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ABSTRACT

We consider the problem of optimization of deep learning models with smooth
activation functions. While there exist influential results on the problem from the
“near initialization” perspective, we shed considerable new light on the problem.
In particular, we make two key technical contributions for such models with L
layers, m width, and σ2

0 initialization variance. First, for suitable σ2
0 , we establish

a O( poly(L)√
m

) upper bound on the spectral norm of the Hessian of such models,
considerably sharpening prior results. Second, we introduce a new analysis of
optimization based on Restricted Strong Convexity (RSC) which holds as long as
the squared norm of the average gradient of predictors is Ω( poly(L)√

m
) for the square

loss. We also present results for more general losses. The RSC based analysis does
not need the “near initialization” perspective and guarantees geometric convergence
for gradient descent (GD). To the best of our knowledge, ours is the first result on
establishing geometric convergence of GD based on RSC for deep learning models,
thus becoming an alternative sufficient condition for convergence that does not
depend on the widely-used Neural Tangent Kernel (NTK). We share preliminary
experimental results supporting our theoretical advances.

1 INTRODUCTION

Recent years have seen advances in understanding convergence of gradient descent (GD) and variants
for deep learning models (Du et al., 2019; Allen-Zhu et al., 2019; Zou & Gu, 2019; Zou et al., 2020;
Liu et al., 2022; Ji & Telgarsky, 2019; Oymak & Soltanolkotabi, 2020; Nguyen, 2021). Despite the
fact that such optimization problems are non-convex, a series of recent results have shown that GD
has geometric convergence and finds near global solution “near initialization” for wide networks.
Such analysis is typically done based on the Neural Tangent Kernel (NTK) (Jacot et al., 2018), in
particular by showing that the NTK is positive definite “near initialization,” in turn implying the
optimization problem satisfies a condition closely related to the Polyak-Łojasiewicz (PL) condition,
which in turn implies geometric convergence to the global minima (Liu et al., 2022; Nguyen, 2021).
Such results have been generalized to more flexible forms of “lazy learning” where similar guarantees
hold (Chizat et al., 2019). However, there are concerns regarding whether such “near initialization”
or “lazy learning” truly explains the optimization behavior in realistic deep learning models (Geiger
et al., 2020; Yang & Hu, 2020; Fort et al., 2020; Chizat et al., 2019).

Our work focuses on optimization of deep models with smooth activation functions, which have
become increasingly popular in recent years (Du et al., 2019; Liu et al., 2022; Huang & Yau, 2020).
Much of the theoretical convergence analysis of GD has focused on ReLU networks (Allen-Zhu et al.,
2019; Nguyen, 2021). Some progress has also been made for deep models with smooth activations,
but existing results are based on a variant of the NTK analysis, and the requirements on the width of
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such models are high (Du et al., 2019; Liu et al., 2022). Based on such background and context, the
motivating question behind our work is: Are there other (meaningful) sufficient conditions beyond
NTK which lead to (geometric) convergence of GD for deep learning optimization?

Based on such motivation, we make two technical contributions in this paper which shed light on
optimization of deep learning models with smooth activations and with L layers, m width, and σ2

0

initialization variance. First, for suitable σ2
0 , we establish a O( poly(L)√

m
) upper bound on the spectral

norm of the Hessian of such models (Section 4). The bound holds over a large layerwise spectral
norm (instead of Frobenius norm) ball BSpec

ρ,ρ1
(θ0) around the random initialization θ0, where the

radius ρ <
√
m, arguably much bigger than what real world deep models need. Our analysis builds

on and sharpens recent prior work on the topic (Liu et al., 2020). While our analysis holds for
Gaussian random initialization of weights with any variance σ2

0 , the poly(L) dependence happens
when σ2

0 ≤ 1
4+o(1)

1
m (we handle the 1

m scaling explicitly) .

Second, based on our Hessian spectral norm bound, we introduce a new approach to the analysis of
optimization of deep models with smooth activations based on the concept of Restricted Strong Con-
vexity (RSC) (Section 5) (Wainwright, 2019; Negahban et al., 2012; Negahban & Wainwright, 2012;
Banerjee et al., 2014; Chen & Banerjee, 2015). While RSC has been a core theme in high-dimensional
statistics especially for linear models and convex losses (Wainwright, 2019), to the best of our knowl-
edge, RSC has not been considered in the context of non-convex optimization of overparameterized
deep models. For a normalized total loss function L(θ) = 1

n

∑n
i=1 ℓ(yi, ŷi), ŷi = f(θ;xi) with

predictor or neural network model f parameterized by vector θ and data points {xi, yi}ni=1, when ℓ
corresponds to the square loss we show that the total loss function satisfies RSC on a suitable restricted
set Qt

κ ⊂ Rp (Definition 5.2 in Section 5) at step t as long as
∥∥ 1
n

∑n
i=1 ∇θf(θt;xi)

∥∥2
2
= Ω( 1√

m
).

We also present similar results for general losses for which additional assumptions are needed. We
show that the RSC property implies a Restricted Polyak-Łojasiewicz (RPL) condition on Qt

κ, in turn
implying a geometric one-step decrease of the loss towards the minimum in Qt

κ, and subsequently
implying geometric decrease of the loss towards the minimum in the large (layerwise spectral norm)
ball BSpec

ρ,ρ1
(θ0). The geometric convergence due to RSC is a novel approach in the context of deep

learning optimization which does not depend on properties of the NTK. Thus, the RSC condition
provides an alternative sufficient condition for geometric convergence for deep learning optimization
to the widely-used NTK condition.

The rest of the paper is organized as follows. We briefly present related work in Section 2 and discuss
the problem setup in Section 3. We establish the Hessian spectral norm bound in Section 4 and
introduce the RSC based optimization analysis in Section 5. We experimental results corresponding
to the RSC condition in Section 6 and conclude in Section 7. All technical proofs are in the Appendix.

2 RELATED WORK

The literature on gradient descent and variants for deep learning is increasingly large, and we refer
the readers to the following surveys for an overview of the field (Fan et al., 2021; Bartlett et al., 2021).
Among the theoretical works, we consider (Du et al., 2019; Allen-Zhu et al., 2019; Zou & Gu, 2019;
Zou et al., 2020; Liu et al., 2022) as the closest to our work in terms of their study of convergence on
multi-layer neural networks. For a literature review on shallow and/or linear networks, we refer to
the recent survey (Fang et al., 2021). Due to the rapidly growing related work, we only refer to the
most related or recent work for most parts.

Du et al. (2019); Zou & Gu (2019); Allen-Zhu et al. (2019); Liu et al. (2022) considered optimization
of square loss, which we also consider for our main results, and we also present extensions to more
general class of loss functions. Zou & Gu (2019); Zou et al. (2020); Allen-Zhu et al. (2019); Nguyen
& Mondelli (2020); Nguyen (2021); Nguyen et al. (2021) analyzed deep ReLU networks. Instead, we
consider smooth activation functions, similar to (Du et al., 2019; Liu et al., 2022). The convergence
analysis of the gradient descent in (Du et al., 2019; Allen-Zhu et al., 2019; Zou & Gu, 2019; Zou
et al., 2020; Liu et al., 2022) relied on the near constancy of NTK for wide neural networks (Jacot
et al., 2018; Lee et al., 2019; Arora et al., 2019; Liu et al., 2020), which yield certain desirable
properties for their training using gradient descent based methods. One such property is related to the
PL condition (Karimi et al., 2016; Nguyen, 2021), formulated as PL∗ condition in (Liu et al., 2022).
Our work uses a different optimization analysis based on RSC (Wainwright, 2019; Negahban et al.,
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2012; Negahban & Wainwright, 2012) related to a restricted version of the PL condition. Furthermore,
Du et al. (2019); Allen-Zhu et al. (2019); Zou & Gu (2019); Zou et al. (2020) showed convergence in
value to a global minimizer of the total loss, as we also do.

3 PROBLEM SETUP: DEEP LEARNING WITH SMOOTH ACTIVATIONS

Consider a training set D = {xi, yi}ni=1,xi ∈ X ⊆ Rd, yi ∈ Y ⊆ R. We will denote by X ∈ Rn×d

the matrix whose ith row is x⊤
i . For a suitable loss function ℓ, the goal is to minimize the empirical

loss: L(θ) = 1
n

∑n
i=1 ℓ(yi, ŷi) = 1

n

∑n
i=1 ℓ(yi, f(θ;xi)), where the prediction ŷi := f(θ;xi) is

from a deep model, and the parameter vector θ ∈ Rp. In our setting f is a feed-forward multi-layer
(fully-connected) neural network with depth L and widths ml, l ∈ [L] := {1, . . . , L} given by

α(0)(x) = x ,

α(l)(x) = ϕ

(
1

√
ml−1

W (l)α(l−1)(x)

)
, l = 1, . . . , L ,

f(θ;x) = α(L+1)(x) =
1

√
mL

v⊤α(L)(x) ,

(1)

where W (l) ∈ Rml×ml−1 , l ∈ [L] are layer-wise weight matrices, v ∈ RmL is the last layer vector,
ϕ(·) is the smooth (pointwise) activation function, and the total set of parameters

θ := (vec(W (1))⊤, . . . , vec(W (L))⊤,v⊤)⊤ ∈ R
∑L

k=1 mkmk−1+mL , (2)

with m0 = d. For simplicity, we will assume that the width of all the layers is the same, i.e., ml = m,
l ∈ [L], and so that θ ∈ RLm2+m. For simplicity, we also consider deep models with only one output,
i.e., f(θ;x) ∈ R as in (Du et al., 2019), but our results can be extended to multi-dimension outputs
as in (Zou & Gu, 2019), using V ∈ RmL×k for k outputs at the last layer; see Appendix C.

Define the pointwise loss ℓi := ℓ(yi, ·) : R → R+ and denote its first- and second-derivative as
ℓ′i :=

dℓ(yi,ŷi)
dŷi

and ℓ′′i := d2ℓ(yi,ŷi)
dŷ2

i
. The particular case of square loss is ℓ(yi, ŷi) = (yi − ŷi)

2. We

denote the gradient and Hessian of f(·;xi) : Rp → R as ∇if := ∂f(θ;xi)
∂θ , and ∇2

i f := ∂2f(θ;xi)
∂θ2 .

The neural tangent kernel (NTK) Kntk(·; θ) ∈ Rn×n corresponding to parameter θ is defined as
Kntk(xi,xj ; θ) = ⟨∇if,∇jf⟩. By chain rule, the gradient and Hessian of the empirical loss w.r.t. θ
are given by ∂L(θ)

∂θ = 1
n

∑n
i=1 ℓ

′
i∇if and ∂2L(θ)

∂θ2 = 1
n

∑n
i=1

[
ℓ′′i ∇if∇if

⊤ + ℓ′i∇2
i f
]
. Let ∥ · ∥2

denote the spectral norm for matrices and L2-norm for vectors

We make the following assumption regarding the activation function ϕ:

Assumption 1 (Activation function). The activation ϕ is 1-Lipschitz, i.e., |ϕ′| ≤ 1, and βϕ-smooth,
i.e., |ϕ′′l | ≤ βϕ.

