
Published in Transactions on Machine Learning Research (April/2024)

Statistical and Computational Complexities of BFGS Quasi-
Newton Method for Generalized Linear Models

Qiujiang Jin qiujiang@austin.utexas.edu
Department of Electrical and Computer Engineering
University of Texas at Austin

Tongzheng Ren tongzheng@utexas.edu
Department of Computer Science
University of Texas at Austin

Nhat Ho minhnhat@utexas.edu
Department of Statistics and Data Sciences
University of Texas at Austin

Aryan Mokhtari mokhtari@austin.utexas.edu
Department of Electrical and Computer Engineering
University of Texas at Austin

Reviewed on OpenReview: https: // openreview. net/ forum? id= PIL3YWXmx2

Abstract

The gradient descent (GD) method has been used widely to solve parameter estimation in
generalized linear models (GLMs), a generalization of linear models when the link function
can be non-linear. In GLMs with a polynomial link function, it has been shown that in
the high signal-to-noise ratio (SNR) regime, due to the problem’s strong convexity and
smoothness, GD converges linearly and reaches the final desired accuracy in a logarithmic
number of iterations. In contrast, in the low SNR setting, where the problem becomes locally
convex, GD converges at a slower rate and requires a polynomial number of iterations to
reach the desired accuracy. Even though Newton’s method can be used to resolve the flat
curvature of the loss functions in the low SNR case, its computational cost is prohibitive
in high-dimensional settings as it is O(d3), where d the is the problem dimension. To
address the shortcomings of GD and Newton’s method, we propose the use of the BFGS
quasi-Newton method to solve parameter estimation of the GLMs, which has a per iteration
cost of O(d2). When the SNR is low, for GLMs with a polynomial link function of degree p,
we demonstrate that the iterates of BFGS converge linearly to the optimal solution of the
population least-square loss function, and the contraction coefficient of the BFGS algorithm
is comparable to that of Newton’s method. Moreover, the contraction factor of the linear rate
is independent of problem parameters and only depends on the degree of the link function p.
Also, for the empirical loss with n samples, we prove that in the low SNR setting of GLMs
with a polynomial link function of degree p, the iterates of BFGS reach a final statistical
radius of O((d/n)

1
2p+2) after at most log(n/d) iterations. This complexity is significantly

less than the number required for GD, which scales polynomially with (n/d).

1 Introduction

In supervised machine learning, we are given a set of n independent samples denoted by X1, . . . , Xn with
corresponding labels Y1, . . . , Yn, that are drawn from some unknown distribution and our goal is to train a
model that maps the feature vectors to their corresponding labels. We assume that the data is generated

1

https://openreview.net/forum?id=PIL3YWXmx2

Published in Transactions on Machine Learning Research (April/2024)

according to distribution Pθ∗ which is parameterized by a ground truth parameter θ∗. Our goal as the learner
is to find θ∗ by solving the empirical risk minimization (ERM) problem defined as

min
θ∈Rd

Ln(θ) := 1
n

n∑
i=1

ℓ(θ; (Xi, Yi)), (1)

where ℓ(θ; (Xi, Yi)) is the loss function that measures the error between the predicted output of Xi using
parameter θ and its true label Yi. If we define θ∗

n as an optimal solution of the above optimization problem,
i.e., θ∗

n ∈ arg minθ∈Rd Ln(θ), it can be considered as an approximation of the ground-truth solution θ∗, where
θ∗ is also a minimizer of the population loss defined as

min
θ∈Rd

L(θ) := E [ℓ(θ; (X, Y))] . (2)

If one can solve the empirical risk efficiently, the output model could be close to θ∗, when n is sufficiently large.
Several works have studied the complexity of iterative methods for solving ERM or directly the population
loss, for the case that the objective function is convex or strongly convex with respect to θ (Balakrishnan
et al., 2017; Ho et al., 2020; Loh & Wainwright, 2015; Agarwal et al., 2012; Yuan & Zhang, 2013; Dwivedi
et al., 2020b; Hardt et al., 2016; Candes et al., 2011). However, when we move beyond linear models, the
underlying loss becomes non-convex and therefore the behavior of iterative methods could substantially
change, and it is not even clear if they can reach a neighborhood of a global minimizer of the ERM problem.

The focus of this paper is on the generalized linear model (GLM) (Carroll et al., 1997; Netrapalli et al.,
2015; Fienup, 1982; Shechtman et al., 2015; Feiyan Tian, 2021) where the labels and features are generated
according to a polynomial link function and we have Yi = (X⊤

i θ∗)p +ζi, where ζi is an additive noise and p ≥ 2
is an integer. Due to nonlinear structure of the generative model, even if we select a convex loss function ℓ,
the ERM problem denoted to the considered GLM could be non-convex with respect to θ. Interestingly,
depending on the norm of θ∗, the curvature of the ERM problem and its corresponding population risk
minimization problem could change substantially. More precisely, in the case that ∥θ∗∥ is sufficiently large,
which we refer to this case as the high signal-to-noise ratio (SNR) regime, the underlying population loss of
the problem of interest is locally strongly convex and smooth. On the other hand, in the regime that ∥θ∗∥ is
close to zero, denoted by the low SNR regime, the underlying problem is neither strongly convex nor smooth,
and in fact, it is ill-conditioned.

These observations lead to the conclusion that in the high SNR setting, due to strong convexity and smoothness
of the underlying problem, gradient descent (GD) reaches the desired accuracy exponentially fast and overall
it only requires logarithmic number of iterations. However, in the low SNR case, as the problem becomes
locally convex, GD converges at a sublinear rate and thus requires polynomial number of iterations in terms
of the sample size.

To address this issue, Ren et al. (2022a) advocated the use of GD with the Polyak step size to improve GD’s
convergence in low SNR scenarios. hey demonstrated that the number of iterations could become logarithmic
with respect to the sample size, when GD is deployed with the Polyak step size. However, such a method still
remains a first-order algorithm and lacks any curvature approximation. Consequently, its overall complexity
is directly proportional to the condition number of the problem. This, in turn, depends on both the condition
number of the feature vectors’ covariance and the norm |θ∗|. As a result, in low SNR settings, the problem
becomes ill-conditioned with a large condition number, and hence GD with the Polyak step size could be very
slow. Furthermore, the implementation of the Polyak step size necessitates access to the optimal value of the
objective function. As precise estimation of this optimal objective function value may not always be feasible,
any inaccuracies could potentially lead to a reduced convergence rate for GD employing the Polyak step size.

Another alternative is to use a different distance metric instead of an adaptive step size to improve the
convergence of GD for the low SNR setting. More precisely, Lu et al. (2018) have shown that the mirror
descent method with a proper distance-generating function can solve the population loss corresponding to
the low SNR setting at a linear rate. However, the linear convergence rate of mirror descent, similar to GD
with Polyak step size, also depends on the condition number of the problem, and hence could lead to a slow
convergence rate.

2

Published in Transactions on Machine Learning Research (April/2024)

A natural approach to handle the ill-conditioning issue in the low SNR case as well as eliminating the need to
estimate the optimal function value is the use of Newton’s method. As we show in this paper, this idea indeed
addresses the issue of poor curvature of the problem and leads to an exponentially fast rate with contraction
factor 2p−2

2p−1 in the population case, where p is the degree of the polynomial link function. Moreover, in the
high SNR setting, Newton’s method converges at a quadratic rate as the problem is strongly convex and
smooth. Alas, these improvements come at the expense of increasing the computational complexity of each
iteration to O(d3) which is indeed more than the per iteration computational cost of GD that is O(d). These
points lead to this question:

Is there a computationally-efficient method that performs well in both high and low SNR
settings at a reasonable per iteration computational cost?

Contributions. In this paper, we address this question and show that the BFGS method is capable of
achieving these goals. BFGS is a quasi-Newton method that approximates the objective function curvature
using gradient information and its per iteration cost is O(d2). It is well-known that it enjoys a superlinear
convergence rate that is independent of condition number in strongly convex and smooth settings, and hence,
in the high SNR setting it outperforms GD. In the low SNR setting, where the Hessian at the optimal
solution could be singular, we show that the BFGS method converges linearly and outperforms the sublinear
convergence rate of GD. Next, we formally summarize our contributions.

• Infinite sample, low SNR: For the infinite sample case where we minimize the population loss,
we show that in the low SNR case the iterates of BFGS converge to the ground truth θ∗ at an
exponentially fast rate that is independent of all problem parameters except the power of link function
p. We further show that the linear convergence contraction coefficient of BFGS is comparable to
that of Newton’s method. This convergence result of BFGS is also of general interest as it provides
the first global linear convergence of BFGS without line-search for a setting that is neither strictly
nor strongly convex.

• Finite sample, low SNR: By leveraging the results developed for the population loss of the low
SNR regime, we show that in the finite sample case, the BFGS iterates converge to the final statistical
radius O(1/n1/(2p+2)) within the true parameter after a logarithmic number of iterations O(log(n)).
It is substantially lower than the required number of iterations for fixed-step size GD, which is
O(n(p−1)/p), to reach a similar statistical radius. This improvement is the direct outcome of the linear
convergence of BFGS versus the sublinear convergence rate of GD in the low SNR case. Further,
while the iteration complexity of BFGS is comparable to the logarithmic number of iterations of GD
with Polyak step size, we show that BFGS removes the dependency of the overall complexity on the
condition number of the problem as well as the need to estimate the optimal function value.

• Experiments: We conduct numerical experiments for both infinite and finite sample cases to
compare the performance of GD (with constant step size and Polyak step size), Newton’s method
and BFGS. The provided empirical results are consistent with our theoretical findings and show the
advantages of BFGS in the low SNR regime.

Outline. In Section 2, we discuss the BFGS quasi-Newton method. Section 3 details three scenarios in
Generalized Linear Models (GLMs): low, middle, and high SNR regimes, outlining the characteristics of
the population loss in each. Section 4 explores BFGS’s convergence in low SNR settings, highlighting its
linear convergence rate, a marked improvement over gradient descent’s sublinear rate. This section also
compares the convergence rates of BFGS and Newton’s method. Section 5 applies these insights to establish
the convergence results of BFGS for the empirical loss Ln in the low SNR regime. Lastly, our numerical
experiments are presented in Section 6.

2 BFGS algorithm

In this section, we review the basics of the BFGS quasi-Newton method, which is the main algorithm we
analyze. Consider the case that we aim to minimize a differentiable convex function f : Rd → R. The BFGS

3

Published in Transactions on Machine Learning Research (April/2024)

update is given by
θk+1 = θk − ηkHk∇f(θk), ∀k ≥ 0, (3)

where ηk is the step size and Hk ∈ Rd×d is a positive definite matrix that aims to approximate the true Hessian
inverse ∇2f(θk)−1. There are several approaches for approximating Hk leading to different quasi-Newton
methods, (Conn et al., 1991; Broyden, 1965; Broyden et al., 1973; Gay, 1979; Davidon, 1959; Fletcher &
Powell, 1963; Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Nocedal, 1980; Liu & Nocedal,
1989), but in this paper, we focus on the celebrated BFGS method, in which Hk is updated as

Hk =
(

I −
sk−1u⊤

k−1
s⊤

k−1uk−1

)
Hk−1

(
I −

uk−1s⊤
k−1

s⊤
k−1uk−1

)
+

sk−1s⊤
k−1

s⊤
k−1uk−1

, ∀k ≥ 1, (4)

where the variable variation sk and gradient displacement uk are defined as

sk−1 := θk − θk−1, uk−1 := ∇f(θk) − ∇f(θk−1), (5)

for any k ≥ 1 respectively. The logic behind the update in (4) is to ensure that the Hessian inverse
approximation Hk satisfies the secant condition Hkuk−1 = sk−1, while it stays close to the previous
approximation matrix Hk−1. The update in (4) only requires matrix-vector multiplications, and hence, the
computational cost per iteration of BFGS is O(d2).

The main advantage of BFGS is its fast superlinear convergence rate under the assumption of strict convexity,

lim
k→∞

∥θk − θopt∥
∥θk−1 − θopt∥

= 0,

where θopt is the optimal solution. Previous results on the superlinear convergence of quasi-Newton methods
were all asymptotic, until the recent advancements on the non-asymptotic analysis of quasi-Newton methods
(Rodomanov & Nesterov, 2021a;b;c; Jin & Mokhtari, 2020; Jin et al., 2022; Ye et al., 2021; Lin et al., 2021a;b).
For instance, Jin & Mokhtari (2020) established a local superlinear convergence rate of (1/

√
k)k for BFGS.

However, all these superlinear convergence analyses require the objective function to be smooth and strictly
or strongly convex. Alas, these conditions are not satisfied in the low SNR setting, since the Hessian at the
optimal solution could be singular, and hence the loss function is neither strongly convex nor strictly convex;
we further discuss this point in Section 3. This observation implies that we need novel convergence analyses
to study the behavior of BFGS in the low SNR setting, as we discuss in the upcoming sections.

3 Generalized linear model with polynomial link function

In this section, we formally present the generalized linear model (GLM) setting that we consider in our paper,
and discuss the low and high SNR settings and optimization challenges corresponding to these cases. Consider
the case that the feature vectors are denoted by X ∈ Rd and their corresponding labels are denoted by Y ∈ R.
Suppose that we have access to n sample points (Y1, X1), (Y2, X2), . . . , (Yn, Xn) that are i.i.d. samples from
the following generalized linear model with polynomial link function of power p (Carroll et al., 1997), i.e.,

Yi = (X⊤
i θ∗)p + ζi, (6)

where θ∗ is a true but unknown parameter, p ∈ N is a given power, and ζ1, . . . , ζn are independent Gaussian
noises with zero mean and variance σ2. The Gaussian assumption on the noise is for the simplicity of the
discussion and similar results hold for the sub-Gaussian i.i.d. noise case. Furthermore, we assume the feature
vectors are generated as X ∼ N (0, Σ) where Σ ∈ Rd×d is a symmetric positive definite matrix. Here we focus
on the settings that p ∈ N+ and p ≥ 2.

