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ABSTRACT

Diffusion models, best known for high-fidelity image generation, have recently
been repurposed as zero-shot classifiers by applying Bayes’ theorem. This approach
avoids retraining but requires evaluating every possible label for each input, making
inference prohibitively expensive on large label sets. We address this bottleneck
with the Hierarchical Diffusion Classifier (HDC), a training-free method that
exploits semantic label hierarchies to prune irrelevant branches early and refine
predictions only within promising subtrees. This coarse-to-fine strategy reduces
the number of expensive denoiser evaluations, yielding substantial efficiency gains.
On ImageNet-1K, HDC achieves up to 60% faster inference while preserving, and
in some cases even improving, accuracy (65.16% vs. 64.90%). Beyond ImageNet,
we demonstrate that HDC generalizes to datasets without predefined ontologies
by constructing hierarchies with large language models. Our results show that
hierarchy-aware pruning provides a tunable trade-off between speed and precision,
making diffusion classifiers more practical for large-scale and open-set applications.

1 INTRODUCTION

Diffusion models have fundamentally reshaped the landscape of image synthesis, demonstrating an
unparalleled ability to model complex data distributions conditioned on inputs like class labels or
text prompts (Moser et al., 2024b; Bar-Tal et al., 2023; Frolov et al., 2024; Lugmayr et al., 2022;
Ho et al., 2020). This deep, generative understanding of data unlocks capabilities that extend far
beyond image creation, offering a powerful new paradigm for discriminative tasks (Goodfellow
et al., 2014; Rezende & Mohamed, 2015). While traditional supervised classifiers excel in static,
well-labeled scenarios, they often falter in dynamic, real-world settings. Their reliance on fixed label
sets necessitates extensive retraining to accommodate new classes, and they struggle with out-of-
distribution or open-set data. The rich, pre-trained representations of diffusion models, however, are
uniquely suited for these challenging zero-shot, open-set, and robust classification tasks (Clark &
Jaini, 2023; Chen et al., 2024b; Allgeuer et al., 2024).

Capitalizing on this potential, researchers have begun repurposing pre-trained diffusion models as
diffusion classifiers (Li et al., 2023; Chen et al., 2024a). The approach is elegant in its simplicity: by
leveraging Bayes’ theorem, a model trained to estimate p (x | c) - the likelihood of image x given
class c - can infer p (c | x) - the probability of class c given image x. This allows for zero-shot
inference without any label-specific retraining. The core mechanism involves evaluating the diffusion
model’s ability to reconstruct a noised input image under different class conditions, typically by
estimating the noise prediction error.

Despite this compelling potential, a major computational bottleneck renders diffusion classifiers
impractical for all but the smallest-scale problems (Ganguli et al., 2022; Clark & Jaini, 2023; Li et al.,
2023; Moser et al., 2024a). Current methods must execute the expensive noise-prediction process for
every potential class label for each input image, resulting in a computational cost that scales linearly
with the size of the label set. While prior work has explored acceleration through weak pre-filtering
of class labels (Li et al., 2023) or successive elimination (Clark & Jaini, 2023), these methods still
treat the label space as flat and often evaluate a large majority of candidates.

To make diffusion classifiers more viable, we introduce the Hierarchical Diffusion Classifier (HDC),
a novel, training-free approach that fundamentally restructures the classification process by exploiting
semantic label hierarchies (see Figure 1). Instead of a flat, brute-force search, HDC employs a
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Hierarchical Diffusion
Classifier (ours)

Classical Diffusion Classifier

Figure 1: Comparison between the classical diffusion classifier and our proposed Hierarchical
Diffusion Classifier (HDC). Whereas the classical approach evaluates all possible classes to find the
correct label, which leads to unnecessary computation, HDC prunes irrelevant classes early, focusing
only on the most relevant candidates. This hierarchical pruning reduces computational overhead and
accelerates inference.

multi-stage, coarse-to-fine strategy. It first performs a computationally cheap evaluation at high
levels of the label hierarchy (e.g., ”animal” vs. ”vehicle”). Based on these initial scores, HDC
prunes entire branches of the label tree deemed irrelevant, drastically reducing the candidate space.
It then performs the standard, more computationally intensive diffusion classification only on the
significantly narrowed set of remaining leaf-node candidates.

