
Under review as a conference paper at ICLR 2022

SAFETY-AWARE POLICY OPTIMISATION
FOR AUTONOMOUS RACING

Anonymous authors
Paper under double-blind review

ABSTRACT

To be viable for safety-critical applications, such as autonomous driving and assis-
tive robotics, autonomous agents should adhere to safety constraints throughout
the interactions with their environments. Instead of learning about safety by col-
lecting samples, including unsafe ones, methods such as Hamilton-Jacobi (HJ)
reachability compute safe sets with theoretical guarantees using models of the
system dynamics. However, HJ reachability is not scalable to high-dimensional
systems, and the guarantees hinge on the quality of the model. In this work, we
inject HJ reachability theory into the constrained Markov decision process (CMDP)
framework, as a control-theoretical approach for safety analysis via model-free
updates on state-action pairs. Furthermore, we demonstrate that the HJ safety value
can be learned directly on vision context, the highest-dimensional problem studied
via the method to-date. We evaluate our method on several benchmark tasks, in-
cluding Safety Gym and Learn-to-Race (L2R), a recently-released high-fidelity
autonomous racing environment. Our approach has significantly fewer constraint
violations in comparison to other constrained RL baselines, and achieve the new
state-of-the-art results on the L2R benchmark task. We release our code in the
supplementary material.

1 INTRODUCTION

Autonomous agents need to adhere to safe behaviours when interacting with their environment. In
the context of safety-critical applications, such as autonomous driving and human-robot interaction,
there is growing interest in learning policies that are simultaneously safe and performant. In the
reinforcement learning (RL) literature, it is common to define safety as satisfying safety specifications
(Ray et al., 2019a) under the constrained Markov decision process (CMDP) framework (Altman,
1999), which extends the Markov decision process (MDP) by incorporating constraints on expected
cumulative costs. One challenge for solving a CMDP problem is the need to evaluate whether a policy
will violate constraints (Achiam et al., 2017). Model-free methods depend on collecting diverse
state-action pairs from the environment, including unsafe ones. As a result, safety is not guaranteed,
most notably during the initial learning interactions (Cheng et al., 2019).

Given the practical limitations of learning about safety by collecting experiences of constraint
violations or even failures, it may be favourable to leverage control theory and/or domain knowledge
to bootstrap the learning process. Methods, such as Hamilton-Jacobi (HJ) reachability, compute safe
sets with theoretical guarantees using models of the system dynamics. However, these guarantees
hinge on the quality of the model, which may not capture the true dynamics. Due to scalability
issues with HJ reachability, these models tend to be low-dimensional representations of the true
system (up to 5D for offline computation, and 2D for online computation) Furthermore, existing
works on HJ reachability exclusively study problems defined on physical states, e.g. poses, instead of
high-dimensional sensory inputs, such as RGB images.

Building upon prior work on learning HJ safety value via model-free updates on state-action pairs
(Fisac et al., 2019), we inject HJ reachability into the CMDP framework (Section 4). Since safety
verification under HJ Reachability theory does not depend on the performance policy, we can bypass
the challenges from solving a constrained optimisation problem with a neural policy, and naturally
decompose the problem of learning under safety constraints into (a) optimising for performance, and
(b) updating the safety value function. Given this intuition, we learn two policies that independently

1

Under review as a conference paper at ICLR 2022

(a) SPAR Architecture (b) Safety Critic

Figure 1: SPAR Overview. (a) By incorporating HJ reachability theory into the CMDP framework, we can
decompose learning under safety constraints into optimising for performance and updating safety value function.
Thus, SPAR consists of two policies, which are in charge of safety and performance independently. The safety
controller only intervenes when the current state-action pair is deemed unsafe by the safety critic. (b) The safety
critic is updated via HJ Bellman update and may optionally be warm-started via a nominal model.

manage safety and performance (Figure 1): the performance policy focuses exclusively on optimising
performance, while the safety critic verifies if the current state is safe and intervenes when necessary.
Primarily focused on the application of autonomous racing, we refer to our approach as Safety-aware
Policy Optimisation for Autonomous Racing (SPAR),

Aside from the problem formulation and corresponding framework, our key contributions are as
follows. Firstly, we compare the HJ Bellman update rule (Fisac et al., 2019) to alternatives for
learning safety critic (Srinivasan et al., 2020; Bharadhwaj et al., 2020) on two classical control
benchmarks, where safe vs. unsafe states are known analytically. Given the same off-policy samples,
the HJ Bellman update rule learns safety more accurately and sample efficiently. We also compare
empirically how different implementations of the HJ Bellman update affect convergence.

Secondly, we demonstrate that HJ safety value function can be learned directly on visual context, the
highest-dimensional problem studied by HJ safety analysis to-date, thereby expanding the applications
of HJ reachability to high-dimensional systems where explicit model may not be available.

Finally, we evaluate our methods on Safety Gym (Ray et al., 2019a) and Learn-to-Race (L2R)
(Herman et al., 2021), a recently-released, high-fidelity autonomous racing environment, which
challenges the agent to make safety-critical decisions in a complex and fast-changing environment.
While SPAR is by no means free from failure, it has significantly fewer constraint violations compared
to other constrained RL baselines in Safety Gym. We also report new state-of-the-art results on the
L2R benchmark task, and show that incorporating a dynamically updating safety critic grounded in
control theory boosts performance especially during the initial learning phase.

2 RELATED WORK

Constrained reinforcement learning. There is growing interest in enforcing some notion of safety
in RL algorithms, e.g. satisfying safety constraints, avoiding worst-case outcomes, or robust to
environmental stochasticity (Garcıa & Fernández, 2015). We focus on the notion of safety as
satisfying constraints. CMDP (Altman, 1999) is a widely-used framework for studying RL under
constraints, where the agent maximises cumulative rewards, subject to limits on cumulative costs
characterising constraint violations. Solving a CMDP problem is challenging, because the policy
needs to be optimised over the set of feasible ones. This requires off-policy evaluation of the constraint
functions to determine whether a policy is feasible (Achiam et al., 2017). As a result, safety grows
with experience, but requires diverse state-action pairs, including unsafe ones (Srinivasan et al., 2020).
Furthermore, one needs to solve a constrained optimisation problem with a non-convex neural policy.
This may be implemented with techniques from convex optimisation, such as primal-dual updates
(Bharadhwaj et al., 2020) and projection (Yang et al., 2020), or by upper bounding the expected cost
at each policy iteration (Achiam et al., 2017). Most relevant to our work is Bharadhwaj et al. (2020);
Srinivasan et al. (2020); Thananjeyan et al. (2021), which also uses a safety critic to verify if a state
is safe. We compare our control-theoretical learning rule with theirs in Section 5.1.

Guaranteed safe control. Guaranteeing the safety of general continuous nonlinear systems is
challenging, but there are several approaches that have been successful. These methods typically rely
on knowledge of the environment dynamics. Control barrier functions (CBFs) provide a measure of
safety with gradients that inform the acceptable safe actions (Ames et al., 2019). For specific forms

2

Under review as a conference paper at ICLR 2022

of dynamics, e.g. control-affine (Cheng et al., 2019), and unlimited actuation bounds, this approach
can be scalable to higher-dimensional systems and can be paired with an efficient online quadratic
program for computing the instantaneous control (Cheng et al., 2019). Unfortunately, finding a valid
control barrier function for a general system is a nontrivial task. Lyapunov-based methods (Chow
et al., 2018; 2019) suffer from the same limitation of requiring hand-crafted functions.