Remark 3.1. Our analysis holds for any ςϕ-Lipchitz smooth activations, with a dependence on ςϕ
on most key results. The main (qualitative) conclusions stay true if ςϕ ≤ 1 + o(1) or ςϕ = poly(L),
which is typically satisfied for commonly used smooth activations and moderate values of L.

We define two types of balls over parameters that will be used throughout our analysis.

Definition 3.1 (Norm balls). Given θ ∈ Rp of the form (2) with parameters W
(l)
, l ∈ [L],v, we

define

BSpec
ρ,ρ1

(θ̄) :=
{
θ ∈ Rp as in (2) | ∥W (ℓ) −W

(ℓ)∥2 ≤ ρ, ℓ ∈ [L], ∥v − v̄∥2 ≤ ρ1

}
, (3)

BEuc
ρ (θ̄) :=

{
θ ∈ Rp as in (2) | ∥θ − θ̄∥2 ≤ ρ

}
. (4)

Remark 3.2. The layerwise spectral norm ball BSpec
ρ,ρ1

plays a key role in our analysis. The last layer
radius of ρ1 gives more flexibility, and we will usually assume ρ1 ≤ ρ; e.g., we could choose the
desirable operating regime of ρ <

√
m and ρ1 = O(1). Our analysis in fact goes through for any

choice of ρ, ρ1 and the detailed results will indicate specific dependencies on both ρ and ρ1.
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4 SPECTRAL NORM OF THE HESSIAN OF THE MODEL

We start with the following assumption regarding the random initialization of the weights.

Assumption 2 (Initialization weights and data normalization). The initialization weights w(l)
0,ij ∼

N (0, σ2
0) for l ∈ [L] where σ0 = σ1

2
(
1+

√
log m√
2m

) , σ1 > 0, and v0 is a random unit vector with

∥v0∥2 = 1. Further, we assume the input data satisfies: ∥xi∥2 =
√
d, i ∈ [n].

We focus on bounding the spectral norm of the Hessian ∥∇2
θf(θ;x)∥2 for θ ∈ BSpec

ρ,ρ1
(θ0) and any

input x ∈ Rd with ∥x∥2 =
√
d. The assumption ∥x∥2 =

√
d is for convenient scaling, such

assumptions are common in the literature (Allen-Zhu et al., 2019; Oymak & Soltanolkotabi, 2020;
Nguyen et al., 2021). Prior work (Liu et al., 2020) has considered a similar analysis for θ ∈ BEuc

ρ (θ0),
effectively the layerwise Frobenius norm ball, which is much smaller than BSpec

ρ,ρ1
(θ0), the layerwise

spectral norm ball. We choose a unit value for the last layer’s weight norm for convenience, since
our results hold under appropriate scaling for any other constant in O(1). All missing proofs are in
Appendix A.
Theorem 4.1 (Hessian Spectral Norm Bound). Under Assumptions 1 and 2, for θ ∈ BSpec

ρ,ρ1
(θ0),

with probability at least (1− 2(L+1)
m ), for any xi, i ∈ [n], we have∥∥∇2

θf(θ;xi)
∥∥
2
≤ cH√

m
, (5)

with cH = O(L5(1 + γ6L)(1 + ρ1)) where γ := σ1 +
ρ√
m

.

Remark 4.1 (Desirable operating regimes). The constant γ needs careful scrutiny as cH depends
on γ6L. Let us choose ρ1 = O(poly(L)). For any choice of the spectral norm radius ρ <

√
m, we

can choose σ1 ≤ 1− ρ√
m

ensuring γ ≤ 1 and hence cH = O(poly(L)). If ρ = O(1), we can keep

σ1 = 1 so that γ = 1+ O(1)√
m

, and cH = O(poly(L)) as long as L <
√
m, which is common. Both of

these give good choices for σ1 and desirable operating regime for the result. If we choose σ1 > 1, an
undesirable operating regime, then cH = O(cΘ(L)), c > 1, and we will need m = Ω(cΘ(L)) for the
result to be of interest.
Remark 4.2 (Recent Related Work). In recent work, Liu et al. (2020) analyzed the Hessian spectral
norm bound and showed that cH = Õ(ρ3L) for θ ∈ BEuc

ρ (θ0) (logarithmic terms hidden in Õ(·)).
Our analysis builds on and sharpens the result in (Liu et al., 2020) in three respects: (a) we have
cH = O(poly(L)(1 + γ6L)) for ρ1 = O(poly(L)) where we can choose σ1 to make γ ≤ 1 and thus
obtain cH = O(poly(L)), instead of the worse cH = Õ(ρ3L) in Liu et al. (2020)1; (b) even for the
same ρ, our results hold for a much larger spectral norm ball BSpec

ρ,ρ1
(θ0) compared to their Euclidean

norm ball BEuc
ρ (θ0) in (Liu et al., 2020); and (c) to avoid an exponential term, the bound in (Liu et al.,

2020) needs ρ ≤ 1 whereas our result can use radius ρ <
√
m for all intermediate layer matrices and

ρ1 = O(poly(L)) for the last layer vector. Moreover, as a consequence of (b) and (c), our results
hold for a larger (spectral norm) ball whose radius can increase with m, unlike the results in Liu et al.
(2020) which hold for a smaller (Euclidean) ball with constant radius, i.e., “near initialization.”
Remark 4.3 (Exact constant cH ). For completeness, we show the exact expression of the constant cH
in Theorem 4.1 so the dependencies on different factors is clear. Let h(l) := γl−1+|ϕ(0)|

∑l−1
i=1 γ

i−1.
Then,

cH = 2L(L2γ2L + LγL + 1) · (1 + ρ1) · ψH ·max
l∈[L]

γL−l + 2LγL max
l∈[L]

h(l) , (6)

where

ψH = max
1≤l1<l2≤L

{
βϕ(h(l1))

2 , h(l1)

(
βϕ
2
(γ2 + (h(l2))

2) + 1

)
, βϕγ

2h(l1)h(l2)

}
. (7)

The source of the terms will be discussed shortly. Note the dependence on ρ1, the radius for the last
layer in BSpec

ρ,ρ1
(θ0), and why ρ1 = O(poly(L)) is a desirable operating regime.

1See the end of Appendix A for a quick note about the network architecture in our work and the one in (Liu
et al., 2020).
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Next, we give a high level outline of the proof of Theorem 4.1.

Proof sketch. Our analysis follows the structure developed in Liu et al. (2020), but is considerably
sharper as discussed in Remark 4.2. We start by defining the following quantities: Q∞(f) :=

max1≤l≤L

{∥∥∥ ∂f
∂α(l)

∥∥∥
∞

}
, ∂f

∂α(l) ∈ Rm, Q2(f) := max1≤l≤L

{∥∥∥ ∂α(l)

∂w(l)

∥∥∥
2

}
, w(l) := vec(W (l)),

∂α(l)

∂w(l) ∈ Rm×m2

, and Q2,2,1(f) is the maximum over 1 ≤ l1 < l2 < l3 ≤ L among the three quan-

tities
∥∥∥ ∂2α(l1)

∂w(l1)2

∥∥∥
2,2,1

,
∥∥∥ ∂α(l1)

∂w(l1)

∥∥∥
2

∥∥∥ ∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥
2,2,1

, and
∥∥∥ ∂α(l1)

∂w(l1)

∥∥∥
2

∥∥∥ ∂α(l2)

∂w(l2)

∥∥∥
2

∥∥∥ ∂2α(l3)

∂α(l3−1)2

∥∥∥
2,2,1

.

where for an order-3 tensor T ∈ Rd1×d2×d3 we define the (2, 2, 1)−norm as ∥T∥2,2,1 :=

sup∥x∥2=∥z∥2=1

∑d3

k=1

∣∣∣∑d1

i=1

∑d2

j=1 Tijkxizj

∣∣∣ ,x ∈ Rd1 , z ∈ Rd2 . The following result in (Liu
et al., 2020) provides an upper bound to the spectral norm of the Hessian.

Theorem 4.2 (Liu et al. (2020), Theorem 3.1). Under Assumptions 1, assuming there is δ such that∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥
2
≤ δ, with C1 ≤ L2δ2L + LδL + L and C2 ≤ LδL, we have

∥∥∇2
θf(θ;x)

∥∥
2
≤ 2C1Q2,2,1(f)Q∞(f) +

2√
m
C2Q2(f) , (8)

In order to prove Theorem 4.1, we prove that Theorem 4.2 holds with high-probability where δ = γ,
Q2(f) = O(L(1+γL)), Q2,2,1(f) = O(L3(1+γ3L)), and Q∞(f) = O

(
(1+γL)(1+ρ1)√

m

)
. Thus we

obtain that the upper bound (4.2) becomes O(poly(L)(1+γ6L)(1+ρ1)√
m

), providing a benign polynomial
dependence on L when γ ≤ 1, rather than an exponential dependence on the radius ρ as in (Liu et al.,
2020).

The analysis for bounding the spectral norm of the Hessian can be used to establish additional bounds,
which we believe are of independent interest, some of which will be used later in Section 5. First, we
bound the norms of gradient of the predictor and the loss w.r.t. the weight vector θ and the input data
x.

Lemma 4.1 (Predictor gradient bounds). Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with

probability at least
(
1− 2(L+1)

m

)
, we have

∥∇θf(θ;x)∥2 ≤ ϱ and ∥∇xf(θ;x)∥2 ≤ γL√
m
(1 + ρ1) , (9)

with ϱ2 = (h(L + 1))2 + 1
m (1 + ρ1)

2
∑L

l=1(h(l))
2γ2(L−l), γ = σ1 + ρ√

m
, h(l) = γl−1 +

|ϕ(0)|
∑l−1

i=1 γ
i−1.

Remark 4.4. Our analysis in Lemma 4.1 provides a bound on the Lipschitz constant of the predictor,
a quantity which has generated interest in recent work on robust training (Salman et al., 2019; Cohen
et al., 2020; Bubeck & Sellke, 2021).

Under the assumption of square losses, further bounds can be obtained.

Lemma 4.2 (Loss bounds). Consider the square loss. Under Assumptions 1, and 2, for γ = σ1+
ρ√
m

,

each of the following inequalities hold with probability at least
(
1− 2(L+1)

m

)
: L(θ0) ≤ c0,σ1

and L(θ) ≤ cρ1,γ for θ ∈ BSpec
ρ,ρ1

(θ0), where ca,b = 2
n

∑n
i=1 y

2
i + 2(1 + a)2|g(b)|2 and g(a) =

aL + |ϕ(0)|
∑L

i=1 a
i for any a, b ∈ R.