Our contributions are as follows:

• We propose the Hierarchical Diffusion Classifier (HDC), a training-free method that signifi-
cantly accelerates diffusion-based classification by leveraging a coarse-to-fine search on a
semantic label hierarchy.

• We demonstrate that HDC reduces inference time by up to 60% on ImageNet-1K while
maintaining comparable accuracy, and in some configurations, even outperforming the
baseline flat classifier (65.16% vs. 64.90% average per-class accuracy).

• We introduce and evaluate both fixed and adaptive pruning strategies, providing a tunable
trade-off between speed and precision that enhances the feasibility of diffusion classifiers
for large-scale tasks.

• We show that our approach generalizes to datasets without pre-defined hierarchies by suc-
cessfully constructing and using label trees generated by Large Language Models (LLMs).

While not intended to replace standard supervised classifiers on closed-set benchmarks, HDC rep-
resents a critical step toward making diffusion classifiers practical and scalable for the dynamic,
data-scarce, and open-set scenarios where their unique generative power is most needed.

2 RELATED WORK

Zero-shot classification enables models to recognize categories unseen during training by leveraging
shared semantics between inputs and labels. CLIP exemplifies this paradigm in vision-language
modeling (Radford et al., 2021), and recent large language models extend zero-shot and few-shot
classification in text domains (Achiam et al., 2023; Touvron et al., 2023; Anil et al., 2023).

Diffusion models, originally developed for image synthesis (Ho et al., 2020; Dhariwal & Nichol,
2021; Rombach et al., 2022), have been adapted for discriminative use without additional training.
These diffusion classifiers score a label by how well a conditional diffusion model reconstructs a
noised input under that label (Li et al., 2023; Clark & Jaini, 2023; Chen et al., 2024b;a). This enables
flexible zero-shot and open-set classification but incurs a high cost because inference scales with the
number of labels: each candidate requires a forward pass (or several) through the denoiser.

To reduce this cost, prior work has introduced flat-space candidate reduction. Li et al. (2023) pre-filter
labels with a weak discriminative model, while Clark & Jaini (2023) use successive elimination in
a multi-armed bandit framework. These strategies lower computation yet still treat the label set as
unstructured, so most comparisons remain necessary when the label space is large.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our approach departs from flat filtering by exploiting the semantic structure among labels. We
leverage dataset hierarchies (or automatically constructed label trees) to prune entire subtrees early
and refine only within relevant branches. In this sense, our method complements prior accelerations
while directly targeting scalability on large, structured label spaces.

3 PRELIMINARIES: FLAT DIFFUSION CLASSIFIER

We follow the formulation of Li et al. (2023) for extracting a zero-shot classifier from a conditional
diffusion model. Let pθ(x | c) denote the likelihood of image x under class prompt c. By Bayes’
rule,

pθ(ci | x) =
p(ci) pθ(x | ci)∑NC

j=1 p(cj) pθ(x | cj)
=

pθ(x | ci)∑NC

j=1 pθ(x | cj)
, (1)

where we assume a uniform class prior p(ci) = 1/NC .

For diffusion models trained to predict noise, the evidence lower bound links the likelihood to the
ε-prediction error. Writing xt =

√
ᾱt x +

√
1− ᾱt ε for the noising process with t ∈ {1, . . . , T}

and ε ∼ N (0, I), we obtain the posterior (up to normalization)

pθ(ci | x) ∝ exp
{
− Et,ε

∥∥ε− εθ(xt, ci)
∥∥2}, (2)

where εθ(·, c) is the denoiser’s noise prediction under condition c.