HJ reachability is a technique that uses continuous-time dynamic programming to directly compute a
value function that captures the optimal safe control for a general nonlinear system (Bansal et al.,
2017; Fisac et al., 2018). This method can provide hard safety guarantees for systems subject to
bounded uncertainties and disturbances. There are two major drawbacks to HJ reachability. The first
is that the technique suffers from the curse of dimensionality and scales exponentially with number
of states in the system. Because of this, the technique can only be used directly on systems of up to
4-5 dimensions. When using specific dynamics formulations and/or restricted controllers, this upper
limit can be extended (Chen et al., 2018; Kousik et al., 2020). Second, because of this computational
cost, the value function is typically computed offline based on assumed system dynamics and bounds
on uncertainties. This can lead the safety analysis to be invalid or overly conservative.

There are many attempts in injecting some form of control theory into RL algorithms. In comparison
to works that assume specific problem structure (Cheng et al., 2019; Dean et al., 2019) or existence of
a nominal model (Cheng et al., 2019; Bastani, 2021), our proposed approach is applicable to general
nonlinear system and does not require a model. But, we do assume access to a distance metric defined
on the state space. Our primary inspiration is recent work by Fisac et al. (2019) that connects HJ
reachability with RL and introduced a HJ Bellman update, which can be applied to deep Q-learning
for safety analysis. This method loses hard safety guarantees due to the neural approximation, but
enables scalable learning of safety value function. However, an agent trained using the method in
Fisac et al. (2019) will focus exclusively on safety. Thus, We extend the method by formulating it
within the CMDP framework, thereby enabling performance-driven learning.

Applications to autonomous racing. There is a large body of research on autonomous driving,
predominately focused on urban driving. However, racing presents its unique set of challenges,
e.g., making sub-second decisions under complex dynamics (Rhinehart et al., 2018). Existing
open-source racing simulators, e.g., CarRacing-v0 (Brockman et al., 2016) and TORCS (TOR),
lack in realism both in terms of the graphics and vehicular dynamics, which limits the researchers’
ability to effectively evaluate their algorithms. Florian et al. (2020) developed an interface to
and trained their agents in the Gran Turismo video game, but did not make their environment
publicly available. Furthermore, their agents assume access to an unrealistic amount of privileged
information. In this work, we set the first safe learning results in the recently-introduced, high-fidelity,
open-source Learn-to-Race autonomous racing environment (Herman et al., 2021). Apart from
RL-based approaches, optimisation-based approaches have been used in works such as Liniger et al.
(2015); Kabzan et al. (2019). We refer interested readers to Herman et al. (2021) for a recent and
comprehensive review on autonomous racing.

3 PRELIMINARIES

Constrained MDPs. The problem of RL with safety constraints is often formulated as a CMDP. On
top of the MDP (X ,U , R,F), where X is the state space, U is the action space, F : X × U −→ X
characterises the system dynamics, and R : X × U −→ R is the reward function, CMDP includes
an additional set of cost functions, C1, . . . , Cm, where each Ci : X × U −→ R maps state-action
transitions to costs characterising constraint violations.

The objective of RL is to find a policy π : X −→ U that maximises the expected cumu-
lative rewards, V πR (x) = Exk,uk∼π

[∑∞
k=0 γ

kR(xk, uk)|x0 = x
]
, where γ ∈ [0, 1) is a tem-

poral discount factor. Similarly, the expected cumulative costs are defined as V πCi
(x) =

Exk,uk∼π
[∑∞

k=0 γ
kCi(xk, uk)|x0 = x

]
. CMDP requires the policy to be feasible by imposing

limit for the costs, i.e. VCi
(π) ≤ di,∀i. Putting everything together, the RL problem in a CMDP is:

π∗ = arg max
π

V πR (x) s.t. V πCi
(x) ≤ di ∀i (1)

HJ Reachability. To generate the safety constraint, one can apply HJ reachability to a general
nonlinear system model, denoted as ẋ = f(x, u). Here x is the state, u is the control contained within

3

Under review as a conference paper at ICLR 2022

a compact set U . The dynamics are assumed bounded and Lipschitz continuous. For discrete-time
approximations the time step ∆t > 0 is used.

We denote all allowable states as K, for which there exists a terminal reward l(x), such that x ∈
K ⇐⇒ l(x) ≥ 0. An l(x) that satisfy this condition is the signed distance to the boundary of K.
Taking autonomous driving as an example, K is the drivable area and l(x) is the shortest distance
to road boundary or obstacle. This set K is the complement of the failure set that must be avoided.
The goal of this HJ reachability problem is to compute a safety value function that maps a state to its
safety value with respect to l(x) over time. This is done by capturing the minimum reward achieved
over time by the system applying an optimal control policy:

VS(x, T) = sup
u(·)

min
t∈[0,T]

l(ξu,dx,T (t)), (2)

where ξ is the state trajectory, T < 0 is the initial time, and 0 is the final time. To solve for this safety
value function, a form of continuous dynamic programming is applied backwards in time from t = 0
to t = T using the Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI):

min

{
∂VS
∂t

+ max
u∈U
〈f(x, u),∇VS(x)〉, l(x)− VS(x, t)

}
= 0, VS(x, 0) = l(x). (3)

The super-zero level set of this function is called the reachable tube, and describes all states from
which the system can remain outside of the failure set for the time horizon. For the infinite-time, if
the limit exists, we define the converged value function as VS(x) = limT→−∞ VS(x, T).

Once the safety value function is computed, the optimal safe control can be found online by solving
the Hamiltonian: π∗S(x) = arg maxu∈U 〈f(x, u),∇VS(x)〉. This safe control is typically applied in
a least-restrictive way wherein the safety controller becomes active only when the system approaches
the boundary of the reachable tube, i.e. u ∼ π if VS(x, T) ≥ 0 and π∗S otherwise. By switching
maximisation to minimisation, and vice versa, the method is also applicable to finding a reachable set
(tube) to a desired goal (Bansal et al., 2017).

The newly introduced discounted safety Bellman equation (Fisac et al., 2019) modifies the HJI-VI in
equation 3 in a time-discounted formulation for discrete time:

VS(x) = (1− γ)l(x) + γmin

{
l(x),max

u∈U
VS(x+ f(x, u)∆t)

}
, VS(x, 0) = l(x). (4)

This formulation induces a contraction mapping, which enables convergence of the value function
when applied to dynamic programming schemes commonly used in RL.

4 SPAR: SAFETY-AWARE POLICY OPTIMISATION FOR AUTONOMOUS RACING

In this section, we describe our framework for safety-aware policy optimisation. We are inspired by
guaranteed-safe methods, such as HJ reachability, which provides a systematic way to verify safety.
Thus, we formulate our problem as a combination of constrained RL and HJ reachability theory,
adopting a control-theoretical approach to learn safety. The need for an accurate model of the system
dynamics can be restrictive. Building upon prior work on neural approximation of HJ Reachability
(Fisac et al., 2019), we demonstrate that it is possible to directly update the safety value function on
high-dimensional multimodal sensory input, thereby expanding the scope of applications to problems
previously inaccessible. We highlight the notable aspects of our framework:

i) Injects control theory into RL. We incorporate HJ Reachability theory into the CMDP framework,
thereby updating the safety critic in a control-theoretical manner. An unintended, but welcome
outcome is that the original constrained optimisation problem is naturally decomposed into two
unconstrained optimisation problems, making the problem more amenable to gradient-based learning.

ii) Scales to high-dimensional problems. Compared to standard HJ Reachability methods, whose
computational complexity scales exponentially with the state dimension, we updated the safety
value directly on vision embedding using the neural approximation. This is the highest-dimensional
problem studied studied via HJ reachability to-date.

