
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETRIEVAL-AUGMENTED DECISION TRANSFORMER:
EXTERNAL MEMORY FOR IN-CONTEXT RL

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) is the ability of a model to learn a new task by observing
a few exemplars in its context. While prevalent in NLP, this capability has recently
also been observed in Reinforcement Learning (RL) settings. Prior in-context
RL methods, however, require entire episodes in the agent’s context. Given that
complex environments typically lead to long episodes with sparse rewards, these
methods are constrained to simple environments with short episodes. To address
these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-
DT). RA-DT employs an external memory mechanism to store past experiences
from which it retrieves only sub-trajectories relevant for the current situation. The
retrieval component in RA-DT does not require training and can be entirely domain-
agnostic. We evaluate the capabilities of RA-DT on grid-world environments,
robotics simulations, and procedurally-generated video games. On grid-worlds,
RA-DT outperforms baselines, while using only a fraction of their context length.
Furthermore, we illuminate the limitations of current in-context RL methods on
complex environments and discuss future directions. To facilitate future research,
we release datasets for four of the considered environments.

1 INTRODUCTION

In-context Learning (ICL) is the ability of a model to learn new tasks by leveraging a few exemplars
in its context [Brown et al., 2020]. Large Language Models (LLMs) exhibit this capability after
pre-training on large amounts of data crawled from the web. A similar trend has emerged in the field
of RL, where agents are pre-trained on datasets with an increasing number of tasks [Chen et al., 2021;
Janner et al., 2021; Reed et al., 2022; Lee et al., 2022; Brohan et al., 2022; 2023]. After training, such
an agent is capable of learning new tasks by observing previous trials in its context [Laskin et al.,
2022; Liu & Abbeel, 2023; Lee et al., 2023; Raparthy et al., 2023]. Consequently, ICL is a promising
direction for generalist agents to acquire new tasks without the need for re-training, fine-tuning, or
providing expert-demonstrations.

Existing methods for in-context RL rely on keeping entire episodes in their context [Laskin et al.,
2022; Lee et al., 2023; Kirsch et al., 2023; Raparthy et al., 2023]. Consequently, these methods
face challenges in complex environments, as complex environments are usually characterized by
long episodes and sparse rewards. Episodes in RL may consist of thousands of interaction steps,
and processing them is computationally expensive, especially for network architectures such as the
Transformer [Vaswani et al., 2017]. Furthermore, not all information an agent encountered in the past
may be necessary to solve the new task. Therefore, we address the question of how to facilitate ICL
for environments with long episodes and sparse rewards.

We introduce Retrieval-Augmented Decision Transformer (RA-DT), which incorporates an external
memory into the Decision Transformer [Chen et al., 2021, DT] architecture (see Figure 1). Our
external memory enables efficient storage and retrieval of past experiences, that are relevant for the
current situation. We achieve this by leveraging a vector index populated with sub-trajectories, in
combination with maximum inner product search; akin to Retrieval-augmented Generation (RAG) in
LLMs [Khandelwal et al., 2019; Lewis et al., 2020; Borgeaud et al., 2022]. To encode retrieved sub-
trajectories, RA-DT relies on a pre-trained embedding model, which can either be domain-specific,
such as a DT trained on the same domain, or a domain-agnostic language model (LM) (see Section
3). Subsequently, RA-DT uses cross-attention to leverage the retrieved sub-trajectories and predict

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of Retrieval-augmented Decision Transformer (RA-DT). Left: Prior to
training, we encode pre-collected trajectories via an embedding model. During training, we retrieve
sub-trajectories using the current context as query, and fuse them into layers via cross-attention. Right:
During inference, the collected experience is stored and retrieved during environment interaction.

the next action. This way, RA-DT does not rely on a long context and can deal with sparse reward
settings.

We evaluate the effectiveness of RA-DT on grid-world environments used in prior work with sparse
rewards and increasing grid-sizes (Dark-Room, Dark Key-Door, Maze-Runner), robotics environ-
ments (Meta-World, DMControl) and procedurally-generated video games (Procgen). On grid-worlds,
RA-DT considerably outperforms previous in-context RL methods, while only using a fraction of
their context length. Further, we show that our domain-agnostic trajectory embedding model reaches
performance close to a domain-specific one. On the remaining more complex environments, we
observe consistent improvements for RA-DT on hold-out tasks, but no in-context improvement for
any method. Therefore, we discuss the current limitations of RA-DT and other in-context RL methods
and elaborate on potential remedies and future directions for in-context RL.

We make the following contributions:

• We introduce Retrieval-augmented Decision Transformers (RA-DT) and evaluate its effec-
tiveness on a number of diverse domains.

• We show that a domain-agnostic embedding model can be utilized for retrieval in RL without
requiring any pre-training, and reaches performance close to a domain-specific model.

• We release datasets for Dark-Room, Dark Key-Door, Maze-Runner, and Procgen to foster
future research on in-context decision-making that leverages offline pre-training.

2 RELATED WORK

In-context Learning. ICL is a form of Meta-learning, also referred to as learning-to-learn [Schmid-
huber, 1987]. Typically, meta-learning is targeted and learned through a meta-training phase, for
example in supervised-learning [Santoro et al., 2016; Mishra et al., 2018; Finn et al., 2017] or in RL
[Wang et al., 2016; Duan et al., 2016; Kirsch et al., 2019; Flennerhag et al., 2019]. In contrast, ICL
emerges as a result of pre-training on a certain data distribution [Chan et al., 2022]. This ability was
first observed in Hochreiter et al. [2001] via LSTMs [Hochreiter & Schmidhuber, 1997] and later
re-discovered in LLMs [Brown et al., 2020]. Ortega et al. [2019] found that every memory-based
architecture may exhibit such capabilities. Another crucial factor is a training distribution comprising
a vast amount of tasks [Chan et al., 2022; Kirsch et al., 2022]. Recent works combined these proper-
ties to induce ICL in RL [Laskin et al., 2022; Lee et al., 2022; Kirsch et al., 2023]. While promising,
they require keeping entire episodes in context, which is difficult in environments with long episodes.
Raparthy et al. [2023] consider an in-context imitation learning setting given expert demonstrations.
In contrast, RA-DT can handle long episodes and does not rely on expert demonstrations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Retrieval-augmented Generation. The aim of retrieval-augmentation is to provide a model access
to an external memory. This alleviates the need to store the training data in the parameters of a model
and allows to condition on new data without re-training. RAG is successfully applied in the realm of
LLMs [Khandelwal et al., 2019; Guu et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022; Izacard
et al., 2022; Ram et al., 2023], multi-modal language generation [Hu et al., 2023; Yasunaga et al.,
2023; Yang et al., 2023b; Ramos et al., 2022], and for chemical reaction prediction [Seidl et al., 2022].
In RL, the access to an external memory is often referred to as episodic memory [Sprechmann et al.,
2018; Blundell et al., 2016; Pritzel et al., 2017]. Goyal et al. [2022] investigate the effect of different
data sources in the external memory of an online RL agent. [Humphreys et al., 2022] provide access
to millions of expert demonstrations via RAG in the game of Go. In contrast, RA-DT does not rely on
expert demonstrations, but leverages RAG to learn new tasks entirely in-context without the need for
weight updates. Further, RA-DT does not rely on a pre-trained domain-specific embedding model, as
we demonstrate that the embedding model can be entirely domain-agnostic.

External memory in RL. Most prior works have explored the utility of an external memory to
cope with partially observable environments [Åström, 1965; Kaelbling et al., 1998], in which the
agent must remember past events to approximate the true state of the environment. This is difficult,
especially for complex tasks with sparse rewards [Arjona-Medina et al., 2019; Patil et al., 2022;
Widrich et al., 2021] and long episodes. To cope with this problem, Neural Turing Machines [Graves
et al., 2014], which rely on a neural controller to read from and write to an external memory, were
applied to RL [Zaremba & Sutskever, 2015]. Memory networks [Weston et al., 2015] leverage an
external memory for reasoning. Wayne et al. [2018] propose a memory architecture with read/write
access to learn what information to store based on a world model. In contrast, RA-DT only retrieves
pieces of past information similar to the current encountered situation. Hill et al. [2021] propose
an attention-based external memory, where queries, keys, and values are represented by different
modalities. Similarly, our domain-agnostic embedding model extends the idea of history compression
via LLMs [Paischer et al., 2022; 2023] to retrieval, where queries and keys are encoded in the
language space, while values comprise raw sub-trajectories.

3 METHOD

3.1 BACKGROUND

Reinforcement Learning. We formulate our problem setting as a Markov Decision Process (MDP)
that is represented by a 4-tuple of(S,A,P,R). S and A denote state and action spaces, respectively.
At timestep t the agent observes state st ∈ S and issues action at ∈ A. For each executed
action, the agent receives a scalar reward rt, which is given by the reward function R(rt | st, at).
P(st+1 | st, at) constitutes a probability distribution over next states st+1 when issuing action at in
state st. RL aims at learning a policy π(at | st) that predicts action at in state st that maximizes rt.

Decision Transformer. Decision Transformer [Chen et al., 2021, DT] learns a policy from offline
data by conditioning on future rewards. This allows rephrasing RL as a sequence modelling problem,
where the agent is trained in a supervised manner to map future rewards to actions, often referred
to as upside-down RL [Schmidhuber, 2019]. To train the DT, we assume access to a pre-collected
dataset D = {τi | 1 ≤ i ≤ N} of N trajectories τi that are sampled from the environment via a
behavioural policy πβ . Each trajectory τ ∈ D consists of state, action, reward, and return-to-go (RTG)
quadruplets τi = (s0, a0, r0, R̂0, . . . , sT , aT , rT , R̂T), where T represents the length of trajectory
τi, and R̂t =

∑T
t′=t rt′ . The DT πθ is trained to predict the ground truth action at conditioned on

sub-trajectories via cross-entropy or mean-squared error loss, depending on the domain:

at ∼ πθ(at | st−C:t, R̂t−C:t, at−C:t−1, rt−C:t−1), (1)

where C ≤ T is the context length. During inference, the DT is conditioned on a high RTG to
produce a likely sequence of actions that yields high reward behaviour.

3.2 RETRIEVAL-AUGMENTED DECISION TRANSFORMER (RA-DT)

Processing long sequences with DTs is computationally expensive due to the quadratic complexity of
the Transformer architecture. To address this challenge, we introduce RA-DT, which equips the DT

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Illustration of experience reweighting. Given a query trajectory, we retrieve the top l > k
most relevant experiences by maximum inner product search. Each experience has an associated task
ID, and return, based on which we compute their utility. We reweight by srel and su, to obtain the
final retrieval score sret, and return the top-k experiences.

with an external memory that relies on a vector index for retrieval. Consequently, RA-DT consists
of a parametric and a non-parametric component, reminiscent of complementary learning systems
[Mcclelland et al., 1995; Kumaran et al., 2016]. The former is represented by the DT and learns to
predict actions conditioned on the future return. The latter is the retrieval component that searches
for relevant experiences, similar to Borgeaud et al. [2022] (see Figure 1).

3.2.1 VECTOR INDEX FOR RETRIEVAL AUGMENTATION

We aim at augmenting the DT with a vector index (external memory) that allows for retrieval of
relevant experiences. To this end, we build our vector index by leveraging an embedding model
g : τ 7→ Rdr that takes a trajectory τ and returns a vector of size dr. Given a dataset D of trajectories,
we obtain a set of key-value pairs of our vector index by embedding all sub-trajectories τt−C:t ∈ D
via g(·) to obtain K × V = {(g(τi,t−C:t), τi,t−C:t+C) | 1 ≤ i ≤ |D|}. Note that values contain
sub-trajectories ranging from t − C to t + C, while keys use sub-trajectories t − C : t for a fixed
C, where t goes over trajectory length in increments of C (see Appendix C.4 for more details). The
reason for this choice is that during inference, the model does not have access to future states.

In RAG applications for Natural Language Processing (NLP), a common choice for g(·) is a pre-
trained LM. While pre-trained models in NLP are ubiquitous, they are rarely available in RL. A
natural choice to instantiate g(·) is to train a DT on the pre-collected dataset D, as they exhibit
a well-separated embedding space after pre-training [Schmied et al., 2024]. Therefore, they are
well suited for retrieval since a new task can be matched to similar tasks in the vector index. As a
domain-agnostic alternative, we propose to utilize the FrozenHopfield (FH) mechanism Paischer et al.
[2022] to map trajectories to the embedding space of a pre-trained LM. This enables instantiating g(·)
with a pre-trained language encoder. The FH mechanism is parameterized by an embedding matrix
E ∈ Rv×dLM of a pretrained LM with vocabulary size v and hidden dimension dLM, a random matrix
P with entries sampled from N (0, din/dLM), and a scaling factor β and performs:

FH(xt) = E⊤ softmax(βEPxt). (2)

We denote xt ∈ Rdin as the input token and apply the FH position-wise to every state/action/reward
token in a sub-trajectory τt−C:t separately. Finally, we apply a LM on top of the FH to obtain the keys
of our vector index by setting g(·) = LM(FH(·)). Utilizing the FH enables leveraging the expressive
power of pre-trained LMs as trajectory encoders for RL. This sidesteps the need for pre-training a
domain-specific model and can be incorporated in any existing retrieval-augmentation pipeline.

3.2.2 SEARCHING FOR SIMILAR EXPERIENCES

Given an input sub-trajectory τin ∈ D, we first construct a query q = g(τin), using our embedding
model g(·) (see Appendix C.4 for details). Then, we use maximum inner product search (MIPS)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

between q and all keys k ∈ K and select the corresponding top-l sub-trajectories τret ∈ V by:

R =
l

argmax
k∈K

cossim(q,k), (3)

where cossim(q,k) = q·k
∥q∥∥k∥ is the cosine similarity. Consequently,R contains the set of retrieved

sub-trajectories and their keys. Providing too similar experiences to the model may hinder learning
[Yasunaga et al., 2023] and we apply retrieval regularization during training (see Appendix C.4).