Monte Carlo estimate. In practice, we approximate the expectation with M samples (tk, εk):

Et,ε

∥∥ε− εθ(xt, c)
∥∥2 ≈ 1

M

M∑
k=1

∥∥∥εk − εθ

(√
ᾱtkx+

√
1− ᾱtk εk, c

)∥∥∥2. (3)

Paired-difference (shared-sample) scoring. For classification, only relative errors matter. Using
the same sample set S = {(tk, εk)}Mk=1 across all classes increases statistical efficiency and yields
the paired-difference approximation:

pθ(ci | x) ≈

[
NC∑
j=1

exp
{
Et,ε

(
∥ε− εθ(xt, ci)∥2 − ∥ε− εθ(xt, cj)∥2

)}]−1

. (4)

This flat diffusion classifier thus assigns scores to all labels and normalizes across the label set,
enabling zero-shot and open-set prediction without any discriminative retraining (Li et al., 2023;
Clark & Jaini, 2023; Chen et al., 2024b;a). Its main drawback is computational: inference cost scales
linearly with NC because each class requires evaluating the denoiser for multiple (t, ε) pairs.

4 HIERARCHICAL DIFFUSION CLASSIFIER (HDC)

Flat diffusion classifiers evaluate all candidate labels independently, leading to an inference cost that
scales linearly with the number of classes. To alleviate this bottleneck, we introduce the Hierarchical
Diffusion Classifier (HDC), which exploits semantic label trees to prune irrelevant branches early and
restrict expensive diffusion evaluations to a small set of promising candidates.

4.1 TRAVERSING THE LABEL TREE

Let Th = (N,E) denote a hierarchical label tree of depth h, with nodes N and edges E. Each node
n ∈ N corresponds to a synset (or a class if n is a leaf). The root node is nroot, and Children(n)
denotes its child nodes. Each node carries a label embedding cn. For leaves, these are class labels.

We begin with S1
selected = {nroot}. At step d, for each selected node ns ∈ Sd

selected, we compute the
ε-prediction error for its children:

ϵn = Et,ε

∥∥ε− εθ(xt, cn)
∥∥2, n ∈ Children(ns), (5)
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approximated via Monte Carlo sampling as in Equation 3, but with a smaller M for efficiency.

Based on these scores, we prune nodes by retaining only those below a threshold determined by a
pruning strategy (see Section 4.3). Formally,

Sd+1
selected =

{
n ∈ Children(ns) | ns ∈ Sd

selected, ϵn ≤ threshold(Kd)
}
. (6)

The process continues until depth h, where Sh
selected contains the final leaf candidates. The final

prediction is then given by the flat diffusion classifier restricted to this pruned set:

cnfinal , nfinal = arg min
n∈Sh

selected

ϵn. (7)

By pruning aggressively, HDC reduces the number of denoiser calls from O(NC) to sublinear in NC .
If b is the branching factor and Kd the pruning ratio at level d, the cost scales as

O
(
N

1+logb K
C M Cε

)
, 1 + logb K < 1, (8)

where Cε is the cost of one εθ evaluation. In practice, speed-up is roughly 1/K compared to flat
diffusion classification.

4.2 TREE SETUP

HDC requires a label hierarchy but is not tied to a specific source. For ImageNet-1K, we use the
WordNet ontology (Deng et al., 2009), pruning overly vague nodes (e.g., “entity” or “artifact”) and
collapsing redundant subtrees, yielding a depth-7 hierarchy. For datasets without native ontologies
(e.g., CIFAR-100, Food101, Oxford Pets), we construct trees using large language models to generate
semantic groupings. This demonstrates HDC’s flexibility: it leverages existing taxonomies when
available and synthesizes plausible ones otherwise.

4.3 PRUNING STRATEGIES

We implement two pruning strategies:

• Fixed Pruning. At each level, retain the top-Kd fraction of nodes with lowest error scores.

• Dynamic Pruning. At each level, retain nodes within 2σd of the minimum error, i.e.,

Sd+1
selected = {n ∈ Children(ns) | ns ∈ Sd

selected, ϵn ≤ ϵdmin + 2σd}, (9)

where ϵdmin and σd denote the minimum and standard deviation of error scores at depth d.

Fixed pruning provides explicit control over the speed–accuracy trade-off, while dynamic pruning
adapts automatically to the score distribution. Both lead to substantial runtime reductions, as shown
in our experiments section.