Problem formulation. We inject HJ Reachability theory into the CMDP framework. Starting with
Eqn. 1, we can interpret the negative of a cost as a reward for safety and, without loss of generality,

4

Under review as a conference paper at ICLR 2022

reverse the direction of the inequality constraint. Recall that the super-zero set of the safety value
function, i.e., {x|Vs(x) ≥ 0}, designates all states from which the system can remain within the set
of allowable states, K, over infinite time horizon. Thus, the safety value function derived from HJ
reachability can be naturally embedded into CMDP (Eqn. 5):

π∗ = arg max
π

VR(x), s.t. VS(x) ≥ ε, (5)

where ε ≥ 0 is a safety margin. A key difference from the original CMDP formulation (Eqn. 1) is
that constraint satisfaction, VS(x) ≥ ε, no longer depends on the policy, π. Thus, we can bypassing
the challenges of solving CMDPs (Section 2) and decompose learning under safety constraints into
optimising for performance and updating safety value estimation. While a number of works have
similar dual-policy architecture (Cheng et al., 2019; Bastani, 2021; Thananjeyan et al., 2021), ours
design is informed by HJ reachability theory. A downside of the formulation is that HJ reachability
considers safety as absolute, and there isn’t a mechanism to allow for some level of safety infractions.

Update of Safety Value Function. For the update of safety value function, we adopt the learning
rule proposed by Fisac et al. (2019) (Eqn. 6). Note that QS(x, u) is updated model-free using state
action transitions, i.e., (x, u, x′). The only domain knowledge required is the function l(x) that
corresponds to the allowable states K.

QS(x, u) = (1− γ)l(x) + γmin{l(x),max
u′∈U

QS(x′, u′} (6)

On top of the theoretical analysis in Fisac et al. (2019), we compare how common RL implementation
techniques, including delayed target network, clipped double Q-learning (Fujimoto et al., 2018), and
baseline reduction (Schulman et al., 2015) affect convergence on two classical control benchmarks,
Double Integrator and Dubins’ Car and summarise the observations in Appendix A.2.

SPAR. We propose SPAR, which consists of a performance policy and a safety policy. The safety
backup controller is applied in a least restrictive way, only intervening when the RL agent is about to
enter into an unsafe state, i.e. u ∼ π, if QS(x, u) ≥ ε and u ∼ πS otherwise. Thus, the agent enjoys
the most freedom in safe exploration. The performance policy may be implemented with any RL
algorithm. Since we expect the majority of samples to be from the performance policy, it is more
appropriate to update the safety actor critic with an off-policy algorithm. The safety critic is updated
with Eqn. 6, where u′ ∼ πS . The safety actor is updated via deterministic policy gradient through
the safety critic, i.e. ∇uQS(x, u). The algorithm for SPAR is detailed in Appendix B.

5 EXPERIMENTS

We evaluate SPAR on three set of benchmarks of increasing difficulty. While the our intended applica-
tion is autonomous racing, the first two set of benchmarks can be considered as some abstraction of
vehicles with the objective of avoiding obstacles and/or moving towards goals. Firstly, we evaluate
on two classical control tasks where the safe vs. unsafe states are known analytically, and compare
the HJ Bellman update used in SPAR to alternatives for learning safety critic in the literature. Sec-
ondly, we compare SPAR to constrained RL baselines in Safety Gym. Finally, we challenge SPAR
in Learn-to-Race and conduct ablation to better understand how different components of SPAR
contribute to its performance.

5.1 EXPERIMENT: CLASSICAL CONTROL BENCHMARKS

As mentioned earlier, safety critics have been trained in other works (Bharadhwaj et al., 2020;
Srinivasan et al., 2020) with different learning rules. The objective here is to compare the HJ Bellman
update with alternatives. Thus, we focus on safety analysis with off-policy samples, and evaluate on
two classical control benchmarks double integrator and Dubins’ Car, where the safe / lively1 states
are known analytically (Figure 2a and 2b). The double integrator (Fisac et al., 2019) characterise a
particle moving on x-axis, with velocity v. By controlling the acceleration, the objective is to keep
the particle on a bounded range on x-axis. Dubins’ car (Bansal et al., 2017) is a simplified car model,
where the car moves at a constant speed. By controlling the turning rate, the goal is to reach a unit
circle regardless of the heading. More information on the two tasks are provided in Appendix A.1.

1Liveliness refers the ability to reach the specified goal (Hsu et al., 2021).

5

Under review as a conference paper at ICLR 2022

−2 −1 0 1 2

v

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Double Integrator (b) Dubins’ Car

0 5 10 15 20 25
Step (K)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Double Integrator

0 10 20 30 40 50
Step (K)

Dubin's Car

HJ Bellman CQL SQRL

(c) Performance comparison of learning rules (aver-
aged over 5 random seeds)

Figure 2: We uses two classical control benchmarks, double integrator and Dubins’ car, to evaluate the
performance of different learning rules for safety analysis. (a) shows the safety value function of the double
integrator and the black line delineates VS(x) = 0, within which the particle can remain within the allowable
range of x ∈ [−1, 1]. (b) shows the iso-surface of the safety value function at 0, i.e., VS(x) = 0, for Dubins’
Car, within which the car can reach a unit circle at the origin. The performance comparison is summarized in (c).

In this experiment, we generate state-action pairs with a random policy, and evaluate the safety value
function with respect to the optimal safety controller, π∗S , which is also known. In both Bharadhwaj
et al. (2020); Srinivasan et al. (2020), the safety critic is defined as the expected cumulative cost, i.e.
QπC(x, u) := Exk,uk∼π

[∑∞
k=0 γ

kC(xk)|x0 = x, u0 = u
]
, where C(xk) = 1 if a failure occurs at

xk and 0 otherwise. QπC(x, u) is additionally set to 1 for terminal states in Srinivasan et al. (2020).
Note that both the environment and optimal safety policy are deterministic. Following the definition,
Q
π∗S
C (x, π∗S(x)) should be 0 if x is a safe state. Safety Q-functions for RL (SQRL) (Srinivasan et al.,

2020) uses the standard Bellman backup to propagate the failure signal. On top of that, Conservative
Safety Critic (CSC) (Bharadhwaj et al., 2020) uses conservative Q-learning (CQL) (Kumar et al.,
2020) to correct for the difference between the behaviour policy, i.e. the random policy, and the
evaluation policy, i.e. the optimal safety policy, and overestimate QC to err on the side of caution.

Since the safe vs. unsafe states are known for these benchmark tasks, we can directly compare
the performance of these safety critics learned with different learning rules (Figure 2c). While the
theoretical cut-off for safe vs. unsafe states is 0, the performance of SQRL is very sensitive to the
choice of the cut-off. Thus, we report AUROC instead. For both CQL and SQRL, we do a grid search
around the hyperparameters used in the original paper and report the best results. The implementation
details and additional results, e.g. visualisation of learned critics and other metrics, are included
in Appendix A.3. Directly applying Bellman update for safety analysis as in SQRL, performs well
on double integrator, but does not on the more challenging Dubins’ Car. In our experiment, CQL
is highly sensitive to the choice of hyperparameters and has large variance in performance. In
comparison, HJ Bellman update has AUROC close to 1 and has very little variance over different
runs. Note that we are only comparing the efficacy of the different learning rules for safety critic
given the same off-policy samples, and learning safety critic is only part of SQRL and CSC.