The above class of GLMs with polynomial link functions arise in several settings. When p = 1, the model
in (6) is the standard linear regression model, and for the case that p = 2, the above setup corresponds to the
phase retrieval model (Fienup, 1982; Shechtman et al., 2015; Candes et al., 2011; Netrapalli et al., 2015),
which has found applications in optical imaging, x-ray tomography, and audio signal processing. Moreover,
the analysis of GLMs with p ≥ 2 also serves as the basis of the analysis on other popular statistical models.

4

Published in Transactions on Machine Learning Research (April/2024)

For example, as shown by Yi & Caramanis (2015); Wang et al. (2015); Xu et al. (2016); Balakrishnan et al.
(2017); Daskalakis et al. (2017); Dwivedi et al. (2020a); Kwon et al. (2019); Dwivedi et al. (2020b); Kwon
et al. (2021), the local landscape of log-likelihood for Gaussian mixture models and mixture linear regression
models are identical to GLMs for p = 2.

In the case that the polynomial link function parameter in the GLM model in (6) is p = 2, by adapting similar
arguments from Kwon et al. (2021) under the symmetric two-component location Gaussian mixture, there
are essentially three regimes for estimating the true parameter θ∗: Low signal-to-noise ratio (SNR) regime:
∥θ∗∥/σ ≤ C1(d/n)1/4 where d is the dimension, n is the sample size, and C1 is a universal constant; Middle
SNR regime: C1(d/n)1/4 ≤∥θ∗∥/σ ≤ C where C is a universal constant; High SNR regime: ∥θ∗∥/σ ≥ C. The
main idea is that with different θ∗, the optimization landscape of the parameter estimation problem changes.
By generalizing the insights from the case p = 2, we define the following regimes for any p ≥ 2:

• (i) Low SNR regime: ∥θ∗∥/σ ≤ C1(d/n)1/(2p) where d is the dimension, n is the sample size, and C1
is a universal constant;

• (ii) Middle SNR regime: C1(d/n)1/(2p) ≤∥θ∗∥/σ ≤ C where C is a universal constant;
• (iii) High SNR regime: ∥θ∗∥/σ ≥ C.

Note that, the rate (d/n)1/2p that we use to define the SNR regimes is from the statistical rate of estimating
the true parameter θ∗ when θ∗ approaches 0. Next, we provide insight into the landscape of the least-square
loss function for each regime. In particular, given the GLM in (6), the sample least-square takes the following
form:

min
θ∈Rd

Ln(θ) := 1
n

n∑
i=1

(
Yi −

(
X⊤

i θ
)p
)2

. (7)

To obtain insight about the landscape of the empirical loss function Ln, a useful approach is to consider that
function by its population version, which we refer to as population least-square loss function:

min
θ∈Rd

L(θ) := E[Ln(θ)], (8)

where the outer expectation is taken with respect to the data.

High SNR regime. In the setting that the ground truth parameter has a relatively large norm, i.e.,
∥θ∗∥ ≥ C for some constant C > 0 that only depends on σ, the population loss in (8) is locally strongly
convex and smooth around θ∗. More precisely, when ∥θ − θ∗∥ is small, using Taylor’s theorem we have

(X⊤θ)p − (X⊤θ∗)p = p(X⊤θ∗)p−1X⊤(θ − θ∗) + o(∥θ − θ∗∥).

Hence, in a neighborhood of the optimal solution, the objective in (8) can be approximated as

L(θ) = E[(Y − (X⊤θ)p)2] = E[((X⊤θ∗)p + ζ − (X⊤θ)p)2]
= E[((X⊤θ∗)p − (X⊤θ)p)2] + E[2ζ((X⊤θ∗)p − (X⊤θ)p)2] + E[ζ2] = E[((X⊤θ∗)p − (X⊤θ)p)2] + σ2

= p2(θ − θ∗)⊤EX

[
X(X⊤θ∗)2p−2X⊤] (θ − θ∗) + σ2 + o(∥θ − θ∗∥2).

Indeed, if ∥θ∗∥ ≥ Cσ the above function behaves as a quadratic function that is smooth and strongly convex,
assuming that o(∥θ − θ∗∥2) is negligible. As a result, the iterates of gradient descent (GD) converge to the
solution at a linear rate and it requires κ log(1/ϵ) to reach an ϵ-accurate solution, where κ depends on the
conditioning of the covariance matrix Σ and the norm of θ∗. In this case, BFGS converges superlinearly to θ∗

and the rate would be independent of κ, while the cost per iteration would be O(d2).

Low SNR regime. As mentioned above, in the high SNR case, GD has a fast linear rate. However, in the
low SNR case where ∥θ∗∥ is small and ∥θ∗∥ ≤ C1(d/n)1/(2p), the strong convexity parameter approaches zero
when the sample size n goes to infinity and the problem becomes ill-conditioned. In this case, we deal with a
function that is only convex and its gradient is not Lipschitz continuous. To better elaborate on this point,
let us focus on the case that θ∗ = 0 as a special case of the low SNR setting. Considering the underlying
distribution of X, which is X ∼ N (0, Σ), for such a low SNR case, the population loss can be written as

L(θ) = EX

[
(X⊤θ)2p

]
+ σ2 = (2p − 1)!!∥Σ1/2θ∥2p + σ2. (9)

5

Published in Transactions on Machine Learning Research (April/2024)

Since we focus on p ≥ 2 it can be verified that L(θ) is not strongly convex in a neighborhood of the solution
θ∗ = 0. For this class of functions, it is well-known that GD with constant step size would converge at a
sublinear rate, and hence GD iterates require polynomial number of iterations to reach the final statistical
radius. In the next section, we study the behavior of BFGS for solving the low SNR setting and showcase its
advantage compared to GD.

Middle SNR regime. Different from the low and high SNR regimes, the middle SNR regime is generally
harder to analyze as the landscapes of both the population and sample least-square loss functions are complex.
Adapting the insight from middle SNR regime of the symmetric two-component location Gaussian mixtures
from Kwon et al. (2021), for the middle SNR setting of the generalized linear model, the eigenvalues of the
Hessian matrix of the population least-square loss function approach 0 and their vanishing rates depend on
some increasing function of ∥θ∗∥. The optimal statistical rate of the optimization algorithms, such as gradient
descent algorithm, for solving θ∗ depends strictly on the tightness of these vanishing rates in terms of ∥θ∗∥,
which are non-trivial to obtain. In fact, to the best of our knowledge, there is no result on the convergence of
iterative methods (such as GD or its variants) for GLMs with a polynomial link function in the middle SNR.
Hence, we leave the study of BFGS for this setting as a future work.

4 Convergence analysis in the low SNR regime: Population loss

In this section, we focus on the convergence properties of BFGS for the population loss in the low SNR
case introduced in (9). This analysis provides an intuition for the analysis of the finite sample case that we
discuss in Section 5, as we expect these two loss functions to be close to each other when the number of
samples n is sufficiently large. In this section, instead of focusing on the population loss within the low SNR
regime, as described in (9), we shift our attention to a more encompassing objective function, f . Detailed in
the following expression, this function encompasses the population loss function L with θ∗ = 0 as a specific
example. This approach enables us to present our results in the most general setting possible. Specifically,
we examine the function f : Rd → R, defined as follows:

min
θ∈Rd

f(θ) = ∥Aθ − b∥q, (10)

where A ∈ Rm×d is a matrix, b ∈ Rm is a given vector, and q ∈ Z satisfies q ≥ 4. We should note that for
q ≥ 4, the considered objective is not strictly convex because the Hessian is singular when Aθ = b. Indeed,
if we set m = d and further let A be Σ1/2 and choose b = Aθ∗ = 0, then we recover the problem in (9) for
q = 2p. Note that since we focus on the generalized linear model with the polynomial link function, which
necessitates that p be an integer, the parameter q = 2p is also an integer.

Notice that the problem in (10), which serves as a surrogate for the finite sample problem that we plan to
study in the next section, has the same solution set as the quadratic problem of minimizing ∥Aθ − b∥2 with
solution (A⊤A)−1A⊤b when A⊤A is invertible. Given this point, one might suggest that instead of minimizing
(10) we could directly solve the quadratic problem which is indeed much easier to solve. This point is valid,
but the goal of this section is not to efficiently solve problem (10) itself. Our goal is to understand the
convergence properties of the BFGS method for solving the problem in (10) with the hope that it will provide
some intuitions for the convergence analysis of BFGS for the empirical loss (7) in the low SNR regime. As we
will discuss in Section 5, the convergence analysis of BFGS on the population loss which is a special case of
(10) is closely related to the one for the empirical loss in (7).
Remark 1. One remark is that population loss in (9) holds for the restrictive assumption of θ∗ = 0, which is
only a special case of the general low SNR regime of ∥θ∗∥ ≤ C1(d/n)1/(2p). Our ultimate goal is to analyze the
convergence behavior of the BFGS method applied to the empirical loss (7) of GLM problems in the low SNR
regime. The errors between gradients and Hessians of the population loss with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)1/(2p)

are upper bounded by the corresponding statistical errors between the population loss (8) and the empirical
loss (7) in the low SNR regime, respectively. Therefore, the errors between iterations of applying BFGS to
the population loss with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)1/(2p) are negligible compared to the statistical errors.
Instead of directly analyzing BFGS for the population loss (8) in the general low SNR regime, studying the
convergence properties of BFGS for the population loss (9) with θ∗ = 0 can equivalently lay foundations for

6

Published in Transactions on Machine Learning Research (April/2024)

the convergence analysis of BFGS for the empirical loss (7) in the low SNR regime, which is the main target
of this paper. The details can be found in Appendix A.4.

Our results in this section are of general interest from an optimization perspective, since there is no global
convergence theory (without line-search) for the BFGS method in the literature when the objective function
is not strictly convex. Our analysis provides one of the first results for such general settings. That said, it
should be highlighted that our results do not hold for general convex problems, and we do utilize the specific
structure of the considered convex problem to establish our results. The following examples illustrate some of
the specific structures that we exploit to establish our result.
Assumption 1. There exists θ̂ ∈ Rd, such that b = Aθ̂. In other words, b is in the range of matrix A.

This assumption implies that the problem in (10) is realizable, θ̂ is an optimal solution, and the optimal
function value is zero. This assumption is satisfied in our considered low SNR setting in (9) as θ∗ = 0 which
implies b = 0.
Assumption 2. The matrix A⊤A ∈ Rd×d is invertible. This is equivalent to A⊤A ≻ 0.

The above assumption is also satisfied for our considered setting as we assume that the covariance matrix for
our input features is positive definite. Combining Assumptions 1 and 2, we conclude that θ̂ is the unique
optimal solution of problem (10). Next, we state the convergence rate of BFGS for solving problem (10)
under the disclosed assumptions. The proof of the next theorem is available in Appendix A.1.

Theorem 1. Consider the BFGS method in (3)-(5). Suppose Assumptions 1 and 2 hold, and the initial
Hessian inverse approximation matrix is selected as H0 = ∇2f(θ0)−1, where θ0 ∈ Rd is an arbitrary initial
point. If the step size is ηk = 1 for all k ≥ 0, then the iterates of BFGS converge to the optimal solution θ̂ at
a linear rate of

∥θk − θ̂∥ ≤ rk−1∥θk−1 − θ̂∥, ∀k ≥ 1, (11)
where the contraction factors rk ∈ [0, 1) satisfy

r0 = q − 2
q − 1 , rk =

1 − rq−2
k−1

1 − rq−1
k−1

, ∀k ≥ 1. (12)

Theorem 1 shows that the iterates of BFGS converge globally at a linear rate to the optimal solution of (10).
This result is of interest as it illustrates the iterates generated by BFGS converge globally without any line
search scheme and the step size is fixed as ηk = 1 for any k ≥ 0. Moreover, the initial point θ0 is arbitrary
and there is no restriction on the distance between θ0 and the optimal solution θ̂.

We should highlight the above linear convergence result and our convergence analysis both rely heavily on the
distinct structure of problem (10) and may not hold for a general convex minimization problem. Specifically,
it can be shown that if we had access to the exact Hessian and could perform a Newton’s update to solve the
problem in (10), then the error vectors (θk − θ̂)k≥0 would all be parallel. This property arises due to the fact
that for the problem in (10) the Newton direction is ∇2f(θk−1)−1∇f(θk−1) = (θk−1 − θ̂) − q−2

q−1 (θk−1 − θ̂).
Consequently, the next error vector θk−1 − θ̂ computed by running one step of Newton would satisfy
θk − θ̂ = q−2

q−1 (θk−1 − θ̂). Therefore, the error vector at time k, denoted by θk − θ̂, is parallel to the previous
error vector θk−1 − θ̂, with the only difference being that its norm is reduced by a factor of q−2

q−1 . Using an
induction argument, it simply follows that all error vectors (θk − θ̂)k≥0 remain parallel to each other while
their norm contracts at a rate of q−2

q−1 . This is a key point that is used in the result for Newton’s method
in Theorem 3. In the convergence analysis of BFGS (stated in the proof of Theorem 1), we use a similar
argument. While we cannot guarantee that the Hessian approximation matrix in the BFGS method matches
the exact Hessian, we demonstrate that it can inherit this property, maintaining all error vectors (θk − θ̂)k≥0
as parallel to each other. Additionally, we show that the norm is shrinking at a factor of rk < 1, which is
always larger than q−2

q−1 , yet remains independent of the problem’s condition number or dimensions. In the
following theorem, we show that for q ≥ 4, the linear rate contraction factors {rk}∞

k=0 also converge linearly
to a fixed point contraction factor r∗ determined by the parameter q. The proof is available in Appendix A.2.

7

Published in Transactions on Machine Learning Research (April/2024)

0 5 10 15 20 25 30
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

(a) q = 4.

0 5 10 15 20 25 30
0.989

0.99

0.991

0.992

0.993

0.994

0.995

(b) q = 100.

0 5 10 15 20 25 30
10

-15

10
-10

10
-5

10
0

(c) q = 4.

0 5 10 15 20 25 30
10

-15

10
-10

10
-5

10
0

(d) q = 100.

Figure 1: Convergence of factors {rk}∞
k=0 to r∗.