3.2.3 REWEIGHTING RETRIEVED EXPERIENCES

Following Park et al. [2023], we characterize the usefulness of retrieved sub-trajectories inR along
two dimensions: relevance and utility. The relevance of a key k ∈ K is defined by its cosine similarity
to the query q. While a retrieved experience may be relevant, it might not be important. Determining
the utility of a sequence in general is hard. Thus, we experiment with two heuristics that follow
different definitions of utility. The first assigns more utility to sub-trajectories with high return, and is
utilized at inference only. The second assigns utility to sub-trajectories that originate from the same
task as the query and is used at training only. Then, we reweight a retrieved experience according to:

sret(k, q, τret) = srel(k, q) + α su(τret, τin), (4)

where srel = cossim(k, q) and su measures the utility of a retrieved sub-trajectory weighted by α.
Note that we instantiate su(·, ·) differently depending on whether the agent is in training or inference
mode. At training time, a pre-collected set of trajectories that contains multiple tasks is stored in the
vector index (Figure 1, left). Trajectories can be obtained from human demonstrations or RL agents.
Therefore, we encourage the agent to retrieve sub-trajectories of the same task. During training, we
use: su(τret, τin) = 1(t(τret) = t(τin)), where t(·) takes a sub-trajectory and returns its task index.

During inference, we evaluate the ICL capabilities of the agent. Starting from an empty vector index,
we store experiences of the agent while it interacts with the environment (see Figure 1, right). Thus,
during inference, the agent can only retrieve experiences from the same task. Therefore, we steer the
agent to produce high reward behaviour on the new task by reweighting a retrieved sub-trajectory by
the total return achieved over the episode it appears in, i.e., su(τret, τin) =

∑T
i=0 ri. We apply this

reweighting to the retrieved experiences inR and select the top-k elements by:

S =
k

argmax
k,τret∈R

sret(k, q, τret), (5)

Algorithm 1 In-context Learning with RA-DT

Input: DT πθ, embed model g, episodes N , episode
len T , context len C, retrieve, reweight.

1: I ← ∅ ▷ Inititalize index
2: for 1 . . . N do
3: s, τ ← env.reset(), ∅
4: for t = 1 . . . T do
5: q = g(τt−C:t) ▷ Construct query
6: R ← retrieve(q, I) ▷ Top-l trjs, Eq. 3
7: S ← reweight(R) ▷ Top-k, Eq. 4, 5
8: a ∼ πθ(a | τt−C:t, {τret ∈ S}) ▷ Predict
9: s′, r ← env.step(a)

10: τ ← τ ∪ (s, a, r) ▷ Append transition to τ
11: s← s′

12: end for
13: I ← I ∪ τ ▷ Add trajectory τ to index I
14: end for

where we normalize both scores to be in the
range [0, 1], such that they contribute equally to
the final weight. Our reweighting mechanism
is illustrated in Figure 2.

3.2.4 INCORPORATING RETRIEVED
EXPERIENCES

After reweighting, the set S contains sub-
trajectories that are both important and rele-
vant for the current input τin to the DT πθ.
To incorporate the retrieved experiences in the
DT, we interleave it with cross-attention lay-
ers (CA) after every self-attention (SA) layer.
The retrieved sub-trajectories are encoded by
separate embedding layers for each token type
(state/action/reward/RTG) and then passed to
the CA layers. Thus, our RA-DT predicts ac-
tions at given input trajectory and retrieved
trajectory by:

at ∼ πθ(at | τin, {τret ∈ S}). (6)

In Algorithm 1, we show the pseudocode for in-context RL with RA-DT at inference time. In addition,
we show RA-DT at training time in Algorithm 2 of Appendix C.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Dark-Room 10×10 (b) Dark-Room 20×20 (c) Dark-Room 40×20

Figure 3: ICL performance on Dark-Room (a) 10×10, (b) 20×20, (c) 40×20 at end of training
(100K steps). We evaluate each agent for 40 episodes on each of the 20 evaluation tasks and report
mean reward (+ 95% CI) over 3 seeds.

4 EXPERIMENTS

We evaluate the ICL abilities of RA-DT on grid-world environments used in prior works, namely
Dark-Room (see Section 4.1), Dark Key-Door (Section 4.2), and MazeRunner (Section 4.3) [Laskin
et al., 2022; Lee et al., 2022; Grigsby et al., 2023], with increasingly larger grid-sizes, resulting
in longer episodes. Moreover, we evaluate RA-DT on two robotic benchmarks (Meta-World and
DMControl, Section 4.4) and procedurally-generated video games (Procgen, Section 4.5).

Across experiments, we report performances for two variants of RA-DT. The first variant leverages
a domain-specific embedding model for retrieval, specifically a DT trained on the same domain.
The second variant (RA-DT + Domain-agnostic) makes use of the FH mechanism in combination
with BERT [Devlin et al., 2019] as the pre-trained LM. Consequently, this variant of RA-DT does
not require any domain-specific pre-training of the embedding model. We compare RA-DT against
the vanilla DT and two established in-context RL methods, namely Algorithm Distillation [Laskin
et al., 2022, AD] and Decision Pre-trained Transformer [Lee et al., 2023, DPT]. Following, Agarwal
et al. [2021] we report the mean across tasks and 95% confidence intervals over 3 seeds. We use a
context length equivalent to two episodes (from 200 up to 2000 timesteps) for AD, DPT and DT. For
RA-DT, we use a considerably shorter context length of 50 transitions, unless mentioned otherwise.
On grid-worlds, we train all methods for 100K steps and evaluate after every 25K steps. Similarly,
we train for 200K steps and evaluate after every 50K steps for Meta-World, DMControl and Procgen.
All grid-worlds and Procgen exhibit discrete actions and consequently, we train all methods via the
cross-entropy loss to predict the next actions. On Meta-World and DMControl, we train all method
using the mean-squared error loss to predict continuous actions. Following Laskin et al. [2022] and
Lee et al. [2023], our primary evaluation criterion is performance improvement during ICL trials.
After training, the agent interacts with the environment for a fixed amount of episodes, each of which
is considered a single trial. Upon completion of an ICL trial, the respective episode is stored in the
vector index. We provide further training and implementation details in Appendix C.

4.1 DARK-ROOM

Experiment Setup. Dark-Room is commonly used in prior work on in-context RL [Laskin et al.,
2022; Lee et al., 2023]. The agent is located in an empty room, observes only its x-y coordinates,
and has to navigate to an invisible goal state (|S| = 2, |A| = 5, see Figure 9). A reward of +1 is
obtained in every step the agent is located in the goal state. Because of partial observability, it must
leverage memory of previous episodes to find the goal. We conduct experiments on three different
grid sizes, namely 10×10, 20×20, and 40×20, and corresponding episode lengths of 100, 200 and
800, respectively. We designate 80 and 20 randomly assigned goals as train and evaluation locations,
respectively, as in Lee et al. [2023]. We use Proximal Policy Optimization (PPO) [Schulman et al.,
2017] to generate 100K transitions per goal for 10×10 and 20×20 grids and 200K for 40×20 (see
Figure 7 for single task expert scores). During evaluation, the agent interacts with the environment

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for 40 ICL trials, and we report the scores at the last evaluation step (100K). We provide additional
details on the environment, the generated data, and the training procedure in Appendix B.1 and C.

Results. In Figure 3, we show the ICL performances on the 20 hold-out tasks for all considered
methods on Dark-Room (a)10×10, (b) 20×20, and (c) 40×20. In addition, we present the ICL curves
on the training tasks and the learning curves across the entire training period in Figures 14 and 15 in
Appendix D.1. Overall, we observe that RA-DT attains the highest average rewards on all 3 grid-sizes
at the end of the 40 ICL-trials. On 10×10, RA-DT obtains near-optimal performance scores both
with the domain-specific and domain-agnostic embedding model. The vanilla DT does not exhibit
any performance improvement across trials. This indicates the improvement in performance for
RA-DT can be attributed to the retrieval component. Furthermore, RA-DT outperforms AD and DPT
without keeping entire episodes in its context window. Similarly, RA-DT outperforms all baselines on
the 20×20 and 40×20 grids. While RA-DT successfully improves in-context, the baselines exhibit
only little learning progress over the ICL trials, especially for larger grid sizes. However, the final
performance scores for 20×20 and 40×20 are not optimal. With increasing grid size, discovering
the goal requires systematic exploration in combination with targeted exploitation. Therefore, we
conduct a qualitative analysis on the exploration behaviour of RA-DT. We find that RA-DT develops
strategies to imitate a given successful context (see Figure 16), and avoids low-reward routes given
an unsuccessful context (see Figure 17).

(a) Dark Key-Door 10×10 (b) Dark Key-Door 20×20 (c) Dark Key-Door 40×20

Figure 4: ICL performance on Dark Key-Door (a) 10×10, (b) 20×20, (c) 40×20 at end of training
(100K steps). We evaluate each agent for 40 episodes on each of the 20 evaluation tasks and report
mean reward (+ 95% CI) over 3 seeds.

4.2 DARK KEY-DOOR

Experiment Setup. In Dark Key-Door, the agent is located in a room with two invisible objects: a
key and a door. The agent has to pick up the invisible key, then navigate to the door. Because of the
presence of two key events, the task-space is combinatorial in the number of grid-cells (1002 = 10000
possible tasks for 10×10) and is therefore considered more difficult. A reward of +1 is obtained once
for picking up the key and for every step the agent stands on the door grid-cell after it collected the
key. We retain the same experiment setup as in Section 4.1 and provide further details in Appendix
B.1 (also see Figure 8 for single-task expert scores).

Results. On 10 × 10 and 20 × 20, RA-DT outperforms baselines, with the performance ranking
remaining the same as on Dark-Room (see Figure 4). Surprisingly, domain-agnostic RA-DT out-
performs its domain-specific counterpart on 40× 20, which demonstrates that the domain-agnostic
embedding model is a promising alternative. This result indicates that RA-DT can successfully
handle environments with more than one key event, even with shorter observed context.

4.3 MAZE-RUNNER

Experiment Setup. Maze-Runner was introduced by Grigsby et al. [2023] and inspired by Pasukonis
et al. [2022]. The agent is located in a procedurally-generated 15× 15 maze (see Figure 10), observes
continuous Lidar-like depth representations of states, and has to navigate to one, two, or three goal
locations in the correct order (|S| = 6,|A| = 4). A reward of +1 is obtained when reaching a goal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

location. Episodes last for a maximum of 400 steps, or terminate early if all goal locations have
been visited. Similar to Dark-Room, we use PPO to generate 100K environment interactions for 100
procedurally-generated mazes. We train all methods on a multi-task dataset that comprises trajectories
from 100 mazes, evaluate on 20 unseen mazes, and report performance over 30 ICL trials. We give
further details on the environment, the dataset, and the experiment setup in Appendix B.2 and D.2.

Results. We find that RA-DT considerably outperforms all baselines in terms of final performance
(see Figure 5). Surprisingly, RA-DT is the only method to improve over the course of the 30 ICL
trials. However, we observe a considerable performance gap between train mazes and test mazes
(0.65 vs. 0.4 reward, see Figure 20), indicating that solving unseen mazes requires an enhanced
ability to generalize and learn from previous trials.

4.4 META-WORLD & DMCONTROL

Figure 5: ICL on MazeRunner.
We evaluate over 30 ICL trials and
report the mean reward (+ 95% CI)
over 3 seeds.

Experiment Setup. Next, we evaluate RA-DT on two multi-
task robotics benchmarks, Meta-World [Yu et al., 2020b] and
DMControl [Tassa et al., 2018]. States and actions in both
benchmarks are multidimensional continuous vectors. While
the state and action space in Meta-World remain constant across
all tasks (|S| = 39, |A| = 6), they vary considerably in DM-
Control (3 ≤ |S| ≤ 24, 1 ≤ |A| ≤ 6). Episodes last for 200
and 1000 steps in Meta-World and DMControl, respectively.
We leverage the datasets released by Schmied et al. [2024]. For
Meta-World, we pre-train a multi-task policy on 45 of the 50
tasks (ML45, 90M transitions in total) and evaluate on the 5
remaining tasks (ML5). Similarly, on DMControl, we pre-train
on 11 tasks (DMC11, 11M transitions in total) and evaluate
on 5 unseen tasks (DMC5). We provide further details on the
environments, datasets, and experiment setup in Appendices
B.3 and D.3, and B.4 and D.4 for Meta-World and DMControl,
respectively.

Results. We present the learning curves and corresponding ICL curves for Meta-World and DM-
Control in Figure 22 and 23, and Figures 24 and 25 in Appendix D, respectively. In addition, we
provide the raw and data-normalized scores in Tables 3 and 4, respectively. On both benchmarks, we
find that RA-DT attains considerably higher scores on unseen evaluation tasks, but slightly lower
average scores across training tasks compared to DT. However, these performance gains on evaluation
tasks are not reflected in improved ICL performance. In fact, we only observe slight in-context
improvement on training tasks, but not on holdout tasks for any of the considered methods.

4.5 PROCGEN

Experiment Setup. Finally, we conduct experiments on Procgen [Cobbe et al., 2020], a benchmark
consisting of 16 procedurally-generated video games, designed to test the generalization abilities of
RL agents. The procedural generation in Procgen is controlled by setting an environment seed, which
results in visually diverse observations for the same underlying task (see starpilot-example in
Figure 12). In Procgen, the agent receives image-based inputs (|S| =3×64×64). All 16 tasks share a
discrete action space (|A| = 15). Rewards are either dense or sparse depending on the environment.