One caveat is that SQRL and CQL uses binary signal for failures, while HJ Bellman update has access
to the distance, l(x). On the one hand, HJ Bellman update does assume more information. On the
other hand, it may be more practical to learn safety from distance measurements then experiencing
failures. Applied to autonomous driving, this translates to learning to avoid obstacle from distance
measurements that are readily available on cars with assisted driving capabilities (BMW, 2021), in
comparison to experiencing collisions.

5.2 EXPERIMENT: Safety Gym

We additionally evaluate our proposed approach, SPAR, in Safety Gym (Ray et al., 2019b), the
OpenAI gym environment for safe RL. Specifically, we evaluate on the CarGoal1-v0 and PointGoal1-
v0 benchmarks, wherein we compare SPAR against Constrained Policy Optimisation (CPO) (Achiam
et al., 2017), Proximal Policy Optimisation (PPO) (Schulman et al., 2017), and PPO-Lagrangian (Ray
et al., 2019b). Episodic Performance and Cost curves are shown in Figure 3, and additional SPAR
implementation details are included in Appendix D.

PPO-SPAR has significantly fewer constraint violations compared to other baselines and the violations
decreases over time. This is because HJ reachability theory considers safety as absolute, and there
isn’t a mechanism for allowing a certain number of violations, which unfortunately compromises

6

Under review as a conference paper at ICLR 2022

Figure 3: Results of SPAR in the CarGoal1-v0 (top row) and PointGoal1-v0 (bottom row) benchmarks, under
the OpenAI Safety Gym framework. In Goal tasks, agents must navigate to observed goal locations (indicated
by the green regions), while avoiding static obstacles (e.g., vases, in cyan) and hazards (blue regions).

(a) Aerial (b) Third-person (c) Ego-view

Figure 4: We use the Learn-to-Race (L2R) framework (Herman et al., 2021) for evaluation; this environment
provides simulated racing tracks that are modelled after real-world counterparts, such as the famed Thruxton
Circuit in the UK (Track01:Thruxton, (a)). Here, learning-based agents can be trained and evaluated according
to challenging metrics and realistic vehicle and environmental dynamics, making L2R a compelling target for
safe reinforcement learning. Each track features challenging components for autonomous agents, such as sharp
turns (shown in (b)), where SPAR only uses ego-camera views (shown in (c)) and speed.

performance. The violations that do occur are results of neural approximation error, and the number
of violations decrease over time as the safety actor-critic gain experiences. While constraint violation
are non-terminal in the Safety Gym environment, the task in the next subsection does terminate
episodes upon safety infraction, which is better suited for HJ safety analysis.

5.3 EXPERIMENT: Learn-to-Race

Task Overview. In this paper, we evaluate our approach using the Arrival Autonomous Racing
Simulator, through the newly-introduced and OpenAI-gym compliant Learn-to-Race (L2R) task and
evaluation framework (Herman et al., 2021). L2R provides multiple simulated racing tracks, modelled
after real-world counterparts, such as Thruxton Circuit in the UK (Track01:Thruxton; see Figure
4). L2R provides access to RGB images from any specified location, semantic segmentation, and
vehicle states (e.g., pose, velocity). In each episode, an agent is spawned on the selected track. At
each time-step, it uses its observations to determine normalised steering angle and acceleration. All
learning-based agents receive the reward specified by L2R, which is formulated as a weighted sum of
reward for driving fast and penalty for leaving the drivable area; the main objective is to complete
laps in as little time as possible. Additional metrics are defined to evaluate driving quality.

Implementation Details. To characterise the performance of our approach, we report results on
the Average Adjusted Track Speed (AATS) and the Episode Completion Percentage (ECP) metrics
(Herman et al., 2021) as proxies for agent performance and safety, respectively. For reference, one lap
in Track01:Thruxton is 3.8km, whereas CARLA, the de facto environment for autonomous driving
research, has in total 4.3km drivable roads in the original benchmark (Codevilla et al., 2019). Thus,

7

Under review as a conference paper at ICLR 2022

x

y
φ

v

L

δ

X

Y

(a) nominal model

l(x)

-8
.0

00
-4

.0
00

-4.000

0.000

0.
00

0

4.000

4.000

-8
.0

00

-8.000

-4
.0

00

-4
.0

00

0.000

0.000

-8
.0

00

-8
.0

00

-4
.0

00

-4
.0

00

0.000

0.000

4.000

4.000

-8
.0

00

-4.000

-4
.0

00

0.000

0.000

4.
00

0

4.000

(b) Vs(x, y, v, φ) computed via the nominal model, where v=12m/s

Figure 5: (a) We compute the safety value function, via a kinematic vehicle model. (b) We illustrate different
views of the 4D state space, given fixed velocity and three different yaw angles, indicated by the blue arrows.

successfully completing an episode, i.e. a lap, is very challenging. Agents’ results on other metrics of
driving quality, as defined by the L2R environment, are presented in Appendix F.

We use Track01:Thruxton in L2R (Fig. 4) for all stages of agent interaction with the environment.
During training, the agent is spawned at random locations along the race track and uses a stochastic
policy. During evaluation, the agent is spawned at a fixed location and uses a deterministic policy.
The episode terminates when the agent successfully finishes a lap, leaves the drivable area, collides
with obstacles, or does not progress for a number of steps. For each agent, we report averaged results
across 5 random seeds evaluated every 5000 steps over an episode, i.e., one lap. We use soft-actor
critic (SAC) (Haarnoja et al., 2018b) as the performance policy, and all agents only have access to
ego-camera view (Figure 4c) and speed, unless specified otherwise. The implementation, including
network architecture and hyperparameters, are detailed in Appendix E.

Static Safety Actor-Critic from Nominal Model. To demonstrate the benefit of utilising domain
knowledge in the form of a nominal model and to compare with the learnable safety actor-critic in
SPAR, we use the kinematic vehicle model (Kong et al., 2015) (see Figure 5a), which is a significant
simplification of a realistic race car model (Kabzan et al., 2019), to compute the safety value and
corresponding ‘optimal’2 safety controller. The dynamics and ‘optimal’ safety control is given in Eqn.
7, where the state is x = [x, y, v, φ], and the action is u = [a, δ]. x, y, v, φ are the vehicle’s location,
speed, and yaw angle. a is the acceleration, and δ is the steering angle. L = 3m is the car length.
Intuitively, the ‘optimal’ safety policy brakes and steers towards the centre of the track as much as
possible. The derivation of the safety policy is provided in Appendix C. Setting VS(x, 0) = l(x), we
calculated the backward reachable tube using the code from Giovanis et al. (2021). Fig. 5b illustrates
resulting safety value function at slices of state space, as the agent enters into a sharp turn.

f(x,u) =


ẋ = v cos(φ)

ẏ = v sin(φ)

v̇ = a

φ̇ = v tan δ/L

and a∗ =

{
a if ∂VS/∂v ≤ 0

a else
δ∗ =

{
δ if ∂VS/∂φ ≥ 0

δ else
(7)

We assume the static actor-critic have access to vehicle poses in order to evaluate safety value and
determine the safety action. We evaluate the performance of this static actor-critic by coupling a
random agent with it (SafeRandom). We test SafeRandom on a series of safety margins to account
for unmodelled dynamics; the performance averaged over 10 random seeds is summarised in Figure
F.1. For instance, ε ≥ 4.2 achieves 80+% ECP. This high safety performance, in comparison to 0.5%
ECP by Random agent showcase the benefit of utilising domain knowledge.