Theorem 2. Consider the linear convergence factors {rk}∞
k=0 defined in (12) from Theorem 1.If q ≥ 4 and

q ∈ Z, then the sequence {rk}∞
k=0 converges to r∗ ∈ (0, 1) that is determined by the equation

rq−1
∗ + rq−2

∗ = 1, (13)

and the rate of convergence is linear with a contraction factor that is at most 1/2, i.e.,

|rk − r∗| ≤ (1/2)k |r0 − r∗|, ∀k ≥ 0. (14)

Based on Theorem 2, the iterates of BFGS eventually converge to the optimal solution at the linear rate of
r∗ determined by (13). Specifically, the factors {rk}∞

k=0 converge to the fixed point r∗ at a linear rate with
the contraction factor of 1/2. Further, the linear convergence factors {rk}∞

k=0 and their limit r∗ are all only
determined by q, and they are independent of the dimension d and the condition number κA of the matrix A.
Hence, the performance of BFGS is not influenced by high-dimensional or ill-conditioned problems. This
result is independently important from an optimization point of view, as it provides the first global linear
convergence of BFGS without line-search for a setting that is not strictly or strongly convex, and interestingly
the constant of linear convergence is independent of dimension or condition number.

We illustrate the convergence of factors {rk}∞
k=0 to the fixed point r∗ in Figure 1 for q = 4 and q = 100. In

plots (a) and (b), we observe that rk becomes close to r∗ after only 5 iterations. Hence, the linear convergence
rate of BFGS is approximately r∗ after only a few iterations. We further observe in plots (c) and (d) that the
factors {rk}∞

k=0 converge to the fixed point r∗ at a linear rate upper bounded by 1/2. Note that r∗ is the
solution of (13). These plots verify our results in Theorem 2.
Remark 2. The cost of computing the initial Hessian inverse approximation H0 = ∇2f(θ0)−1 is O(d3), but
this cost is only required for the first iteration, and it is not required for k ≥ 1 as for those iterates we update
the Hessian inverse approximation matrix Hk based on the update in (4) at a cost of O(d2).
Remark 3. Although the vanilla Gradient Descent (GD) method converges at a sub-linear rate when applied
to problem (10), it has been shown that other first-order methods, such as Mirror Descent with a distance-
generating function h(x) = 1

q+2 |x|q+2 + 1
2 |x|2 can solve problem (10) at a linear rate (refer to Lu et al.

(2018)). However, the linear convergence rate of Mirror Descent is dependent on the condition number κ of
the problem, characterized by the rate

(
1 − 1

κ

)
. In contrast, as demonstrated by Theorems 1 and 2, the linear

convergence rate of BFGS is independent of the problem’s condition number. Consequently, in settings with
low SNR, which can be ill-conditioned, we anticipate a faster convergence rate for BFGS compared to Mirror
Descent. We illustrate this point in our numerical experiments presented in Figure 2.

4.1 Comparison with Newton’s method

Next, we compare the convergence results of BFGS for solving problem (10) with the one for Newton’s
method. The following theorem characterizes the global linear convergence of Newton’s method with unit
step size applied to the objective function in (10).
Theorem 3. Consider applying Newton’s method to optimization problem (10) and suppose Assumptions 1
and 2 hold. Moreover, suppose the step size is ηk = 1 for any k ≥ 0. Then, the iterates of Newton’s method

8

Published in Transactions on Machine Learning Research (April/2024)

converge to the optimal solution θ̂ at a linear rate of

∥θk − θ̂∥ = q − 2
q − 1∥θk−1 − θ̂∥, ∀k ≥ 1. (15)

Moreover, this linear convergence rate q−2
q−1 is smaller than the fixed point r∗ defined in (13) of the BFGS

quasi-Newton method, i.e., q−2
q−1 < r∗ < 2q−3

2q−2 for all q ≥ 4.

The proof is available in Appendix A.3. The convergence results of Newton’s method are also global without
any line search method, and the linear rate q−2

q−1 is independent of dimension d and condition number κA.
Furthermore, the condition q−2

q−1 < r∗ implies that iterates of Newton’s method converge faster than BFGS,
but the gap is not substantial as r∗ < 2q−3

2q−2 . On the other hand, the computational cost per iteration of
Newton’s method is O(d3) which is worse than the O(d2) of BFGS.

Moving back to our main problem, one important implication of the above convergence results is that in
the low SNR setting the iterates of BFGS converge linearly to the optimal solution of the population loss
function, while the contraction coefficient of BFGS is comparable to that of Newton’s method which is
(2p − 2)/(2p − 1). For instance, for p = 2, 3, 5, 10, the linear rate contraction factor of Newton’s method
are 0.667, 0.8, 0.889, 0.947 and the approximate linear rate contraction factor of BFGS denoted by r∗ are
0.755, 0.857, 0.922, 0.963, respectively.

5 Convergence analysis in the low SNR regime: Finite sample setting

Thus far, we have demonstrated that the BFGS iterates converge linearly to the true parameter θ∗ when
minimizing the population loss function L of the GLM in (9) in the low SNR regime. In this section, we study
the statistical behavior of the BFGS iterates for the finite sample case by leveraging the insights developed in
the previous section about the convergence rate of BFGS in the infinite sample case, i.e., population loss.
More precisely, we focus on the application of BFGS for solving the least-square loss function Ln defined in
(7) for the low SNR setting. The iterates of BFGS in this case follow the update rule

θn
k+1 = θn

k − ηkHn
k ∇Ln(θn

k), (16)

where Hn
k is updated using the gradient information of the loss Ln by the BFGS rule.

We next show that the BFGS iterates (16) {θn
k }k≥0 converge to the final statistical radius within a logarithmic

number of iterations under the low SNR regime of the GLMs. To prove this claim, we track the difference
between the iterates {θn

k }k≥0 generated based on the empirical loss and the iterates {θk}k≥0 generated
according to the population loss. Assuming that they both start from the same initialization θ0, with the
concentration of the gradient ∥∇Ln(θ) − ∇L(θ)∥ and the Hessian ∥∇2Ln(θ) − ∇2L(θ)∥op from Mou et al.
(2019); Ren et al. (2022b) we control the deviation between these two sequences. Using this bound and the
convergence results of the iterates generated based on the population loss discussed in the previous section,
we prove the following result for the finite sample setting. The proof is available in Appendix A.5.
Theorem 4. Consider the low SNR regime of the GLM in (6) namely, ∥θ∗∥ ≤ C1(d/n)1/(2p). Apply the
BFGS method to the empirical loss (7) with the initial point θn

0 , where θn
0 ∈ B(θ∗, r) for some r > 0, the

initial Hessian inverse approximation matrix as H0 = ∇2Ln(θn
0)−1, where ∇2Ln(θn

0) is positive definite and
step size ηk = 1. For any failure probability δ ∈ (0, 1), if the number of samples is n ≥ C2(d log(d/δ))2p, and
the number of iterations satisfies T ≥ C3 log(n/d(log(1/δ))), then with probability 1 − δ, we have

min
t∈[T]

∥θn
t − θ∗∥ ≤ C4

(
d log(1/δ)

n

) 1
2p+2

, (17)

where C1, C2, C3, and C4 are constants independent of n and d.

Our analysis hinges on linking the gradient and Hessian of the empirical loss to the population loss, subsequently
demonstrating a convergence rate for the empirical loss based on the linear convergence established in Section 4

9

Published in Transactions on Machine Learning Research (April/2024)

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(a) d = 10, q = 4.

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(b) d = 10, q = 10.

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(c) d = 103, q = 4.

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

(d) d = 103, q = 10.

Figure 2: Convergence of Newton’s method, BFGS, GD with constant step size, GD with Polyak step size and
mirror descent with constant step size for different values of d and q. In plot (a), m = 100 and η = 10−4. In
plot (b), m = 100 and η = 10−8. In plot (c), m = 2000 and η = 10−12. In plot (d), m = 2000 and η = 10−15.

for the population loss. More details can be found in Appendix A.5. Theorem 4 shows that BFGS achieves an
estimation accuracy of O((d/n)

1
2p+2)in O(log n) iterations, which is substantialy faster than GD that requires

O(n
p−1

p) iteations to achieve the same guarantee as shown in (Ren et al., 2022a). A few comments about
Theorem 4 are in order.

Comparison to GD, GD with Polyak step size, and Newton’s method: Theorem 4 indicates that
under the low SNR regime, the BFGS iterates reach the final statistical radius O(n−1/(2p+2)) within the true
parameter θ∗ after O(log(n)) number of iterations. The statistical radius is slightly worse than the optimal
statistical radius O(n−1/(2p)). However, we conjecture that this is due to the proof technique and BFGS
can still reach the optimal O(n−1/(2p)) in practice. In our experiments, in the next section, we observe that
when d = 4 and p = 2, the statistical radius of BFGS is closer to the optimal radius of O(n−1/4) instead of
O(n−1/6) suggested by our analysis. We leave an improvement of the statistical analysis as the future work.
On the other hand, the overall iteration complexity of BFGS, which is O(log(n)), is indeed better than the
polynomial number of iterations of GD, which is at the order of O(n(p−1)/p) (Corollary 3 in (Ho et al., 2020)).

Moreover, the complexity of BFGS is better than the one for GD with Polyak step size which is O(κ log(n))
iterations (Corollary 1 in (Ren et al., 2022a)), where κ is the condition number of the covariance matrix Σ.
Note that while the iteration complexity of BFGS is comparable to that of GD with Polyak step size in terms
of the sample size, the BFGS overcomes the need to approximate the optimal value of the sample least-square
loss Ln, which can be unstable in practice, and also removes the dependency on the condition number that
appears in the complexity bound of GD with Polyak step size. A similar conclusion also holds for mirror
descent with a distance-generating function h(x) = 1

q+2 |x|q+2 + 1
2 |x|2, as its linear convergence rate has a

contraction factor of (1 − 1/κ), leading to an overall iteration complexity of O(κ log(n)).

Finally, the iteration complexity of BFGS is comparable to the O(log(n)) of Newton’s method (Corollary 3
in (Ho et al., 2020)), while per iteration cost of BFGS is substantially lower than Newton’s method.

On the minimum number of iterations: The results in Theorem 4 involve the minimum number of
iterations, namely, this result holds for some 1 ≤ t ≤ T . It suggests that the BFGS iterates may diverge
after they reach the final statistical radius. As highlighted in (Ho et al., 2020), such instability behavior of
BFGS is inherent to fast and unstable methods. While it may sound limited, this issue can be handled via an
early stopping scheme using the cross-validation approaches. We illustrate such early stopping of the BFGS
iterates for the low SNR regime in Figure 3.

6 Numerical experiments

Our experiments are divided into two sections: the first focuses on iterative methods’ behavior on the
population loss of GLMs with polynomial link functions, and the second examines the finite sample setting.

Experiments for the population loss function. In this section, we compare the performance of Newton’s
method, BFGS, GD with constant step size, GD with Polyak step size, and and mirror descent with constant

10

Published in Transactions on Machine Learning Research (April/2024)

0 20 40 60 80 100
10

-2

10
-1

10
0

(a) High SNR regime.

0 20 40 60 80 100

10
-1

10
0

(b) Low SNR regime.

5 6 7 8 9 10 11 12
-6

-5

-4

-3

-2

-1

0

(c) High SNR regime.

5 6 7 8 9 10 11 12
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

(d) Low SNR regime.

Figure 3: Convergence of different methods when d = 4 in high SNR (a) and low SNR (b) regimes. Illustration
of the statistical radius of BFGS in high SNR (c) and low SNR (d) regimes.

step size and distance generating function h(x) = 1
q+2 ∥x∥q+2 + 1

2 ∥x∥2 applied to (10) which corresponds to
the population loss. We choose different values of parameter m, dimension d and the exponential parameter
q in (10). We generate a random matrix A ∈ Rm×d and a random vector θ̂ ∈ Rd, and compute the vector
b = Aθ̂ ∈ Rd. The initial point θ0 ∈ Rd is also generated randomly. To properly select the steps for GD with
a fixed step size η, we employed a manual grid search across the following values [10−10, 10−9, ..., 10−1, 1]
and selected the value that yielded the best performance for each specific problem. In our plots, we present
the logarithm of error ∥θk − θ̂∥ versus the number of iteration k for different algorithms. All the values of
different parameters m, d, q and η are mentioned in the caption of the plots.

In Figure 2, we observe that GD with constant step converges slowly due to its sub-linear convergence rate.
The performance of GD with Polyak step size is also poor when dimension is large or the parameter q is
huge. This is due to the fact that as dimension increases the problem becomes more ill-conditioned and
hence the linear convergence contraction factor approaches 1. We observe that both Newton’s method and
BFGS generate iterations with linear convergence rates, and their linear convergence rates are only affected
by the parameter q, i.e., the dimension d has no impact over the performance of BFGS and Newton’s method.
Although the convergence speed of Newton’s method is faster than BFGS, their gap is not significantly large
as we expected from our theoretical results in Section 4. We also observe that mirror descent outperforms
GD, but its performance is not as good as the BFGS method.

Experiments for the empirical loss function. We next study the statistical and computational
complexities of BFGS on the empirical loss. In our experiments, we first consider the case that d = 4 and
the power of the link function is p = 2, namely, we consider the multivariate setting of the phase retrieval
problem. The data is generated by first sampling the inputs according to {Xi}n

i=1 ∼ N (0, diag(σ2
1 , · · · , σ2

4))
where σk = (0.5)k−1, and then generating their labels based on Yi = (X⊤

i θ∗)2 + ζi where {ζi}n
i=1 are i.i.d.

samples from N (0, 0.01). In the low SNR regime, we set θ∗ = 0, and in the high SNR regime we select
θ∗ uniformly at random from the unit sphere. Further, for GD, we set the step size as η = 0.1, while for
Newton’s method and BFGS, we use the unit step size η = 1.