Corollary 4.1 (Loss gradient bound). Consider the square loss. Under Assumptions 1 and 2, for θ ∈
BSpec

ρ,ρ1
(θ0), with probability at least

(
1− 2(L+1)

m

)
, we have ∥∇θL(θ)∥2 ≤ 2

√
L(θ)ϱ ≤ 2

√
cρ1,γϱ,

with ϱ as in Lemma 4.1 and cρ1,γ as in Lemma 4.2.
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5 OPTIMIZATION GUARANTEES WITH RESTRICTED STRONG CONVEXITY

We focus on minimizing the empirical loss L(θ) over θ ∈ BSpec
ρ,ρ1

(θ0), the layerwise spectral norm
ball in (3). Our analysis is based on Restricted Strong Convexity (RSC) (Negahban et al., 2012;
Banerjee et al., 2014; Chen & Banerjee, 2015; Wainwright, 2019), which relaxes the definition of
strong convexity by only needing strong convexity in certain directions or over a subset of the ambient
space. We introduce the following specific definition of RSC with respect to a tuple (S, θ).

Definition 5.1 (Restricted Strong Convexity (RSC)). A function L is said to satisfy α-restricted
strong convexity (α-RSC) with respect to the tuple (S, θ) if for any θ′ ∈ S ⊆ Rp and some fixed
θ ∈ Rp, we have L(θ′) ≥ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+ α

2 ∥θ
′ − θ∥22, with α > 0.

Note that L being α-RSC w.r.t. (S, θ) does not need L to be convex on Rp. Let us consider a sequence
of iterates {θt}t≥0 ⊂ Rp. Our RSC analysis will rely on the following Qt

κ-sets at step t, which
avoid directions almost orthogonal to the average gradient of the predictor. We define the following
notation: for two vectors π and π̄, cos(π, π̄) denotes the cosine of the angle between π and π̄.

Definition 5.2 (Qt
κ sets). For iterate θt ∈ Rp, let ḡt =

1
n

∑n
i=1 ∇θf(θt;xi). For any κ ∈ (0, 1],

define Qt
κ := {θ ∈ Rp | | cos(θ − θt, ḡt)| ≥ κ}.

We define the set Bt := Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt). We focus on establishing RSC w.r.t. the tuple

(Bt, θt), where BSpec
ρ,ρ1

(θ0) becomes the feasible set for the optimization and BEuc
ρ2

(θt) is a Euclidean
ball around the current iterate.

Assumption 3 (Loss function). The loss ℓi, i ∈ [n], is (i) strongly convex, i.e., ℓ′′i ≥ a > 0 and (ii)
smooth, i.e., ℓ′′i ≤ b.

Assumption 3 is satisfied by commonly used loss functions such as square loss, where a = b = 2.
We state the RSC result for square loss; the result for other losses and proofs of all technical results
in this section are in Appendix B.

Theorem 5.1 (RSC for Square Loss). For square loss, under Assumptions 1 and 2, with probability
at least (1− 2(L+1)

m ), ∀θ′ ∈ Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt) with θt ∈ BSpec

ρ,ρ1
(θ0),

L(θ′) ≥ L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
αt

2
∥θ′ − θt∥22 , with αt = c1 ∥ḡt∥22 −

c2√
m
, (10)

where ḡt = 1
n

∑n
i=1 ∇θf(θt;xi), c1 = 2κ2 and c2 = 2cH(2ϱρ2 +

√
cρ1,γ), with cH as in The-

orem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L satisfies RSC
w.r.t. (Qt

κ ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), θt) whenever αt > 0.

Remark 5.1. The RSC condition αt > 0 is satisfied at iteration t as long as ∥ḡt∥22 > c2
c1

√
m

where
c1, c2 are exactly specified in Theorem 5.1. Indeed, if γ (and so σ1 and ρ) is chosen according to the
desirable operating regimes (see Remark 4.1), ρ1 = O(poly(L)) and ρ2 = O(poly(L)), then we
can use the bounds from Lemma 4.2 and obtain that the RSC condition is satisfied when ∥ḡt∥22 >
O(poly(L))√

m
. The condition is arguably mild, does not need the NTK condition λmin(Kntk(·; θt)) > 0,

and is expected to hold till convergence (see Remark 5.3). Moreover, it is a local condition at step t
and has no dependence on being ”near initialization” in the sense of θt ∈ BEuc

ρ (θ0) for ρ = O(1) as
in (Liu et al., 2020; 2022).

For the convergence analysis, we also need to establish a smoothness property of the total loss.

Theorem 5.2 (Local Smoothness for Square Loss). For square loss, under Assumptions 1 and 2,
with probability at least (1− 2(L+1)

m ), ∀θ, θ′ ∈ BSpec
ρ,ρ1

(θ0),

L(θ′) ≤ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+
β

2
∥θ′ − θ∥22 , with β = 2ϱ2 +

2cH
√
cρ1,γ√
m

, (11)

with cH as in Theorem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L is locally
β-smooth. Moreover, if γ (and so σ1 and ρ) is chosen according to the desirable operating regimes
(see Remark 4.1) and ρ1 = O(poly(L)), then β = O(poly(L)).
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Remark 5.2. Similar to the case of the standard strong convexity and smoothness, the RSC and
smoothness parameters respectively in Theorems 5.1 and 5.2 satisfy αt < β. To see this note that
αt < 2κ2∥ḡt∥22 ≤ 2ϱ2 ≤ β, where the second inequality follows since κ ≤ 1, and ∥ḡt∥22 ≤ ϱ2 using
Lemma 4.1.

Next, we show that the RSC condition w.r.t. the tuple (Bt, θt) implies a restricted Polyak-Łojasiewicz
(RPL) condition w.r.t. the tuple (Bt, θt), unlike standard PL which holds without restrictions (Karimi
et al., 2016).

Lemma 5.1 (RSC ⇒ RPL). Let Bt := Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt). In the setting of Theorem 5.1,

if αt > 0, then the tuple (Bt, θt) satisfies the Restricted Polyak-Łojasiewicz (RPL) condition, i.e.,

L(θt)− inf
θ∈Bt

L(θ) ≤ 1

2αt
∥∇θL(θt)∥22 , (12)

with probability at least (1− 2(L+1)
m ).

For the rest of the convergence analysis, we make the following assumption where T can be viewed
as the stopping time so the convergence analysis holds given the assumptions are satisfied.

Assumption 4 (Iterates’ conditions). For iterates {θt}t=0,1,...,T : (A4.1) αt > 0; (A4.2) θt ∈
BSpec

ρ,ρ1
(θ0).

Remark 5.3 (Assumption (A4.1)). From Remark 5.1, (A4.1) is satisfied as long as ∥ḡt∥22 > c2
c1

√
m

where c1, c2 are as in Theorem 5.1, which is arguably a mild condition. In Section 6 we will present
some empirical findings that show that this condition on ∥ḡt∥22 behaves well empirically.

We now consider the particular case of gradient descent (GD) for the iterates: θt+1 = θt − ηt∇L(θt),
where ηt is chosen so that θt+1 ∈ BSpec

ρ,ρ1
(θ0) and ρ2 is chosen so that θt+1 ∈ BEuc

ρ2
(θt), which

are sufficient for the analysis of Theorem 5.1 — we specify suitable choices in the sequel (see
Remark 5.4).

Given RPL w.r.t. (Bt, θt), gradient descent leads to a strict decrease of loss in Bt.

Lemma 5.2 (Local Loss Reduction in Bt). Let αt, β be as in Theorems 5.1 and 5.2 respectively,
and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Consider Assumptions 1, 2, and 4, and gradient descent
with step size ηt = ωt

β , ωt ∈ (0, 2). Then, for any θt+1 ∈ arginfθ∈Bt
L(θ), we have with probability

at least (1− 2(L+1)
m ),

L(θt+1)− L(θt+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θt+1)) . (13)

Building on Lemma 5.2, we show that GD in fact leads to a geometric decrease in the loss relative to
the minimum value of L(·) in the set BSpec

ρ,ρ1
(θ0).

Theorem 5.3 (Global Loss Reduction in BSpec
ρ,ρ1

(θ0)). Let αt, β be as in Theorems 5.1 and 5.2
respectively, and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Let θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θt+1 ∈

arginfθ∈Bt
L(θ), and γt := L(θt+1)−L(θ∗)

L(θt)−L(θ∗) . Let αt, β be as in Theorems 5.1 and 5.2 respectively,
and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Consider Assumptions 1, 2, and 4, and gradient descent

with step size ηt = ωt

β , ωt ∈ (0, 2). Then, with probability at least (1− 2(L+1)
m ), we have we have

γt ∈ [0, 1) and

L(θt+1)− L(θ∗) ≤
(
1− αtωt

β
(1− γt)(2− ωt)

)
(L(θt)− L(θ∗)) . (14)

As long as the conditions in Theorem 5.3 are kept across iterations, there will be a geometric decrease
in loss. For Assumption 4, we have discussed (A4.1) in Remark 5.1, and we discuss (A4.2) next.
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Remark 5.4 (Assumption (A4.2)). Consider we run gradient descent iterations until some stopping
time T > 0. Given radius ρ <

√
m , Assumption (A4.2) θt ∈ BSpec

ρ,ρ1
(θ0), t = 0, . . . , T , can be

verified empirically. Alternatively, we can choose suitable step sizes ηt to ensure the property using
the geometric convergence from Theorem 5.3. Assume that our goal is to get L(θT )− L(θ∗) ≤ ϵ.
Then, with χT := mint∈[T ]

αtωt

β (1 − γt)(2 − ωt), Assumption (A4.1) along with Remark 5.2

ensures χT < 1. Then, it suffices to have T = ⌈log(L(θ0)−L(θ∗)
ϵ )/ log 1

1−χT
⌉ = Θ(log 1

ϵ ). Then,
to ensure θt ∈ BSpec

ρ,ρ1
(θ0), t ∈ [T ], in the case of the square loss, since ∥∇L(θt)∥2 ≤ c for some

constant c (see Corollary 4.1), it suffices to have ηt ≤ min{ρ,ρ1}
Θ(log 1

ϵ )
. Moreover, we point out that having

ρ2 ≥ ηtc ensures ∥θt+1 − θt∥2 ≤ ρ2 ⇒ θt+1 ∈ BEuc
ρ2

(θt), which in this case can be guaranteed if
ρ2 ≥ min{ρ,ρ1}

Θ(log 1
ϵ )

. The argument above is informal, but illustrates that Assumption (A4.1) along with
suitable constant step sizes ηt would ensure (A4.2). Thus, Assumption (A4.1), which ensures the
RSC condition, is the main assumption behind the analysis.

The conditions in Assumption 4 (see Remarks 5.1 and 5.4) along with Theorem 5.3 imply that
the RSC based convergence analysis holds for a much larger layerwise spectral radius norm ball
BSpec

ρ,ρ1
(θ0) with any radius ρ <

√
m and ρ1 = O(poly(L)).