Ablation Study. We conduct ablation to better understand how different components of SPAR
contribute to its performance. We examine the effect of imposing safety constraints on performance
and sample efficiency, by comparing SAC agent with an instance of itself that is coupled with the
static safety actor-critic (SafeSAC). We set the safety margin ε to be 4.2, based on empirical results
from SafeRandom. We also compare the performance of using the static safety actor-critic (SafeSAC)
and a learnable one (SPAR). Since SPAR is expected to have a better characterisation of the safety
value, the agent no longer depend on a large safety margin to remain safe and thus the SPAR agent
uses a safety margin of 3.0m, which accounts for the dimension of the vehicle3.

2only with respect to the nominal model
3The HJ reachable tube is computed with respect to the back axle of the vehicle and does not account for the

physical dimension of the vehicle.

8

Under review as a conference paper at ICLR 2022

0 50000 100000 150000 200000 250000
Steps

0

20

40

60

80

100

P
er

ce
nt

ag
e

C
om

pl
et

e
(%

)

0 50000 100000 150000 200000 250000
Steps

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

S
p

ee
d

(k
m

/h
)

SAC SafeSAC (ε = 4.2) SPAR

Figure 6: Left: Episode percent completion and Right: speed evaluated every 5000 steps over an episode (a
single lap) and averaged over 5 random seeds. Results reported based on Track01:Thruxton in L2R.

Results. The performance comparison between different agents is summarised in Figure 6. Reporting
the average of ECP obscure the fact that the failures concentrate in a small number of locations, e.g.
with sharp turns, after the agents acquire basic driving skills.

The static safety actor-critic significantly boost initial safety performance. With the help of the static
safety actor-critic, the SafeSAC can complete close to 80% of a lap, in comparison to slightly more
than 5% with SAC. This, again, showcase that injecting domain knowledge in the form of a nominal
model is extremely beneficial to safety performance, especially in the initial learning phase. However,
there are two notable limitation with the static safety controller. Firstly, it is extremely conservative,
braking whenever the vehicle less safe. As a result the SafeSAC agent has an initial speed of less
than 10km/h. Secondly, as the SAC learns to avoid activating the safety controller and drive faster, the
static safety controller is no longer able to recover the vehicle from marginally safe states. In fact, by
applying the ‘optimal’ safety action from Eqn. 7, i.e., maximum brake and steer, the vehicle will lose
traction and spin out of control. As a result, the ECP actually decreases over time for SafeSAC.

SPAR learns safety directly from vision context and can recover from marginally safe states more
smoothly. Having a safety actor-critic that is dedicated to learning about safety significantly boosted
the initial safety performance of SPAR in comparison to the SAC agent, even though the safety actor-
critic is randomly initialised to show the safety value function can be learned from vision embedding
from scratch. In practice, we envision the safety actor-critic to be warm-started with the nominal
model, and fine-tuned by observations from the environment. Furthermore, the learnable safety
actor-critic can recover from marginally safe states more smoothly. A qualitative comparison of such
behaviours is available at video link. While SPAR outperforms other baselines, there is still significant
performance gap with human, as the speed record at Thruxton Circuit is 237 km/h (average speed).

6 CONCLUSION

In this paper, we incorporate HJ reachability theory into the CMDP framework as a principled
approach to learn about safety. As a result of the problem formulation, we effectively decompose
the problem of learning under safety constraints into two more-tractable sub-tasks: optimising for
performance and updating safety value. We show on two classical control benchmarks that the
HJ Bellman update is more effective than alternatives for learning the safety critic. Comparing to
constrained RL baselines in the Safety Gym, we show that SPAR has significantly few constraint
violations, while maintaining similar performance. Finally, we report the new state-of-the-art result
on Learn-to-Race. We demonstrate that the HJ safety value can be learned directly on visual context,
thereby expanding HJ reachability to broader applications.

Whereas our empirical results demonstrated that it is possible to learn a safety-aware and performant
policy, SPAR is by no means free from failure. However, the method proposed in this paper represents a
subtle shift away from constraint-satisfaction exclusively through model-free learning, as has become
popular in recent literature. Rather than letting agents learn safe behaviours through experiencing
failures, our approach provides potential avenues for online safety analysis, through the injection of
domain knowledge (e.g. a nominal model), and by informing the learning rule with control theory.

9

https://docs.google.com/presentation/d/1cS7KnC6UW-ZiZpF92y_OgPS11ULZQcy7p-sA10o9seU/edit#slide=id.gf5975c5dbd_2_1

Under review as a conference paper at ICLR 2022

REFERENCES

Torcs, the open racing car simulator. http://torcs.sourceforge.net/index.php?name=
Sections&op=viewarticle&artid=19. Last accessed: 2021-01-30.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European Control
Conference (ECC), pp. 3420–3431. IEEE, 2019.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding.
In 2021 American Control Conference (ACC), pp. 3488–3494. IEEE, 2021.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

BMW. Automotive sensors – the sense organs of driver assistance systems, Sep 2021. URL
https://www.bmw.com/en/innovation/automotive-sensors.html.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym, 2016.

Mo Chen, Sylvia L Herbert, Mahesh S Vashishtha, Somil Bansal, and Claire J Tomlin. Decomposition
of reachable sets and tubes for a class of nonlinear systems. IEEE Transactions on Automatic
Control, 63(11):3675–3688, 2018.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 3387–3395, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. arXiv preprint arXiv:1805.07708, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Exploring the limitations
of behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9329–9338, 2019.

Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to control the
constrained linear quadratic regulator. In 2019 American Control Conference (ACC), pp. 5582–
5588. IEEE, 2019.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridging
hamilton-jacobi safety analysis and reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 8550–8556. IEEE, 2019.

F. Florian, S. Yunlong, E. Kaufmann, D. Scaramuzza, and P. Duerr. Super-human performance in
gran turismo sport using deep reinforcement learning, 2020.

10

http://torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=19
http://torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=19
https://www.bmw.com/en/innovation/automotive-sensors.html

Under review as a conference paper at ICLR 2022

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

George Giovanis, Michael Lu, and Mo Chen. Optimizing dynamic programming-based algorithms.
https://github.com/SFU-MARS/optimized_dp, 2021.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 1861–1870, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018a. PMLR. URL http://proceedings.mlr.press/v80/haarnoja18b.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870. PMLR, 2018b.

James Herman, Jonathan Francis, Siddha Ganju, Bingqing Chen, Anirudh Koul, Abhinav Gupta,
Alexey Skabelkin, Ivan Zhukov, Max Kumskoy, and Eric Nyberg. Learn-to-race: A multimodal
control environment for autonomous racing. arXiv preprint arXiv:2103.11575, 2021.

Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F Fisac. Safety and liveness
guarantees through reach-avoid reinforcement learning. 2021.

Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger. Learning-based model
predictive control for autonomous racing. IEEE Robotics and Automation Letters, 4(4):3363–3370,
2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and dynamic vehicle
models for autonomous driving control design. In 2015 IEEE Intelligent Vehicles Symposium (IV),
pp. 1094–1099. IEEE, 2015.

Shreyas Kousik, Sean Vaskov, Fan Bu, Matthew Johnson-Roberson, and Ram Vasudevan. Bridging
the gap between safety and real-time performance in receding-horizon trajectory design for mobile
robots. The International Journal of Robotics Research, 39(12):1419–1469, 2020.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-based autonomous
racing of 1: 43 scale rc cars. Optimal Control Applications and Methods, 36(5):628–647, 2015.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019a.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7, 2019b.