In plots (a) and (b) of Figure 3, we consider the setting that the sample size is n = 104, and we run GD, GD
with Polyak step size, BFGS, and Newton’s method to find the optimal solution of the sample least-square
loss Ln. Furthermore, for both Newton’s method and the BFGS algorithm, due to their instability, we also
perform cross-validation to choose their early stopping. In particular, we split the data into training and
the test sets. The training set consists of 90% of the data while the test set has 10% of the data. The
yellow points in plots (a) and (b) of Figure 3 show the iterates of BFGS and Newton, respectively, with the
minimum validation loss. As we observe, under the low SNR regime, the iterates of GD with Polyak step size,
BFGS and Newton’s method converge geometrically fast to the final statistical radius while those of the GD
converge slowly to that radius. Under the high SNR regime, the iterates of all of these methods converge
geometrically fast to the final statistical radius. The faster convergence of GD with Polyak step size over
GD is due to the optimal Polyak step size, while the faster convergence of BFGS and Newton’s method over
GD is due to their independence on the problem condition number. Finally, in plots (c) and (d) of Figure 3,
we run BFGS when the sample size is ranging from 102 to 104 to empirically verify the statistical radius of

11

Published in Transactions on Machine Learning Research (April/2024)

0 20 40 60 80 100

10
-2

10
-1

10
0

(a) High SNR regime.

0 20 40 60 80 100

10
-1

10
0

(b) Low SNR regime.

5 6 7 8 9 10 11 12
-5

-4

-3

-2

-1

0

(c) High SNR regime.

5 6 7 8 9 10 11 12
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(d) Low SNR regime.

Figure 4: Convergence of different methods d = 50 in high SNR (a) and low SNR (b) regimes. Statistical
radius of BFGS in high SNR (c) and low SNR (d) settings.

0 20 40 60 80 100

10
-1

10
0

(a) High SNR (d = 100).

0 20 40 60 80 100

10
-1

10
0

(b) Low SNR (d = 100).

0 20 40 60 80 100

10
-1

10
0

(c) High SNR (d = 500).

0 20 40 60 80 100
10

-1

10
0

(d) Low SNR (d = 500).

Figure 5: Convergence of different methods with d = 100 for high SNR regime are shown in (a) and low SNR
regime in (b). Convergence of different methods with d = 500 for high SNR regime are shown in (c) and low
SNR regime in (d).

these methods. As indicated in the plots of that figure, under the high SNR regime, the BFGS has statistical
radius is O(n−1/2), while under the low SNR regime, its statistical radius becomes O(n−1/4).

To show that BFGS can also be applied to high dimension scenarios, we conduct additional experiments
on the generalized linear model with input d = 50, 100, 500 and the power of link function p = 2. The
inputs are generated by {Xi}n

i=1 ∼ N (0, diag(σ2
1 , ·, σ2

d)) where σk = (0.96)k−1, and the remaining setting and
hyper-parameters are set identical to the low dimension scenarios. The results are shown in Figure 4 and 5.
As the results show, the performance of BFGS in high dimensional scenarios are nearly identical to the low
dimensional scenarios.

7 Conclusions

In this paper, we analyzed the convergence rates of BFGS on both population and empirical loss functions of
the generalized linear model in the low SNR regime. We showed that in this case, BFGS outperforms GD and
performs similar to Newton’s method in terms of iteration complexity, while it requires a lower per iteration
computational complexity compared to Newton’s method. We also provided experiments for both infinite
and finite sample loss functions and showed that our empirical results are consistent with our theoretical
findings. Perhaps one limitation of the BFGS method is that its computational cost is still not linear in the
dimension and scales as O(d2). One future research direction is to analyze some other iterative methods such
as limited memory-BFGS (L-BFGS) which may be able to achieve a fast linear convergence rate in the low
SNR setting, while its computational cost per iteration is O(d).

Acknowledgements

The research of Qiujiang Jin and Aryan Mokhtari is partially supported by NSF Award CCF-2007668 and the
NSF AI Institute for Foundations of Machine Learning. Tongzheng Ren and Naht Ho acknowledge support
from the NSF IFML 2019844 and the NSF AI Institute for Foundations of Machine Learning.

12

Published in Transactions on Machine Learning Research (April/2024)

References
A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence of gradient methods for high-

dimensional statistical recovery. Annals of Statistics, 40(5):2452–2482, 2012.

S. Balakrishnan, M. J. Wainwright, and B. Yu. Statistical guarantees for the EM algorithm: From population
to sample-based analysis. Annals of Statistics, 45:77–120, 2017.

C. G. Broyden, J. E. Dennis Jr., Broyden, and J. J. More. On the local and superlinear convergence of
quasi-Newton methods. IMA J. Appl. Math, 12(3):223–245, June 1973.

Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of
computation, 19(92):577–593, 1965.

Charles G Broyden. The convergence of single-rank quasi-Newton methods. Mathematics of Computation, 24
(110):365–382, 1970.

Emmanuel J. Candes, Yonina Eldar, Thomas Strohmer, and Vlad Voroninski. Phase retrieval via matrix
completion, 2011.

R. J. Carroll, J. Fan, I. Gijbels, and M. P. Wand. Generalized partially linear single-index models. Journal
of the American Statistical Association, 92:477–489, 1997.

Andrew R. Conn, Nicholas I. M. Gould, and Ph L Toint. Convergence of quasi-Newton matrices generated
by the symmetric rank one update. Mathematical programming, 50(1-3):177–195, 1991.

C. Daskalakis, C. Tzamos, and M. Zampetakis. Ten steps of EM suffice for mixtures of two Gaussians. In
Proceedings of the 2017 Conference on Learning Theory, 2017.

WC Davidon. Variable metric method for minimization. Technical report, Argonne National Lab., Lemont,
Ill., 1959.

R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, and B. Yu. Sharp analysis of expectation-
maximization for weakly identifiable models. AISTATS, 2020a.

R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, and B. Yu. Singularity, misspecification,
and the convergence rate of EM. Annals of Statistics, 44:2726–2755, 2020b.

Xiaoming Chen Feiyan Tian, Lei Liu. Generalized memory approximate message passing.
https://arxiv.org/abs/2110.06069, 2021.

J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769, Aug 1982. doi:
10.1364/AO.21.002758. URL http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322, 1970.

Roger Fletcher and Michael JD Powell. A rapidly convergent descent method for minimization. The computer
journal, 6(2):163–168, 1963.

David M Gay. Some convergence properties of Broyden’s method. SIAM Journal on Numerical Analysis, 16
(4):623–630, 1979.

Kazimierz Goebel and W. A. Kirk. Topics in Metric Fixed Point Theory. Cambridge University Press, 1990.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
computation, 24(109):23–26, 1970.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1225–1234,
New York, New York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/v48/hardt16.
html.

13

http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v48/hardt16.html

Published in Transactions on Machine Learning Research (April/2024)

N. Ho, K. Khamaru, R. Dwivedi, M. J. Wainwright, M. I. Jordan, and B. Yu. Instability, computational
efficiency and statistical accuracy. Arxiv Preprint Arxiv: 2005.11411, 2020.

Qiujiang Jin and Aryan Mokhtari. Non-asymptotic superlinear convergence of standard quasi-newton methods.
arXiv preprint arXiv:2003.13607, 2020.

Qiujiang Jin, Alec Koppel, Ketan Rajawat, and Aryan Mokhtari. Sharpened quasi-newton methods: Faster
superlinear rate and larger local convergence neighborhood. The 39th International Conference on Machine
Learning (ICML 2022), 2022.

J. Kwon, W. Qian, C. Caramanis, Y. Chen, , and D. Damek. Global convergence of the EM algorithm for
mixtures of two component linear regression. In Conference on Learning Theory (COLT), 2019.

J. Y. Kwon, N. Ho, and C. Caramanis. On the minimax optimality of the EM algorithm for learning
two-component mixed linear regression. In AISTATS, 2021.

Dachao Lin, Haishan Ye, and Zhihua Zhang. Explicit superlinear convergence of broyden’s method in
nonlinear equations. arXiv preprint arXiv:2109.01974, 2021a.

Dachao Lin, Haishan Ye, and Zhihua Zhang. Greedy and random quasi-newton methods with faster explicit
superlinear convergence. Advances in Neural Information Processing Systems 34, 2021b.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Po-Ling Loh and Martin J Wainwright. Regularized M-estimators with nonconvexity: Statistical and
algorithmic theory for local optima. Journal of Machine Learning Research, 16:559–616, 2015.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order
methods and applications. In SIAM Journal on Optimization, 28(1):333–354, 2018.

Wenlong Mou, Nhat Ho, Martin J Wainwright, Peter Bartlett, and Michael I Jordan. A diffusion process
perspective on posterior contraction rates for parameters. arXiv preprint arXiv:1909.00966, 2019.

Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating minimization. IEEE
Transactions on Signal Processing, 63(18):4814–4826, 2015. doi: 10.1109/TSP.2015.2448516.

Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of computation, 35(151):
773–782, 1980.

Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, and Nhat Ho. Towards statistical and
computational complexities of Polyak step size gradient descent. Artificial Intelligence and Statistics
Conference, 2022a.

Tongzheng Ren, Jiacheng Zhuo, Sujay Sanghavi, and Nhat Ho. Improving computational complexity in
statistical models with second-order information. arXiv preprint arXiv:2202.04219, 2022b.

Anton Rodomanov and Yurii Nesterov. Greedy quasi-newton methods with explicit superlinear convergence.
SIAM Journal on Optimization, 31(1):785–811, 2021a.

Anton Rodomanov and Yurii Nesterov. Rates of superlinear convergence for classical quasi-newton methods.
Mathematical Programming, pp. 1–32, 2021b.

Anton Rodomanov and Yurii Nesterov. New results on superlinear convergence of classical quasi-newton
methods. Journal of Optimization Theory and Applications, 188(3):744–769, 2021c.

David F Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics of
computation, 24(111):647–656, 1970.

14

Published in Transactions on Machine Learning Research (April/2024)

Yoav Shechtman, Yonina C. Eldar, Oren Cohen, Henry Nicholas Chapman, Jianwei Miao, and Mordechai
Segev. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal
Processing Magazine, 32(3):87–109, 2015. doi: 10.1109/MSP.2014.2352673.

Z. Wang, Q. Gu, Y. Ning, and H. Liu. High-dimensional expectation-maximization algorithm: Statistical
optimization and asymptotic normality. In Advances in Neural Information Processing Systems 28, 2015.

J. Xu, D. Hsu, and A. Maleki. Global analysis of expectation maximization for mixtures of two Gaussians.
In Advances in Neural Information Processing Systems 29, 2016.

Haishan Ye, Dachao Lin, Zhihua Zhang, and Xiangyu Chang. Explicit superlinear convergence rates of the
sr1 algorithm. arXiv preprintarXiv:2105.07162, 2021.

X. Yi and C. Caramanis. Regularized EM algorithms: A unified framework and statistical guarantees. In
Advances in Neural Information Processing Systems 28, 2015.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. Journal of
Machine Learning Research, 14(Apr):899–925, 2013.

15

Published in Transactions on Machine Learning Research (April/2024)

Appendix

A Proofs

Lemma 1. Consider the objective function in (10) satisfying Assumption 1 and 2. Then, the inverse matrix
of its Hessian ∇2f(θ) can be expressed as

∇2f(θ)−1 = (A⊤A)−1

q∥Aθ − b∥q−2 − (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (18)

Proof. Notice that the Hessian of objective function (10) can be expressed as

∇2f(θ) = q∥Aθ − b∥q−2A⊤A + q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (19)

We use the Sherman–Morrison formula. Suppose that X ∈ Rd×d is an invertible matrix and a, b ∈ Rd are two
vectors satisfying that 1 + b⊤X−1a ̸= 0. Then, the matrix X + ab⊤ is invertible and

(X + ab⊤)−1 = X−1 − X−1ab⊤X−1

1 + b⊤X−1a
.

Applying the Sherman–Morrison formula with X = q∥Aθ − b∥q−2A⊤A, a = q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)
and b = A⊤(Aθ − b). Notice that A⊤A is invertible, hence X is invertible and

1 + b⊤X−1a

= 1 + (Aθ − b)⊤A
(A⊤A)−1

q∥Aθ − b∥q−2 q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)

= 1 + (q − 2)(Aθ − b)⊤A
(A⊤A)−1A⊤A(θ − θ̂)

∥Aθ − b∥2

= 1 + (q − 2)(Aθ − b)⊤(Aθ − b)
∥Aθ − b∥2

= q − 1 ̸= 0. (Since q ≥ 4.)

Therefore, we obtain that

∇2f(θ)−1

= (A⊤A)−1

q∥Aθ − b∥q−2 −
(A⊤A)−1

q∥Aθ−b∥q−2 q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(A⊤(Aθ − b))⊤ (A⊤A)−1

q∥Aθ−b∥q−2

q − 1

= (A⊤A)−1

q∥Aθ − b∥q−2 − (q − 2)
q(q − 1)∥Aθ − b∥q

(A⊤A)−1AA⊤(θ − θ̂)(θ − θ̂)⊤AA⊤(A⊤A)−1

= (A⊤A)−1

q∥Aθ − b∥q−2 − (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
.

(20)

As a consequence, we obtain the conclusion of the lemma.

Lemma 2. Banach’s Fixed-Point Theorem. Consider the differentiable function f : D ⊂ R → D ⊂ R.
Suppose that there exists C ∈ (0, 1) such that |f ′(x)| ≤ C for any x ∈ D. Now let x0 ∈ D be arbitrary and
define the sequence {xk}∞

k=0 as
xk+1 = f(xk), ∀k ≥ 0. (21)

Then, the sequence {xk}∞
k=0 converges to the unique fixed point x∗ defined as

x∗ = f(x∗), (22)

with linear convergence rate of
|xk − x∗| ≤ Ck|x0 − x∗|, ∀k ≥ 0. (23)

Proof. Check (Goebel & Kirk, 1990).