Remark 5.5 (RSC and NTK). In the context of square loss, the NTK condition for geometric
convergence needs λmin(Kntk(·; θt)) ≥ c0 > 0 for every t, i.e., uniformly bounded away from 0 by
a constant c0 > 0. The NTK condition can also be written as

inf
v:∥v∥2=1

∥∥∥∥∥
n∑

i=1

vi∇θf(θt;xi)

∥∥∥∥∥
2

2

≥ c0 > 0 . (15)

In contrast, the proposed RSC condition (Theorem 5.1) needs∥∥∥∥∥ 1n
n∑

i=1

∇θf(θt;xi)

∥∥∥∥∥
2

2

≥ c̄0√
m
, (16)

where m is the width and c̄0 = c2
c1

where c1, c2 are constants defined in Theorem 5.1. As a quadratic
form on the NTK, the RSC condition can be viewed as using a specific v in (15), i.e., vi = 1√

n
for

i ∈ [n], since the RSC condition is
∥∥∥∑n

i=1
1√
n
∇θf(θt;xi)

∥∥∥2
2
≥ c̄0n√

m
. For m = Ω(n2), the RSC

condition is more general since NTK ⇒ RSC, but the converse is not necessarily true.

Remark 5.6 (RSC covers different settings than NTK). The NTK condition may be violated in
certain settings, e.g., ∇θf(θt;xi), i = 1, . . . , n are linearly dependent, xi ≈ xj for some i ̸= j,
layer widths are small ml < n, etc., but the optimization may work in practice. The RSC condition
provides a way to analyze convergence in such settings. The RSC condition gets violated when
1
n

∑n
i=1 ∇θf(θt;xi) ≈ 0, which does not seem to happen in practice (see Section 6), and future

work will focus on understanding the phenomena. Finally, note that it is possible to construct a set of
gradient vectors which satisfy the NTK condition but violates the RSC condition. Our perspective is
to view the NTK and the RSC as two different sufficient conditions and geometric convergence of
gradient descent (GD) is guaranteed as long as one of them is satisfied in any step.

6 RSC CONDITION: EXPERIMENTAL RESULTS

In this section, we present experimental results verifying the RSC condition∥∥ 1
n

∑n
i=1 ∇θf(θt;xi)

∥∥2
2

= Ω
(

poly(L)√
m

)
, t = 1, . . . , T , on standard benchmarks: CIFAR-

10, MNIST, and Fashion-MNIST. For simplicity, as before, we use ḡt =
1
n

∑n
i=1 ∇θf(θt;xi).

In Figure 1(a), we consider CIFAR-10 and show the trajectory of ∥ḡt∥2 over iterations t, for different
values of the network width m. For any width, the value of ∥ḡt∥2 stabilizes to a constant value over
iterations, empirically validating the RSC condition ∥ḡt∥22 = Ω(poly(L)/

√
m). Interestingly, the

smallest value of ∥ḡt∥2 seems to increase with the width. To study the width dependence further,
in Figure 1(b), we plot mint∈[T ] ∥ḡt∥2 as a function of width m for several values of the width.
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The plot shows that mint∈[T ] ∥ḡt∥2 increases steadily with m illustrating that the RSC condition is
empirically satisfied more comfortably for wider networks. In Figure 1(c) and (d), we show similar
plots for MNIST and Fashion-MNIST illustrating the same phenomena of mint∈[T ] ∥ḡt∥2 increasing
with m.

For the experiments, the network architecture we used had 3-layer fully connected neural network
with tanh activation function. The training algorithm is gradient descent (GD) width constant learning
rate, chosen appropriately to keep the training in NTK regime. Since we are using GD, we use 512
randomly chosen training points for the experiments. The stopping criteria is either training loss
< 10−3 or number of iterations larger than 3000.

(a) CIFAR-10: ∥ḡt∥2 over iterations. (b) CIFAR-10: Minimum ∥ḡt∥2 vs. width.

(c) MNIST: Minimum ∥ḡt∥2 vs. width. (d) Fashion-MNIST: Minimum ∥ḡt∥2 vs. width.

Figure 1: Experiments on CIFAR-10: (a) ∥ḡt∥2 over iterations for different network widths m;
(b) minimum ∥ḡt∥2 over all iterations, i.e., mint∈[T ] ∥ḡt∥2, as a function of network width m.
Experiments on (c) MNIST and (d) Fashion-MNIST. The experiments validates the RSC condition
empirically, and illustrates that the condition is more comfortably satisfied for wider networks. Each
curve is the average of 3 independent runs.

7 CONCLUSIONS

In this paper, we revisit deep learning optimization for feedforward models with smooth activations,
and make two technical contributions. First, we bound the spectral norm of the Hessian over a large
layerwise spectral norm radius ball, highlighting the role of initialization in such analysis. Second,
we introduce a new approach to showing geometric convergence in deep learning optimization
using restricted strong convexity (RSC). Our analysis sheds considerably new light on deep learning
optimization problems, underscores the importance of initialization variance, and introduces a RSC
based alternative to the prevailing NTK based analysis, which may fuel future work.
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A SPECTRAL NORM OF THE HESSIAN

We establish the main theorem from Section 4 in this Appendix.

Theorem 4.1 (Hessian Spectral Norm Bound). Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0),

with probability at least (1− 2(L+1)
m ), for any xi, i ∈ [n], we have∥∥∇2

θf(θ;xi)
∥∥
2
≤ cH√

m
, (5)

with cH = O(L5(1 + γ6L)(1 + ρ1)) where γ := σ1 +
ρ√
m

.

A.1 ANALYSIS OUTLINE

Our analysis follows that of Liu et al. (2020) and sharpens the analysis to get better dependence on
the depth L of the neural network.

We start by defining the following quantities:

Q∞(f) := max
1≤l≤L

{∥∥∥∥ ∂f

∂α(l)

∥∥∥∥
∞

}
,

∂f

∂α(l)
∈ Rm , (17)

Q2(f) := max
1≤l≤L

{∥∥∥∥ ∂α(l)

∂w(l)

∥∥∥∥
2

}
, w(l) := vec(W (l)) ,

∂α(l)

∂w(l)
∈ Rm×m2

, (18)

Q2,2,1(f) := max
1≤l1<l2<l3≤L

{∥∥∥∥ ∂2α(l1)

∂w(l1)
2

∥∥∥∥
2,2,1

,

∥∥∥∥ ∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥ ∂2α(l2)

∂α(l2−1)∂w(l2)

∥∥∥∥
2,2,1

, (19)

∥∥∥∥ ∂α(l1)

∂w(l1)

∥∥∥∥
2

∥∥∥∥ ∂α(l2)

∂w(l2)

∥∥∥∥
2

∥∥∥∥ ∂2α(l3)

∂α(l3−1)2

∥∥∥∥
2,2,1

}
(20)

where for an order-3 tensor T ∈ Rd1×d2×d3 we define the (2, 2, 1)−norm as follows,

∥T∥2,2,1 := sup
∥x∥2=∥z∥2=1

d3∑
k=1

∣∣∣∣∣∣
d1∑
i=1

d2∑
j=1

Tijkxizj

∣∣∣∣∣∣ , x ∈ Rd1 , z ∈ Rd2 . (21)

We will also use the notation W (L+1) := v.

A key result established in Liu et al. (2020) provides an upper bound to the spectral norm of the
Hessian:

Theorem 4.2 (Liu et al. (2020), Theorem 3.1). Under Assumptions 1, assuming there is δ such that∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥
2
≤ δ, with C1 ≤ L2δ2L + LδL + L and C2 ≤ LδL, we have

∥∥∇2
θf(θ;x)

∥∥
2
≤ 2C1Q2,2,1(f)Q∞(f) +

2√
m
C2Q2(f) , (8)

In order to prove Theorem 4.1, we prove that Theorem 4.2 holds with high-probability where

• δ = γ follows from Lemma A.3,

• Q2(f) = O(L(1 + γL)) follows from Lemma A.4,

• Q2,2,1(f) = O(L3(1 + γ3L)) follows from Lemma A.4 and Lemma A.5, and

• Q∞(f) = O
(

(1+γL)(1+ρ1)√
m

)
follows from Lemma A.7 ,

while also establishing precise constants to get a proper form for the constant cH in Theorem 4.1. As
a result, cH ≤ O(L

5(1+γ6L)(1+ρ1)√
m

).
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A.2 SPECTRAL NORMS OF W (l) AND L2 NORMS OF α(l)

We start by bounding the spectral norm of the layer-wise matrices at initialization.

Lemma A.1. Consider any l ∈ [L]. If the parameters are initialized as w(l)
0,ij ∼ N (0, σ2

0) where
σ0 = σ1

2(1+
√

log m
2m )

as in Assumption 2, then with probability at least
(
1− 2

m

)
, we have

∥W (l)
0 ∥2 ≤ σ1

√
m . (22)

Proof. For a (ml ×ml−1) random matrix W (l)
0 with i.i.d. entries w(l)

0,ij ∈ N (0, σ2
0), with probability

at least (1− 2 exp(−t2/2σ2
0)), the largest singular value of W0 is bounded by

σmax(W
(ℓ)
0 ) ≤ σ0(

√
ml +

√
ml−1) + t . (23)

This concentration result can be easily derived as follows: notice that W0 = σ0W̄
(ℓ)
0 , where w̄(ℓ)

0,ij ∼
N(0, 1), thus we can use the expectation E[∥W0∥(ℓ)2 ] = σ0E[

∥∥W̄0

∥∥(ℓ)
2

] = σ0(
√
mℓ +

√
mℓ−1)

from Gordon’s Theorem for Gaussian matrices (Vershynin, 2012, Theorem 5.32) in the Gaussian
concentration result for Lipschitz functions (Vershynin, 2012, Proposition 3.4) considering that
B 7→ ∥σ0B∥2 is a σ0-Lipschitz function when the matrix B is treated as a vector. Let us choose
t = σ0

√
2 logm so that (23) holds with probability at least (1− 2

m ). Then, to obtain (22),

Case 1: l = 1. With m0 = d and m1 = m,

∥W (1)
0 ∥2 ≤ σ0(

√
d+

√
m+

√
2 logm) ≤ σ0(2

√
m+

√
2 logm)

since we are in the over-parameterized regime m ≥ d.

Case 2: 2 ≤ l ≤ L. With ml = ml−1 = m,

∥W (l)
0 ∥2 ≤ σ0(2

√
m+

√
2 logm) .

Now, using σ0 = σ1

2(1+
√

log m
2m )

in both cases completes the proof.

Next we bound the spectral norm of layerwise matrices.

Proposition A.1. Under Assumptions 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with probability at least
(
1− 2

m

)
,

∥W (l)∥2 ≤
(
σ1 +

ρ√
m

)√
m , l ∈ [L].

Proof. By triangle inequality, for l ∈ [L],

∥W (l)∥2 ≤ ∥W (l)
0 ∥2 + ∥W (l) −W

(l)
0 ∥2

(a)

≤ σ1
√
m+ ρ ,

where (a) follows from Lemma A.1. This completes the proof.

Next, we show that the output α(l) of layer l has an L2 norm bounded by O(
√
m).

Lemma A.2. Consider any l ∈ [L]. Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with probability
at least

(
1− 2l

m

)
, we have

∥α(l)∥2 ≤
√
m

(
σ1 +

ρ√
m

)l

+
√
m

l∑
i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)| =

(
γl + |ϕ(0)|

l∑
i=1

γi−1

)
√
m .