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible
inference, planning, and control. arXiv preprint arXiv:1810.06544, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

11

https://github.com/SFU-MARS/optimized_dp
http://proceedings.mlr.press/v80/haarnoja18b.html

Under review as a conference paper at ICLR 2022

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. IEEE Robotics and Automation Letters, 6(3):
4915–4922, 2021.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

A CLASSICAL CONTROL BENCHMARKS

The objective of this section is 1) to examine how different implementation of the learning rule
proposed by Fisac et al. (2019), i.e., Q(x, u) = (1−γ)l(x)+γmin{l(x),maxu′∈U Q(x′, u′}, affect
convergence, and 2) to compare the learning rule with alternatives for learning safety value function.
We evaluate it on two classical control benchmarks, Double Integrator and Dubins’ Car, as described
in Section A.1, where the analytical solution to safe and unsafe states are known.

A.1 MODEL DYNAMICS

Double Integrator. The double integrator models a particle moving along the x-axis at velocity
v. The control input is the acceleration a. The goal in this case is keep the particle within a fixed
boundary, in this case x ∈ [−1, 1], subject to a ∈ [−1, 1].{

ẋ = v

v̇ = a
(A.1)

Dubins’ Car. The Dubins’ car models a vehicle moving at constant speed, in this case v = 1. Similar
to the kinematic vehicle model, x, y, φ describes the position and heading of the vehicle, and control
input is the turning rate u ∈ [−1, 1]. The goal is to reach a unit circle centred at the origin.

ẋ = v cos(φ)

ẏ = v sin(φ)

φ̇ = u

(A.2)

Implementation & evaluation. We use a neural network with hidden layers of size [16, 16] for
the double integrator and [64, 64, 32] for Dubins’ car. We use ADAM Kingma & Ba (2014) as the
optimiser with a learning rate of 0.001, batch size of 64. We update the safety value function over
25K steps for Double Integrator and 50K steps for Dubin’s Car, and report classification performance
every 1000 steps averaged over 5 random seeds.

While the safety value is defined over continuous state space, we evaluate the performance over a
mesh on the state space. Qualitative comparison between the ground truth value and that learned via
HJ Bellman update is shown in Figure A.1 and A.2.

A.2 COMPARISON OF IMPLEMENTATION DETAILS

The specific questions we attempt to answer are:

• Is a slow-moving target network necessary for convergence? It is common practice in
RL algorithms to keep a copy of slow-moving target network Q′ for stability Fujimoto
et al. (2018), as the circular dependency between value estimate and policy results in
accumulation of residual error and divergent updates. The target network is commonly
updated with Q′ ←− τQ+ (1− τ)Q′, where τ is a small number in (0, 1]. We examine how
different value of τ affects convergence.

• Is the Clipped Double Q-learning technique helpful? The Clipped Double Q-learning is
a technique that was popularised by TD3 Fujimoto et al. (2018) and also adopted in SAC
Haarnoja et al. (2018a). The technique addresses the overestimation of the value function by
keeping two value networks and computing the Bellman backup, with the smaller estimate
of the two. We examine if the same technique is conducive to learning the safety value.

12

Under review as a conference paper at ICLR 2022

• Is the baseline technique helpful? Reducing an action-independent baseline from the value
function is commonly used variance reduction technique in policy gradient algorithms. We
also examine if the technique is conducive to learning the safety value.

2 1 0 1 2
v

1.0

0.5

0.0

0.5

1.0

x

Ground Truth

2 1 0 1 2
v

HJ Bellman

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.1: A comparison between the ground truth safety value (and that learned via HJ Bellman update for
double integrator

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

(a)

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

(b)

Figure A.2: A comparison between the ground truth safety value (blue) and that learned via HJ Bellman update
(green) for Dubins’ car

A slow-moving target network is not necessary for convergence. As we can see in Figure A.3, the
safety value converged without problem using τ = 1, which is equivalent to not keeping a target
network at all. In fact, it converged slightly faster than using τ = 0.1 and 0.01. We hypothesise
that is because the actions in the replay buffer are mostly taken by the performance actor and thus
independent of the safety critic, removing the circular dependency between value estimation and
policy. This is consistent with the observation in Fujimoto et al. (2018) that value estimate without
target network is convergent under a fixed policy.

Clipped Double Q-learning is unnecessary. In Figure A.4, we also provide a comparison on vanilla
DQN vs. clipped double Q-learning, including both minimum and maximum of the double Q
functions. We hypothesise that the safety Bellman backup already clips Q at next state with l(x) and
thus the overestimation error is not a concern.

Baseline technique does not significantly improve the results of learning safety critic, but is conducive
learning the safety actor. We consider updating the safety critic with the baselined version of safety
Q-value, i.e. ΨS(x, u) = QS(x, u)− l(x). The corresponding update rule is given by Eqn. A.3.

ΨS(x, u) = γmin{0,max
u′∈U

ΨS(x′, u′) + l(x′)− l(x)} (A.3)

13

Under review as a conference paper at ICLR 2022

0 5 10 15 20 25
Step (K)

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Double Integrator

0 10 20 30 40 50
Step (K)

Dubin's Car

= 0.01 = 0.1 = 1= 0.01 = 0.1 = 1

Figure A.3: Performance comparison under τ=0.01, 0.1, 1

0 5 10 15 20 25
Step (K)

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Double Integrator

0 10 20 30 40 50
Step (K)

Dubin's Car

Vanilla Q Q = max(Q1, Q2) Q = min(Q1, Q2)Vanilla Q Q = max(Q1, Q2) Q = min(Q1, Q2)

Figure A.4: Performance comparison with clipped double Q-learning

As shown in Figure A.5, using the baseline technique does not improve the accuracy of the safety
critic, but qualitatively, we observe that the safety actor predicts safe action better. Thus, we use the
baselined-Q for the rest of the paper.

0 5 10 15 20 25
Step (K)

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Double Integrator

0 10 20 30 40 50
Step (K)

Dubin's Car

w/o baseline w baselinew/o baseline w baseline

Figure A.5: Performance comparison with clipped double Q-learning

A.3 COMPARISON OF LEARNING RULES FOR SAFETY CRITIC

Implementation Details. For the CQL implementation, we used γ = 0.99 and learning rate =
0.0002, following Bharadhwaj et al. (2020). We used α = 0.05 for smaller variance. For the SQRL
implementation, we γ = 0.7 for Dubins’ car and learning rate = 0.0003, following Srinivasan et al.
(2020). We used γ = 0.9 for double integrator, which improved performance.

14

Under review as a conference paper at ICLR 2022

2 1 0 1 2
v

1.0

0.5

0.0

0.5

1.0

x

Ground Truth

2 1 0 1 2
v

CQL Safe

Unsafe

Figure A.6: A comparison between the ground truth safety value and that learned via Conservative Q-learning
(CQL) for double integrator

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

(a)

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

(b)

Figure A.7: A comparison between the ground truth safety value (blue) and that learned via CQL (red) for
Dubins’ car

0 5 10 15 20 25
Step (K)

0

5

10

15

20

25

30

Er
ro

r (
%

)

Double Integrator

0 10 20 30 40 50
Step (K)

Dubin's Car

HJ (FN) HJ (FP) CQL (FN) CQL (FP)

Figure A.8: A breakdown of false negative (FN) and false negative (FP) rate

15

Under review as a conference paper at ICLR 2022

B SPAR ALGORITHM

SPAR relies on a dual actor-critic structure. One of the actor-critic instances functions as a perfor-
mance policy, while the other functions as a safety policy. This pairing of a safety- and performance-
oriented control is important, as we are able to decompose the problem of learning under safety
constraints into optimising for performance and updating the safety value function, separately.

We optimise the performance policy using SAC, but it may be switched for any other comparable RL
algorithms. While we use the clipped Double-Q technique for the performance critic as in standard
SAC implementation, we do not use the technique for the safety critic based on our observations in
Section A.2. We still keep a slow-moving target network for the safety critic, even though we use a τ
that’s a magnitude bigger compared to that of the performance critic.