We follow Raparthy et al. [2023] and use 12 tasks for training (PG12) and 4 tasks for evaluation
(PG4). First, we generate datasets by training task-specific PPO agents for 25M timesteps on 200
environment seeds per task in easy difficulty. Then, we pre-train a multi-task policy on the PG12
datasets (24M transitions in total, 2M per task). We leverage the procedural generation of Procgen
and evaluate all models in three settings: training tasks - seen (PG12-Seen), training tasks - unseen
(PG12-Unseen), and evaluation tasks - unseen (PG4). Additional details on the generated datasets
and our environment setup are available in Appendices B.5 and D.5.

Results. Similar to our results on Meta-World and DMControl, we find that RA-DT improves average
performance scores across all three settings compared to the baselines (see Figure 26 and Tables 5, 6,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

7 in Appendix D.5), but no method exhibits in-context improvement during evaluation (Figure 27).
We further discuss our negative results on Procgen, Meta-World, and DMControl in Section 5.

4.6 ABLATIONS

To better understand the effect of learning with retrieval, we present a number of ablation studies on
essential components in RA-DT conducted on Dark-Room 10× 10 (more details in Appendix E).

Retrieval outperforms sampling of experiences. To investigate the effect of learning with retrieved
context, we substitute retrieval with random sampling, either over all tasks, or from the same task
(see Figure 6a). We find that training with retrieval outperforms both sampling variants, highlighting
the benefit of training with retrieval to improve ICL abilities. We hypothesise this is because retrieval
constructs bursty sequences, which was found to be important for ICL [Chan et al., 2022].

(a) (b) (c)

Figure 6: Ablations on important components in RA-DT conducted on Dark-Room 10×10. We show
(a) the effect of training with retrieval vs. sampling, (b) a sensitivity analysis on α as used in the
re-weighting mechanism during training, and (c) the effect of leveraging different LMs as pre-trained
embedding models for domain-agnostic retrieval.

Reweighting Experiences. RA-DT reweights a sub-trajectory by its relevance and utility score. By
default, we use task-based reweighting during training. In Figure 28, we compare against alternatives,
such as reweighting by return. Indeed, we find that task-based reweighting is critical for high
performance, because it ensures that retrieved experiences are useful for predicting the next action.

Sensitivity of Reweighting. We conduct a sensitivity analysis on α used in the reweighting mecha-
nism (see Equation 4). In Figure 6b, we find that RA-DT performs well for a range of values for α
used during training, but performance declines if no re-weighting is employed (α = 0). We perform
the same analysis for α during evaluation in Figure 29.

Effect of Retrieval Regularization. We evaluate with three retrieval regularization strategies to
mitigate the effect of copying the context: deduplication, similarity cut-off, and query dropout. To
evaluate their impact on ICL performance, we systematically removed each one from RA-DT (see
Figure 30). We found the combination of all three to be effective and add them to our pipeline.

Different LMs for domain-agnostic RA-DT. Finally, we investigate how strongly domain-agnostic
RA-DT is influenced by the choice of pre-trained LM for the embedding model. We compare our
default choice BERT against other smaller/larger LMs (see Figure 36). We found that BERT performs
best and performance decreases with smaller models.

Effect of Retrieval on Training/Inference Efficiency. Retrieval-augmentation adds computational
overhead to the training/inference pipeline due to the cost of embedding the query and searching
for similar experiences. However, we find that RA-DT results in significantly faster training times
because of shorter context length (up to 7× see Appendix E.7). At inference-time, RA-DT is slightly
slower compared to baselines when retrieving at every step, but exhibits similar inference speeds when
retrieving less frequently (see Appendix E.8). Importantly, the retrieval mechanism in RA-DT enables
access to the entirety of the experiences collected across all ICL trials with small additional cost. The
ability to access a broader range of experiences may be a reason for its enhanced performance.

For additional ablations on RA-DT and on our baselines, we refer to Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 DISCUSSION

In this section, we highlight current challenges of RA-DT and other offline in-context RL methods.

Memory-Exploitation vs. Meta-learning Abilities. Current offline in-context RL methods are pre-
dominantly evaluated on contextual bandits or grid-worlds, such as Dark-Room [Laskin et al., 2022;
Lee et al., 2023; Lin et al., 2023; Sinii et al., 2023; Huang et al., 2024], which can only be solved by
leveraging the context. However, it remains unclear to what extent the agent learns to learn in-context
or simply copies from its context. Further, in our experiments on fully-observable environments
(MetaWorld, DMControl, and Procgen), we did not observe ICL behaviour (see Appendices D.3,
D.4, D.5). Therefore, it is necessary that future research on in-context RL disentangles the effects of
memory and meta-learning abilities, similar to memory and credit-assignment [Ni et al., 2024].

Challenges of Next-Action Prediction. Most in-context RL methods learn from offline datasets via
next-action prediction and causal sequence modelling objectives. As such, they cannot learn to infer
the utility of an action, and thus, distinguish between positive and negative examples. This can induce
delusions, which lead to repetitions of suboptimal actions and copying behaviour [Ortega et al., 2021]
(see Figure 19 for examples on Dark-Room). In contrast, online in-context RL methods have shown
promising adaptation abilities [Team et al., 2023; Grigsby et al., 2023; Lu et al., 2024]. A similar
trend has been observed in online meta-RL methods [Melo, 2022; Shala et al., 2024]. Consequently, a
potential remedy to this problem is to train a value function to learn the utility of an action. However,
this is usually not straightforward and requires constrained optimization objectives [Zanette et al.,
2021; Kumar et al., 2020]. Therefore we leave this approach to future work.

Conditioning Strategies in RL. In LLMs, applying sophisticated conditioning strategies is important
to improve ICL abilities [Wei et al., 2022; Yao et al., 2024; Agarwal et al., 2024]. Even though RTG-
conditioning [Chen et al., 2021], and chain-of-hindsight [Liu & Abbeel, 2023] have shown promise
for generating high reward behaviour in DTs, the broader landscape for conditioning strategies
for in-context RL remains under-explored. Therefore, we believe that systematically investigating
conditioning methods for in-context RL is a fruitful direction for future research.

Diversity of the Pre-training Distribution. The diversity and scale of the pre-training dataset may
significantly affect the emergence of ICL. In our experiments, we pre-train on a relatively small
set of tasks. Our results on gridworlds suggest that this is sufficient for ICL to emerge on simple
environments. However, on more complex environments, the unseen tasks can be considered out-of-
distribution and higher pre-training diversity may be necessary for ICL to emerge. It remains unclear
how much diversity is required to elicit in-context RL, and if existing large-scale agents exhibit ICL
[Reed et al., 2022; Raad et al., 2024]. One promising approach is to expand the pre-training diversity
through learned interactive simulations [Yang et al., 2023a; Bruce et al., 2024].

6 CONCLUSION

Existing in-context RL methods keep entire episodes in their context window, which is challenging
as RL environments are typically characterized by long episodes and sparse rewards. To address
this challenge, we introduce RA-DT, which employs an external memory mechanism to store past
experiences and to retrieve experiences relevant for the current situation. RA-DT outperforms
baselines on grid-worlds, while using only a fraction of their context length. While RA-DT improves
average performance on holdout tasks on complex environments, it struggles to exhibit ICL, along
with other in-context RL methods. Consequently, we illuminate the current limitations of in-context
RL methods and discuss future directions. Finally, we release our datasets for Dark-Room, Dark
Key-Door, MazeRunner, and Procgen, to facilitate future research on in-context RL.

Future Work. Besides the general directions discussed in Section 5, we highlight a number of con-
crete approaches to extend RA-DT. While we focus on ICL without relying on expert demonstrations,
pre-filling the external memory with demonstrations may enable RA-DT to perform more complex
tasks. This may be effective for robotics applications, where expert demonstrations are easy to obtain.
Furthermore, end-to-end training of the retrieval component in RA-DT, similar to [Izacard et al.,
2022], may result in more precise context retrieval and enhanced down-stream performance. Finally,
we envision that modern recurrent architectures [Bulatov et al., 2022; Gu & Dao, 2023; Beck et al.,
2024] as policy backbones may benefit RA-DT by maintaining hidden states across many episodes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. RUDDER: return decomposition for delayed rewards. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 13544–13555, 2019.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z. Leibo,
Jack W. Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. CoRR,
abs/1606.04460, 2016.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. arXiv preprint arXiv:2402.15391, 2024.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Stephanie Chan, Adam Santoro, Andrew K. Lampinen, Jane Wang, Aaditya Singh, Pierre H.
Richemond, James L. McClelland, and Felix Hill. Data distributional properties drive emer-
gent in-context learning in transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Rudi D’Hooge and Peter P De Deyn. Applications of the morris water maze in the study of learning
and memory. Brain research reviews, 36(1):60–90, 2001.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

Anirudh Goyal, Abram Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puig-
domenech Badia, Arthur Guez, Mehdi Mirza, Peter C Humphreys, Ksenia Konyushova, et al.
Retrieval-augmented reinforcement learning. In International Conference on Machine Learning,
pp. 7740–7765. PMLR, 2022.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. arXiv preprint arXiv:2310.09971, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen
Clark. Grounded language learning fast and slow. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94. Springer, 2001.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid,
David A. Ross, and Alireza Fathi. Reveal: Retrieval-augmented visual-language pre-training with
multi-source multimodal knowledge memory. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 23369–23379.
IEEE, 2023. doi: 10.1109/CVPR52729.2023.02238.

Sili Huang, Jifeng Hu, Hechang Chen, Lichao Sun, and Bo Yang. In-context decision transformer:
Reinforcement learning via hierarchical chain-of-thought. arXiv preprint arXiv:2405.20692, 2024.

Peter Humphreys, Arthur Guez, Olivier Tieleman, Laurent Sifre, Théophane Weber, and Timothy
Lillicrap. Large-scale retrieval for reinforcement learning. Advances in Neural Information
Processing Systems, 35:20092–20104, 2022.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with
retrieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998. doi: 10.1016/
S0004-3702(98)00023-X.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172,
2019.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Louis Kirsch, James Harrison, C Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. In NeurIPS 2023 Workshop on Generalization in
Planning, 2023.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in Cognitive Sciences, 20:
512–534, 2016.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. Advances in Neural
Information Processing Systems, 33:7671–7684, 2020.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
arXiv preprint arXiv:2205.15241, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience. arXiv
preprint arXiv:2305.16554, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

James L. Mcclelland, Bruce L. Mcnaughton, and Randall C. O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: Insights from the successes and failures of
connectionist models of learning and memory. Psychological Review, 102:419–457, 1995.

Luckeciano C. Melo. Transformers are meta-reinforcement learners. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 15340–15359. PMLR, 2022.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=B1DmUzWAW.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36, 2024.

Pedro A. Ortega, Jane X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu,
Nicolas Heess, Joel Veness, Alexander Pritzel, Pablo Sprechmann, Siddhant M. Jayakumar,
Tom McGrath, Kevin J. Miller, Mohammad Gheshlaghi Azar, Ian Osband, Neil C. Rabinowitz,
András György, Silvia Chiappa, Simon Osindero, Yee Whye Teh, Hado van Hasselt, Nando
de Freitas, Matthew M. Botvinick, and Shane Legg. Meta-learning of sequential strategies. CoRR,
abs/1905.03030, 2019.

Pedro A Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Joel Veness,
Jonas Buchli, Jonas Degrave, Bilal Piot, Julien Perolat, et al. Shaking the foundations: delusions
in sequence models for interaction and control. arXiv preprint arXiv:2110.10819, 2021.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156–17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic HELM: an
interpretable memory for reinforcement learning. CoRR, abs/2306.09312, 2023. doi: 10.48550/
arXiv.2306.09312.

14

https://openreview.net/forum?id=B1DmUzWAW

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes.
arXiv preprint arXiv:2210.13383, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Vihang Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M. Blies,
Johannes Brandstetter, José Antonio Arjona-Medina, and Sepp Hochreiter. Align-rudder: Learning
from few demonstrations by reward redistribution. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 17531–17572. PMLR, 2022.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Doina Precup
and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pp. 2827–2836. PMLR, 2017.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton, Bethanie
Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable agents across
many simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. arXiv preprint arXiv:2302.00083,
2023.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova Kementchedjhieva. Smallcap: Lightweight
image captioning prompted with retrieval augmentation. CoRR, abs/2209.15323, 2022. doi:
10.48550/arXiv.2209.15323.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gener-
alization to new sequential decision making tasks with in-context learning, 2023.

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. CoRR, abs/2205.06175, 2022.
doi: 10.48550/arXiv.2205.06175.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A
sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May
1987.

Dominik Schmidt and Thomas Schmied. Fast and data-efficient training of rainbow: an experimental
study on atari. arXiv preprint arXiv:2111.10247, 2021.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing
Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In
International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vihang Prakash
Patil, Angela Bitto-Nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset perspective on
offline reinforcement learning. In Conference on Lifelong Learning Agents, pp. 470–517. PMLR,
2022.

Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo Neves, Jonas Verhoeven, Jorg K Wegner,
Marwin Segler, Sepp Hochreiter, and Gunter Klambauer. Improving few-and zero-shot reac-
tion template prediction using modern hopfield networks. Journal of chemical information and
modeling, 62(9):2111–2120, 2022.

Gresa Shala, André Biedenkapp, and Josif Grabocka. Hierarchical transformers are efficient meta-
reinforcement learners. CoRR, abs/2402.06402, 2024. doi: 10.48550/ARXIV.2402.06402. URL
https://doi.org/10.48550/arXiv.2402.06402.

Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov.
In-context reinforcement learning for variable action spaces. arXiv preprint arXiv:2312.13327,
2023.