13
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Proof. Following Allen-Zhu et al. (2019); Liu et al. (2020), we prove the result by recursion. First,
recall that since ∥x∥22 = d, we have ∥α(0)∥2 =

√
d. Then, since m0 = d and ϕ is 1-Lipschitz,∥∥∥∥ϕ( 1√

d
W (1)α(0)

)∥∥∥∥
2

− ∥ϕ(0)∥2 ≤
∥∥∥∥ϕ( 1√

d
W (1)α(0)

)
− ϕ(0)

∥∥∥∥
2

≤
∥∥∥∥ 1√

d
W (1)α(0)

∥∥∥∥
2

,

so that

∥α(1)∥2 =

∥∥∥∥ϕ( 1√
d
W (1)α(0)

)∥∥∥∥
2

≤
∥∥∥∥ 1√

d
W (1)α(0)

∥∥∥∥
2

+ ∥ϕ(0)∥2

≤ 1√
d
∥W (1)∥2∥α(0)∥2 + |ϕ(0)|

√
m

≤
(
σ1 +

ρ√
m

)√
m+ |ϕ(0)|

√
m ,

where we used Proposition A.1 in the last inequality, which holds with probability at least 1− 2
m .

For the inductive step, we assume that for some l − 1, we have

∥α(l−1)∥2 ≤
√
m

(
σ1 +

ρ√
m

)l−1

+
√
m

l−1∑
i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|,

which holds with the probability at least 1− 2(l−1)
m . Since ϕ is 1-Lipschitz, for layer l, we have∥∥∥∥ϕ( 1√

m
W (l)α(l−1)

)∥∥∥∥
2

− ∥ϕ(0)∥2 ≤
∥∥∥∥ϕ( 1√

m
W (l)α(l−1)

)
− ϕ(0)

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
W (l)α(l−1)

∥∥∥∥
2

,

so that

∥α(l)∥2 =

∥∥∥∥ϕ( 1√
m
W (l)α(l−1)

)∥∥∥∥
2

≤
∥∥∥∥ 1√

m
W (l)α(l−1)

∥∥∥∥
2

+ ∥ϕ(0)∥2

≤ 1√
m
∥W (l)∥2∥α(l−1)∥2 +

√
m|ϕ(0)|

(a)

≤
(
σ1 +

ρ√
m

)
∥α(l−1)∥2 +

√
m|ϕ(0)|

(b)
=

√
m

(
σ1 +

ρ√
m

)l

+
√
m

l∑
i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|,

where (a) follows from Proposition A.1 and (b) from the inductive step. Since we have used
Proposition A.1 l times, after a union bound, our result would hold with probability at least 1− 2l

m .
This completes the proof.

A.3 SPECTRAL NORMS OF ∂α(l)

∂w(l) AND ∂α(l)

∂α(l−1)

Recall that in our setup, the layerwise outputs and pre-activations are respectively given by:

α(l) = ϕ
(
α̃(l)
)
, α̃(l) :=

1
√
ml−1

W (l)α(l−1) . (24)

Lemma A.3. Consider any l ∈ {2, . . . , L}. Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with
probability at least

(
1− 2

m

)
, ∥∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥∥2
2

≤
(
σ1 +

ρ√
m

)2

= γ2 . (25)
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Proof. By definition, we have [
∂α(l)

∂α(l−1)

]
i,j

=
1√
m
ϕ′(α̃

(l)
i )W

(l)
ij . (26)

Since ∥A∥2 = sup∥v∥2=1 ∥Av∥2, so that ∥A∥22 = sup∥v∥2=1

∑
i⟨ai,v⟩2, we have that for 2 ≤ l ≤

L, ∥∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥∥2
2

= sup
∥v∥2=1

1

m

m∑
i=1

ϕ′(α̃(l)
i )

m∑
j=1

W
(l)
ij vj

2

(a)

≤ sup
∥v∥2=1

1

m
∥W (l)v∥22

=
1

m
∥W (l)∥22

(b)

≤ γ2 ,

where (a) follows from ϕ being 1-Lipschitz by Assumption 1 and (b) from Proposition A.1. This
completes the proof.

Lemma A.4. Consider any l ∈ [L]. Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with probability
at least

(
1− 2l

m

)
,∥∥∥∥ ∂α(l)

∂w(l)

∥∥∥∥2
2

≤ 1

m

[
√
m

(
σ1 +

ρ√
m

)l−1

+
√
m

l−1∑
i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|

]2

=

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2

.

(27)

Proof. Note that the parameter vector w(l) = vec(W (l)) and can be indexed with j ∈ [m] and
j′ ∈ [d] when l = 1 and j′ ∈ [m] when l ≥ 2. Then, we have[

∂α(l)

∂w(l)

]
i,jj′

=

[
∂α(l)

∂W (l)

]
i,jj′

=
1√
m
ϕ′(α̃

(l)
i )α

(l−1)
j′ 1[i=j] . (28)

For l ∈ {2, . . . , L}, noting that ∂α(l)

∂w(l) ∈ Rm×m2

and ∥V ∥F = ∥vec(V )∥2 for any matrix V , we have

∥∥∥∥ ∂α(l)

∂w(l)

∥∥∥∥2
2

= sup
∥V ∥F=1

1

m

m∑
i=1

ϕ′(α̃(l)
i )

m∑
j,j′=1

α
(l−1)
j′ 1[i=j]Vjj′

2

≤ sup
∥V ∥F=1

1

m
∥V α(l−1)∥22

≤ 1

m
sup

∥V ∥F=1

∥V ∥22∥α(l−1)∥22

(a)

≤ 1

m
∥α(l−1)∥22

(b)

≤ 1

m

[
√
m

(
σ1 +

ρ√
m

)l−1

+
√
m

l−1∑
i=1

(
σ1 +

ρ√
m

)i−1

|ϕ(0)|

]2

=

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2
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where (a) follows from ∥V ∥22 ≤ ∥V ∥2F for any matrix V , and (b) from Lemma A.2.

The l = 1 case follows in a similar manner:∥∥∥∥ ∂α(1)

∂w(1)

∥∥∥∥2
2

≤ 1

d
∥α(0)∥22 =

1

d
∥x∥22 = 1

which satisfies the form for l = 1. That completes the proof.

A.4 (2, 2, 1)-NORMS OF ORDER 3 TENSORS

Lemma A.5. Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), each of the following inequalities hold
with probability at least

(
1− 2l

m

)
,∥∥∥∥ ∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

≤ βϕγ
2, (29)

∥∥∥∥ ∂2α(l)

∂α(l−1)∂W (l)

∥∥∥∥
2,2,1

≤ βϕ
2

γ2 +(γl−1 + |ϕ(0)|
l−1∑
i=1

γi−1

)2
+ 1, (30)

for l = 2, . . . , L; and

∥∥∥∥ ∂2α(l)

(∂W (l))2

∥∥∥∥
2,2,1

≤ βϕ

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2

, (31)

for l ∈ [L].

Proof. For the inequality (29), note that from (26) we obtain
(

∂2α(l)

(∂α(l−1))2

)
i,j,k

=

1
mϕ

′′(α̃
(l)
i )W

(l)
ik W

(l)
ij , and so∥∥∥∥ ∂2α(l)

(∂α(l−1))2

∥∥∥∥
2,2,1

= sup
∥v1∥2=∥v2∥2=1

1

m

m∑
i=1

∣∣∣ϕ′′(α̃(l)
i )(W (l)v1)i(W

(l)v2)i

∣∣∣
≤ sup

∥v1∥2=∥v2∥2=1

1

m
βϕ

m∑
i=1

∣∣∣(W (l)v1)i(W
(l)v2)i

∣∣∣
(a)

≤ sup
∥v1∥2=∥v2∥2=1

1

2m
βϕ

m∑
i=1

(W (l)v1)
2
i + (W (l)v2)

2
i

≤ 1

2m
βϕ sup

∥v1∥2=∥v2∥2=1

(∥W (l)v1∥22 + ∥W (l)v2∥22)

≤ 1

2m
βϕ(∥W (l)∥22 + ∥W (l)∥22)

(b)

≤ βϕ(σ1 + ρ/
√
m)2 = βϕγ

2, (32)

where (a) follows from 2ab ≤ a2 + b2 for a, b ∈ R, and (b) from Proposition A.1, with probability at
least 1− 2

m .

For the inequality (30), carefully following the chain rule in (28) we obtain(
∂2α(l)

∂α(l−1)∂W (l)

)
i,jj′,k

=
1

m
ϕ′′(α̃

(l)
i )W

(l)
ik α

(l−1)
j′ 1[j=i] +

1√
m
ϕ′(α̃

(l)
i )1[i=j]1[j′=k].
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Then, we have

∥∥∥∥ ∂2α(l)

∂α(l−1)∂W (l)

∥∥∥∥
2,2,1

= sup
∥v1∥2=∥V2∥F=1

m∑
i=1

∣∣∣∣∣∣
m∑

k=1

m∑
j=1

m∑
j′=1

(
1

m
ϕ′′(α̃

(l)
i )W

(l)
ik α

(l−1)
j′ 1[j=i]

+
1√
m
ϕ′(α̃

(l)
i )1[i=j]1[j′=k]

)
v1,kV2,jj′

∣∣∣∣
= sup

∥v1∥2=∥V2∥F=1

m∑
i=1

∣∣∣∣∣∣ 1m
m∑

j′=1

ϕ′′(α̃
(l)
i )α

(l−1)
j′ V2,ij′

(
m∑

k=1

W
(l)
ik v1,k

)

+
1√
m

m∑
k=1

ϕ′(α̃
(l)
i )v1,kV2,ik

∣∣∣∣∣
≤ sup

∥v1∥2=∥V2∥F=1

1

m
βϕ

m∑
i=1

∣∣∣(W (l)v1)i(V2α
(l−1))i

∣∣∣+ 1√
m

m∑
i=1

m∑
k=1

|v1,kV2,ik|

≤ sup
∥v1∥2=∥v2∥F=1

1

2m
βϕ

m∑
i=1

(W (l)v1)
2
i + (V2α

(l−1))2i +
1√
m

m∑
i=1

∥v1∥2
∥∥V2,i,:

∥∥
2

= sup
∥v1∥2=∥V2∥F=1

1

2m
βϕ(
∥∥∥W (l)v1

∥∥∥2
2
+
∥∥∥V2α

(l−1)
∥∥∥2
2
) +

1√
m

m∑
i=1

∥∥V2,i,:

∥∥
2

(a)

≤ 1

2m
βϕ(
∥∥∥W (l)

∥∥∥2
2
+
∥∥∥α(l−1)

∥∥∥2
2
) + ∥V2∥F

(b)

≤ βϕ
2

γ2 +(γl−1 + |ϕ(0)|
l−1∑
i=1

γi−1

)2
+ 1

where (a) follows from
∥∥V2α

(l−1)
∥∥
2

≤ ∥V2∥2
∥∥αl−1

∥∥ ≤ ∥V2∥F
∥∥αl−1

∥∥
2

=
∥∥αl−1

∥∥
2

and∑m
i=1

∥∥V2,i,:

∥∥
2
≤

√
m
√∑m

i=1

∥∥V2,i,:

∥∥2
2
, and (b) follows from Proposition A.1 and Lemma A.2,

with altogether holds with probability at least 1− 2l
m .