16

Published in Transactions on Machine Learning Research (April/2024)

A.1 Proof of Theorem 1

We use induction to prove the convergence results in (11) and (12). Note that b = Aθ̂ by Assumption 1 and
the gradient and Hessian of the objective function in (10) are explicitly given by

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂), (24)

∇2f(θ) = q∥Aθ − b∥q−2A⊤A + q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (25)
Applying Lemma 1, we can obtain that

∇2f(θ)−1 = (A⊤A)−1

q∥Aθ − b∥q−2 − (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (26)

First, we consider the initial iteration

θ1 = θ0 − H0∇f(θ0) = θ0 − ∇f(θ0)−1∇f(θ0),

θ1 − θ̂ = θ0 − θ̂ − ∇f(θ0)−1∇f(θ0).

Notice that b = Aθ̂ by Assumption 1 and

∇2f(θ0)−1∇f(θ0)

=
[

(A⊤A)−1

q∥Aθ0 − b∥q−2 − (q − 2)(θ0 − θ̂)(θ0 − θ̂)⊤

q(q − 1)∥Aθ0 − b∥q

]
q∥Aθ − b∥q−2A⊤A(θ0 − θ̂)

= θ0 − θ̂ − q − 2
q − 1

(θ0 − θ̂)⊤A⊤A(θ0 − θ̂)
∥Aθ0 − b∥2 (θ0 − θ̂)

= θ0 − θ̂ − q − 2
q − 1

(Aθ0 − b)⊤(Aθ0 − b)
∥Aθ0 − b∥2 (θ0 − θ̂)

= θ0 − θ̂ − q − 2
q − 1(θ0 − θ̂).

(27)

Therefore, we obtain that

θ1 − θ̂ = θ0 − θ̂ − ∇f(θ0)−1∇f(θ0) = q − 2
q − 1(θ0 − θ̂).

Condition (11) holds for k = 1 with r0 = q−2
q−1 . Now we assume that condition (11) holds for k = t where

t ≥ 1, i.e.,
θt − θ̂ = rt−1(θt−1 − θ̂). (28)

Considering the condition b = Aθ̂ in Assumption 1 and the condition in (28), we further have

Aθt − b = A(θt − θ̂) = rt−1A(θt−1 − θ̂) = rt−1(Aθt−1 − b),

which implies that
∇f(θt) = qrq−1

t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂). (29)
We further show that the variable displacement and gradient difference can be written as

st−1 = θt − θt−1 = θt − θ̂ − θt−1 + θ̂ = (rt−1 − 1)(θt−1 − θ̂),

and
ut−1 = ∇f(θt) − ∇f(θt−1) = q(rq−1

t−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂).
Considering these expressions, we can show that the rank-1 matrix in the update of BFGS ut−1s⊤

t−1 is given
by

ut−1s⊤
t−1 = q(rq−1

t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤,

17

Published in Transactions on Machine Learning Research (April/2024)

and the inner product s⊤
t−1ut−1 can be written as

s⊤
t−1ut−1 = q(rq−1

t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)
= q(rq−1

t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q.

These two expressions allow us to simplify the matrix I − ut−1s⊤
t−1

s⊤
t−1ut−1

in the update of BFGS as

I −
ut−1s⊤

t−1
s⊤

t−1ut−1
= I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2
. (30)

An important property of the above matrix is that its null space is the set of the vectors that are parallel to
ut−1. Considering the expression for ut−1, any vector that is parallel to A⊤A(θt−1 − θ̂) is in the null space of
the above matrix. We can easily observe that the gradient defined in (29) satisfies this condition and therefore(

I −
ut−1s⊤

t−1
s⊤

t−1ut−1

)
∇f(θt)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2

)
A⊤A(θt−1 − θ̂)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
A⊤A(θt−1 − θ̂) − A⊤A(θt−1 − θ̂)∥A(θt−1 − θ̂)∥2

∥A(θt−1 − θ̂)∥2

)
= 0.

(31)

This important observation shows that if the condition in (28) holds, then the BFGS descent direction
Ht∇f(θt) can be simplified as

Ht∇f(θt)

=
(

I −
st−1u⊤

t−1
s⊤

t−1ut−1

)
Ht−1

(
I −

ut−1s⊤
t−1

s⊤
t−1ut−1

)
∇f(θt) +

st−1s⊤
t−1

s⊤
t−1ut−1

∇f(θt)

=
st−1s⊤

t−1
s⊤

t−1ut−1
∇f(θt)

= (rt−1 − 1)2(θt−1 − θ̂)(θt−1 − θ̂)⊤

q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q

qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)

= 1 − rt−1

1 − rq−1
t−1

rq−1
t−1 (θt−1 − θ̂)∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)

∥A(θt−1 − θ̂)∥q

= 1 − rt−1

1 − rq−1
t−1

rq−1
t−1 (θt−1 − θ̂).

(32)

This simplification implies that for the new iterate θt+1, we have

θt+1 − θ̂ = θt − Ht∇f(θt) − θ̂ = θt − θ̂ − 1 − rt−1

1 − rq−1
t−1

rq−1
t−1

(θt − θ̂)
rt−1

=
1 − rq−2

t−1

1 − rq−1
t−1

(θt − θ̂) = rt(θt − θ̂),
(33)

where

rt =
1 − rq−2

t−1

1 − rq−1
t−1

. (34)

Therefore, we prove that condition (11) holds for k = t + 1. By induction, we prove the linear convergence
results in (11) and (12).

18

Published in Transactions on Machine Learning Research (April/2024)

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) d = 10, q = 4.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) d = 10, q = 10.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) d = 103, q = 4.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) d = 103, q = 10.

Figure 6: Values of cos θk generated by Newton’s method for different values of d and q.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) d = 10, q = 4.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) d = 10, q = 10.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) d = 103, q = 4.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) d = 103, q = 10.

Figure 7: Values of cos θk generated by the BFGS method for different values of d and q.

One property of this convergence results is that the error vectors {θk − θ̂}∞
k=0 are parallel to each other with

the same direction as shown in (11). This indicates that the iterations {θk}∞
k=0 converge to the optimal

solution θ̂ along the same straight line defined by θ0 − θ̂. Only the length of each vector θk − θ̂ reduces to zero
with the linear convergence rates {rk}∞

k=0 specified in (12) and the direction remains all the same. Notice
that this is not a common property for BFGS and Newton’s method. This property requires that the initial
Hessian approximation matrix is H0 = ∇2f(θ0)−1 and the convex problem must be quadratic problem (10).
When the objective function is a general convex function or the initial Hessian approximation matrix is not
H0 = ∇2f(θ0)−1, there is no guarantee that the error vectors {θk − θ̂}∞

k=0 are parallel to each other. To
better visualize this property, we have plotted cos θk = (θk − θ̂)⊤(θ0 − θ̂)/∥θk − θ̂∥∥θ0 − θ̂∥ of k ≥ 1 for both
Newton’s method and BFGS in Figures 6 and 7 with population loss function defined in (10). We observed
that all values of cos θk are one, which indicates that all vectors {θk − θ̂}∞

k=0 are parallel to each other.

A.2 Proof of Theorem 2

Recall that we have

r0 = q − 2
q − 1 , rk =

1 − rq−2
k−1

1 − rq−1
k−1

, ∀k ≥ 1. (35)

Consider that q ≥ 4 and define the function g(r) as

g(r) := 1 − rq−2

1 − rq−1 , r ∈ [0, 1]. (36)

Suppose that r∗ ∈ (0, 1) satisfying that r∗ = g(r∗), which is equivalent to

rq−1
∗ + rq−2

∗ = 1. (37)

Notice that
g′(r) = (q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1 − rq−1)2 ,

19

Published in Transactions on Machine Learning Research (April/2024)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(a) q = 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(b) q = 5.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(c) q = 6.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(d) q = 7.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(e) q = 8.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(f) q = 9.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(g) q = 10.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(h) q = 11.

Figure 8: Plots of |g′(r)| with r ∈ [0, 1] for 4 ≤ q ≤ 11.

and

(q − 1)rq−2 − r2q−4 − (q − 2)rq−3

= rq−3[(q − 1)(r − 1) − (rq−1 − 1)]

= rq−3(r − 1)(q − 1 − rq−1 − 1
r − 1)

= rq−3(r − 1)(q − 1 −
q−2∑
i=0

ri).

Since r ∈ [0, 1], we have that

rq−3 ≥ 0, r − 1 ≤ 0,

q−2∑
i=0

ri ≤
q−2∑
i=0

1 = q − 1.

Therefore, we obtain that
(q − 1)rq−2 − r2q−4 − (q − 2)rq−3 ≤ 0,

and
|g′(r)| = r2q−4 + (q − 2)rq−3 − (q − 1)rq−2

(1 − rq−1)2 .

Our target is to prove that for any r ∈ [0, 1],

|g′(r)| ≤ 1
2 .

First, we present the plots of |g′(r)| for r ∈ [0, 1] with 4 ≤ q ≤ 11 in Figure 8. We observe that for 4 ≤ q ≤ 11,
|g′(r)| ≤ 1/2 always holds.

Next, we prove that for q ≥ 12 and any r ∈ [0, 1], we have

|g′(r)| = (q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1 − rq−1)2 ≤ 1
2 ,

20

Published in Transactions on Machine Learning Research (April/2024)

which is equivalent to

r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1 ≥ 0, ∀r ∈ [0, 1]. (38)

Define the function h(r) as

h(r) := r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1. (39)

We obtain that
dh(r)

dr
= 2rq−4h(1)(r), (40)

where
h(1)(r) := (q − 1)rq+1 − 2(q − 2)rq−1 − (q − 1)r2 + (q − 1)(q − 2)r − (q − 2)(q − 3). (41)

Hence, we have that
dh(1)(r)

dr
= (q − 1)h(2)(r), (42)

where
h(2)(r) := (q + 1)rq − 2(q − 2)rq−2 − 2r + q − 2. (43)

Therefore, we obtain that

dh(2)(r)
dr

= h(3)(r) := (q + 1)qrq−1 − 2(q − 2)2rq−3 − 2, (44)

and
dh(3)(r)

dr
= rq−4h(4)(r), (45)

where
h(4)(r) := q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3). (46)

Now we define the function l(q) as

l(q) := 2(q − 2)2(q − 3) − q(q + 1)(q − 1)
= q3 − 14q2 + 33q − 24
= q2(q − 14) + 33(q − 1) + 9.

We observe that for q ≥ 14, we have l(q) > 0 and we calculate that l(12) = 84 > 0 and l(13) = 236 > 0.
Hence, we obtain that l(q) > 0 for all q ≥ 12, which indicates that for all r ∈ [0, 1],

r2 ≤ 1 <
2(q − 2)2(q − 3)
q(q + 1)(q − 1) ,

q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3) < 0.

Therefore, for all r ∈ [0, 1], h(4)(r) defined in (46) satisfies that h(4)(r) < 0 and from (45) we know that
dh(3)(r)

dr < 0. Hence, h(3)(r) defined in (44) is decreasing function and h(3)(r) <= h(3)(0) = −2 < 0. We know
that dh(2)(r)

dr = h(3)(r) < 0, which implies that h(2)(r) defined in (43) is decreasing function. So we have
that h(2)(r) ≥ h(2)(1) = 1 > 0. From (42) we know that dh(1)(r)

dr > 0 and h(1)(r) defined in (41) is increasing
function for r ∈ [0, 1]. Hence, we get that h(1)(r) ≤ h(1)(1) = 0 and from (40) we obtain that h(r) defined
in(39) is decreasing function for r ∈ [0, 1]. Therefore, we have that h(r) ≥ h(1) = 0 and condition (38) holds
for all r ∈ [0, 1], which is equivalent to |g′(r)| ≤ 1/2.

In summary, we proved that for any q ≥ 12, we have |g′(r)| ≤ 1/2. Combining this with the results from
Figure 8, we obtain that |g′(r)| ≤ 1/2 holds for all q ≥ 4. Applying Banach’s Fixed-Point Theorem from
Lemma 2, we prove the final conclusion (14).

21

Published in Transactions on Machine Learning Research (April/2024)

A.3 Proof of Theorem 3

Notice that the gradient and the Hessian of the objective function (10) can be expressed as

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂),

∇2f(θ) = q∥Aθ − b∥q−2A⊤A + q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A.

Applying Lemma 1, we can obtain that

∇2f(θ)−1 = (A⊤A)−1

q∥Aθ − b∥q−2 − (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
.

Hence, we have that for any k ≥ 1,

θk = θk−1 − ∇2f(θk−1)−1∇f(θk−1),

θk − θ̂ = θk−1 − θ̂ − ∇2f(θk−1)−1∇f(θk−1).
Notice that b = Aθ̂ by Assumption 1 and

∇2f(θk−1)−1∇f(θk−1)

= [(A⊤A)−1

q∥Aθk−1 − b∥q−2 − (q − 2)(θk−1 − θ̂)(θk−1 − θ̂)⊤

q(q − 1)∥Aθk−1 − b∥q
]q∥Aθ − b∥q−2A⊤A(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2
q − 1

(θ0 − θ̂)⊤A⊤A(θk−1 − θ̂)
∥Aθk−1 − b∥2 (θk−1 − θ̂)

= θk−1 − θ̂ − q − 2
q − 1

(Aθk−1 − b)⊤(Aθk−1 − b)
∥Aθk−1 − b∥2 (θk−1 − θ̂)

= θk−1 − θ̂ − q − 2
q − 1(θk−1 − θ̂).

Therefore, we prove the conclusion that for any k ≥ 1,

θk − θ̂ = θk−1 − θ̂ − ∇2f(θk−1)−1∇f(θk−1) = q − 2
q − 1(θk−1 − θ̂).

We observe that the iterations generated by Newton’s method also satisfy the parallel property, i.e., all
vectors {θk − θ̂}∞

k=0 are parallel to each other with the same direction.

Notice that the function h(r) = rq−1 + rq−2 is strictly increasing and h(q−2
q−1) < 1, h(r∗) = 1 as well as

h(2q−3
2q−2) > 1. Hence, we know that q−2

q−1 < r∗ < 2q−3
2q−2 .