Pablo Sprechmann, Siddhant M. Jayakumar, Jack W. Rae, Alexander Pritzel, Adrià Puigdomènech
Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan Pascanu, and Charles Blundell.
Memory-based parameter adaptation. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
October 2012. doi: 10.1109/IROS.2012.6386109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

16

https://doi.org/10.48550/arXiv.2402.06402

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack W. Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm
Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Jimenez Rezende, David Saxton,
Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matthew M. Botvinick, Demis
Hassabis, and Timothy P. Lillicrap. Unsupervised predictive memory in a goal-directed agent.
CoRR, abs/1803.10760, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks, 2015.

Michael Widrich, Markus Hofmarcher, Vihang Prakash Patil, Angela Bitto-Nemling, and Sepp
Hochreiter. Modern hopfield networks for return decomposition for delayed rewards. In Deep RL
Workshop NeurIPS 2021, 2021.

Maciej Wolczyk, Michal Zajkac, Razvan Pascanu, Lukasz Kuciński, and Piotr Miloś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Information
Processing Systems, 34:28496–28510, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 2023a.

Zhuolin Yang, Wei Ping, Zihan Liu, Vijay Korthikanti, Weili Nie, De-An Huang, Linxi Fan, Zhiding
Yu, Shiyi Lan, Bo Li, Ming-Yu Liu, Yuke Zhu, Mohammad Shoeybi, Bryan Catanzaro, Chaowei
Xiao, and Anima Anandkumar. Re-vilm: Retrieval-augmented visual language model for zero and
few-shot image captioning. CoRR, abs/2302.04858, 2023b. doi: 10.48550/arXiv.2302.04858.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Richard James, Jure Leskovec, Percy Liang,
Mike Lewis, Luke Zettlemoyer, and Wen-Tau Yih. Retrieval-augmented multimodal language
modeling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 39755–39769. PMLR, 2023.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

Andrea Zanette, Martin J. Wainwright, and Emma Brunskill. Provable benefits of actor-
critic methods for offline reinforcement learning. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

13626–13640, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
713fd63d76c8a57b16fc433fb4ae718a-Abstract.html.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. CoRR,
abs/1505.00521, 2015.

K.J Åström. Optimal control of markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174–205, 1965. ISSN 0022-247X. doi: https:
//doi.org/10.1016/0022-247X(65)90154-X.

18

https://proceedings.neurips.cc/paper/2021/hash/713fd63d76c8a57b16fc433fb4ae718a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/713fd63d76c8a57b16fc433fb4ae718a-Abstract.html

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

APPENDIX

Contents
A Ethics Statement & Reproducibility 19

B Environments & Datasets 20
B.1 Dark-Room and Dark Key-Door . 20
B.2 MazeRunner . 23
B.3 Meta-World . 23
B.4 DMControl . 24
B.5 Procgen . 24

C Experimental & Implementation Details 28
C.1 General . 28
C.2 Decision Transformer . 28
C.3 Algorithm Distillation . 29
C.4 Retrieval-Augmented Decision Transformer . 29

D Additional Results 31
D.1 Dark-Room . 31

D.1.1 Attention Map Analysis . 31
D.1.2 Exploration Analysis . 34

D.2 Maze-Runner . 35
D.3 Meta-World . 36
D.4 DMControl . 37
D.5 Procgen . 37

E Ablation Studies 38
E.1 Retrieval outperforms sampling of experiences 38
E.2 Reweighting Mechanism . 39
E.3 Retrieval Regularization . 42
E.4 Query Construction & Sequence Aggregation . 42
E.5 Placement of Cross-Attention Layers . 43
E.6 Interaction steps between context retrieval . 43
E.7 Effect of retrieval-augmentation on Training efficiency 43
E.8 Effect of retrieval-augmentation on Inference efficiency 44
E.9 Pre-trained Language Model . 45
E.10 Effect of K on Algorithm Distillation . 46
E.11 Convergence of Baselines . 46

A ETHICS STATEMENT & REPRODUCIBILITY

In recent years, there has been a trend in RL towards large-scale multi-task models that leverage
offline pre-training. In this work, we broadly aim at building agents that can learn new tasks via ICL
without the need for re-training or fine-tuning. Our goal is to reduce the need to provide entire past
episodes in the agent’s context, by augmenting the agent with an external memory in combination
with a retrieval component, similar to RAG in LLMs. We believe that multi-task agents of the near
future will be able to perform a broad range of tasks, and that these agents will greatly benefit from
RAG as used in RA-DT. The external memory component can enable agents to leverage information
from in its own distant past or experiences from other agents. Such agents could have an immense
impact on the global economy (e.g., as a source of inexpensive labour). As such, they do not come
without risks and the potential for misuse. While we believe that our work can significantly impact the
positive use of future agents, it is essential to ensure responsible deployment of future technologies.

Upon publication, we will open-source the code-base used for our experiments, and release the
datasets we generated. In addition, we provide further information on the environments/datasets,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

implementation including hyperparameter tables, and on our experiments in Appendices B, C, D,
respectively.

B ENVIRONMENTS & DATASETS

B.1 DARK-ROOM AND DARK KEY-DOOR

The Dark-Room environment is modelled after Morris-Watermaze, a classic experiment in behavioural
neuroscience for studying spatial memory and learning in animals [D’Hooge & De Deyn, 2001].
We design our Dark-Room and Dark Key-Door environments in Minihack [Samvelyan et al., 2021],
which is based on the NetHack Learning Environment [Küttler et al., 2020]. We construct grids of
dimensions 10× 10, 20× 20 and 40× 20, as depicted in Figure 9. With increasing grid sizes, the
task of locating the goal becomes harder as the number of possible positions in the grid grows (100,
400, 800). Therefore, we set the number of interaction steps per environment equal to the number of
grid cells. Consequently, larger grids results in longer episodes and thus context lengths (e.g., 2400
for AD). The agent observes its own x-y position on the grid and can perform one of 5 actions at
every interaction step (up, down, left, right, stay). Episodes start in the top left corner (0,0) and the
agent is reset to the start position after every episode.

In Dark-Room, the agent has to navigate to a randomly placed and invisible goal position. Therefore,
the task space in Dark-Room environments is equal to the number of grid-cells (i.e., 100 for 10× 10).
The agent receives a reward for +1 for every step in the episode it is located in the goal position and
0 otherwise. As there are as many grid-cells as episode steps, the optimal strategy for solving the
Dark-Room task is to use the first episode to visit every cell to find the hidden goal location. Once
found, this knowledge can be exploited in upcoming trials.

In contrast, in Dark Key-Door, there are two objects: a key and a goal state. Similar to Dark-Room,
the key and goal position are randomly placed on the grid. The agent has to first pick up the invisible
key and then find the invisible goal. Due to the presence of the two key events (picking up the key,
finding the goal), the task space is combinatorial in the number of grid-cells (i.e., 1002 = 10000 for
10× 10). This makes the Dark Key-Door more challenging than the Dark-Room task, especially as
the grid-size becomes larger.

(a) Dark-Room 10×10 (b) Dark-Room 20×20 (c) Dark-Room 40×20

Figure 7: Average performances of the source algorithm, PPO, on 80 train tasks for Dark-Room
(a) 10×10, (b) 20×20, and (c) 40×20. For (a), (b) we train PPO on individual tasks for 100K
environment steps. For (c), we train for 200K environment steps to take the longer episode lengths
into account. We evaluate the agents after every 10K steps. Curves show the mean reward achieved
(+ 95% CI) across the 80 train tasks.

Training Dataset. For both Dark-Room and Dark Key-Door, we generate training datasets for 80
randomly assigned goals or key-goal combinations. We use PPO [Schulman et al., 2017] to generate
100K environment transitions per goal location for 10× 10 and 20× 20 grids and 200K environment
transitions for the largest grid. Therefore, the total number of transitions across datasets is 8M for
10× 10 and 20× 20 grids and 16M for 40× 20.

We train PPO with standard hyperparameter settings in stable-baselines3 [Raffin et al., 2021]
using a learning rate of 3e−4, batch size of 64, number of steps between updates of 2048, number
of update epochs 10 and entropy coefficient of 0.01. For 20 × 20 and 40 × 20 grids, we increase

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

the number of update epochs to 30 and the entropy coefficient of to 0.1 for 40 × 20. We store all
generated transitions of PPO for our datasets. Consequently, the final datasets contain a mixture of
suboptimal or exploratory, and optimal or exploitative behaviour.

Source Algorithm Performance. We show average learning curves across all task-specific PPO
agents on the 80 training tasks for all grid-sizes in Figures 7 and 8 for Dark-Room and Dark Key-Door,
respectively. For the 10× 10 grids, the average performance converges towards optimal performance.
However, on the larger grid sizes, the performances are below the optimum. This is because it
takes the agent longer to discover and collect successful episodes by initially random environment
interaction as the grids become larger.

(a) Dark Key-Door 10×10 (b) Dark Key-Door 20×20 (c) Dark Key-Door 40×20

Figure 8: Average performances of the source algorithm, PPO, on 80 train tasks for Dark Key-
Door (a) 10×10, (b) 20×20, and (c) 40×20. For (a), (b) we train PPO on individual tasks for 100K
environment steps. For (c), we train for 200K environment steps. We evaluate the agents after every
10K steps. Curves show the mean reward achieved (+ 95% CI) across the 80 train tasks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Room 10×10 (b) Key-Door
10×10

(c) Room 20×20

(d) Room 40×20

Figure 9: Mini-grid environments. In Dark-Room, the agent is located in a room and has to
navigate to an invisible goal location. We use grid-sizes (a) 10×10, (b) 20×20 and (c) 40×20 for our
experiments. In (b) Dark-KeyDoor, the agent has to pick up an invisible key, then navigate to the
invisible goal location. Agents only observe their current x-y coordinate on the grid. Reward of +1 is
obtained in every step the agent is situated in the goal state, +1 for picking up the key.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2 MAZERUNNER

MazeRunner was introduced by [Grigsby et al., 2023] and inspired by the Memory Maze environment
[Pasukonis et al., 2022]. The agent is located in a 15×15 procedurally-generated maze and has to
navigate to a sequence of one, two, or three goal locations in the right order (see Figure 10). Similar
to Dark-Room environments, MazeRunner is partially observable and exhibits sparse rewards. The
agent observes a Lidar-like 6-dimensional representation of the state that contains 4 continuous values
that measure the distance from the agent’s location to the nearest wall, and the x-y coordinates of
the agent’s position in the grid. The action-space is 4-dimensional (up, down, left, right). A reward
of +1 is obtained when reaching the currently active goal state in the goal sequence. Therefore, the
total achievable reward is equal to the number of goal states. Episodes last for a maximum of 400
steps or terminate early, if all goal locations have been reached. After every episode, the agent (gray
box in Figure 10) is reset to the origin location. During evaluation, we allow for 30 ICL trials, which
amounts to 12K environment steps in total.

(a) One goal (b) Two goals (c) Three goals

Figure 10: Maze-Runner environments introduced by Grigsby et al. [2023]. In Maze-Runner, the
agent is located in a procedurally generated 15 × 15 maze and has to navigate to (a) one, (b) two
or (c) goal locations in pre-specified order. The agent receives a reward of +1 for reaching a goal.
Episodes last for a maximum of 400 steps, or terminate early if all goal locations have been visited.

Training Dataset. The procedural-generation of the maze and selection of the number of goals is
controlled by setting the environment seed. We use PPO to generate 100K environment interactions
for 100 procedurally-generated mazes, and record the entire replay buffer, which amounts to 10M
transitions in total. We found it necessary, to equip the task-specific PPO agents with an LSTM
[Hochreiter & Schmidhuber, 1997] policy. Without the LSTM, agents hardly make progress for
some mazes, especially if the maze contains two or three goal locations. For this reason, we first
generate data for more than 100 mazes and select the first 100 seeds, where the average reward at
the end of training is > 0.25. This results in a set of seeds in [0, 120] Otherwise, we use standard
hyperparameter settings as provided in stable-baselines3.

Source Algorithm performance. We show the average learning curves over all 100 task-specific
PPO agents in Figure 11. On average, the agents receive a reward of ≈ 1 over all mazes. This
average include environments with one, two or three goals. We provide further dataset statistics for
MazeRunner with the corresponding dataset release.

B.3 META-WORLD

The Meta-World benchmark [Yu et al., 2020a] consists of 50 challenging robotics tasks, such as
opening/closing a window, using a hammer, or pressing buttons. All tasks in Meta-World use a Sawyer
robotic arm simulated using the MuJoCo physics engine [Todorov et al., 2012]. The observations
and actions are 39-dimensional and 6-dimensional continuous vectors, respectively. As all tasks
share the robotic arm, the state, and action spaces remain constant across tasks. All actions are in
range [−1, 1]. The reward functions are dense and based on distances to the goal locations (exact
reward-definitions are provided in Yu et al. [2020a]). Similar to Wolczyk et al. [2021] and Schmied
et al. [2024], we limit the episode lengths to 200 interactions. We follow Yu et al. [2020a] and split the
50 Meta-World tasks into 45 training tasks (ML45) and 5 evaluation tasks (ML5). During evaluation,
we use deterministic environment resets after episodes, i.e., objects and goal positions are reset to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 11: Learning curves for data-collection runs on all 100 mazes on Maze-Runner 15×15
environments with PPO-LSTM as source algorithm. We train for 100K environment steps on each
maze and report the mean reward achieved (+ 95% CI).

their original state. Furthermore, we mask-out the goal positions in the state vector, which forces
agents to adapt during environment interaction. Agents are given 30 ICL trials during evaluation. The
5 evaluation tasks are:

bin-picking, box-close, door-lock, door-unlock, hand-insert

Training Dataset. For our Meta-World experiments, we leverage the datasets released by Schmied
et al. [2024]. The datasets contain 2M transitions per task, which amounts to 90M transitions across
all ML45 training tasks. The data was generated with randomized object and goal positions after
every episode.