For the last inequality (31), we start with the analysis for l ≥ 2. Carefully following the chain rule
in (28) we obtain

(
∂2α(l)

(∂W (l))2

)
i,jj′,kk′

=
1

m
ϕ′′(α̃

(l)
i )α

(l−1)
k′ α

(l−1)
j′ 1[j=i]1[k=i].
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Then, we have∥∥∥∥ ∂2α(l)

(∂W (l))2

∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

m∑
i=1

∣∣∣∣∣∣
m∑

j,j′=1

m∑
k,k′=1

(
1

m
ϕ′′(α̃

(l)
i )α

(l−1)
k′ α

(l−1)
j′ 1[j=i]1[k=i]V1,jj′V2,kk′

)∣∣∣∣∣∣
= sup

∥V1∥F=∥V2∥F=1

m∑
i=1

∣∣∣∣∣∣ϕ
′′(α̃

(l)
i )

m

m∑
j′=1

(
α
(l−1)
j′ V1,ij′

) m∑
k′=1

(
α
(l−1)
k′ V2,ik′

)∣∣∣∣∣∣
≤ sup

∥V1∥F=∥V2∥F=1

1

m
βϕ

m∑
i=1

∣∣∣(V1α
(l−1))i(V2α

(l−1))i

∣∣∣
≤ sup

∥V1∥F=∥v2∥F=1

1

2m
βϕ

m∑
i=1

(V2α
(l−1))2i + (V2α

(l−1))2i

= sup
∥V1∥F=∥V2∥F=1

1

2m
βϕ(
∥∥∥V2α

(l−1)
∥∥∥2
2
+
∥∥∥V2α

(l−1)
∥∥∥2
2
)

≤ 1

2m
βϕ(
∥∥∥α(l−1)

∥∥∥2
2
+
∥∥∥α(l−1)

∥∥∥2
2
)

≤ βϕ

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2

,

which holds with probability at least 1 − 2(l−1)
m . For the case l = 1, it is easy to show that(

∂2α(1)

(∂W (1))2

)
i,jj′,kk′

= 1
dϕ

′′(α̃
(1)
i )xk′xj′1[j=i]1[k=i] and so

∥∥∥ ∂2α(1)

(∂W (1))2

∥∥∥
2,2,1

≤ βϕ. This completes

the proof.

A.5 L∞ NORM OF ∂f
∂α(l)

Let b(l) := ∂f
∂α(l) ∈ Rm for any l ∈ [L]. Let b(l)

0 denote b(l) at initialization. By a direct calculation,
we have

b(l) =
∂f

∂α(l)
=

(
L∏

l′=l+1

∂α(l)

∂α(l−1)

)
∂f

∂α(L)

=

(
L∏

l′=l+1

1√
m
(W (l′))⊤D(l′)

)
1√
m
v ,

where D(l′) is a diagonal matrix of the gradient of activations, i.e., D(l′)
ii = ϕ′(α̃

(l′)
i ). Note that we

also have the following recursion:

b(l) =
∂f

∂α(l)
=
∂α(l+1)

∂α(l)

∂f

∂α(l+1)

=
1√
m
(W (l+1))⊤D(l+1)b(l+1) .

Lemma A.6. Consider any l ∈ [L]. Under Assumptions1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with probability

at least 1− 2(L−l+1)
m ,

∥b(l)∥2 ≤ 1√
m

(
σ1 +

ρ√
m

)L−l

(1 + ρ1) (33)

and

∥b(l)
0 ∥2 ≤ σL−l

1√
m

≤ γL−l

√
m

. (34)
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Proof. First, note that
∥∥b(L)

∥∥
2
= 1√

m
∥v∥2 ≤ 1√

m
(∥v0∥2 + ∥v − v0∥2) ≤

1√
m
(1 + ρ1), where

the inequality follows from from Proposition A.1. Now, for the inductive step, assume
∥∥b(l)

∥∥
2
≤(

σ1 +
ρ√
m

)L−l
1√
m
(1 + ρ1) with probability at least 1− 2l

m . Then,∥∥∥b(l−1)
∥∥∥
2
=

∥∥∥∥ ∂α(l)

∂α(l−1)
b(l)

∥∥∥∥
2

≤
∥∥∥∥ ∂α(l)

∂α(l−1)

∥∥∥∥
2

∥∥∥b(l)
∥∥∥
2

≤
(
σ1 +

ρ√
m

)(
σ1 +

ρ√
m

)L−l
1√
m
(1 + ρ1)

=

(
σ1 +

ρ√
m

)L−l+1
1√
m
(1 + ρ1)

where the last inequality follows from Lemma A.3 with probability at least 1− 2
m (l + 1). Since we

use Proposition A.1 once at layer L and then Lemma A.3 (L− l) times at layer l, then we have that
everything holds altogether with probability at least 1− 2

m (L− l + 1). We have finished the proof
by induction.

Lemma A.7. Consider any l ∈ [L]. Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with probability

at least 1− 2(L−l)
m , ∥∥∥b(l)

∥∥∥
∞

≤ γL−l

√
m

(1 + ρ1). (35)

Proof. For any l ∈ [L], by definition i-th component of b(l), i.e., b(l)
i , takes the form

b
(l)
i =

∂α(L)

∂α
(l)
i

∂f

∂α(L)
=
∂α(L)

∂α
(l)
i

1√
m
v.

Then, with W (l)
:,i denoting the i-th column of the matrix W (l),∥∥∥∥∥∂α(L)

∂α
(l)
i

∥∥∥∥∥
2

(a)
=

∥∥∥∥∥ϕ′(α̃(l)
i )√
m

(
W

(l)
:,i

)⊤ L∏
l′=l+2

(
∂α(l′)

∂α(l′−1)

)∥∥∥∥∥
2

(b)

≤ 1√
m

∥∥∥W (l)
:,i

∥∥∥
2

L∏
l′=l+2

∥∥∥∥∥ ∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

(c)

≤ 1√
m

∥∥∥W (l)
:,i

∥∥∥
2
γL−l−1

(d)

≤ γ γL−l−1

= γL−l

(36)
where (a) follows from ∂α(l+1)

∂α
(l)
i

= 1√
m
ϕ′(α̃

(l)
i )(W

(l)
:,i )

⊤, (b) from ϕ being 1-Lipschitz, (c) from

Lemma A.3, and (d) from
∥∥∥W (l)

:,i

∥∥∥
2
≤
∥∥W (l)

∥∥
2

and Proposition A.1, which altogether holds with

probability 1− 2
m (L− l).

Therefore, for every i ∈ [m], ∣∣∣b(l)
i

∣∣∣ ≤ ∣∣∣∣∣ 1√
m

∂α(L)

∂α
(l)
i

v

∣∣∣∣∣
≤ 1√

m

∥∥∥∥∥∂α(L)

∂α
(l)
i

∥∥∥∥∥
2

∥v∥2

≤ 1√
m
γL−l(1 + ρ1) ,

where the last inequality follows from (36) and ∥v∥2 ≤ ∥v0∥2+∥v − v0∥2 ≤ 1+ρ1. This completes
the proof.

19



Published as a conference paper at ICLR 2023

A.6 USEFUL BOUNDS

Lemma 4.1 (Predictor gradient bounds). Under Assumptions 1 and 2, for θ ∈ BSpec
ρ,ρ1

(θ0), with

probability at least
(
1− 2(L+1)

m

)
, we have

∥∇θf(θ;x)∥2 ≤ ϱ and ∥∇xf(θ;x)∥2 ≤ γL√
m
(1 + ρ1) , (9)

with ϱ2 = (h(L + 1))2 + 1
m (1 + ρ1)

2
∑L

l=1(h(l))
2γ2(L−l), γ = σ1 + ρ√

m
, h(l) = γl−1 +

|ϕ(0)|
∑l−1

i=1 γ
i−1.

Proof. We first prove the bound on the gradient with respect to the weights. Using the chain rule,

∂f

∂w(l)
=
∂α(l)

∂w(l)

L∏
l′=l+1

∂α(l′)

∂α(l′−1)

∂f

∂α(L)

and so∥∥∥∥ ∂f

∂w(l)

∥∥∥∥2
2

≤
∥∥∥∥ ∂α(l)

∂w(l)

∥∥∥∥2
2

∥∥∥∥∥
L∏

l′=l+1

∂α(l′)

∂α(l′−1)

∂f

∂α(L)

∥∥∥∥∥
2

2

(a)

≤
∥∥∥∥ ∂α(l)

∂w(l)

∥∥∥∥2
2

γ2(L−l) · 1

m
(1 + ρ1)

2

(b)

≤

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2

γ2(L−l) · 1

m
(1 + ρ1)

2

for l ∈ [L], where (a) follows from Lemma A.6, (b) follows from Lemma A.4. Similarly,∥∥∥∥ ∂f

∂w(L+1)

∥∥∥∥2
2

=
1

m

∥∥∥α(L)
∥∥∥2
2
≤

(
γL + |ϕ(0)|

L∑
i=1

γi−1

)2

,

where we used Lemma A.2 for the inequality. Now,

∥∇θf∥22 =

L+1∑
l=1

∥∥∥∥ ∂f

∂w(l)

∥∥∥∥2
2

(a)

≤

(
γL + |ϕ(0)|

L∑
i=1

γi−1

)2

+
1

m
(1 + ρ1)

2
L∑

l=1

(
γl−1 + |ϕ(0)|

l−1∑
i=1

γi−1

)2

γ2(L−l)

= ϱ2,

where (a) follows with probability 1− 2
m (L+ 1) using a union bound from all the previously used

results.

We now prove the bound on the gradient with respect to the input data. Using the chain rule,

∂f

∂x
=

∂f

∂α(0)
=
∂α(1)

∂α(0)

(
L∏

l′=2

∂α(l′)

∂α(l′−1)

)
∂f

∂α(L)

and so ∥∥∥∥∂f∂x
∥∥∥∥
2

≤
∥∥∥∥∂α(1)

∂α(0)

∥∥∥∥
2

∥∥∥∥∥
(

L∏
l′=2

∂α(l′)

∂α(l′−1)

)
∂f

∂α(L)

∥∥∥∥∥
2

≤
∥∥∥∥∂α(1)

∂α(0)

∥∥∥∥
2

(
L∏

l′=2

∥∥∥∥∥ ∂α(l′)

∂α(l′−1)

∥∥∥∥∥
2

)∥∥∥∥ ∂f

∂α(L)

∥∥∥∥
2

(a)

≤ γ · γL−1 · 1√
m

(1 + ρ1)

=
γL√
m

(1 + ρ1)

where (a) follows from Lemma A.3 and Lemma A.6 with probability at least 1− 2L
m due to union

bound. This completes the proof.

20



Published as a conference paper at ICLR 2023

Lemma 4.2 (Loss bounds). Consider the square loss. Under Assumptions 1, and 2, for γ = σ1+
ρ√
m

,

each of the following inequalities hold with probability at least
(
1− 2(L+1)

m

)
: L(θ0) ≤ c0,σ1

and L(θ) ≤ cρ1,γ for θ ∈ BSpec
ρ,ρ1

(θ0), where ca,b = 2
n

∑n
i=1 y

2
i + 2(1 + a)2|g(b)|2 and g(a) =

aL + |ϕ(0)|
∑L

i=1 a
i for any a, b ∈ R.