4.4 DYNAMIC CLASS MODIFICATION

Unlike discriminative classifiers, HDC naturally supports dynamic class modifications. Removing
a class corresponds to pruning its leaf; adding a class amounts to inserting a new leaf under an
appropriate parent (either predefined or selected greedily). This property makes HDC particularly
suited to open-set and evolving label spaces.

5 EXPERIMENTS

This section presents our experimental setup and results, evaluating different aspects of HDC: pruning
strategies, prompt engineering, SD variations, and an overall evaluation of per-class accuracy on
various datasets. Our code will be published upon acceptance.
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Table 1: ImageNet-1K comparison of overall and per-class classification accuracy and inference
time between the classical diffusion classifier (Li et al., 2023) and our proposed HDC (fixed and
adaptive pruning) using Stable Diffusion 2.0. HDC achieves significant inference time reduction
(up to 60%) while maintaining or improving accuracy. The best results are marked in bold, the
second-best underlined.

Method Pruning Avg. Accuracy [%] Time [s] Speed-Up [%]
Overall Per-Class

Flat Diffusion Classifier (Li et al., 2023) – 64.70 64.90 1600 –
HDC (ours) Fixed 64.90 65.16 980 38.75
HDC (ours) Adaptive 63.20 63.33 650 59.38

5.1 SETUP

HDC is based on the efficient framework established by Li et al. (2023), with added modifications
tailored for hierarchical processing and pruning of candidate classes, further customized for diffusion
classification on Stable Diffusion (SD) (Rombach et al., 2022). Yet, our method is adaptable, allowing
seamless integration with different diffusion models and possible fine-tuning to support various
hierarchical pruning strategies. To demonstrate this, we accommodate the SD versions 1.4, 2.0, and
2.1. For fixed pruning, we set Kd = 0.5 for all possible d-values. All evaluations were performed at
512×512, the resolution under which all versions of SD were originally trained. Also following Li
et al. (2023), we used the l2 norm to compute the εt-predictions and sampled the timesteps uniformly
from [1, 1000].

For Imagenet-1K (Deng et al., 2009), the class labels are converted to the form “a photo of a <class
label>” using the template from the original work (Li et al., 2023). Inspired by Radford et al. (2021),
we also experiment with prompt templates “A bad photo of a <class label>”, “A low-resolution
photo of a <class label>” and “itap of a <class label>”. For CIFAR-100 (Krizhevsky, 2009), we
use “a blurry photo of <class label>”. Finally, for the Food101 (Bossard et al., 2014) and Pets
(Parkhi et al., 2012) datasets, we use the template “a photo of a <class label>, a type of food/pet.”

5.2 MAIN RESULTS

Table 1 highlights the results of our HDC with both pruning strategies (fixed and adaptive) compared
to the classical, flat diffusion classifier (Li et al., 2023) on ImageNet-1K.

Overall. As observed, both pruning strategies show significant improvements in runtime compared
to classical diffusion classifiers, and each is suited to different prioritizations of speed versus accu-
racy. Fixed pruning yields the best trade-off results on ImageNet-1K, achieving significant runtime
reductions (up to 980 seconds) with a top-1 accuracy boost of 0.20 percentage points. By employing
adaptive pruning (selecting candidates based on two standard deviations from the lowest error), we
reduce the inference time even further to 650 seconds, though at the cost of a slight accuracy drop
(i.e., 1.50 percentage points). The adaptive strategy demonstrates that faster inference can be achieved
with a small compromise in precision.