B.4 DMCONTROL

DMControl contains 30 different robotic tasks with different robot morphologies [Tassa et al., 2018].
Similar to prior work [Hafner et al., 2019; Schmied et al., 2024], we select 16 of these 30 tasks and
split them into 11 training (DMC11) and 5 evaluation tasks (DMC5). The DMC11 training tasks are:

finger-turn easy, fish-upright, hopper-stand, point mass-easy,
walker-stand, walker-run, ball in cup-catch, cartpole-swingup,
cheetah-run, finger-spin, reacher-easy

The DMC5 evaluation tasks are:

cartpole-balance, finger-turn hard, pendulum-swingup, reacher-hard,
walker-walk

States and actions in DMControl are continuous vectors. As DMControl contains different robot
morphologies, the state, and action spaces vary considerably across tasks (3 ≤ |S| ≤ 24, 1 ≤ |A| ≤
6). All actions in DMControl are bounded by [−1, 1]. Episodes last for 1000 environment steps and
per time-step a maximum reward of +1 can be achieved, which results in a maximum reward of 1000
per episode. Agents are given 30 ICL trials per task during evaluation, which results in 30K steps for
a single evaluation run.

Training Dataset. As for Meta-World, we leverage the datasets released by Schmied et al. [2024].
The datasets contain 1M transitions per task, which amounts to 11M transitions used for training
across all DMC11 tasks. We refer to Schmied et al. [2024] for further dataset statistics on DMControl
and Meta-World.

B.5 PROCGEN

The Procgen benchmark consists of 16 procedurally-generated video games and was designed to test
the generalization abilities of RL agents [Cobbe et al., 2020]. Unlike other environments considered in
this work, Procgen environments emits 3×64×64 images as observations. All 16 environments share
a common action space of 15 discrete actions. The procedural generation in Procgen is controlled by
setting an environment seed. The environments seed randomizes the background and colour of the
environment, but retains the same game dynamics. This results in visually diverse observations for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

the same underlying task, as illustrated in Figure 12 for three seeds on the game starpilot. The
rewards in Procgen can be dense or sparse depending on the environment.

We follow Raparthy et al. [2023] and use 12 tasks for training and 4 tasks for evaluation, which we
refer to as PG12 and PG4, respectively. The PG12 tasks are:

bigfish, bossfight, caveflyer, chaser, coinrun, dodgeball,
fruitbot, heist, leaper, maze, miner, starpilot

The PG4 tasks are: climber, ninja, plunder, jumper

We exploit the procedural generation of Procgen and evaluate all models in three settings: (1) training
tasks - seen seed (PG12-Seen), (2) training tasks - unseen seed (PG12-Unseen), and (3) evaluation
tasks - unseen seed (PG4). In particular, the agents observe data from 200 different training seeds. To
enable ICL to the same environment, we always keep the same seed during evaluation (seed=1 for
PG12-seen, seed=200 for PG12-Unseen and PG4). During evaluation, we limit the episode lengths to
400 steps.

(a) starpilot, seed=1 (b) starpilot, seed=2 (c) starpilot, seed=3

Figure 12: Illustration of procedural generation in Procgen starpilot. For different seeds, the
same environment looks visually considerably different. We train on multi-task dataset of 12 Procgen
tasks, with each dataset containing trajectories from 200 environment seeds. To test for ICL, we
evaluate on single hold-out seeds.

Training Dataset. We generate datasets by training task-specific PPO agents for 25M timesteps on
200 environment seeds per task in easy difficulty, as proposed in by Cobbe et al. [2020]. We train
PPO using the same hyperparameter settings as Cobbe et al. [2020], using a learning rate of 5e−4,
batch size 2048, number of update epochs of 3, entropy coefficient of 0.01, GAE λ = 0.95, and
with reward normalization. We use 256 timesteps per rollout over 64 parallel environments, which
results in 16384 environment steps per rollout in total. Furthermore, we found it useful to decrease
the discount factor to 0.99.

As in previous experiments, we record the entire replay buffer and consequently, the datasets contain
mixed-quality behaviour. We subsample the 25M transitions per task, by storing only the observations
of the first 5 parallel environments, which results in approximately 2M transitions per task. To ensure
disk-space efficiency, all trajectories are stored in separate hdf5 files in the lowest compression level
files, with all image-observations encoded in unit8. Consequently, the datasets for all 16 tasks
(32M transitions) take up only 70GB of disk space, and their hdf5 format enables targeted reading
from disk, without loading an entire trajectory into RAM. We release two versions of our datasets: a
smaller one containing 2M transitions per task as used in our experiments, and a larger one containing
20M transitions per task.

Source Algorithm performance. We show the individual learning curves for all tasks in Figure 13,
and the aggregate statistics over all 16 datasets in Table 1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 13: Learning curves for data-collection runs on all 16 Procgen environments with PPO as
source algorithm. We train for 25M environment steps on each task in easy mode.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 1: Dataset Statistics for all 16 Procgen tasks.

Task # of Trajectories Mean Length Mean Return
bigfish 8834 221± 184 5.9± 9.1
bossfight 12103 161± 200 2.2± 4.3
caveflyer 16466 119± 202 7.6± 4.4
chaser 9182 213± 72 3.4± 3.2
climber 11392 171± 248 9.2± 5.2
coinrun 38236 51± 49 9.7± 1.8
dodgeball 13089 149± 214 3.2± 4.2
fruitbot 6966 280± 152 17.0± 14.3
heist 8090 241± 395 8.0± 4.0
jumper 45621 43± 143 8.7± 3.3
leaper 28383 69± 84 4.9± 5.0
maze 48867 40± 112 9.5± 2.3
miner 26897 73± 182 11.7± 3.5
ninja 24268 80± 136 7.8± 4.2
plunder 6179 316± 106 4.9± 3.2
starpilot 9490 206± 137 17.3± 16.4

Average 19628 152 8.2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL & IMPLEMENTATION DETAILS

C.1 GENERAL

Training & Evaluation. We compare RA-DT against DT, AD, and DPT on all environments. On
grid-world environments, we train all methods for 100K steps and evaluate after every 25K steps.
For Meta-World, DMControl and Procgen, we train for 200K steps and evaluate after every 50K
steps. During evaluation, the agent is given 40 interaction episodes for ICL on Dark-Room and Dark
Key-Door, and 30 episodes on MazeRunner, Meta-World, DMControl, and Procgen. We use the ICL
curves as the primary evaluation mechanism, and report the scores at the last evaluation step (100K
or 200K). Following, Agarwal et al. [2021] we report the mean and 95% confidence intervals across
tasks and over 3 seeds in all experiments.

Across experiments, we keep most parameters fixed, unless mentioned otherwise. We train with a
batch size of 128 on all environments, except for 40 grids, where we use a batch size of 32. We use a
constant learning rate of 1e−4 and 4000 linear warm-up steps followed by a cosine decay to 1e−6 and
train using the AdamW optimizer [Loshchilov & Hutter, 2018]. Furthermore, we employ gradient
clipping of 0.25, weight decay of 0.01, and a dropout rate of 0.2 for all methods.

Context Length. On grid-worlds, we use a context length C equivalent to two 2 episodes for AD,
DPT and DT. For example, on 40× 20 grids, this results in a sequence length of 6400 (= 1600 ∗ 4
for state/action/reward/RTG) for the DT and a sequence length of 4800 for AD. On Meta-World,
DMControl and Procgen, we reduce the sequence context length to 50 steps for DT. For RA-DT,
we use a shorter context length of C = 50 transitions across environments, except for 20× 20 and
40× 20 grids, where we increase the context length to 100. We want to highlight, that the context
length for RA-DT applies to both the input context and the retrieved context. The retrieved context
contains the past, and future context, as described in Section 3.2.1. Consequently, the effective
context length of RA-DT is C + 2 ∗ C and is independent of the episode length.

Network Architecture. For all environments, except for Procgen, we use a GPT2-like network
architecture [Radford et al., 2019] with 4 Transformer layers, 8 head and hidden dimension of 512,
which results in 16M parameters. On Procgen, we use a larger model with 6 Transformer blocks,
12 heads and hidden dimension of 768. States, actions, rewards and RTGs are embedded using
separate embedding layers per modality, as proposed by Chen et al. [2021]. For all modalities and
environments, we use standard linear layers to embed the inputs. Procgen is again an exception, where
we use the convolutional architecture proposed by Espeholt et al. [2018] and adopted in prior works
[Cobbe et al., 2020; Schmidt & Schmied, 2021; Schwarzer et al., 2023]. Processing image-sequences
is computationally demanding. Therefore, we first pre-train the vision-encoder using a separate DT
and embed all images in the dataset using the learned vision encoder. Therefore, the data-loading is
not bottlenecked by loading entire images into memory, but only their compact representations.

Furthermore, we use global positional embeddings. We also experimented with the Transformer++
recipe (RoPE, SwiGLU, RMSNorm), but only observed minimal performance gains for our problem
setting. To speed-up training, we use mixed-precision Micikevicius et al. [2017], model compilation
as supported in PyTorch [Paszke et al., 2019], and FlashAttention [Dao, 2023].

Implementation. Our implementation of the DT is based on the transformers library [Wolf
et al., 2020] and stable-baselines3 [Raffin et al., 2021]. We integrated AD, DPT, and RA-DT
on top of this implementation.

Hardware & Training Times. We run all our experiments on a server equipped with 4 A100 GPUs.
For most of our experiments, we only use a single A100. Depending on the environment and method
used, training times range from one hour (Dark-Room, DT) to 20 hours (DMControl, AD) for a
single training run.

C.2 DECISION TRANSFORMER

For Dark-Room and Dark Key-Door, we sample the target return for RTG conditioning before
every episode N (90, 5), N (370, 10), and N (500, 10) for grid sizes 10× 10, 20× 20, and 40× 20,
respectively. On grid-worlds, we found that sampling the target return performs better than using
a fixed target return per grid size. We assume this is, because specifying a particular target return

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

biases the DT towards particular goal locations. For MazeRunner, we use a constant target return of
3. For Meta-World, DMControl, and Procgen, we set the target return the maximum return achieved
for a particular task in the training datasets. However, we also found that constant target returns per
domain work decently.

C.3 ALGORITHM DISTILLATION

AD obtains a context trajectory and learns to predict actions of an input trajectory taken K episodes
later. Therefore, we tune K per domain. On grid-worlds, we found K = 100 to perform the best,
similar to Lee et al. [2023]. For MazeRunner and Meta-World, we set K = 1000, and for DMControl
and Procgen, we set K = 250.

C.4 RETRIEVAL-AUGMENTED DECISION TRANSFORMER

Embedding Model. For the embedding model g(·), we either use a DT pre-trained on the same
environment with the same hyperparameters as listed in Section C, or a pre-trained and frozen
LM. For the pre-trained LM, we use bert-base-uncased from the transformers library
by default. BERT is an encoder-only LM with 110M parameters, vocabulary size v = 30522, and
embedding dimension of dLM = 768 [Devlin et al., 2019]. We apply FrozenHopfield with β = 10
to state, action, reward and RTG tokens (see Equation 2). To achieve this, we one-hot encode all
discrete input tokens, such as actions in Dark-Room/MazeRunner/Procgen or states in Dark-Room,
and rewards/RTGs in the sequence before applying the FH. For other tokens, such as continuous
states/actions as in Meta-World/DMControl, we directly apply the FH. We evaluate other alternatives
for the LM in Appendix E.

Constructing queries/keys/values. Regardless of whether g is domain-specific or domain-agnostic,
we obtain C embedded tokens after applying g to the input trajectory τin. Subsequently, we
apply mean aggregation over the context length C to obtain the dr-dimensional query repre-
sentation. We experimented with aggregating over all tokens or only tokens of a particular
modality (state/action/reward/RTG), and found aggregation over states-only to be most effective
(see Appendix E.4). As described in Section 3.2.1, we construct the key-value pairs in our re-
trieval index by embedding all sub-trajectories in the dataset D using our embedding model g,
K × V = {(g(τi,t−C:t), τi,t−C:t+C) | 1 ≤ i ≤ |D|}. To avoid redundancy, in practice we construct
H/C key-value pairs for a given trajectory τ with episode length H and sub-sequence length C,
instead of constructing the key and values for every step t ∈ [1, H]. Note that the values, we store
τi,t−C:t+C , contain both the sub-trajectory itself (τi,t−C:t) and its continuation (τi,t:t+C). Similar to
Borgeaud et al. [2022], we found this choice important for high performance in RA-DT, because it
allows the model to observe how the trajectory may evolve if it predicts a certain action (given that
the retrieved context is similar enough).

Vector Index. We use Faiss [Johnson et al., 2019; Douze et al., 2024] to instantiate our vector index
I. This allows us to search our vector index in O(logM) time using Hierarchical Navigable Small
World (HNSW) graphs. However, in practice we found it faster to use a Flat index on the GPU
as provided by Faiss instead of using HNSW, because our retrieval datasets are small enough. We
use retrieval both during training and during inference. It is, however, possible to pre-compute the
retrieved trajectories for D prior to the training phase to limit the computational demand of retrieval,
as suggested by Borgeaud et al. [2022]. During evaluation, we can retrieve after every environment
step or only after every t environment steps. Here, t represents a trade-off between inference time
and final performance. We use t = 1 for Dark-Room and Dark Key-Door, and t = 25 for all other
environments (see Appendix E.6 for an ablation on this design choice). For all environments, except
for Meta-World and DMControl, we provide a single retrieved sub-trajectory in the agent’s context.
For Meta-World and DMControl, we found that providing more than one retrieved sub-trajectory
benefits the agent’s performance. Therefore, for these two environments, we retrieve the top-4
sub-trajectories, order them by return achieved in that trajectory, and provide their concatenation as
retrieved context for RA-DT.

