows the result of image generation in the three domains (i.e., cat, dog, and wild) of the
AFHQ dataset by varying content and style latent variables. Similar to the results obtained by using
ℓ1-norm based regularization, the content (pose) and the style (appearance) information is correctly
learned.

Fig. 14 shows the result of image generation across different domains for the same content information.
Image in the nth row and ith column is generated using content c and style s

(n)
i . One can observe

that samples across different domains are content-aligned.

(a) Cat domain (b) Dog domain (c) Wild domain

Figure 13: Generation result for ℓ 1
2

-norm based sparsity regularization on AFHQ dataset. FID: 6.61

(a) fixed content across different domains (b) Translation from wild to cat

Figure 14: (a) Generated images across different domains for the same content information in the
AFHQ dataset. (b) Image translation from wild domain to cat domain of the AFHQ dataset

H.5 CONDITIONAL IMAGE GENERATION.

Fig. 15 and 16 shows random samples from each domain. That is, each image is generated
using randomly sampled content and styles for the proposed method and I-GAN. Whereas, for
StyleGAN-ADA and Transitional-cGAN, each image in a given domain is generated using
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randomly sampled latent vector. One can see that the compared to the class conditional genera-
tive models StyleGAN-ADA and Transitional-cGAN, the proposed multi-domain generative
model does not incur any loss in the visual quality. However, due to disentangled latent representa-
tions, the proposed method enables content/style controlled generation and domain translation.

(a) StyleGAN-ADA (b) Transitional-cGAN

(c) I-GAN (d) Proposed

Figure 15: Class conditional image generation by all methods for AFHQ dataset.

H.6 UNDERESTIMATED LATENT DIMENSION

In this section, we provide some discussions on the implications of underestimated latent dimensions
dC and dS. Generally, when d̂C < dC or d̂S < dS , solving Problem (4) cannot identify the content
and the style parts. In addition, a feasible solution to Problem (4) may not even exist. To clarify, we
provide some intuitive explanation for the following three cases:

1. d̂C + d̂S < dC + dS : In this case, a differentiable injective map f does not exist from
dC + dS-dimensional manifold, X , to Rd̂C+d̂S . Considering our implementation in Problem
(6), the generated data may not be able to match the data distribution Px(n) well since the
generated data q

(
eC(rC), e

(n)
S (r

(n)
S )

)
will have to live on a lower dimensional manifold

than X .

2. d̂C < dC but d̂C + d̂S ≥ dC + dS : The content dimension will be insufficient to capture all
the content information. As such the style part might be a mixture of content and style.
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(a) StyleGAN-ADA (b)
Transitional-cGAN

(c) I-GAN (d) Proposed

Figure 16: Class conditional image generation for CelebA-HQ dataset.

3. d̂S < dS but d̂C + d̂S ≥ dC + dS : The style dimension will be insufficient to capture all
the style information. But Assumption 3.2 still ensures that the style does not leak into the
extracted content part. Hence, the style variability may not be captured by the generated
images.

Fig. 17 shows generated samples by varying the content and style dimensions for the cat domain
of the AFHQ dataset. We show results corresponding to each of the above cases. Empirical tests
showed that dC > 8 and dS > 8 are reasonable settings for the AFHQ dataset, which we will treat
as the “ground truth”. For each row, we fix the content part c = eC(rC) (i.e., pose of the cat) and
randomly sample different styles s(1) = e

(1)
S (r

(1)
S ) where r

(1)
S ∼ N (0, I d̂S

) to generate the images

x(1) = q(c, s(1)). We set dC = 8 and/or d̂S = 8 according to the specific case that we tested.

Fig. 17(a) corresponds to Case 1. One can see that although content-style disentanglement appears
satisfactory, the FID attained is slightly worse than the other two cases, which could be due to
insufficient latent dimension.

Fig. 17(b) corresponds to Case 2. One can see that changing the style component seems to change
both pose and appearance, which means that extracted style is a mixture of the content and style.

Fig. 17(c) corresponds to Case 3. Here, changing the style component has very little effect on
the appearance of the cat which corroborates our intuition that the style information is not fully
captured.
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(a) d̂C = 8, d̂S = 8; FID: 6.33 (b) d̂C = 8, d̂S = 504; FID: 6.01

(c) d̂C = 504, d̂S = 8; FID: 6.08

Figure 17: Result of using small latent dimensions for AFHQ dataset.
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