Per-Class. The baseline diffusion classifier achieves an accuracy of 64.90% with an inference time
of 1600 seconds, providing a reference for both speed and precision. Using fixed pruning in HDC
demonstrates new state-of-the-art accuracy for diffusion classifiers with 65.16%, while reducing
the inference time by nearly 40% to 980 seconds. This indicates that HDC can not only improve
classification performance but also leads to a considerable reduction in computation. Reducing
processing time while maintaining similar accuracy makes fixed pruning a balanced choice for
high-accuracy applications where inference speed is a priority. Similarly, HDC with adaptive pruning
leverages dynamic pruning to further accelerate inference. While it records a slight drop in accuracy
to 63.33%, adaptive pruning reduces inference time to 650 seconds - approximately 60% faster than
the baseline. This strategy demonstrates the potential of HDC for use cases requiring faster response
times, with only a marginal trade-off in classification performance.
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Table 2: CIFAR-100 with an LLM-generated label tree (SD 2.0). We report class-wise Top-
1 accuracy and runtime per class for the flat diffusion classifier versus HDC with fixed pruning
(Kd∈{0.75, 0.5, 0.4}) and adaptive pruning (retain nodes with ϵ ≤ ϵdmin + 2σd). HDC consistently
reduces inference cost while preserving or improving accuracy; e.g., fixed pruning with Kd=0.4
improves accuracy by +3.3 pp and cuts runtime by ≈ 34% relative to the flat baseline. Best results
are in bold, second-best are underlined.

Flat Diff. Fixed Pruning Adaptive Pruning

Classifier (Li et al., 2023) Kd = 0.75 Kd = 0.5 Kd = 0.4 ≤ ϵdmin + 2σd

Class-Acc [%] 68.93 56.79 60.57 72.23 65.12
Runtime [s/class] 1000 275 550 660 740
Speed-Up [%] - 72.50 45.00 34.00 26.00

Living Thing Non-Living
Thing

Person
(-0.1126)

Animal
(-0.1125)

Bird
(-0.1123)

Mammal
(-0.1126)

Bird of
Prey

(-0.1122)

Object
(-0.1127)

Transport
(-0.1127)

Bubble
(-0.1127)

Crane
(-0.1123)

Bustard
(-0.1124)

Vulture
(-0.1123)

American
Bald Eagle
(-0.1123)

Kite (Bird of
Prey)

(-0.1122)

pruned

candidate
leaves

final prediction

Figure 2: Illustration of HDC on a single image. At each stage,
nodes with high error scores are pruned, leaving only relevant branches
of the label tree. Here, pruning progressively narrows the candidates
to semantically related classes (e.g., American Bald Eagle, Vulture),
before selecting the correct leaf node Kite (Bird of Prey) as the final
prediction. This example completes in 1102 seconds, demonstrating
how HDC focuses computation on a compact set of plausible labels.

Example. Figure 2 illus-
trates how HDC progres-
sively prunes the label tree.
At each stage, error scores
guide the elimination of un-
likely branches, leaving only
a small set of relevant leaf
nodes. The final prediction
is then obtained by applying
the flat diffusion classifier on
this reduced set, demonstrat-
ing how HDC shifts expen-
sive computation to only the
most promising candidates.

Confusion. The confusion
matrix in Figure 3 shows
within the “Animal” subtree.
Misclassifications predomi-
nantly occur among biolog-
ically similar classes (e.g.,
salamanders vs. lizards, or
lizards vs. snakes), indicat-
ing that the model’s errors
are structured and semanti-
cally meaningful.

Summary. Our results
highlight that HDC enables
a tunable trade-off between
inference speed and accu-
racy. Fixed pruning delivers
the best balance of efficiency
and precision, making it
suitable for high-stakes
classification, while adaptive
pruning achieves the fastest
runtimes with only minor
accuracy loss.

5.3 LLM-GENERATED LABEL-TREES AND OTHER DATASETS

Our method also demonstrates notable results on CIFAR-100 when employing a LLM-generated
label hierarchy, substantially outperforming the standard flat diffusion classifier baseline (see Table 2).
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Table 3: Performance of HDC with fixed and adaptive pruning on Pets and Food101 using LLM-
generated label trees. Across both datasets, HDC accelerates inference while maintaining or improv-
ing accuracy: e.g., +2.1 pp on Pets and +2.8 pp on Food101 compared to the flat diffusion classifier.
Best results are shown in bold.