Reweighting. To implement the reweighting mechanism, as described in Section 3.2.3, we first
retrieve the top l≫ k experiences and the select the top-k experiences according to their reweighted
scores. We set l = 50 in all our experiments.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Embedding Retrieved Context. After the most similar trajectories have been retrieved, we embed
the state/action/reward/RTG tokens with a separate embedding layers (as is done for the regular input
sequence) before incorporating them via the CA layers. We also experimented with sharing/detaching
the regular embedding layers, but found it most effective to maintain separate ones. Furthermore, we
experimented with an additional Transformer-based encoder for the retrieved sequences, as proposed
by Borgeaud et al. [2022], but did not observe substantial performance gains despite increased
computational cost.

Retrieval Dataset. For all our experiments, we use the same dataset for retrieval D′ as is used for
training D, that is D′ = D. Therefore, we prevent retrieving sub-sequences from the same trajectory
as the query.

Retrieval Regularization. We found it advantageous to regularize the k-NN retrieval in RA-DT
throughout the training phase. In RL datasets, there is often a substantial overlap between trajectories,
leading to many similar sub-trajectories. This poses a significant challenge, as retrieving only similar
sub-trajectories encourages the agent to adopt copying behaviour, which renders the DT unable to
produce high-reward actions during inference.

One simple strategy to mitigate this issue is deduplication, i.e., to discard duplicate experiences
before the training phase of RA-DT. To achieve this, we first construct our index as described in
Section 3.2. For every key k ∈ K, we retrieve the top-k neighbours (excluding experiences from
the same episode as k). If the similarity score is above a cosine similarity of 0.98, we discard the
experience. This substantially reduces the number of experiences in the index and speeds-up retrieval.

(a) Dark-Room 10×10 (b) Dark-Room 20×20 (c) Dark-Room 40×20

Figure 14: In-context learning performance on (a) Dark-Room 10×10, (b) Dark-Room 20×20, (c)
Dark-Room 40×20 at end of training (100K steps). We evaluate each agent for 40 episodes on each
of the 80 training tasks and report mean reward (+ 95% CI) over 3 seeds.

Two other strategies for regularizing retrieval during the training phase, are similarity cut-off and
query dropout [Yasunaga et al., 2023]. Similarity cut-off first retrieves the top m > l experiences,
discards the experiences with a similarity score above a threshold (e.g., 0.98), and retains only the
remaining experiences l. If used in combination with reweighting, we set m = 2 ∗ l. Query dropout
randomly drops-out tokens (e.g., 20%) of the embedded sub-trajectory τin, which leads to more
diverse retrieved experiences. We found both strategies effective for RA-DT. We use query dropout
of 0.2, similarity cut-off of 0.98, and deduplication by default. Furthermore, for Meta-World and
DMControl, we found query-blending useful. Query-blending interpolates between then actual
query and a randomly selected key from the retrieval index, q′ = q ∗ αblend + (1 − α)qrand. For
Meta-World and DMControl we additionally set αblend = 0.5.

On Dark-Room and Dark Key-Door environments, we found it useful to replace retrieved experiences
with experiences randomly sampled from the same task, if the query sub-sequence is from the
beginning of the episode (i.e., smaller than timestep 10). This is because on these two environments,
retrieving appropriate experience can be difficult if the given query sub-sequence is too short.

Finally, we use the same RTG-conditioning strategy as the vanilla DT, as described in Appendix C.2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm 2 RA-DT at training time

Input: DT πθ, embed model g, dataset D, gradient steps N , context len C, batch size B, eval
frequency E, loss function L (cross-entropy or MSE), evaluate, batch-wise procedures
retrieve, reweight, and update

1: I ← ∅ ▷ Initialize retrieval index I
2: for τ ∈ D do
3: I ← I ∪ {(g(τt−C:t), τt−C:t+C) | t ∈ range(0, |τ |, C)} ▷ Add k-v pairs of sub-trjs to I
4: end for
5: for i = 1 . . . N do
6: b ∼ D where b = {τj | 1 ≤ j ≤ B} ▷ Sample batch of sub-trjs each of length C
7: q = g(b) ▷ Construct queries for all sub-trjs
8: R ← retrieve(q, I) ▷ Retrieve top-l sub-trjs, Eq. 3
9: S ← reweight(R) ▷ Re-weight top-k sub-trjs, Eq. 4, 5

10: a = πθ(· | b, {τret ∈ S}) ▷ Predict actions for batch
11: πθ ← update(πθ,L,a,b) ▷ Perform gradient step, see Appendix C.1 for L
12: if i % E == 0 then
13: evaluate(πθ, g) ▷ Evaluation with ICL, see Algorithm 1
14: end if
15: end for

D ADDITIONAL RESULTS

D.1 DARK-ROOM

Analogous to the ICL curves on the 20 evaluation tasks in Figure 3, we present ICL curves on the
80 train tasks in Figure 14. In general, we observe a similar learning behaviour on the train tasks as
on the evaluation tasks, with slightly higher scores on average. Interestingly, the domain-agnostic
variant of RA-DT slightly outperforms its domain-specific counterpart on the training tasks.

In addition, we also show the learning curves on Dark-Room 10× 10 over the entire training phase
in Figure 15. We evaluate after every 25K updates and observe a steady improvement in the average
performances with every evaluation.

(a) 80 Train Goals (b) 20 Eval Goals

Figure 15: Average performances on Dark-Room 10×10 over the course of training for (a) train and
(b) test tasks. We train each agent for 100K steps and evaluate every 25K steps. Curves are averaged
across the 80 train and 20 evaluation tasks, respectively. We report mean reward (+ 95% CI) over 3
seeds.

D.1.1 ATTENTION MAP ANALYSIS

We conduct a qualitative analysis on Dark-Room 10× 10 to better understand how RA-DT leverages
the retrieved context sub-sequences. First, we analyse the attention maps for different Dark-Room
10× 10 goal locations.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters for RA-DT.

Environment Parameter Value
Default Gradient steps 100K

Optimizer AdamW
Batch size 128

Lr schedule Linear warm-up + Cosine
Warm-up steps 4000
Learning rate 1e-4→ 1e-6
Weight decay 0.01

Gradient clipping 0.25
Dropout 0.2

Context Length 50 timesteps
Top-k before re-weighting 50
Top-k after re-weighting 1

Eval steps between retrievals 1
Query sequence aggregation mean

Query sequence tokens state
Query dropout 0.2
Re-weight α 1

Train re-weighting task
Eval re-weighting return
Similarity cut-off 0.98

Deduplicate True
Min len for retrieval (only for Dark) 10

Domain-agnostic LM bert-base-uncased
Domain-agnostic LM hidden dim 768

FrozenHopfield β 10

Dark Room/Key-Door 20× 20 Context length 100

Dark Room/Key-Door 40× 20 Context length 100
Batch size 32

MazeRunner Eval steps between retrievals 25

Meta-World/DMControl Gradient steps 200K
Eval steps between retrievals 25

Top-k after re-weighting 4
Query blending 0.5

Procgen Gradient steps 200K
Eval steps between retrievals 25

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

What happens if an optimal trajectory is retrieved in context? In Figure 16, we showcase this
example. The goal location is located at grid cell (4,6). The attention maps exhibit high attention
scores for the state and the RTG at the end of the retrieved trajectory. We also observe high attention
scores for the state similar to the current state and the action selected in that state. The agent initially
imitates the actions in the context trajectory, but deviates further into the episode. Once the agent
reaches the goal state, the attention scores for states and RTGs at the end of the trajectory reduce
considerably, because the agent need not pay attention to the retrieved context any more.

Figure 16: Attention map analysis for an optimal context-trajectory on Dark-Room 10× 10. We
plot the retrieved context trajectory (left), the corresponding attention map, and actual agent state
(right), across timesteps (1, 5, 10). Queries (input trajectory) are on the y-axis and keys (context
trajectory) on the x-axis. We highlight the sub-sequence in the context trajectory with the highest
attention score (left). To improve readability, we mask-out attention scores below a certain threshold,
and only provide labels for token that exhibit the highest attention scores. The agent imitates the
context trajectory and successfully finds the goal.

What happens if a suboptimal trajectory is retrieved in Context? Similarly, we show the
corresponding example in Figure 17. The goal location is again in grid cell (4,6). The retrieved
context trajectory reaches the final state (9,5). Similar to Figure 16, the attention maps exhibit high

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

attention scores for the last state and RTG for that state, as well as for a state at a similar timestep.
Previously, RA-DT imitated the action, but in this situation the agent picks a different route, as the
context trajectory does not lead to a successful outcome.

Figure 17: Attention map analysis for a suboptimal context-trajectory on Dark-Room 10 × 10.
The agent selects a different route than present in the suboptimal context trajectory and explores the
environment.

This analysis suggests, that RA-DT can develop capabilities to either imitate a given positive experi-
ence or to behave differently than a given negative experience.

D.1.2 EXPLORATION ANALYSIS

State Visitations. In Section D.1.1, we found that RA-DT learned to either copy or avoid behaviours
given positive or negative context trajectories. Therefore, we further analyse the exploration behaviour
of RA-DT by visualizing the state-visitation frequencies on Dark-Room 10× 10 across the 40 ICL
trials for three different goal locations: (5, 8), (5, 1), and (4, 6) (see Figure 18). The agent visits
nearly all states at least once at test time, as visualized in Figure 18 (a) and (b). Once the agent finds
the goal location, it starts to imitate and stops exploring, as illustrated in Figure 18 (c).

Delusions in RA-DT. Furthermore, we find that in some unsuccessful trials, the agent repeatedly
performs the same suboptimal action sequences. Ortega et al. [2021] refer to such behaviour as

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(a) Goal Location: (5,8) (b) Goal Location: (5,1) (c) Goal Location (4,6)

Figure 18: We count the state visitations on Dark-Room 10× 10 over all ICL trials for three different
goal locations: (5, 8), (5, 1), and (4, 6). The total number of states is 100. The agent attempts to visit
all states at least once. Once the agent finds the goal, it starts exploiting (e.g., goal location (5, 1)).

delusions. In Figure 19, we illustrate two examples in which the agent suffers from delusions and
does not recover until the end of the episode.

(a) (0, 2) → (0, 4)

(b) (3, 9) → (4, 9)

Figure 19: Illustrations of delusions in RA-DT on Dark-Room 10× 10. In (a), the agent navigates
from state (0, 2) to (0, 4) and returns to (0, 2). In (b), the agent The agent goes from state (3, 9) and
(4, 9) and back. In both examples, the agent repeats the unsuccessful action sequence.

D.2 MAZE-RUNNER

In Figures 20 and 21, we report the average performances at the end of the training (100K) for both
the 100 train and 20 evaluation mazes, as well as the corresponding ICL curves, respectively.

While RA-DT outperforms competitors, we observe a considerable performance gap between train
mazes and test mazes (0.65 vs. 0.4 reward, see Figure 20). This indicates that RA-DT struggles
to solve difficult, unseen mazes. We believe that this gap is an artifact of the small pre-training
distribution of 100 mazes, and be closed by increasing the number of pre-training mazes. Furthermore,
increasing the number of ICL trials may also enhance the performance.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) 100 Train Mazes (b) 20 Test Mazes

Figure 20: Average performance on (a) 100 train and (b) 20 test mazes at end of training (100K
steps). We evaluate each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

(a) 100 Train Mazes (b) 20 Test Mazes

Figure 21: ICL on (a) 100 train and (b) 20 test mazes at end of training (100K steps). We evaluate
each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

D.3 META-WORLD

In Figures 22 and 23, we show the training curves across the entire training period (200K steps), and
the corresponding ICL curves at the end of training for both ML45 and ML5.

Generally, we observe that RA-DT outperforms competitors on the evaluation tasks in terms of
average performance. However, on training task, the average performance of RA-DT is lower than of
the vanilla DT. AD and DPT lack behind both methods. One potential reason is the RTG conditioning,
which biases DT and RA-DT towards higher quality behaviour.

(a) ML45 (b) MT5

Figure 22: Learning curves on (a) ML45 and (b) MT5 over the full training period (200K). We
evaluate each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Nevertheless, we do not observe improved ICL performance of RA-DT on evaluation tasks. While all
in-context RL methods exhibit in-context improvement on the training tasks (ML45), neither RA-DT
nor other methods show signs of improvement on the evaluation tasks (MT5).

(a) ML45 (b) MT5

Figure 23: ICL performance on (a) ML45 and (b) MT5 at end of training (200K steps). We evaluate
each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

In addition, we provide the average rewards and data-normalized scores in for the MT5 evaluation
tasks in Table 3.

Table 3: Meta-World Evaluation Tasks.

Environment DT AD DPT RA-DT
Reward

bin-picking 62.28 ± 34.37 42.63 ± 17.47 27.52 ± 14.07 14.47 ± 1.79
box-close 70.34 ± 6.72 85.4 ± 14.96 106.79 ± 23.7 110.09 ± 46.69
hand-insert 27.38 ± 3.1 51.82 ± 59.93 13.06 ± 0.15 182.25 ± 99.63
door-lock 229.76 ± 11.4 333.89 ± 161.77 239.2 ± 20.19 219.44 ± 2.51
door-unlock 588.66 ± 454.89 450.71 ± 8.37 249.17 ± 63.38 1163.02 ± 36.42
Average 195.68 ± 97.31 192.89 ± 23.48 127.15 ± 16.97 337.85 ± 34.94

Data-normalized Scores
bin-picking 0.24 ± 0.14 0.16 ± 0.07 0.09 ± 0.06 0.04 ± 0.01
box-close -0.07 ± 0.01 -0.03 ± 0.03 0.01 ± 0.05 0.02 ± 0.1
hand-insert 0.02 ± 0.0 0.04 ± 0.05 0.01 ± 0.0 0.15 ± 0.08
door-lock 0.0 ± 0.01 0.08 ± 0.12 0.01 ± 0.01 -0.0 ± 0.0
door-unlock 0.27 ± 0.31 0.18 ± 0.01 0.04 ± 0.04 0.66 ± 0.02
Average 0.09 ± 0.08 0.08 ± 0.01 0.03 ± 0.03 0.17 ± 0.04

D.4 DMCONTROL

In Figures 24 and 25, we show the training curves across the entire training period (200K steps), and
the corresponding ICL curves at the end of training for both DMC11 and DMC5.