A.4 Elaboration of Remark 1

For the ease of presentation, we use Cp to denote any constant that is independent of d, n, and
Cp can be varied case by case to simplify the proof. From Mou et al. (2019) and Lemma 6 of Ren
et al. (2022b), we have that, as long as n = Ω((d log d/δ)2p), we have the following two uniform concentration
results holding with probability 1 − δ:

sup
θ∈B(θ∗,r)

∥∇Ln(θ)) − ∇L(θ))∥ ≤Cp(∥θ∗∥ + r)p−1
√

d log(1/δ)/n,

sup
θ∈B(θ∗,r)

∥∇2Ln(θ)) − ∇2L(θ))∥ ≤Cp(∥θ∗∥ + r)p−2
√

d log(1/δ)/n.
(47)

Notice that we have

L(θ) = E[(Y − (X⊤θ)p)2] = E[((X⊤θ∗)p + ζ − (X⊤θ)p)2]
= E[((X⊤θ∗)p − (X⊤θ)p)2] + E[2ζ((X⊤θ∗)p − (X⊤θ)p)] + E[ζ2]
= E[((X⊤θ∗)p − (X⊤θ)p)2] + σ2,

22

Published in Transactions on Machine Learning Research (April/2024)

where we use the fact that ζ is independent of X and E[ζ] = 0, E[ζ2] = σ2. Hence, we have that

∇L(θ) = 2pE[((X⊤θ)p − (X⊤θ∗)p)(X⊤θ)p−1X]. (48)

∇2L(θ) = 2p2E[(X⊤θ)2p−2XX⊤] + 2p(p − 1)E[((X⊤θ)p − (X⊤θ∗)p)(X⊤θ)p−2)XX⊤]. (49)

We denote L0 as the population loss function with respect to the assumption of θ∗ = 0. Therefore, we have

L0(θ) = E[(X⊤θ)2p] + σ2. (50)

∇L0(θ) = 2pE[(X⊤θ)2p−1X]. (51)

∇2L0(θ) = 2p(2p − 1)E[(X⊤θ)2p−2XX⊤]. (52)

Hence, we have

∥∇L(θ) − ∇L0(θ)∥ = CpE[(X⊤θ∗)p(X⊤θ)p−1X] ≤ CpE[∥X∥2p]∥θ∗∥p∥θ∥p−1.

Recall that X is a Gaussian or sub-Gaussian random variable with E[∥X∥2p] < +∞. For any θ, we ahve that
∥θ∥ ≤ ∥θ∗∥ + ∥θ − θ∗∥ and in the low SNR regime, we have ∥θ∗∥ ≤ C1(d

n)
1

2p . Hence, we have

sup
θ∈B(θ∗,r)

∥∇L(θ) − ∇L0(θ)∥ ≤Cp(∥θ∗∥ + r)p−1
√

d log(1/δ)/n. (53)

Similarly, we have that

∥∇2L(θ) − ∇2L0(θ)∥ = CpE[(X⊤θ∗)p(X⊤θ)p−2XX⊤] ≤ CpE[∥X∥2p]∥θ∗∥p∥θ∥p−2.

sup
θ∈B(θ∗,r)

∥∇2L(θ) − ∇2L0(θ)∥ ≤Cp(∥θ∗∥ + r)p−2
√

d log(1/δ)/n. (54)

Leveraging (47), (53) and (54), we obtain that

sup
θ∈B(θ∗,r)

∥∇Ln(θ)) − ∇L0(θ))∥ ≤Cp(∥θ∗∥ + r)p−1
√

d log(1/δ)/n,

sup
θ∈B(θ∗,r)

∥∇2Ln(θ)) − ∇2L0(θ))∥ ≤Cp(∥θ∗∥ + r)p−2
√

d log(1/δ)/n.
(55)

This explains the Remark 1 of assumption θ∗ = 0 in section 4. The errors between gradients and Hessians of
the population loss with θ∗ = 0 and ∥θ∗∥ ≤ C1(d/n)1/(2p) are upper bounded by the corresponding statistical
errors between the population loss (8) and the empirical loss (7) in the low SNR regime, respectively. Hence,
L0 and L can be treated as equivalent.

A.5 Proof of Theorem 4

In this section, we present the proof of Theorem 4. We use L and Ln to denote the population objective and
empirical objective. Also, as discussed in the previous section, we use L0 to refer to the population loss when
the optimal solution is zero θ∗ = 0. For the ease of presentation, we use Cp to denote any constant
that is independent of d, n, and Cp can be varied case by case to simplify the proof. To prove the
result for the iterates generated by the finite sample loss function, we control the gap between the gradient of
L0 and Ln. As discussed previously in (55) from A.4, we can show that in the low SNR setting, we have

sup
θ∈B(θ∗,r)

∥∇Ln(θ)) − ∇L0(θ))∥ ≤Cp(∥θ∗∥ + r)p−1
√

d log(1/δ)/n, (56)

sup
θ∈B(θ∗,r)

∥∇2Ln(θ)) − ∇2L0(θ))∥ ≤Cp(∥θ∗∥ + r)p−2
√

d log(1/δ)/n. (57)

23

Published in Transactions on Machine Learning Research (April/2024)

We further can show that ∥θ∗∥ ≤ ∥θ − θ∗∥ for any θ. If this does not hold, then we have ∥θ − θ∗∥ < ∥θ∗∥ ≤
C1(d

n)
1

2p by the definition of the low SNR regime, which indicates that θ has already achieved the optimal
statistical radius. Therefore, the following bounds hold with probability of at least 1 − δ,

sup
θ∈B(θ∗,r)

∥∇Ln(θ)) − ∇L0(θ))∥ ≤Cprp−1
√

d log(1/δ)/n, (58)

sup
θ∈B(θ∗,r)

∥∇2Ln(θ)) − ∇2L0(θ))∥ ≤Cprp−2
√

d log(1/δ)/n. (59)

In the following proof, we assume that all the results hold with probability of at least 1 − δ. Given the
fact that the difference between the gradient and Hessian of the finite sample loss, denoted as Ln, and the
population loss with the optimal value at zero, denoted by L0, is of the order of statistical accuracy, and
considering that the iterates generated by running BFGS on L0 converge to the optimal solution at a linear
rate, we show that the iterates generated by running BFGS on the finite sample loss reach the statistical
accuracy in a logarithmic number of iterations of the required statistical accuracy.

To simplify our presentation, we use {θt}t≥0 as the iterates generated by running BFGS on the population
loss L0 and {θn

t }t≥0 as the iterates generated by running BFGS on the finite sample loss Ln. We assume
that θ0 = θn

0 , i.e., the first iterates are the same for both population loss and empirical loss. Similarly, we
denote the inverse Hessian approximation matrix of BFGS applied to the loss L0 by {Ht}t≥0 and the inverse
Hessian approximation matrix of BFGS applied to the loss Ln by {Hn

t }t≥0. We have that H0 = ∇2L0(θ0)−1

and Hn
0 = ∇2Ln(θn

0)−1. Given the results in Theorems 1 and 2, we know that the iterates generated by
BFGS on L0 converge to the optimal solution at a linear rate, i.e.,

θt+1 − θ∗ = rt(θt − θ∗), 0 < rl ≤ rt ≤ rh < 1, ∀t ≥ 0, (60)

where {rt}∞
t=0 are the linear convergence rates and rl, rh ∈ (0, 1) are the lower and upper bounds of the

corresponding linear convergence rates.

More precisely, we show that if the total number of iterations T that we run BFGS on Ln is order of log of
the inverse of statistical accuracy at most, i.e., T = O(log(n/d)), then for any t ≤ T we can show that the
difference between the iterates generated by running BFGS on L0 and Ln is controlled and bounded above by

∥θn
t − θt∥ ≤ ct∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n, (61)

where ct = Θ(exp(t)). Now given the fact that ∥θt−1 − θ∗∥ approaches zero at a linear rate, we will use
induction to prove the main claim of Theorem 4. We assume that for any t < T , we have that

ct∥θt − θ∗∥−p
√

d log(1/δ)/n ≤ 1
Cp

≤ 1. (62)

Otherwise, our results in Theorem 4 simply follow. To prove the claim in (61) we will use an induction
argument. Before doing that, in the upcoming sections we prove the following intermediate results that will
be used in the induction argument.
Lemma 3. We denote λmax(A) and λmin(A) as the largest and smallest eigenvalue of the matrix A, we have

∥∇L0(θ)∥ ≤ Cp0∥θ − θ∗∥2p−1, λmax(∇2L0(θ))) ≤ Cp1∥θ − θ∗∥2p−2, ∀θ ∈ Rd,

∥∇L0(θ) − ∇L0(θ′)∥ ≤ Cp1∥θ − θ′∥(∥θ − θ∗∥ + ∥θ′ − θ∗∥)2p−2, ∀θ, θ′ ∈ Rd,

λmin(∇2L0(θ)) ≥ Cp2∥θ − θ∗∥2p−2, λmin(∇2Ln(θ0)) ≥ Cp3∥θ0 − θ∗∥2p−2,

where Cp0, Cp1, Cp2 and Cp3 are constants that only depend on p and the last inequalities only holds for θ0.

Proof. Recall that from (51) and (52), we have

∇L0(θ) = 2pE[(X⊤θ)2p−1X], ∇2L0(θ) = 2p(2p − 1)E[(X⊤θ)2p−2XX⊤].

24

Published in Transactions on Machine Learning Research (April/2024)

Using Cauchy–Schwarz inequality, we get that

∥∇L0(θ))∥ = 2p∥E[(X⊤θ)2p−1X]∥ ≤ 2p∥E[(∥X∥∥θ∥)2p−1X]∥ ≤ 2pE[∥X∥2p−1∥X∥]∥θ∥2p−1

≤ 2pE[∥X∥2p](∥θ − θ∗∥ + ∥θ∗∥)2p−1 ≤ 2pE[∥X∥2p](2∥θ − θ∗∥)2p−1 ≤ Cp0∥θ − θ∗∥2p−1,

where we use the fact that ∥θ∗∥ ≤ ∥θ − θ∗∥ for any θ. If this does not hold, then we have ∥θ − θ∗∥ < ∥θ∗∥ ≤
C1(d

n)
1

2p by the definition of the low SNR regime, which indicates that θ has already achieved the optimal
statistical radius. Similarly, we have that

λmax(∇2L0(θ))) = ∥∇2L0(θ)∥ = 2p(2p − 1)∥E[(X⊤θ)2p−2XX⊤]∥ ≤ 2p(2p − 1)∥E[(∥X∥∥θ∥)2p−2XX⊤]∥
≤ 2p(2p − 1)E[∥X∥2p−2∥X∥2]∥θ∥2p−2 ≤ 2p(2p − 1)E[∥X∥2p](∥θ∗∥ + ∥θ − θ∗∥)2p−2 ≤ Cp1∥θ − θ∗∥2p−2,

where we use the same argument that ∥θ∗∥ ≤ ∥θ − θ∗∥. Using Taylor’s Theorem, we have that

∇L0(θ) − ∇L0(θ′) = ∇2L0(τθ + (1 − τ)θ′)(θ − θ′),

where τ ∈ [0, 1]. Therefore, for any θ, θ′, we have that

∥∇L0(θ) − ∇L0(θ′)∥ ≤ ∥∇2L0(τθ + (1 − τ)θ′)∥∥θ − θ′∥ ≤ Cp1∥τθ + (1 − τ)θ′ − θ∗∥2p−2∥θ − θ′∥
= Cp1∥τ(θ − θ∗) + (1 − τ)(θ′ − θ∗)∥2p−2∥θ − θ′∥ ≤ Cp1∥θ − θ′∥(∥θ − θ∗∥ + ∥θ − θ∗∥)2p−2.

Notice that ∇2L0(θ) are positive definite for any θ and ∇2Ln(θ0) is positive definite, hence there exists Cp2
and Cp3 such that λmin(∇2L0(θ)) ≥ Cp2∥θ − θ∗∥2p−2 for any θ and λmin(∇2Ln(θ0)) ≥ Cp3∥θ0 − θ∗∥2p−2.

A.5.1 Induction base

Now we use the induction argument to prove the claim in (61). Since the initial iterate for running BFGS on
L0 and Ln are the same, we have θn

0 = θ0. Now for the iterates generated after the first step of BFGS, we
can show that the error between the iterates of two losses ∥θn

1 − θ1∥ is bounded above by

∥θn
1 − θ1∥ = ∥(∇2Ln(θ0))−1∇Ln(θ0) − (∇2L0(θ0))−1∇L0(θ0)∥

≤∥∇2Ln(θ0)−1 − ∇2L0(θ0)−1∥∥∇Ln(θ0)∥ + ∥∇2L0(θ0)−1∥∥∇Ln(θ0) − ∇L0(θ0)∥
(63)

We observe that for invertible matrices A and B, we have (A−1 − B−1) = A−1(B − A)B−1. Given this
observation and the results in Lemma 3 and (59), we can show that

∥∇2Ln(θ0)−1 − ∇2L0(θ0)−1∥ ≤ ∥∇2Ln(θ0)−1∥∥∇2Ln(θ0) − ∇2L0(θ0)∥∥∇2L0(θ0)−1∥

≤ Cp∥θ0 − θ∗∥2−3p
√

d log(1/δ)/n,

Applying this bound into (63) and using the results in Lemma 3, the bounds in (58), we obtain that

∥θn
1 − θ1∥ ≤ Cp∥θ0 − θ∗∥1−p

√
d log(1/δ)/n. (64)

Notice that from (64), we know that (61) holds for t = 1. Hence, the base of induction is complete.

A.5.2 Induction hypothesis and step

Now we assume for any k ≤ t, (61) holds, i.e., we have ∥θn
k −θk∥ ≤ ck∥θk−1 −θ∗∥1−p

√
d log(1/δ)/n. Consider

k = t + 1, we have that

∥θn
t+1 − θt+1∥ = ∥θn

t − Hn
t ∇Ln(θn

t) − θt + Ht∇L0(θt)∥ ≤ ∥θn
t − θt∥ + ∥Hn

t ∇Ln(θn
t) − Ht∇L0(θt)∥. (65)

Recall update rules for the Hessian approximation matrices:

Hn
t =

(
I −

sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1

)
Hn

t−1

(
I −

un
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1

)
+

sn
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1
,

25

Published in Transactions on Machine Learning Research (April/2024)

Ht =
(

I − st−1(ut−1)⊤

(ut−1)⊤st−1

)
Ht−1

(
I − ut−1(st−1)⊤

(st−1)⊤ut−1

)
+ st−1(st−1)⊤

(st−1)⊤ut−1
,

sn
t−1 = θn

t − θn
t−1, un

t−1 = ∇Ln(θn
t) − ∇Ln(θn

t−1) st−1 = θt − θt−1, ut−1 = ∇L0(θt) − ∇L0(θt−1).