The safety policy is used least-restrictively, that is only intervene when the RL agent is about to enter
into an unsafe state and thus allowing the performance policy maximum freedom in exploring safely.
Instead of using the optimal safe policy from solving Hamiltonian, the safe policy is updated via
gradients through the safety critic, same as other actor-critic algorithms.

Algorithm 1: SPAR: Safety-aware Policy Optimisation for Autonomous Racing
Initialise: performance critic Qφ and actor πθ;
Initialise: safety critic QφS

, and actor πθS ; target networks φ′S ← φS , θ′S ← θS ;
Initialise: replay bufferM;
for i = 0, . . . , # Episodes do

x = env.reset()
while not terminal do

u ∼ πθ(x);
// The safe actor intervenes when the current state-action is deemed unsafe by the safety

critic.
if QφS

(x, u) ≥ ε then
u = u

else
u ∼ πθS (x)

end
x′, r = env.step(u)
M.store(x, a, x′, r)
x = x′

Update performance critic Qφ and actor πθ with preferred RL algorithm;
Sample N transitions (x, u, x′) fromM;
// Update the safety critic:
Calculate the target value with the discounted Bellman safety update

y = (1− γ)l(x) + γmin{l(x), Qφ′S (x′, u′)}

where u′ ∼ πθ.
LφS

= N−1
∑

(QφS
(x, u)− y)2

φS ← φS − α∇φS
LφS

// Update the safety actor with deterministic policy gradient:

θS ← θS + αN−1
∑
∇uQ(x, u)∇θSπθS (x)

// Update the target networks:

φ′S ← τφS + (1− τ)φ′S , θ′S ← τθS + (1− τ)θ′S

end
end

16

Under review as a conference paper at ICLR 2022

C DERIVATION OF THE OPTIMAL SAFETY CONTROLLER

Recall that the nominal model is given by Eqn. C.1, where the state is x = [x, y, v, φ], and the action
is u = [a, δ]. For the action, a ∈ [a, a] and δ ∈ [δ, δ] x, y, v, φ are the vehicle’s location, speed, and
yaw angle. a is the acceleration, and δ is the steering angle. L = 3m is the car length.

f(x,u) =


ẋ = v cos(φ)

ẏ = v sin(φ)

v̇ = a

φ̇ = v tan δ/L

(C.1)

The optimal safety control is derived by solving the Hamiltonian as given in Eqn. C.2a. By definition,

∇VS(x) = [∂VS/∂x, ∂VS/∂y, ∂VS/∂v, ∂VS/∂φ]

.

π∗S(x) = arg max
u∈U
〈f(x, u),∇VS(x)〉 (C.2a)

= arg max
[a,δ]∈U

[v cos(φ)
∂VS
∂x

+ v sin(φ)
∂VS
∂y

+ a
∂VS
∂v

+ v tan δ/L
∂VS
∂φ

] (C.2b)

= arg max
[a,δ]∈U

[a
∂VS
∂v

+ v tan δ/L
∂VS
∂φ

] (C.2c)

From Eqn C.2c, it is clear that the optimal safety controller maximising the Hamiltonian is given by
Eq. C.3

a∗ =

{
a if ∂VS/∂v ≤ 0

a else
, δ∗ =

{
δ if ∂VS/∂φ ≥ 0

δ else
(C.3)

D ADDITIONAL IMPLEMENTATION DETAILS FOR SAFETY GYM

Following the default CarGoal1-v0 and PointGoal1-v0 benchmarks in Safety Gym, all agents were
given observation of hazard, goal, and vase LiDARs, with hazards being constrained. Both environ-
ments were initialised with a total of 8 hazards and 1 vase. Agent’s are endowed with accelerometer,
velocimeter, gyro, and magnetometer sensors; their LiDAR configurations included 16 bins, with
max distance of 3.

To illustrate the generality of our approach, relative to an arbitrary learning-based policy class, our
SPAR implementation wraps its safety actor critic around a standard PPO base agent, utilising default
configuration from the PPO-Spinningup repository from OpenAI (Ray et al., 2019b). By default,
distance measurements from LiDAR are available in these benchmarks, and thus SPAR has direct
access to l(x). Despite PPO being an on-policy algorithm, the SPAR safety critic was implemented
with off-policy updates, using prioritised memory replay based on the TD-error of predicting safety
value. Since l(x) is small in this environment, we scaled cost by a factor of 100. We used a gamma
of 0.99, τ = 1− polyak of 0.005, critic learning rate of 0.001, actor learning rate of 0.003, target
KL (for early stopping criteria) of 0.05, an alpha of 0.2, and a safety margin of 0.25. We used
the SquashedGaussianMLPActor and MLPFunction (Ray et al., 2019b) for the safety actor critic
architecture.

All experiments in Safety Gym were run on an Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz – with
1 CPU, 12 physical cores per CPU, and a total of 24 logical CPU units.

E ADDITIONAL IMPLEMENTATION DETAILS FOR Learn-to-Race

Training details. Interaction between a learning agent and the simulator is facilitated by instantiating
two simulator environment instances: one as a training environment and another a testing environment.
During the training regime, an agent executes state transitions in the training environment for 5000
number of steps, after which point the agent undergoes evaluative interactions with the test simulator
instance, then returns to the training simulator instance. We set the max episode steps to be 50,000.

17

Under review as a conference paper at ICLR 2022

As a consequence of its interaction with the environment, the agent receives a raw RGB image frame
and a 30-dimensional state vector as its observation, at each time-step. The agent encodes the RGB
image frame and its speed to a 40-dimensional feature representation, subsequently used as input
to both actor-critic networks. During its action-selection for the current step, the agent performs a
logical evaluation of safety via the safety backup controller: if the agent is found to be in a safe state,
given its observation, the action from the performance policy is used; otherwise, the action from the
safety backup controller is taken, with transition (s, a, r, s′) added to the replay buffer in either case.

We initialise the replay buffer with 2000 random transitions. After 2000 steps, we perform multiple
policy updates at each time step. First, we impose an MSE loss against the Bellman backup, for the
performance controller’s target Q-networks.

Next, with the parameters for the target Q-networks frozen, we perform the policy-update step as an
entropy-regularised loss on the actor’s prediction of action distribution, given the current observation.
We update target networks through polyak averaging.

Finally, we update the safety controller’s Q-networks by imposing an MSE loss against the target
from the safety Bellman backup. We update the target network through polyak averaging.

Hyperparameters. We summarise all network hyperparameters in Table E.1. For all experiments,
we implemented models using the PyTorch deep learning library, version 1.8.0. We directly utilised
standard implementations of the Adam optimiser Kingma & Ba (2014), with a learning rate of 0.003.
During training, we used a batch size of 256 for all implementations, with total step sizes of 250,000
and replay buffer sizes of 250,000 elements.

Computing hardware. For rendering the simulator and performing local agent verification and
analysis, we used a single GPU machine, with the following CPU specifications: Intel(R) Core(TM)
i5-4690K CPU @ 3.50GHz; 1 CPU, 4 physical cores per CPU, total of 4 logical CPU units. The
machine includes a single GeForce GTX TITAN X GPU, with 12.2GB GPU memory. For generating
multi-instance experimental results, we used a cluster of three multi-GPU machines with the following
CPU specifications: 2x Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz; 80 total CPU cores using
a Cascade Lake architecture; memory of 512 GiB DDR4 3200 MHz, 16x32 GiB DIMMs. Each
machine includes 8x NVIDIA GeForce RTX 2080 Ti GPUs, each with 11GB GDDR6 of GPU
memory. Experiments were orchestrated on the these machines using Kubernetes, an open-source
container deployment and management system.