Similar to our results on Meta-World, we observe that RA-DT outperforms competitors on average.
However, we do not observe in-context improvement on the evaluation tasks.

In addition, we show the average rewards obtained and corresponding data-normalized scores for all
DMC5 evaluation tasks in Table 4.

D.5 PROCGEN

In Figures 26 and 27, we show the training curves across the entire training period (200K steps), and
the corresponding ICL curves at the end of training for PG12-Seen, PG12-Unseen, and PG4. While

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(a) DMC11 (b) DMC5

Figure 24: Average performance on (a) DMC11 and (b) DMC5 at end of training (200K steps). We
evaluate each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

(a) DMC11 (b) DMC5

Figure 25: ICL performance on (a) DMC11 and (b) DMC5 at end of training (200K steps). We
evaluate each agent for 30 episodes and report mean reward (+ 95% CI) over 3 seeds.

we observe slightly better average performance of RA-DT compared to competitors, we do not find
any in-context improvement.

RA-DT constructs bursty sequences.. Building on work by Chan et al. [2022], Raparthy et al. [2023]
identified trajectory burstiness as one important property for ICL to emerge on the Procgen benchmark.
A given sequence is considered bursty, if it contains at least two trajectories from the same seed (or
level). Consequently, the agent obtains relevant information that it can leverage to predict the next
action. Therefore, we follow Raparthy et al. [2023] and always provide a trajectory from the same
seed in the context of AD and DPT. Indeed, we observed that this improves performance, compared to
not taking trajectory burstiness into account. Interestingly, we found that RA-DT retrieves trajectories
from the same or similar seeds (seed accuracy of 80%), that is, RA-DT automatically constructs
bursty sequences. This intuitively makes sense, as retrieval directly searches for the most relevant
experiences (see Section 3.2.3). Therefore, for RA-DT, we do not provide additional information that
indicates with which environment seed the trajectory was generated.

E ABLATION STUDIES

To better understand the effect of learning with retrieval, we presented a number of ablation studies
on critical components in RA-DT (Section 4.6). We conduct all ablations on Dark-Room 10× 10
and otherwise retain the same experiment design choices, as reported in Section 4.1.

E.1 RETRIEVAL OUTPERFORMS SAMPLING OF EXPERIENCES

RA-DT is conditioned on sub-trajectories via cross-attention. By default, RA-DT leverages retrieval
to search for relevant sub-trajectories for a given input sequence. Instead of retrieval, sub-trajectories
can be sampled at random from the external memory. Therefore, we conduct an ablation in which we

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 4: DMControl Eval Tasks.

Environment AD DT DPT RA-DT
Reward

cartpole-balance 211.96 ± 62.8 946.49 ± 44.91 703.89 ± 263.11 910.1 ± 106.0
finger-turn hard 199.34 ± 46.0 253.13 ± 43.0 295.2 ± 51.88 336.37 ± 16.51
pendulum-swingup 1.18 ± 2.04 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
reacher-hard 34.22 ± 17.25 167.7 ± 42.86 157.29 ± 94.79 95.4 ± 15.4
walker-walk 326.42 ± 102.52 189.46 ± 10.22 257.11 ± 57.21 877.9 ± 15.2
Average 154.63 ± 12.17 311.36 ± 12.49 282.7 ± 54.62 443.95 ± 25.7

Data-normalized Score
cartpole-balance -0.24 ± 0.11 1.01 ± 0.08 0.6 ± 0.45 0.95 ± 0.18
finger-turn hard 0.25 ± 0.07 0.33 ± 0.07 0.4 ± 0.08 0.47 ± 0.03
pendulum-swingup 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
reacher-hard 0.03 ± 0.02 0.21 ± 0.06 0.19 ± 0.12 0.11 ± 0.02
walker-walk 0.4 ± 0.14 0.21 ± 0.01 0.31 ± 0.08 1.14 ± 0.02
Average 0.09 ± 0.02 0.35 ± 0.02 0.3 ± 0.09 0.53 ± 0.04

(a) PG12-Seen (b) PG12-Unseen (c) PG4

Figure 26: Learning curves on Procgen across (a) PG12-Seen, (b) PG12-Unseen, and (c) PG4 seed
over the full training period. We train for 200K steps, evaluate every 50K steps for 30 episodes, and
report mean reward (+ 95% CI) over 3 seeds.

swap the retrieval mechanism with random sampling of sub-trajectories during training. This is to
investigate the effect of relevance of retrieved sub-trajectories on learning performance. We apply
random sampling only during training and use our regular retrieval during inference.

In Figure 6a, we show the ICL curves for training RA-DT with retrieved sub-trajectories, sub-
trajectories sampled from the same task as the input sequence, and sub-trajectories sampled uniformly
across all tasks. We find that training with retrieval outperforms both sampling variants. Uniform
sampling results in poor ICL performance. A reason for this, is that context trajectories from
a different goal location, are not relevant for predicting actions in the current sequences. As a
result, the model ignores the given context during the training phase, and subsequently is unable to
leverage it during inference. In contrast, sampling sub-trajectories from the same task as the input
sequence results in better ICL performance, as the model learns to make use of the context trajectories.
Nevertheless, using retrieval results in even better ICL performance, as sub-trajectories are not only
relevant for the current task, but also similar to the current situation.

E.2 REWEIGHTING MECHANISM

Next, we evaluate how our reweighting mechanism affects the ICL abilities of RA-DT. RA-DT
reweights a sub-trajectory by its relevance and utility score (see Section 3.2). During training, we set
su(τret) = 1, if the τret is from the same task as τin, and 0 otherwise. Instead of reweighting by task
ID, alternatives are to reweight a τret by its return achieved or by its position in the training dataset.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

(a) PG12-Seen (b) PG12-Unseen (c) PG4

Figure 27: ICL performances on Procgen across (a) PG12-Seen, (b) PG12-Unseen, and (c) PG4. We
evaluate for 30 episodes, and report mean reward (+ 95% CI) over 3 seeds.

Table 5: Procgen Train Tasks, Train Seeds.

Environment DT AD DPT RA-DT
Rewards

bigfish 4.67 ± 3.51 2.0 ± 0.76 2.41 ± 0.1 5.21 ± 0.25
bossfight 1.0 ± 0.0 0.46 ± 0.55 0.9 ± 0.26 1.31 ± 0.08
caveflyer 3.33 ± 5.77 0.22 ± 0.19 3.0 ± 3.28 9.67 ± 0.0
chaser 1.49 ± 1.05 1.7 ± 0.49 1.64 ± 0.59 2.78 ± 0.46
coinrun 6.67 ± 5.77 5.89 ± 0.69 7.78 ± 1.17 8.33 ± 0.33
dodgeball 7.33 ± 7.57 2.47 ± 0.79 2.8 ± 1.44 8.98 ± 0.87
fruitbot 8.0 ± 2.65 7.66 ± 0.62 7.19 ± 1.09 8.6 ± 0.23
heist 10.0 ± 0.0 0.0 ± 0.0 0.33 ± 0.58 9.11 ± 1.02
leaper 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
maze 10.0 ± 0.0 0.11 ± 0.19 5.56 ± 5.09 8.56 ± 0.69
miner 13.0 ± 0.0 0.94 ± 0.48 1.23 ± 1.15 11.37 ± 0.23
starpilot 18.0 ± 10.54 9.72 ± 4.78 12.9 ± 4.69 17.82 ± 0.72
Avgerage 6.96 ± 1.25 2.6 ± 0.62 3.81 ± 0.68 7.64 ± 0.07

Human-normalized scores
bigfish 0.09 ± 0.09 0.03 ± 0.02 0.04 ± 0.0 0.11 ± 0.01
bossfight 0.04 ± 0.0 -0.0 ± 0.04 0.03 ± 0.02 0.06 ± 0.01
caveflyer -0.02 ± 0.68 -0.39 ± 0.02 -0.06 ± 0.39 0.73 ± 0.0
chaser 0.08 ± 0.08 0.1 ± 0.04 0.09 ± 0.05 0.18 ± 0.04
coinrun 0.33 ± 1.15 0.18 ± 0.14 0.56 ± 0.23 0.67 ± 0.07
dodgeball 0.33 ± 0.43 0.06 ± 0.04 0.07 ± 0.08 0.43 ± 0.05
fruitbot 0.28 ± 0.08 0.27 ± 0.02 0.26 ± 0.03 0.3 ± 0.01
heist 1.0 ± 0.0 -0.54 ± 0.0 -0.49 ± 0.09 0.86 ± 0.16
leaper -0.43 ± 0.0 -0.43 ± 0.0 -0.43 ± 0.0 -0.43 ± 0.0
maze 1.0 ± 0.0 -0.98 ± 0.04 0.11 ± 1.02 0.71 ± 0.14
miner 1.0 ± 0.0 -0.05 ± 0.04 -0.02 ± 0.1 0.86 ± 0.02
starpilot 0.25 ± 0.17 0.12 ± 0.08 0.17 ± 0.08 0.25 ± 0.01
Average 0.33 ± 0.14 -0.14 ± 0.03 0.03 ± 0.05 0.39 ± 0.0

When reweighting by position, we assign su(τret) = 1 if τret was generated before τin by the PPO
agent that generated the data. Reweighting by position makes it likely that RA-DT observes the
improvement steps in its context.

We find that task-based reweighting is essential for achieving the highest performance scores (see
Figure 28). Using no reweighting at all results in a considerable drop in ICL performance. However,
using retrieval with no task reweighting still compares favourably to uniform sampling across all

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 6: Procgen Train Tasks, Evaluation Seeds.

Environment DT AD DPT RA-DT
Rewards

bigfish 0.0 ± 0.0 0.37 ± 0.64 0.04 ± 0.08 0.38 ± 0.3
bossfight 0.33 ± 0.58 0.02 ± 0.02 0.01 ± 0.02 0.02 ± 0.04
caveflyer 6.67 ± 5.77 3.67 ± 2.08 7.67 ± 1.33 9.89 ± 0.19
chaser 2.79 ± 0.65 2.1 ± 0.67 2.75 ± 0.93 5.17 ± 0.58
coinrun 10.0 ± 0.0 9.11 ± 0.84 9.89 ± 0.19 10.0 ± 0.0
dodgeball 0.0 ± 0.0 0.29 ± 0.3 0.0 ± 0.0 0.47 ± 0.41
fruitbot 5.0 ± 4.0 0.63 ± 1.65 1.04 ± 0.83 4.01 ± 1.83
heist 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.11 ± 0.19
leaper 0.0 ± 0.0 0.11 ± 0.19 0.11 ± 0.19 0.22 ± 0.38
maze 6.67 ± 5.77 2.78 ± 4.23 1.67 ± 2.89 8.0 ± 3.46
miner 0.0 ± 0.0 0.58 ± 0.31 0.41 ± 0.07 0.77 ± 0.09
starpilot 16.0 ± 1.0 16.26 ± 5.4 15.81 ± 3.27 17.12 ± 1.58
Average 3.95 ± 0.78 2.99 ± 0.92 3.28 ± 0.26 4.68 ± 0.33

Human-normalized scores
bigfish -0.03 ± 0.0 -0.02 ± 0.02 -0.02 ± 0.0 -0.02 ± 0.01
bossfight -0.01 ± 0.05 -0.04 ± 0.0 -0.04 ± 0.0 -0.04 ± 0.0
caveflyer 0.37 ± 0.68 0.02 ± 0.24 0.49 ± 0.16 0.75 ± 0.02
chaser 0.18 ± 0.05 0.13 ± 0.05 0.18 ± 0.07 0.37 ± 0.05
coinrun 1.0 ± 0.0 0.82 ± 0.17 0.98 ± 0.04 1.0 ± 0.0
dodgeball -0.09 ± 0.0 -0.07 ± 0.02 -0.09 ± 0.0 -0.06 ± 0.02
fruitbot 0.19 ± 0.12 0.06 ± 0.05 0.08 ± 0.02 0.16 ± 0.05
heist -0.54 ± 0.0 -0.54 ± 0.0 -0.54 ± 0.0 -0.52 ± 0.03
leaper -0.43 ± 0.0 -0.41 ± 0.03 -0.41 ± 0.03 -0.4 ± 0.05
maze 0.33 ± 1.15 -0.44 ± 0.85 -0.67 ± 0.58 0.6 ± 0.69
miner -0.13 ± 0.0 -0.08 ± 0.03 -0.09 ± 0.01 -0.06 ± 0.01
starpilot 0.22 ± 0.02 0.22 ± 0.09 0.22 ± 0.05 0.24 ± 0.03
Average 0.09 ± 0.1 -0.03 ± 0.1 0.01 ± 0.04 0.17 ± 0.05

Table 7: Procgen Eval Envs.