Moreover, based on (31) we have (
I −

ut−1s⊤
t−1

s⊤
t−1ut−1

)
∇L0(θt) = 0, (66)

which implies that Ht∇L0(θt) can be simplified as st−1s⊤
t−1

s⊤
t−1ut−1

∇L0(θt). Now we proceed to bound the gap
between the BFGS descent direction on Ln and L0, which can be upper bounded by

∥Hn
t ∇Ln(θn

t) − Ht∇L0(θt)∥ =
∥∥∥∥Hn

t ∇Ln(θn
t) −

st−1s⊤
t−1

s⊤
t−1ut−1

∇L0(θt)
∥∥∥∥

≤
∥∥∥∥(I −

sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1

)
Hn

t−1

(
I −

un
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥∥+

∥∥∥∥ sn
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1
∇Ln(θn

t) −
st−1s⊤

t−1
s⊤

t−1ut−1
∇L0(θt)

∥∥∥∥ ,

(67)

Now we bound these two terms separately. The first term in (67) can be bounded above by∥∥∥∥(I −
sn

t−1(un
t−1)⊤

(un
t−1)⊤sn

t−1

)
Hn

t−1

(
I −

un
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥∥

≤
∥∥∥∥I −

sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1

∥∥∥∥ ∥Hn
t−1∥

∥∥∥∥(I −
un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥∥

≤ ∥Hn
t−1∥

∥∥∥∥(I −
un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥∥ ,

(68)

where we use the fact that
∥∥∥I − sn

t−1(un
t−1)⊤

(un
t−1)⊤sn

t−1

∥∥∥ ≤ 1. Now using the fact that
(

I − ut−1s⊤
t−1

s⊤
t−1ut−1

)
∇L0(θt) = 0, we

can further upper bound
∥∥∥(I − un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥ by∥∥∥∥(I −

un
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t)
∥∥∥∥ =

∥∥∥∥(I −
un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1

)
∇Ln(θn

t) −
(

I −
ut−1s⊤

t−1
s⊤

t−1ut−1

)
∇L0(θt)

∥∥∥∥
≤ ∥∇Ln(θn

t) − ∇L0(θt)∥ +
∥∥∥∥∥un

t−1sn
t−1

⊤∇Ln(θn
t)

(sn
t−1)⊤un

t−1
−

un
t−1s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∥∥∥∥∥
+
∥∥∥∥un

t−1s⊤
t−1∇L0(θt)

s⊤
t−1ut−1

−
ut−1s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∥∥∥∥
≤ ∥∇Ln(θn

t) − ∇L0(θt)∥ + ∥un
t−1∥

∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣+ ∥un
t−1 − ut−1∥|

s⊤
t−1∇L0(θt)
s⊤

t−1ut−1
|,

(69)

Next we proceed to bound the second term in (67) . The second term can be bounded as∥∥∥∥ sn
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1
∇Ln(θn

t) −
st−1s⊤

t−1
s⊤

t−1ut−1
∇L0(θt)

∥∥∥∥
≤
∥∥∥∥ sn

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1
∇Ln(θn

t) −
sn

t−1s⊤
t−1

s⊤
t−1ut−1

∇L0(θt)
∥∥∥∥+

∥∥∥∥ sn
t−1s⊤

t−1
s⊤

t−1ut−1
∇L0(θt) −

st−1s⊤
t−1

s⊤
t−1ut−1

∇L0(θt)
∥∥∥∥

≤ ∥sn
t−1∥

∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣+ ∥st−1 − sn
t−1∥|

s⊤
t−1∇L0(θt)
s⊤

t−1ut−1
|. (70)

26

Published in Transactions on Machine Learning Research (April/2024)

Putting together the upper bounds in (68), (69), and (70) into (67), we obtain that

∥Hn
t ∇Ln(θn

t) − Ht∇L0(θt)∥

≤ ∥Hn
t−1∥∥∇Ln(θn

t) − ∇L0(θt)∥ + (∥Hn
t−1∥∥un

t−1∥ + ∥sn
t−1∥)

∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣
+ (∥Hn

t−1∥∥un
t−1 − ut−1∥ + ∥st−1 − sn

t−1∥)|
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1
|.

(71)

In the following lemmas, we establish upper bounds for the expressions in the right hand side of (71).
Lemma 4. The norm of variable variation for the finite sample loss sn

t−1 and its difference form the variable
variation for the population loss st−1 are bounded above by

∥sn
t−1 − st−1∥ ≤ (ct + ct−1)∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n.

Moreover, this result implies that

∥sn
t−1∥ ≤ ∥θt−1 − θ∗∥.

Proof. The first result simply follows from the fact that

∥sn
t−1 − st−1∥ ≤ ∥θn

t − θt∥ + ∥θn
t−1 − θt−1∥

≤ (ct∥θt−1 − θ∗∥1−p + ct−1∥θt−2 − θ∗∥1−p)
√

d log(1/δ)/n ≤ (ct + ct−1rp−1
t−1)∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n

≤ (ct + ct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n,

where we used the induction assumption (61) and the linear convergence results (60) for the iterates generated
on the population loss. The second claim can be also proved following

∥sn
t−1∥ ≤ ∥st−1∥ + ∥sn

t−1 − st−1∥ = ∥θt − θ∗ − (θt−1 − θ∗)∥ + ∥θn
t − θt∥ + ∥θn

t−1 − θt−1∥

≤ (1 − rt−1)∥θt−1 − θ∗∥ + ct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n + ct−1∥θt−2 − θ∗∥1−p
√

d log(1/δ)/n

≤ (1 − rt−1)∥θt−1 − θ∗∥ + 1 + 1/rt−2

Cp
∥θt−1 − θ∗∥ ≤ ∥θt−1 − θ∗∥,

where we used the induction assumption (61), linear convergence results (60) and the assumption (62) that
ct∥θt−1 − θ∗∥−p

√
d log(1/δ)/n ≤ 1

Cp
with sufficiently large Cp to make the last inequality hold.

Lemma 5. The gap between the population loss and its finite sample version evaluated at the current iterates
are bounded above by

∥∇Ln(θn
t) − ∇L0(θt)∥ ≤ (Cp + Cpct)∥θt−1 − θ∗∥p−1

√
d log(1/δ)/n,

Moreover, this result implies that

∥∇Ln(θn
t)∥ ≤ Cp∥θt − θ∗∥2p−1.

Proof. We have that

∥∇Ln(θn
t) − ∇L0(θn

t)∥ ≤ Cp∥θn
t − θ∗∥p−1

√
d log(1/δ)/n ≤ Cp(∥θn

t − θt∥ + ∥θt − θ∗∥)p−1
√

d log(1/δ)/n

≤ Cp(ct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n + rt−1∥θt−1 − θ∗∥)p−1
√

d log(1/δ)/n

≤ Cp(∥θt−1 − θ∗∥ + ∥θt−1 − θ∗∥)p−1
√

d log(1/δ)/n ≤ Cp(∥θt−1 − θ∗∥)p−1
√

d log(1/δ)/n,

27

Published in Transactions on Machine Learning Research (April/2024)

where the first inequality is due to (58), the third inequality is due to the induction hypothesis (61) and linear
convergence results in (60) and the forth inequality is due to assumption (62) and rt−1 ≤ 1. We also have

∥∇L0(θn
t) − ∇L0(θt)∥ ≤ Cp∥θn

t − θt∥(∥θn
t − θ∗∥ + ∥θt − θ∗∥)2p−2

≤ Cpct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n(∥θn
t − θt∥ + 2∥θt − θ∗∥)2p−2

≤ Cpct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n(ct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n + 2rt−1∥θt−1 − θ∗∥)2p−2

≤ Cpct∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n(∥θt−1 − θ∗∥ + 2∥θt−1 − θ∗∥)2p−2

≤ Cpct∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n,

where the first inequality is due to results in Lemma 3, the second inequality is due to the induction hypothesis
(61) and ∥θn

t − θ∗∥ ≤ ∥θn
t − θt∥ + ∥θt − θ∗∥, the third inequality is due to the induction hypothesis (61) and

the linear convergence results (60) and the forth inequality is due to the assumption (62) and rt−1 ≤ 1. The
first claim follows using the fact that

∥∇Ln(θn
t) − ∇L0(θt)∥ ≤ ∥∇Ln(θn

t) − ∇L0(θn
t)∥ + ∥∇L0(θn

t) − ∇L0(θt)∥
≤ (Cp + Cpct)∥θt−1 − θ∗∥p−1

√
d log(1/δ)/n.

Given this result, the second claim simply follows from the fact that

∥∇Ln(θn
t)∥ ≤ ∥∇L0(θt)∥ + ∥∇Ln(θn

t) − ∇L0(θt)∥
≤ Cp∥θt − θ∗∥2p−1 + (Cp + Cpct)∥θt−1 − θ∗∥p−1

√
d log(1/δ)/n ≤ Cp∥θt − θ∗∥2p−1 + Cp∥θt−1 − θ∗∥2p−1

≤ Cp∥θt − θ∗∥2p−1 + Cp

r2p−1
t−1

∥θt − θ∗∥2p−1 ≤ Cp∥θt − θ∗∥2p−1,

where we used results from Lemma 3, the linear convergence rate in (60) and the assumption (62) that
ct∥θt−1 − θ∗∥−p

√
d log(1/δ)/n ≤ 1

Cp
≤ 1 again.

Lemma 6. The norm of gradient variation for the finite sample loss un
t−1 and its difference form the gradient

variation for the population loss ut−1 are bounded above by

∥un
t−1 − ut−1∥ ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1

√
d log(1/δ)/n.

Moreover, this result implies that

∥un
t−1∥ ≤ Cp∥θt−1 − θ∗∥2p−1.

Proof. The first claim simply follows from the following bounds,

∥un
t−1 − ut−1∥ ≤ ∥∇Ln(θn

t) − ∇L0(θt)∥ + ∥∇Ln(θn
t−1) − ∇L0(θt−1)∥

≤ (Cp + Cpct)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n + (Cp + Cpct−1)∥θt−2 − θ∗∥p−1
√

d log(1/δ)/n

≤ (Cp + Cpct)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n + Cp + Cpct−1

rp−1
t−2

∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n.

28

Published in Transactions on Machine Learning Research (April/2024)

where we used the results in Lemma 5 and the linear convergence results (60) of BFGS on the population
loss. The second claim simply follows from,

∥un
t−1∥ ≤ ∥un

t−1 − ut−1∥ + ∥ut−1∥
≤ ∥∇Ln(θn

t) − ∇L0(θt)∥ + ∥∇Ln(θn
t−1) − ∇L0(θt−1)∥ + ∥∇L0(θt) − ∇L0(θt−1)∥

≤ (Cp + Cpct)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n + (Cp + Cpct−1)∥θt−2 − θ∗∥p−1
√

d log(1/δ)/n

+ Cp∥θt − θt−1∥(∥θt − θ∗∥ + ∥θt−1 − θ∗∥)2p−2

≤ Cp∥θt−1 − θ∗∥2p−1 + Cp∥θt−2 − θ∗∥2p−1 + Cp∥θt − θ∗ − (θt−1 − θ∗)∥(∥θt − θ∗∥ + ∥θt−1 − θ∗∥)2p−2

≤ Cp∥θt−1 − θ∗∥2p−1 + Cp

r2p−1
t−2

∥θt−1 − θ∗∥2p−1

+ Cp∥(1 − rt−1)(θt−1 − θ∗)∥(rt−1∥θt−1 − θ∗∥ + ∥θt−1 − θ∗∥)2p−2

= Cp∥θt−1 − θ∗∥2p−1 + Cp

r2p−1
t−2

∥θt−1 − θ∗∥2p−1 + Cp(1 − rt−1)(1 + rt−1)2p−2∥θt−1 − θ∗∥2p−1

≤ Cp∥θt−1 − θ∗∥2p−1,

where the third inequality is due to results in Lemma 5 and Lemma 3, the forth inequality is due to assumption
(62) and the fifth inequality is due to linear convergence results (60).

Lemma 7. We have the following bounds:

|(sn
t−1)⊤∇Ln(θn

t) − s⊤
t−1∇L0(θt)| ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p

√
d log(1/δ)/n.

|(sn
t−1)⊤(un

t−1) − s⊤
t−1ut−1| ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p

√
d log(1/δ)/n.

Proof. The first claim holds since

|(sn
t−1)⊤∇Ln(θn

t) − s⊤
t−1∇L0(θt)| ≤ ∥sn

t−1 − st−1∥∥∇Ln(θn
t)∥ + ∥st−1∥∥∇Ln(θn

t) − ∇L0(θt)∥
≤ (ct + ct−1)∥θt−1 − θ∗∥1−p

√
d log(1/δ)/nCp∥θt − θ∗∥2p−1

+ ∥θt−1 − θ∗∥(Cp + Cpct)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

≤ (Cpct + Cpct−1)r2p−1
t−1 ∥θt−1 − θ∗∥p

√
d log(1/δ)/n + (Cp + Cpct)∥θt−1 − θ∗∥p

√
d log(1/δ)/n

≤ (Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n + (Cp + Cpct)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n,

where the second inequality is due to results in Lemma 4 and Lemma 5, the third inequality is due to linear
convergence rates (60) and the forth inequality is due to rt−1 ≤ 1. The second claim holds since

|(sn
t−1)⊤(un

t−1) − s⊤
t−1ut−1| ≤ ∥sn

t−1 − st−1∥∥un
t−1∥ + ∥st−1∥∥un

t−1 − ut−1∥

≤ (ct + ct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/nCp∥θt−1 − θ∗∥2p−1

+ ∥θt − θt−1∥(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

= (Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

+ ∥θt − θ∗ − θt−1 + θ∗∥(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

≤ (Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

+ (1 − rt−1)∥θt−1 − θ∗∥(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

≤ (Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n + (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n,

where the second inequality is due to results in Lemma 4 and Lemma 6, the third inequality is due to linear
convergence rates (60).