Proof. We start by noticing that for θ ∈ BSpec
ρ,ρ1

(θ0),

L(θ) = 1

n

n∑
i=1

(yi − f(θ;xi))
2 ≤ 1

n

n∑
i=1

(2y2i + 2|f(θ;xi)|2). (37)

Now, let us consider the particular case θ = θ0 and a generic ∥x∥2 =
√
d. Let α(l)

o be the layerwise
output of layer l at initialization. Then,

|f(θ0;x)| =
1√
m
v⊤
0 α

(L)
o (x)

≤ 1√
m

∥v0∥2
∥∥∥α(L)

o (x)
∥∥∥
2

(a)

≤ 1√
m

· 1 ·
∥∥∥α(L)

o (x)
∥∥∥
2

(b)

≤ 1√
m

(
σL
1 + |ϕ(0)|

L∑
i=1

σi−1
1

)
√
m

= g(σ1),

where (a) follows by assumption and (b) follows from following the same proof as in Lemma A.2
with the difference that we consider the weights at initialization. Now, replacing this result back
in (37) we obtain L(θ0) ≤ c0,σ1

.

Now, let us consider the general case of θ ∈ BSpec
ρ,ρ1

(θ0),

|f(θ;x)| = 1√
m
v⊤α(L)(x)

≤ 1√
m

∥v∥2
∥∥∥α(L)(x)

∥∥∥
2

(a)

≤ 1√
m

(1 + ρ1)
∥∥∥α(L)(x)

∥∥∥
2

(b)

≤ 1√
m

(1 + ρ1)

(
γL + |ϕ(0)|

L∑
i=1

γi−1

)
√
m

= (1 + ρ1)g(γ),

where (a) follows from ∥v∥2 ≤ ∥v0∥2 + ∥v − v0∥2 ≤ 1 + ρ1, and (b) follows from Lemma A.2.
Now, replacing this result back in (37) we obtain L(θ0) ≤ cρ1,γ .

In either case, a union bound let us obtain the probability with which the results hold. This finishes
the proof.

Corollary 4.1 (Loss gradient bound). Consider the square loss. Under Assumptions 1 and 2, for θ ∈
BSpec

ρ,ρ1
(θ0), with probability at least

(
1− 2(L+1)

m

)
, we have ∥∇θL(θ)∥2 ≤ 2

√
L(θ)ϱ ≤ 2

√
cρ1,γϱ,

with ϱ as in Lemma 4.1 and cρ1,γ as in Lemma 4.2.

Proof. We have that ∥∇θL(θ)∥2 =
∥∥ 1
n

∑n
i=1 ℓ

′
i∇θf

∥∥
2
≤ 1

n

∑n
i=1 |ℓ′i| ∥∇θf∥2

(a)

≤ 2ϱ
n

∑n
i=1 |yi −

ŷi| ≤ 2ϱ
√
L(θ)

(b)

≤ 2
√
cρ1,γϱ where (a) follows from Lemma 4.1 and (b) from Lemma 4.2.
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A.7 REGARDING THE NETWORK ARCHITECTURES IN OUR WORK AND LIU ET AL. (2020)’S

A difference between the neural network used in our work and the one in (Liu et al., 2020) is that
we normalize the norm of the last layer’s weight at initialization, whereas (Liu et al., 2020) does
not. However, if we did not normalize our last layer, then our result on the Hessian spectral norm
bound would still hold with Õ instead of O; consequently, our comparison with (Liu et al., 2020)
on the dependence on the network’s depth L (our polynomial dependence against their exponential
dependence) would still hold as stated in Remark 4.2 .

B RESTRICTED STRONG CONVEXITY

We establish the results from Section 5 in this appendix.

B.1 RESTRICTED STRONG CONVEXITY AND SMOOTHNESS

Theorem 5.1 (RSC for Square Loss). For square loss, under Assumptions 1 and 2, with probability
at least (1− 2(L+1)

m ), ∀θ′ ∈ Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt) with θt ∈ BSpec

ρ,ρ1
(θ0),

L(θ′) ≥ L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
αt

2
∥θ′ − θt∥22 , with αt = c1 ∥ḡt∥22 −

c2√
m
, (10)

where ḡt = 1
n

∑n
i=1 ∇θf(θt;xi), c1 = 2κ2 and c2 = 2cH(2ϱρ2 +

√
cρ1,γ), with cH as in The-

orem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L satisfies RSC
w.r.t. (Qt

κ ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), θt) whenever αt > 0.

Proof. For any θ′ ∈ Qt
κ/2 ∩B

Euc
ρ,ρ1

(θ0), by the second order Taylor expansion around θt, we have

L(θ′) = L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
1

2
(θ′ − θt)

⊤ ∂
2L(θ̃t)
∂θ2

(θ′ − θt) ,

where θ̃t = ξθ′ + (1− ξ)θt for some ξ ∈ [0, 1]. We note that θ̃t ∈ BSpec
ρ,ρ1

(θ0) since,

•
∥∥∥W̃ (l)

t −W
(l)
0

∥∥∥
2

=
∥∥∥ξW ′(l) − ξW

(l)
0 + (1− ξ)W

(l)
t − (1− ξ)W

(l)
0

∥∥∥
2

≤

ξ
∥∥∥W ′(l) −W

(l)
0

∥∥∥
2
+ (1 − ξ)

∥∥∥W (l)
t −W

(l)
0

∥∥∥
2

≤ ρ, for any l ∈ [L], where the last

inequality follows from our assumption θ′, θt ∈ BSpec
ρ,ρ1

(θ0); and

•
∥∥∥W̃ (L+1)

t −W
(L+1)
0

∥∥∥
2
= ∥ṽ − v0∥2 ≤ ρ1, by following a similar derivation as in the

previous point.

Focusing on the quadratic form in the Taylor expansion and recalling the form of the Hessian, we get

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt)

= (θ′ − θt)
⊤ 1

n

n∑
i=1

[
ℓ′′i
∂f(θ̃t;xi)

∂θ

∂f(θ̃t;xi)

∂θ

⊤

+ ℓ′i
∂2f(θ̃t;xi)

∂θ2

]
(θ′ − θt)

=
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

ℓ′i(θ
′ − θt)

⊤ ∂
2f(θ̃t;xi)

∂θ2
(θ′ − θt)︸ ︷︷ ︸

I2

,
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where ℓi = ℓ(yi, f(θ̃t,xi)), ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃t,xi))

, and ℓ′′i = ∂2ℓ(yi,z)
∂z2

∣∣∣∣
z=f(θ̃t,xi))

. Now, note that

I1 =
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ

〉2

≥ 2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ
+

(
∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

)〉2

=
2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉2

+
2

n

n∑
i=1

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

〉2

+
4

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

〉
(a)

≥ 2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

∥∥∥∥∂f(θt;xi)

∂θ

∥∥∥∥
2

∥∥∥∥∥∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

∥∥∥∥∥
2

× ∥θ′ − θt∥22
(b)

≥ 2

〈
θ′ − θt,

1

n

n∑
i=1

∂f(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

ϱ
cH√
m
∥θ̃t − θt∥2∥θ′ − θt∥22

(c)

≥ 2

〈
θ′ − θt,

1

n

n∑
i=1

∂f(θt;xi)

∂θ

〉2

− 4ϱcH√
m

∥θ′ − θt∥32

(d)

≥ 2κ2

∥∥∥∥∥ 1n
n∑

i=1

∂f(θt;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θt∥22 −
4ϱcH√
m

∥θ′ − θt∥32

=

2κ2

∥∥∥∥∥ 1n
n∑

i=1

∂f(θt;xi)

∂θ

∥∥∥∥∥
2

2

− 4ϱcH∥θ′ − θt∥2√
m

 ∥θ′ − θt∥22 ,

where (a) follows by Cauchy-Schwartz inequality; (b) follows by Jensen’s inequality (first term)
and the use of Theorem 4.1 and Lemma 4.1 due to θ̄t ∈ BSpec

ρ,ρ1
(θ0); (c) follows from

∥∥∥θ̃t − θt

∥∥∥
2
=

∥ξθ′ + (1− ξ)θt − θt∥2 = ξ ∥θ′ − θt∥ ≤ ∥θ′ − θt∥2; (d) follows since θ′ ∈ Qt
κ and from the fact

that p⊤q = cos(p, q) ∥p∥ ∥q∥ for any vectors p, q.

For analyzing I2, first note that for square loss, ℓ′i,t = 2(ỹi,t − yi) with ỹi,t = f(θ̃t;xi), so
that for the vector [ℓ′i,t]i, we have 1

n∥[ℓ
′
i,t]i∥22 = 4

n

∑n
i=1(ỹi,t − yi)

2 = 4L(θt). Further, with

Qt,i = (θ′ − θt)
⊤ ∂2f(θ̃t;xi)

∂θ2 (θ′ − θt), we have

|Qt,i| =

∣∣∣∣∣(θ′ − θt)
⊤ ∂

2f(θ̃t;xi)

∂θ2
(θ′ − θt)

∣∣∣∣∣ ≤ ∥θ′ − θt∥22

∥∥∥∥∥∂2f(θ̃t;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θt∥22√
m

.

Now, note that

I2 =
1

n

n∑
i=1

ℓ′i,tQt,i

≥ −

∣∣∣∣∣
n∑

i=1

(
1√
n
ℓ′i,t

)(
1√
n
Qt,i

)∣∣∣∣∣
(a)

≥ −
(
1

n
∥[ℓ′i,t]∥22

)1/2
(
1

n

n∑
i=1

Q2
t,i

)1/2

≥ −2

√
L(θ̃t)

cH∥θ′ − θt∥22√
m

,
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where (a) follows by Cauchy-Schwartz inequality. Putting the lower bounds on I1 and I2 back, with
ḡt =

1
n

∑n
i=1

∂f(θt;xi)
∂θ , we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥

2κ2 ∥ḡt∥22 −
4ϱcH∥θ′ − θt∥2 + 2cH

√
L(θ̃t)

√
m

 ∥θ′ − θt∥22 .

Now, since θ′ ∈ BEuc
ρ2

(θt), ∥θ′ − θt∥2 ≤ ρ2, so we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥

2κ2 ∥ḡt∥22 −
4ϱcHρ2 + 2cH

√
L(θ̃t)

√
m

 ∥θ′ − θt∥22

≥
(
2κ2 ∥ḡt∥22 −

4ϱcHρ2 + 2cH
√
cρ1,γ√

m

)
∥θ′ − θt∥22 ,

where the last inequality follows from Lemma 4.2. That completes the proof.

Next, we state and prove the RSC result for general losses.