Environment DT AD DPT RA-DT
Reward

climber 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
ninja 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.89 ± 2.71
plunder 2.0 ± 1.73 0.27 ± 0.13 0.48 ± 0.32 2.39 ± 0.67
jumper 3.33 ± 5.77 2.78 ± 2.83 2.0 ± 1.45 4.33 ± 2.33
Average 1.33 ± 1.01 0.76 ± 0.68 0.62 ± 0.37 2.15 ± 0.85

Human-normalized Score
climber -0.19 ± 0.0 -0.19 ± 0.0 -0.19 ± 0.0 -0.19 ± 0.0
ninja -0.54 ± 0.0 -0.54 ± 0.0 -0.54 ± 0.0 -0.25 ± 0.42
plunder -0.1 ± 0.07 -0.17 ± 0.01 -0.16 ± 0.01 -0.08 ± 0.03
jumper 0.05 ± 0.82 -0.03 ± 0.4 -0.14 ± 0.21 0.19 ± 0.33
Average -0.19 ± 0.19 -0.23 ± 0.1 -0.26 ± 0.05 -0.08 ± 0.12

tasks. This result suggests that retrieval can play an important role in environments without a clear
task separation or in scenarios where no task IDs are available.

In addition, we conduct a sensitivity analysis on the α parameter used in the re-weighting mechanism
that determines how strongly the utility scores influences the final retrieval score. α = 1 is used both
during training for task-based reweighing and during evaluation for return-based reweighting (see
Section 3). In Figure 29, we vary α (a) during training, or (b) during evaluation, while keeping the

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(a) 80 Train Goals (b) 20 Eval Goals

Figure 28: Effect of the Reweighting Mechanism. Average performances on Dark-Room 10×10
over the course of training for (a) train and (b) test tasks.

other fixed. We find that RA-DT perform well for a range of values, but performance declines if no
re-weighting is employed (α = 0).

(a) Train - Task reweighting (b) Eval - Return reweighting

Figure 29: Sensitivity analysis on α parameter used in re-weighting mechanism of RA-DT on
Dark-Room 10×10.

E.3 RETRIEVAL REGULARIZATION

Providing the agent with too similar trajectories, can encourage it to adopt copying behaviour instead
of generating high-reward actions. To mitigate this, we found it useful to regularize the retrieval using
three strategies: deduplication, similarity cut-off, and query dropout. To evaluate their individual
impact on ICL performance, we systematically removed each one from RA-DT in Figure 30.

We find that deduplication plays the most significant role in enhancing performance. One reason, why
deduplication is effective, is because RL datasets contain many very similar trajectories. Removing
overlapping trajectories altogether is therefore beneficial for learning. Notably, deduplication also
reduces the index size, thereby speeding-up the search process. The effect of deduplication may vary
depending on dataset characteristics, such as state-action coverage [Schweighofer et al., 2022].

E.4 QUERY CONSTRUCTION & SEQUENCE AGGREGATION

In RA-DT, we aggregate the hidden states of an input trajectory using mean aggregation of state
tokens over the context length C to obtain the dr-dimensional query representation. It is, however,
possible to use the hidden states of other tokens to construct the query. Therefore, we provide
empirical evidence for this design choice in Figure 31a. We compare aggregating states, rewards,
actions, returns-to-gos, all tokens, or only using the very last hidden state. Indeed, we find that
aggregating state tokens gives the best results.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

(a) 80 Train Goals (b) 20 Eval Goals

Figure 30: Effect of Retrieval Regularization. Average performances on Dark-Room 10×10 over
the course of training for (a) train and (b) test tasks.

(a) (b) (c)

Figure 31: Ablations on important components of RA-DT conducted on Dark-Room 10×10. In (a)
we investigate sequence aggregations to construct the query for retrieval. By default, we average
state-tokens in the sequence (”mean, s”). In (b) we vary the placement of cross-attention layers in
the DT. In (c) we vary the number of steps in-between retrievals during evaluation. We find that
RA-DT delivers robust performance across settings.

E.5 PLACEMENT OF CROSS-ATTENTION LAYERS

Next, we investigate the effect of the placement of the cross-attention layers in RA-DT. In Figure 31b,
we therefore vary the placement of cross-attention layers in RA-DT. By default, we use cross-attention
after every self-attention layer. We find that other choice also provide good results. While placing the
cross-attention at bottom layers tends to be beneficial, placing them only upper level layers tends to
hurt performance.

E.6 INTERACTION STEPS BETWEEN CONTEXT RETRIEVAL

As mentioned in Section C.4, we perform context retrieval after every t environment steps. Here, t
represents a trade-off between inference time and final performance. For grid-worlds, we use t = 1
by default. To better understand the effect of this design choice, we conduct an ablation in which
we vary t (see Figure 31c). Indeed, we find that higher values for t result in a slight decrease in
performance, but faster inference.

E.7 EFFECT OF RETRIEVAL-AUGMENTATION ON TRAINING EFFICIENCY

Retrieval-augmentation adds computational overhead to the training pipeline due to the cost of
embedding the query trajectories and searching for similar experiences in the vector index. Therefore,
we study the effect of retrieval-augmentation on the training efficiency of RA-DT. For the purpose of
this analysis, we measure training efficiency in terms of the number of samples processed per second

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

(higher is better). We run all experiments on an A100 GPU using the same training setup (batch sizes,
context lengths) as described in Appendix C.

In Figure 32, we compare domain-specific/agnostic RA-DT to the three considered baselines on
Dark-Room across gridsizes 10× 10, 20× 20, and 40× 20. We find that the domain-specific variant
of RA-DT attains minor training speed-ups on 10× 10 and trains almost 7× faster than baselines on
the largest grid. The domain-agnostic variant of RA-DT, in contrast, exhibits slower training times on
10× 10, but also trains significantly faster on the largest grid. Note that the differences among the
three grid-sizes in the number of samples processed per second of RA-DT stem from the difference
in sequence lengths (C = 50 for 10× 10, C = 100 for 20× 20/40× 20) and batch sizes (B = 128
for 10× 10/20× 20, B = 32 for 40× 20).

The efficiency gains of RA-DT are a direct result of the shorter required sequence lengths. In
contrast to the baselines, the computational requirements of RA-DT do not grow with the episode
length of the environment. Additional speed-ups can be achieved for RA-DT by pre-computing the
retrieved trajectories prior to training similar to Borgeaud et al. [2022]. We also want to highlight
that all baselines use FlashAttention to speed-up the training times and to ensure a fair comparison.
Consequently, the empirical evidence demonstrates that RA-DT does not only improve the down-
stream performance in the environments, but is is also significantly faster to train (up to 7×).

(a) Dark-Room 10×10 (b) Dark-Room 20×20 (c) Dark-Room 40×20

Figure 32: Training efficiency for all considered methods on (a) Dark-Room 10×10, (b) Dark-
Room 20×20, (c) Dark-Room 40×20. We measure training efficiency in terms of the number
of samples processed per second (higher is better). RA-DT achieves considerably speed-ups, in
particular for larger grid-sizes.

E.8 EFFECT OF RETRIEVAL-AUGMENTATION ON INFERENCE EFFICIENCY

Retrieval-augmentation also incurs computational overhead during inference. Therefore, we study the
effect of retrieval-augmentation on the infernce efficiency of RA-DT, similar to Appendix E.7. We
measure inference efficiency in the number of environment interaction steps performed per second
(higher is better). Note that this metric includes the environment latency. We average the inference
efficiency metric across episodes to get a more robust estimate and discard the first episode to exclude
compilation times. We conduct our analysis on an A100 GPU and use the same inference setup as
described in Appendix C.

In Figure 33, we report the inference efficiency for domain-specific/agnostic RA-DT and the consid-
ered baselines on Dark-Room. For RA-DT, we report the inference times with t ∈ {1, 25} where
t represents the number of interaction steps between retrievals. In Appendix E.6 we found that
increasing t only results in minor performance drops for RA-DT. For t = 1 RA-DT exhibits slightly
slower inference speeds compared to the baselines. In contrast, for t = 25 there is no significant
difference in inference speed between RA-DT and the baselines.

Note that the inference speed is roughly the same across grid sizes. This suggests that the inference
time is not yet dominated by the quadratic cost of self-attention for B = 1 and the sequence lengths
we consider in this analysis. To further support this, we run an ablation in which we compare the
inference efficiency for all baselines with and without FlashAttention (see Figure 35) on Dark-Room
40× 20. Indeed, we observe a significant drop in inference speed when FlashAttention is disabled.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

(a) Dark-Room 10×10 (b) Dark-Room 20×20 (c) Dark-Room 40×20

Figure 33: Inference efficiency for all considered methods on (a) Dark-Room 10×10, (b) Dark-
Room 20×20, (c) Dark-Room 40×20. We measure inference efficiency in terms of the number of
environment interaction steps performend per second (higher is better).

Figure 34: Effect of FlashAttention on inference efficiency of AD, DPT and DT on Dark-Room
40× 20. Disabling FlashAttention results in a considerable drop in inference speed.

To conclude this analysis, our findings indicate that while RA-DT is slightly slower when retrieving
on every step, it achieves comparable inference speeds to the baselines when retrieving less frequently.
Importantly, the retrieval mechanism in RA-DT enables access to the entirety of the experiences
collected across all ICL trials. In contrast, the baselines can only access experiences from a limit set
of the most recent episodes that are preserved in the context (2 in our experiments). If we were to
provide more context episodes to the baselines, the quadratic complexity of self-attention would kick
in (similar to Figure 32). The ability of RA-DT to access a much broader set of experiences may be a
reason for its enhanced down-stream performance.

Figure 35: Effect of FlashAttention on inference efficiency of AD, DPT and DT on Dark-Room
40× 20. Disabling FlashAttention results in a considerable drop in inference speed.

E.9 PRE-TRAINED LANGUAGE MODEL

We investigate how strongly the ICL performance of RA-DT is influenced by the pre-trained LM
used in our domain-agnostic embedding model. In Figure 36, we compare our default choice BERT

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

[Devlin et al., 2019] against four alternative encoder and decoder backbones, namely RoBERTa [Liu
et al., 2019], DistilRoBERTa, DistilBERT [Sanh et al., 2019] and DistilGPT2. We find that RA-DT
maintains decent performance across all pre-trained LMs, indicating robust retrieval performance
across different LMs. Generally, the non-distilled variants outperform their distilled counterparts.
Moreover, this experiment suggests a clear advantage of encoder-only models over the decoder-only
LM, DistilGPT2. This suggests that the encoder-only LMs are better able to capture the relations
between tokens within the token sequence, which leads to more precise retrieval of sub-trajectories
and higher down-stream performance.

(a) 80 Train Goals (b) 20 Eval Goals

Figure 36: Effect of the Pre-trained LM. Average performances on Dark-Room 10×10 over the
course of training for (a) train and (b) test tasks.

E.10 EFFECT OF K ON ALGORITHM DISTILLATION

Finally, we investigate the effect of K on the performance of AD. K determines the number of
episodes that have passed between the current and the context trajectory, which are provided to AD
as the context. Consequently, K specifies the extent of improvement observed between subsequent
episodes. By default, we use K = 100 for our experiments on Dark-Room 10× 10. Therefore, we
conduct an ablation study, in which we very K (see Figure 37. We find that too small values for K
(e.g., 1 and 10) result in slow ICL behavior. In contrast, too high values for K (e.g., 500) lead to
fast initial progress but suboptimal performance in the long term. Only K = 100 leads to steady
improvement across all interaction episodes. Consequently, AD requires careful tuning of K.

Figure 37: Ablation on the number of episodes K in AD that have passed between “current”
trajectory and “context” trajectory on Dark-Room 10×10. K determines how much improvement
is observed between episodes. We find that performance increases as K increases, but only up to a
certain point (K = 100). With K = 500, AD improves rapidly in the first few episodes, but then
flattens out.

E.11 CONVERGENCE OF BASELINES

In the main experiments on grid-worlds reported in Section 4.1, we found that the baselines AD
and DPT only reach sub-optimal performance within the 40 ICL trials. Therefore, we analyse their

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

performance if evaluate for more ICL trials. In Figure 38, we compare the evaluation performance of
AD and DPT across 200 ICL trials on the 20 hold-out tasks for Dark-Room 10× 10. We find that
both method continue to improve towards optimal performance in this environment when given more
ICL trials. For this ablation, we found it useful to set K = 50 in AD (see Appendix E.10) instead of
K = 100 as used in our main experiments over 40 ICL trials.

Figure 38: Evaluation of AD and DPT on Dark-Room 10×10 over 200 ICL trials. Both methods
continue to improve towards optimal performance on this environment.

47

	Introduction
	Related Work
	Method
	Background
	Retrieval-augmented Decision Transformer (RA-DT)
	Vector Index for Retrieval Augmentation
	Searching for Similar Experiences
	Reweighting Retrieved Experiences
	Incorporating Retrieved Experiences

	Experiments
	Dark-Room
	Dark Key-Door
	Maze-Runner
	Meta-World & DMControl
	Procgen
	Ablations

	Discussion
	Conclusion
	Ethics Statement & Reproducibility
	Environments & Datasets
	Dark-Room and Dark Key-Door
	MazeRunner
	Meta-World
	DMControl
	Procgen

	Experimental & Implementation Details
	General
	Decision Transformer
	Algorithm Distillation
	Retrieval-Augmented Decision Transformer

	Additional Results
	Dark-Room
	Attention Map Analysis
	Exploration Analysis

	Maze-Runner
	Meta-World
	DMControl
	Procgen

	Ablation Studies
	Retrieval outperforms sampling of experiences
	Reweighting Mechanism
	Retrieval Regularization
	Query Construction & Sequence Aggregation
	Placement of Cross-Attention Layers
	Interaction steps between context retrieval
	Effect of retrieval-augmentation on Training efficiency
	Effect of retrieval-augmentation on Inference efficiency
	Pre-trained Language Model
	Effect of K on Algorithm Distillation
	Convergence of Baselines