Pets Food101
Top1 [%] Top5 [%] Time [s] Top1 [%] Top5 [%] Time [s]

Flat Diffusion Classifier (Li et al., 2023) 85.25 99.19 40.55 72.40 92.00 79.22
HDC fixed (ours) 86.53 98.69 40.00 75.15 88.95 66.60
HDC adaptive (ours) 87.39 99.39 40.00 67.00 81.15 52.60
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Turtle
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Arachnid

Insect

Snake

Crustacean

Rest

21 7 3

182 1 3

1 13 1

8 1 1

474 1 22

15

1 31 2

21 2 2

1 1 58 1 6

51 1 1

1 1 21 4 1

2 1 1 26 7

Figure 3: Confusion matrix on ImageNet-1K (“Animal” subtree). Results shown for HDC with
fixed pruning. The y-axis denotes ground-truth classes and the x-axis predicted labels (including
“other classes” outside the subtree). Most confusions occur between semantically related species (e.g.,
salamander-lizard, lizard-snake), reflecting meaningful structure in the model’s errors.

Moreover, we show the influence of the pruning ratio Kd for our fixed pruning strategy critically
dictates the balance between classification accuracy and inference speed. For instance, decreasing Kd

from 0.75 to 0.5, and further to 0.4, shows a clear trend: accuracy improves from 56.79% to 60.57%
and then to a peak of 72.23%, while runtime correspondingly increases from 275s to 550s and 660s.

Finally, the performance advantages of HDC generalize effectively to other datasets, such as Pets and
Food101, as detailed in Table 3. For instance, on the Pets dataset, HDC adaptive improved Top-1
accuracy by +2.14pp (to 87.39%) with a negligible change in runtime (40s vs. 40.55s). On the Food
dataset, HDC fixed simultaneously increased Top-1 accuracy by +2.75 percentage points (to 75.15%)
and accelerated inference by a significant 16% (66.6s vs. 79.22s). Even greater speed-ups were
observed with HDC adaptive on Food (52.6s, a 33.6% reduction), albeit with a trade-off in accuracy
for that specific configuration.

5.4 STABLE DIFFUSION VERSIONS

We evaluated the HDC using different SD versions to assess its flexibility and performance across
generative backbones, as summarized in Table 4. The results reveal that SD 2.0 provides the best
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Table 4: Performance comparison of the HDC with different diffusion models using fixed and
adaptive pruning for ImageNet-1K. Top-1 accuracy and inference time (in seconds) are reported for
each SD version, highlighting SD 2.0 as achieving the highest accuracy, while adaptive pruning in
SD 1.4 yields the fastest inference time.

SD Version
Fixed Pruning Adaptive Pruning

Top 1 [%] Top 1 [%] Time [s] Speed-Up [%] Top 1 [%] Top 1 [%] Time [s] Speed-Up [%]
(class-wise) (overall) (class-wise) (overall)

SD 1.4 52.71 52.60 1000 37.50 54.77 54.80 710 55.63
SD 2.0 65.16 64.90 980 38.75 63.33 63.20 980 38.75
SD 2.1 61.15 61.00 950 40.63 60.91 60.70 720 55.00

Table 5: Evaluation across different prompt types for HDC using fixed and adaptive pruning on
ImageNet-1K. The standard prompt, “A photo of a <class label>”, consistently yields the highest
Top-1, Top-3, and Top-5 accuracy. Alternative prompts, such as “A bad photo of a <class label>”
and “A low-resolution photo of a <class label>”, result in slight decreases in accuracy, showing that
prompt variations can impact model performance.

Pruning Prompt-Type Top 1 [%] Top 3 [%] Top 5 [%]

fixed

“A photo of a <class label>” 64.90 80.20 85.30
“A bad photo of a <class label>” 59.90 79.60 84.90
“itap of a <class label>” 61.37 81.33 86.30
“A low-resolution photo of a <class label>” 57.50 76.46 80.94

adaptive

“A photo of a <class label>” 63.20 82.30 86.30
“A bad photo of a <class label>” 62.30 80.10 85.90
“itap of a <class label>” 57.80 78.20 82.30
“A low-resolution photo of a <class label>” 57.50 76.46 80.94

trade-off between accuracy and inference time. Specifically, when using fixed pruning, SD 2.0
achieved the highest Top-1 accuracy at 64.14% with an inference time of 980 seconds. In contrast,
SD 1.4 demonstrates the fastest inference time of 710 seconds when paired with adaptive pruning,
albeit with a significant top-1 class-accuracy reduction to 54.77%.