29

Published in Transactions on Machine Learning Research (April/2024)

Lemma 8. The following bounds hold:

|s⊤
t−1∇L0(θt)| ≤ Cp∥θt − θ∗∥2p, |s⊤

t−1ut−1| ≥ Cp∥θt − θ∗∥2p, |(sn
t−1)⊤un

t−1| ≥ Cp∥θt − θ∗∥2p.

Proof. The first claim holds since

|s⊤
t−1∇L0(θt)| = |(θt − θt−1)⊤∇L0(θt)| = |(θt − θ∗ − θt−1 + θ∗)⊤∇L0(θt)| = |(1 − 1

rt−1
)(θt − θ∗)⊤∇L0(θt)|

≤ |1 − 1
rt−1

|∥θt − θ∗∥∥∇L0(θt)∥ ≤ |1 − 1
rh

|∥θt − θ∗∥Cp∥θt − θ∗∥2p−1 ≤ Cp∥θt − θ∗∥2p,

where we use the linear convergence results (60) and the results in Lemma 3. The second claim holds since

|s⊤
t−1ut−1| = |(θt − θt−1)⊤(∇L0(θt) − ∇L0(θt−1))|

= |(θt − θ∗ − θt−1 + θ∗)⊤∇2L0(τθt + (1 − τ)θt−1)(θt − θt−1)|

= |(1 − 1
rt−1

)(θt − θ∗)⊤∇2L0(τθt + (1 − τ)θt−1)(θt − θ∗ − θt−1 + θ∗)|

= |(1 − 1
rt−1

)2(θt − θ∗)⊤∇2L0(τθt + (1 − τ)θt−1)(θt − θ∗)|

≥ (1 − 1
rt−1

)2∥θt − θ∗∥2λmin(∇2L0(τθt + (1 − τ)θt−1))

≥ (1 − 1
rl

)2∥θt − θ∗∥2Cp∥τθt + (1 − τ)θt−1 − θ∗∥2p−2 ≥ Cp∥θt − θ∗∥2∥τ(θt − θ∗) + (1 − τ)(θt−1 − θ∗)∥2p−2

≥ Cp∥θt − θ∗∥2∥(τ + 1 − τ

rt−1
)(θt − θ∗)∥2p−2 ≥ Cp(τ + 1 − τ

rh
)2p−2∥θt − θ∗∥2p ≥ Cp∥θt − θ∗∥2p,

where τ ∈ [0, 1] and we use the Taylor’s Theorem, the linear convergence rates (60) and results in Lemma 3.
The last cliam holds since

|(sn
t−1)⊤un

t−1| = |(sn
t−1)⊤un

t−1 − s⊤
t−1ut−1 + s⊤

t−1ut−1| ≥ |s⊤
t−1ut−1| − |(sn

t−1)⊤un
t−1 − s⊤

t−1ut−1|

≥ Cp∥θt − θ∗∥2p − (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

≥ Cp∥θt − θ∗∥2p − (Cp + Cpct)
1

rp
t−1

∥θt − θ∗∥p
√

d log(1/δ)/n − Cpct−1∥θt−1 − θ∗∥p
√

d log(1/δ)/n

≥ Cp∥θt − θ∗∥2p − ∥θt − θ∗∥2p − ∥θt − θ∗∥2p ≥ Cp∥θt − θ∗∥2p,

where we use the second claim, the results from Lemma 7 and the assumption (62).

Lemma 9. We have the following bounds:

|
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1
| ≤ Cp,

∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣ ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥−p
√

d log(1/δ)/n.

Proof. The first claim holds since

|
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1
| =

|s⊤
t−1∇L0(θt)|
|s⊤

t−1ut−1|
≤ Cp∥θt−1 − θ∗∥2p

Cp∥θt−1 − θ∗∥2p
≤ Cp,

30

Published in Transactions on Machine Learning Research (April/2024)

where we use the results in Lemma 8. The second claim holds since∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣
≤

|(sn
t−1)⊤∇Ln(θn

t) − s⊤
t−1∇L0(θt)||s⊤

t−1ut−1| + |s⊤
t−1∇L0(θt)||s⊤

t−1ut−1 − (sn
t−1)⊤un

t−1|
|(sn

t−1)⊤un
t−1s⊤

t−1ut−1|

≤
∣∣(sn

t−1)⊤∇Ln(θn
t) − s⊤

t−1∇L0(θt)
∣∣

|(sn
t−1)⊤un

t−1|
+

|s⊤
t−1∇L0(θt)|
|s⊤

t−1ut−1|
|s⊤

t−1ut−1 − (sn
t−1)⊤un

t−1|
|(sn

t−1)⊤un
t−1|

≤
(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p

√
d log(1/δ)/n

Cp∥θt − θ∗∥2p
+ Cp

(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p
√

d log(1/δ)/n

Cp∥θt−1 − θ∗∥2p

≤ Cp + Cpct + Cpct−1

r2p
t−1

∥θt−1 − θ∗∥−p
√

d log(1/δ)/n + (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥−p
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥−p
√

d log(1/δ)/n,

where we use the results from Lemma 7 and Lemma 8.

Finally, we present an upper bound for the norm of the inverse Hessian approximation matrix Ht.
Lemma 10. The norm of the inverse Hessian approximation matrix is upper bounded by

∥Hn
t−1∥ ≤ Cp∥θt−1 − θ∗∥2−2p.

Proof. Recall the update of Hn
t ,

Hn
t =

(
I −

sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1

)
Hn

t−1

(
I −

un
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1

)
+

sn
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1
.

With the property of ∥I − sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1
∥ ≤ 1 and ∥I − un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1
∥ ≤ 1, we have that

∥Hn
t ∥ ≤ ∥I −

sn
t−1(un

t−1)⊤

(un
t−1)⊤sn

t−1
∥∥Hn

t−1∥∥I −
un

t−1(sn
t−1)⊤

(sn
t−1)⊤un

t−1
∥ + ∥

sn
t−1(sn

t−1)⊤

(sn
t−1)⊤un

t−1
∥

≤ ∥Hn
t−1∥ +

∥sn
t−1∥2

(sn
t−1)⊤un

t−1
≤
∥∥∥(∇2Ln(θ0)

)−1
∥∥∥+

t−1∑
i=0

∥sn
i ∥2

(sn
i)⊤(un

i) .

From results in Lemma 4 and Lemma 8, we know that for any 0 ≤ i ≤ t − 1,

∥sn
i ∥2

(sn
i)⊤(un

i) ≤ ∥θi − θ∗∥2

Cp∥θi − θ∗∥2p
≤ Cp∥θi − θ∗∥2−2p.

Hence, using linear convergence results in (60), we have that for all 0 ≤ i ≤ t − 1,

∥θt−1 − θ∗∥ =
t−2∏
j=i

rj∥θi − θ∗∥ ≤ rt−1−i
h ∥θi − θ∗∥,

∥θi − θ∗∥ ≥ ri+1−t
h ∥θt−1 − θ∗∥, ∥θi − θ∗∥2−2p ≤ r

(2p−2)(t−1−i)
h ∥θt−1 − θ∗∥2−2p,

t−1∑
i=0

∥θi − θ∗∥2−2p ≤
t−1∑
i=0

r
(2p−2)(t−1−i)
h ∥θt−1 − θ∗∥2−2p ≤ 1

1 − r2p−2
h

∥θt−1 − θ∗∥2−2p.

31

Published in Transactions on Machine Learning Research (April/2024)

Therefore, we obtain that

∥Hn
t ∥ ≤

∥∥∥(∇2Ln(θ0)
)−1
∥∥∥+

t−1∑
i=0

∥sn
i ∥2

(sn
i)⊤(un

i) ≤ 1
λmin(∇2Ln(θ0)) +

t−1∑
i=0

Cp∥θi − θ∗∥2−2p

≤ 1
Cp∥θ0 − θ∗∥2p−2 + Cp

1
1 − r2p−2

h

∥θt−1 − θ∗∥2−2p ≤

(
r

(2p−2)(t−1)
h

Cp
+ Cp

1 − r2p−2
h

)
∥θt−1 − θ∗∥2−2p

≤ Cp∥θt−1 − θ∗∥2−2p.

Hence, we have that

∥Hn
t−1∥ ≤ Cp∥θt−2 − θ∗∥2−2p ≤ Cp

1
r2−2p

t−2
∥θt−1 − θ∗∥2−2p ≤ Cpr2p−2

h ∥θt−1 − θ∗∥2−2p ≤ Cp∥θt−1 − θ∗∥2−2p.

With all the above lemmas, we can complete the induction hypothesis. Applying results in Lemma 4, 5, 6, 9,
and 10 into (71), we have that
∥Hn

t ∇Ln(θn
t) − Ht∇L0(θt)∥

≤ ∥Hn
t−1∥∥∇Ln(θn

t) − ∇L0(θt)∥ + (∥Hn
t−1∥∥un

t−1∥ + ∥sn
t−1∥)

∣∣∣∣ (sn
t−1)⊤∇Ln(θn

t)
(sn

t−1)⊤un
t−1

−
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1

∣∣∣∣
+ (∥Hn

t−1∥∥un
t−1 − ut−1∥ + ∥st−1 − sn

t−1∥)|
s⊤

t−1∇L0(θt)
s⊤

t−1ut−1
|

≤ Cp∥θt−1 − θ∗∥2−2p(Cp + Cpct)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

+ (Cp∥θt−1 − θ∗∥2−2pCp∥θt−1 − θ∗∥2p−1 + ∥θt−1 − θ∗∥)(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥−p
√

d log(1/δ)/n

+ (Cp∥θt−1 − θ∗∥2−2p(Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥p−1
√

d log(1/δ)/n

+ (ct + ct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n)Cp

≤ (Cp + Cpct)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n + (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n

+ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p
√

d log(1/δ)/n.

Hence, we prove that
∥Hn

t ∇Ln(θn
t) − Ht∇L0(θt)∥ ≤ (Cp + Cpct + Cpct−1)∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n. (72)

Notice that by induction and linear convergence rates (60), we observe that

∥θn
t − θt∥ ≤ ct∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n ≤ ct

1
r1−p

t−1
∥θt − θ∗∥1−p

√
d log(1/δ)/n

≤ ctr
p−1
t−1 ∥θt − θ∗∥1−p

√
d log(1/δ)/n ≤ ct∥θt − θ∗∥1−p

√
d log(1/δ)/n.

(73)

Therefore, leveraging (65), (72), and (73), we have that
∥θn

t+1 − θt+1∥ ≤ ∥θn
t − θt∥ + ∥Hn

t ∇Ln(θn
t) − Ht∇L0(θt)∥

≤ ct∥θt − θ∗∥1−p
√

d log(1/δ)/n + (Cp + Cpct + Cpct−1)∥θt − θ∗∥1−p
√

d log(1/δ)/n

≤ (Cp + Cpct + Cpct−1)∥θt − θ∗∥1−p
√

d log(1/δ)/n.

We define that
ct+1 = Cp + Cpct + Cpct−1.

Then, we have that
∥θn

t+1 − θt+1∥ ≤ ct+1∥θt − θ∗∥1−p
√

d log(1/δ)/n.

With the standard recursion, we know that ct ≤ (Cp)t for Cp large enough. Hence, (61) holds for t + 1.

32

Published in Transactions on Machine Learning Research (April/2024)

A.5.3 Final conclusion

Therefore, using induction we proved that (61) holds for all t ≥ 1:

∥θn
t − θt∥ ≤ ct∥θt−1 − θ∗∥1−p

√
d log(1/δ)/n,

where ct = Θ(Ct
p) = Θ(exp(t)). Notice that

∥θn
t − θ∗∥ ≤ ∥θn

t − θt∥ + ∥θt − θ∗∥ ≤Ct
p∥θt − θ∗∥1−p

√
d log(1/δ)/n + ∥θt − θ∗∥.

The optimal T with minimum ∥θn
T − θ∗∥ should satisfy that

CT
p ∥θT − θ∗∥−p

√
d log(1/δ)/n = Cp,

for which we obtain T = C log(n/d log(1/δ))
2(p+1) for some constant C that is independent of d and n. Therefore, we

prove the final conclusion that

∥θn
T − θ∗∥ ≤ C ′(d log(1/δ)/n)1/(2p+2),

where C ′ is a constant that is independent of d and n.

B Additional experiments for the medium SNR regime

Here we briefly illustrate the behavior of BFGS in Medium SNR regime. We consider the generalized linear
model with d = 50, 100, 500 and p = 2. The inputs are still generated by {Xi}n

i=1, but θ∗ now is uniformly
sampled from the sphere with radius n−1/6.

The results are shown in Figure 9. We can see BFGS still converges fast, and the statistical radius of middle
SNR regime lies between the High SNR and Low SNR. A rigorous characterization of the statistical radius of
middle SNR regime will be left as future work.

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

(a) d = 50.

5 6 7 8 9 10 11 12
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(b) d = 50.

0 20 40 60 80 100

10
-1

10
0

(c) d = 100.

0 20 40 60 80 100
10

-1

10
0

(d) d = 500.

Figure 9: Convergence results and statistical results for medium SNR regime with d = 50 are shown in (a)
and (b). Convergence of different methods with d = 100 and d = 500 for medium SNR regime are shown in
(c) and (d).

33

	Introduction
	BFGS algorithm
	Generalized linear model with polynomial link function
	Convergence analysis in the low SNR regime: Population loss
	Comparison with Newton's method

	Convergence analysis in the low SNR regime: Finite sample setting
	Numerical experiments
	Conclusions
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Elaboration of Remark 1
	Proof of Theorem 4
	Induction base
	Induction hypothesis and step
	Final conclusion

	Additional experiments for the medium SNR regime