All experiments were conducted using version 0.3.0.137341 of the Arrival Racing Simulator.

F ADDITIONAL RESULTS

Performance of the SafeRandom agent. Recall that the SafeRandom agent takes random actions and
uses the safety value function precomputed from the nominal model. The optimal safety controller
intervene whenever the safety value of the current state falls belong the safety margin. The safety
margin is necessary because 1) the nominal model is a significant over-simplification of vehicle
dynamics, and 2) the HJ Reachability computation does not take into consideration of the physical
dimension of the vehicle.

The performance of the SafeRandom agent at different safety margin is summarised in Figure F.1. For
safety margin ε ≥ 4.2, the SafeRandom agent can finish 80+% of the lap, and thus we use ε = 4.2 as
the safety margin for the SafeSAC agent. On the other hand, the performance decrease drastically
when the safety margin is reduced to 3.

Learn-to-Race benchmark results. In tables F.1 and F.2, we follow (Herman et al., 2021) in report-
ing on all of their driving quality metrics, for the Learn-to-Race benchmark: Episode Completion
Percentage (ECP), Episode Duration (ED), Average Adjusted Track Speed (AATS), Average Dis-
placement Error (ADE), Trajectory Admissibility (TrA), Trajectory Efficiency (TrE), and Movement
Smoothness (MS).

We highlight the fact that such metrics as TrA, TrE, and MS are most meaningful for agents that
also have high ECP results. Taking TrA, for example, safe policies score higher ECP values but
may spend more time in inadmissible positions (as defined by the task, i.e., with at least one wheel
touching the edge of the drivable area), compared to policies without a safety backup controller that

18

Under review as a conference paper at ICLR 2022

Table E.1: Network Hyperparameters

Operation Input (dim.) Output (dim.) Parameters

VISUAL ENCODER
Conv2d (N, chan, 42, 144), chan : 3→32 conv1 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv1, chan : 32→64 conv2 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv2, chan : 64→128 conv3 k:=(4,4), s:=2, p:=1, activation:=ReLU
Conv2d conv3, chan : 128→256 conv4 k:=(4,4), s:=2, p:=1, activation:=ReLU
Flatten — — —

VISUAL ENCODER BOTTLENECK REPRESENTATION
Linear (mu) N × h_dim N × 32 —
Linear (sigma) N × h_dim N × 32 —

VISUAL DECODER (only for pre-training Visual Encoder)
Unflatten — — —
ConvTranspose2d encoder.conv4: encoder.conv4.chan: 256→128 convtranspose1 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose1, chan : 128→64 convtranspose2 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose2, chan : 64→32 convtranspose3 k:=(4,4), s:=2, p:=1, activation:=ReLU
ConvTranspose2d convtranspose3, chan : 32→3 convtranspose4 k:=(4,4), s:=2, p:=1, activation:=Sigmoid

SAFETY ACTOR-CRITIC
actor_network — — —
q_function1 — — —
q_function2 — — —

PERFORMANCE ACTOR-CRITIC
actor_network — — —
q_function1 — — —
q_function2 — — —

ACTOR NETWORK (POLICY): SQUASHEDGAUSSIANMLPACTOR
Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear (projection: mu_layer) N × 32 N × 3 —
Linear (projection: log_std_layer) N × 32 N × 3 —

Q FUNCTION
speed_encoder — — —
regressor — — —

SPEED ENCODER
Linear N × 1 N × 8 activation:=ReLU
Linear N × 8 N × 8 activation:=Identity

REGRESSOR
Linear N × 42 N × 32 activation:=ReLU
Linear N × 32 N × 64 activation:=ReLU
Linear N × 64 N × 64 activation:=ReLU
Linear N × 64 N × 32 activation:=ReLU
Linear N × 32 N × 32 activation:=ReLU
Linear N × 32 N × 1 activation:=Identity

2.2 2.6 3.0 3.4 3.8 4.2 4.6

Safety Margin ε

0

20

40

60

80

100

P
er

ce
nt

ag
e

C
om

pl
et

e
(%

)

10

15

20

25

A
ve

ra
ge

S
p

ee
d

(k
m

/h
)

Figure F.1: Performance of the SafeRandom agent at different safety margin (averaged over 10 random seeds)

may quickly terminate episodes by driving out-of-bounds (thus spending less time in the inadmissible
positions). On the other hand, policies that have low completion percentages also have low ED scores,
due to more frequent failures and subsequent environment resets.

We observe new state-of-the-art performance received by our approach, across the driving quality
metrics, in the Learn-to-Race benchmark.

19

Under review as a conference paper at ICLR 2022

Table F.1: Learn-to-Race task (Herman et al., 2021) results on Track01 (Thruxton Circuit), for learning-
free agents, with respect to the task metrics: Episode Completion Percentage (ECP), Episode Duration (ED),
Average Adjusted Track Speed (AATS), Average Displacement Error (ADE), Trajectory Admissibility
(TrA), Trajectory Efficiency (TrE), and Movement Smoothness (MS). Arrows (↑↓) indicate directions of
better performance, across agents. Bold results in tables F.1 and F.2 are generally best, however, asterisks
(*) indicate metrics which may be misleading, for incomplete racing episodes.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)
HUMAN 100.0± 0.0 78.6± 5.2 79.29± 4.7 2.4± 0.1 0.93± 0.01 1.00± 0.02 11.7± 0.1

Random 0.50± 0.30 4.67± 3.2 11.90± 3.80 1.5± 0.60 0.81± 0.04 0.33± 0.38∗ 6.7± 1.1
MPC 100.0± 0.0 301.40± 10.10 45.10± 0.0 0.90± 0.10 0.98± 0.01 0.85± 0.03 10.4± 0.60

Table F.2: Learn-to-Race task (Herman et al., 2021) results on Track01 (Thruxton Circuit), for learning-
based agents.

Agent ECP (↑) ED* (↓) AATS (↑) ADE (↓) TrA (↑) TrE (↑) MS (↑)
HUMAN 100.0± 0.0 78.6± 1.7 79.29± 4.7 2.4± 0.1 0.93± 0.01 1.00± 0.02 11.7± 0.1

SAC 61.6± 38.6 8.39± 11.12 48.0± 30.9 1.79± 2.17 0.28± 0.38 0.05± 0.08 3.22± 3.59
SafeRandom (ours) 83.1± 24.5 484.53± 725.30 11.2± 0.9 3.73± 0.47 0.86± 0.12 0.01± 0.01 11.06±3.31
SafeSAC (ours) 49.1± 41.7 676.09± 805.83 33.8± 26.2 1.58± 1.03 0.98± 0.05 0.01± 0.01 9.15± 3.20
SPAR (ours) 79.9± 23.2 34.81±6.14 53.3±3.8 0.68±1.58 0.99±0.03 0.11±0.10 8.06± 1.41

20

	Introduction
	Related Work
	Preliminaries
	SPAR: Safety-aware Policy Optimisation for Autonomous Racing
	Experiments
	Experiment: Classical Control Benchmarks
	Experiment: Safety Gym
	Experiment: Learn-to-Race

	Conclusion
	Classical Control Benchmarks
	Model Dynamics
	Comparison of Implementation Details
	Comparison of Learning Rules for Safety Critic

	SPAR Algorithm
	Derivation of the Optimal Safety Controller
	Additional Implementation Details for Safety Gym
	Additional Implementation Details for Learn-to-Race
	Additional Results