5.5 PROMPT ENGINEERING

Inspired by Radford et al. (2021), we also evaluated different prompt templates to assess their impact
on accuracy and inference time, as shown in Table 5. The default prompt, “a photo of a <class
label>,” consistently achieved the best performance, suggesting that a straightforward prompt yields
robust results across classes. Other templates, such as “a bad photo of a <class label>” and “a
low-resolution photo of a <class label>,” resulted in a slight drop in accuracy without significantly
affecting inference time.

The rationale for testing alternative prompts stems from a hypothesis that prompts hinting at lower-
quality images might help the classifier generalize better to real-world cases with variable quality,
capturing diverse visual characteristics. For instance, using terms like “bad” or “low-resolution” was
expected to enhance robustness to noisy or degraded inputs.

Interestingly, however, the results show that the simpler, unmodified prompt performs best, indicating
that the hierarchical model likely benefits from a more neutral prompt format when dealing with
high-quality image data like ImageNet-1K. Nevertheless, these prompt variations may still hold
potential for datasets with inherently low-resolution or distorted images, where quality-based prompts
could help the classifier learn more generalized features.

We also observed a significant disparity in inference times across specific classes, such as “snail” (221
seconds) versus “keyboard space bar” (1400 seconds). This difference likely reflects the complexity
of visual features within each category: classes with intricate or ambiguous features may require
longer processing times due to the hierarchical classification structure.
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6 LIMITATIONS & FUTURE WORK

Although HDC delivers substantial speed-ups and competitive accuracy, including in robust and
zero-shot open-set settings with dynamic class modifications, several limitations open avenues for
future research.

Most importantly, the efficiency gains hinge on the depth and balance of the label hierarchy. Datasets
with shallow trees or weak semantic groupings may see limited acceleration. This motivates the
development of more sophisticated, data-driven hierarchies that can adapt to the structure of each
dataset. Likewise, our method has yet to be tested on domains with highly complex or overlapping
categories, such as medical imaging or fine-grained visual recognition. These scenarios present
opportunities to extend HDC with adaptive thresholds, weighted traversal paths, or hybrid pruning
strategies that emphasize fine-grained discriminative cues.

Looking forward, we see three especially promising directions: (i) automated hierarchy construction
using LLMs or representation learning, (ii) tighter integration with multimodal diffusion models to
support cross-domain classification, and (iii) dynamic, task-aware pruning strategies that adapt in real
time. Together, these directions point to a broader research agenda: turning diffusion classifiers into
scalable, flexible, and general-purpose tools for large-scale recognition.

7 CONCLUSION

We presented the Hierarchical Diffusion Classifier (HDC), a training-free framework that makes
diffusion-based classification practical at scale. By replacing flat evaluation with a coarse-to-fine
search over semantic label hierarchies, HDC prunes entire branches early and focuses computation
only on the most promising candidates. This simple but powerful idea yields up to a 60% reduction
in inference time while matching, or even surpassing, the accuracy of flat diffusion classifiers.

Beyond efficiency, HDC introduces a new design principle for diffusion classifiers: exploiting
structure in the label space. Our experiments show that both fixed and adaptive pruning strategies
deliver flexible control over the speed–accuracy trade-off, enabling deployment in settings ranging
from high-accuracy benchmarks to real-time applications. Crucially, HDC generalizes across datasets
with and without predefined hierarchies, demonstrating that scalable diffusion classification is
achievable even in dynamic, open-set environments.

In short, HDC expands the role of diffusion models from generative foundations to competitive,
large-scale classifiers. We believe this hierarchical perspective opens the door to a new class of
diffusion-based methods that are not only expressive but also efficient, adaptive, and ready for
real-world recognition tasks.
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