Theorem B.1 (RSC of Loss). Under Assumptions 1, 2 and 3, with probability at least (1− 2(L+1)
m ),

∀θ′ ∈ Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

L(θ′) ≥ L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
αt

2
∥θ′ − θt∥22 , with αt = c1 ∥ḡt∥22 −

c4 + c4,t√
m

, (38)

where ḡt =
1
n

∑n
i=1 ∇θf(θt;xi), c1 = aκ2, c4 = 2aϱcHρ2, cH is as in Theorem 4.1, and c4,t =

cH
√
λt where λt = 1

n

∑n
i=1(ℓ

′
i,t)

2 with ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃t,xi))

and θ̃ ∈ BSpec
ρ,ρ1

being some point in

the segment that joins θ′ and θt. Consequently, L satisfies RSC w.r.t. (Qt
κ∩BSpec

ρ (θ0)∩BEuc
ρ2

(θt), θt)
whenever αt > 0.

Proof. For any θ′ ∈ Qt
κ/2 ∩B

Euc
ρ,ρ1

(θ0), by the second order Taylor expansion around θt, we have

L(θ′) = L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
1

2
(θ′ − θt)

⊤ ∂
2L(θ̃t)
∂θ2

(θ′ − θt) ,

where θ̃t = ξθ′ + (1− ξ)θt for some ξ ∈ [0, 1]. We note that θ̃t ∈ BSpec
ρ,ρ1

(θ0) since,

•
∥∥∥W̃ (l)

t −W
(l)
0

∥∥∥
2

=
∥∥∥ξW ′(l) − ξW

(l)
0 + (1− ξ)W

(l)
t − (1− ξ)W

(l)
0

∥∥∥
2

≤

ξ
∥∥∥W ′(l) −W

(l)
0

∥∥∥
2
+ (1 − ξ)

∥∥∥W (l)
t −W

(l)
0

∥∥∥
2

≤ ρ, for any l ∈ [L], where the last

inequality follows from our assumption θ′, θt ∈ BSpec
ρ,ρ1

(θ0); and

•
∥∥∥W̃ (L+1)

t −W
(L+1)
0

∥∥∥
2
= ∥ṽ − v0∥2 ≤ ρ1, by following a similar derivation as in the

previous point.

Focusing on the quadratic form in the Taylor expansion and recalling the form of the Hessian, we get

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt)

= (θ′ − θt)
⊤ 1

n

n∑
i=1

[
ℓ′′i
∂f(θ̃t;xi)

∂θ

∂f(θ̃t;xi)

∂θ

⊤

+ ℓ′i
∂2f(θ̃t;xi)

∂θ2

]
(θ′ − θt)

=
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

ℓ′i(θ
′ − θt)

⊤ ∂
2f(θ̃t;xi)

∂θ2
(θ′ − θt)︸ ︷︷ ︸

I2

,
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where ℓi = ℓ(yi, f(θ̃t,xi)), ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃t,xi))

, and ℓ′′i = ∂2ℓ(yi,z)
∂z2

∣∣∣∣
z=f(θ̃t,xi))

. Now, note that

I1 =
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ

〉2

≥ 2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ
+

(
∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

)〉2

=
2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉2

+
2

n

n∑
i=1

〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

〉2

+
4

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉〈
θ′ − θt,

∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

〉
(a)

≥ 2

n

n∑
i=1

〈
θ′ − θt,

∂f(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

∥∥∥∥∂f(θt;xi)

∂θ

∥∥∥∥
2

∥∥∥∥∥∂f(θ̃t;xi)

∂θ
− ∂f(θt;xi)

∂θ

∥∥∥∥∥
2

∥θ′ − θt∥22

(b)

≥ a

〈
θ′ − θt,

1

n

n∑
i=1

∂f(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

ϱ
cH√
m
∥θ̃t − θt∥2∥θ′ − θt∥22

(c)

≥ a

〈
θ′ − θt,

1

n

n∑
i=1

∂f(θt;xi)

∂θ

〉2

− 2aϱcH√
m

∥θ′ − θt∥32

(d)

≥ aκ2

∥∥∥∥∥ 1n
n∑

i=1

∂f(θt;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θt∥22 −
2aϱcH√

m
∥θ′ − θt∥32

=

aκ2 ∥∥∥∥∥ 1n
n∑

i=1

∂f(θt;xi)

∂θ

∥∥∥∥∥
2

2

− 2aϱcH∥θ′ − θt∥2√
m

 ∥θ′ − θt∥22 ,

where (a) follows by Cauchy-Schwartz inequality; (b) follows by Jensen’s inequality (first term)
and the use of Theorem 4.1 and Lemma 4.1 due to θ̃t ∈ BSpec

ρ,ρ1
(θ0); (c) follows from

∥∥∥θ̃t − θt

∥∥∥
2
=

∥ξθ′ + (1− ξ)θt − θt∥2 = ξ ∥θ′ − θt∥ ≤ ∥θ′ − θt∥2; (d) follows since θ′ ∈ Qt
κ and from the fact

that p⊤q = cos(p, q) ∥p∥ ∥q∥ for any vectors p, q.

For analyzing I2, let λt := 1
n

∑n
i=1(ℓ

′
i,t)

2. As before, with Qt,i = (θ′ − θt)
⊤ ∂2f(θ̃t;xi)

∂θ2 (θ′ − θt), we
have

|Qt,i| =

∣∣∣∣∣(θ′ − θt)
⊤ ∂

2f(θ̃t;xi)

∂θ2
(θ′ − θt)

∣∣∣∣∣ ≤ ∥θ′ − θt∥22

∥∥∥∥∥∂2f(θ̃t;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θt∥22√
m

.

Now, note that

I2 =
1

n

n∑
i=1

ℓ′i,tQt,i

≥ −

∣∣∣∣∣
n∑

i=1

(
1√
n
ℓ′i,t

)(
1√
n
Qt,i

)∣∣∣∣∣
(a)

≥ −
(
1

n
∥[ℓ′i,t]∥22

)1/2
(
1

n

n∑
i=1

Q2
t,i

)1/2

≥ −
√
λt
cH∥θ′ − θt∥22√

m
,
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where (a) follows by Cauchy-Schwartz inequality. Putting the lower bounds on I1 and I2 back, with
ḡt =

1
n

∑n
i=1

∂f(θt;xi)
∂θ , we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥
(
aκ2 ∥ḡt∥22 −

2aϱcH∥θ′ − θt∥2 + cH
√
λt√

m

)
∥θ′ − θt∥22 .

Now, since θ′ ∈ BEuc
ρ2

(θt), ∥θ′ − θt∥2 ≤ ρ2, so we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥
(
aκ2 ∥ḡt∥22 −

2aϱcHρ2 + cH
√
λt√

m

)
∥θ′ − θt∥22 .

That completes the proof.

Theorem 5.2 (Local Smoothness for Square Loss). For square loss, under Assumptions 1 and 2,
with probability at least (1− 2(L+1)

m ), ∀θ, θ′ ∈ BSpec
ρ,ρ1

(θ0),

L(θ′) ≤ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+
β

2
∥θ′ − θ∥22 , with β = 2ϱ2 +

2cH
√
cρ1,γ√
m

, (11)

with cH as in Theorem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L is locally
β-smooth. Moreover, if γ (and so σ1 and ρ) is chosen according to the desirable operating regimes
(see Remark 4.1) and ρ1 = O(poly(L)), then β = O(poly(L)).

Proof. By the second order Taylor expansion about θ̄ ∈ BSpec
ρ,ρ1

(θ0), we have L(θ′) = L(θ̄) + ⟨θ′ −
θ̄,∇θL(θ̄)⟩+ 1

2 (θ
′ − θ̄)⊤ ∂2L(θ̃)

∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1]. Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄)

= (θ′ − θ̄)⊤
1

n

n∑
i=1

[
ℓ′′i
∂f(θ̃;xi)

∂θ

∂f(θ̃;xi)

∂θ

⊤

+ ℓ′i
∂2f(θ̃;xi)

∂θ2

]
(θ′ − θ̄)

=
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θ̄,

∂f(θ̃;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

ℓ′i(θ
′ − θ̄)⊤

∂2f(θ̃;xi)

∂θ2
(θ′ − θ̄)︸ ︷︷ ︸

I2

,

where ℓi = ℓ(yi, f(θ̃,xi)), ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃,xi))

, and ℓ′′i = ∂2ℓ(yi,z)
∂z2

∣∣∣∣
z=f(θ̃,xi))

. Now, note that

I1 =
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θ̄,

∂f(θ̃;xi)

∂θ

〉2

(a)

≤ 2

n

n∑
i=1

∥∥∥∥∥∂f(θ̃;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θ̄∥22

(b)

≤ 2ϱ2∥θ′ − θ̄∥22 ,

where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma 4.1.

For I2, first note that for square loss, ℓ′i = 2(ỹi − yi) with ỹi = f(θ̃;xi), so that for the vector
[ℓ′i]i, we have 1

n∥[ℓ
′
i]i∥22 = 4

n

∑n
i=1(ỹi − yi)

2 = 4L(θ̃). Further, with

Qi = (θ′ − θ̄)⊤
∂2f(θ̃t;xi)

∂θ2
(θ′ − θ̄),

we have

|Qi| =

∣∣∣∣∣(θ′ − θ̄)⊤
∂2f(θ̃;xi)

∂θ2
(θ′ − θ̄)

∣∣∣∣∣ ≤ ∥θ′ − θ̄∥22

∥∥∥∥∥∂2f(θ̃;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θ̄∥22√
m

.
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Then, we have

I2 =
1

n

n∑
i=1

ℓ′i(θ
′ − θ̄)⊤

∂2f(θ̃;xi)

∂θ2
(θ′ − θ̄)

≤

∣∣∣∣∣
n∑

i=1

(
1√
n
ℓ′i

)(
1√
n
Qi

)∣∣∣∣∣
(a)

≤
(
1

n
∥[ℓ′i]i∥22

)1/2
(
1

n

n∑
i=1

Q2
i

)1/2

≤ 2

√
L(θ̃)cH∥θ′ − θ̄∥22√

m
,

where (a) follows by Cauchy-Schwartz. Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) ≤

2ϱ2 + 2cH

√
L(θ̃)

√
m

 ∥θ′ − θ̄∥22

≤
[
2ϱ2 +

2cH
√
cρ1,γ√
m

]
∥θ′ − θ̄∥22 ,

where the last inequality follows from Lemma 4.2. This proves the first statement of the theorem.
Now, the second statement simply follows from the fact that by choosing γ (and so ρ and σ1)
according to the desirable operating regimes (see Remark 4.1) and by choosing ρ1 according to
Theorem 4.1, we obtain cH = O(poly(L)), ρ2 = O(poly(L)) and cρ1,γ = O(poly(L)). This
completes the proof.

Next, we state and prove the smoothness result for general losses.

Theorem B.2 (Local Smoothness of Loss). Under Assumptions 3, 1, and 2, with probability at least
(1− 2(L+1)

m ), L(θ), θ ∈ BSpec
ρ,ρ1

(θ0), is β-smooth with β = bϱ2 + cH
√
λt√

m
with ϱ as in Lemma 4.1 and

λt =
1
n

∑n
i=1(ℓ

′
i)

2 with ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃t,xi))

and θ̃ ∈ BSpec
ρ,ρ1

being some point in the segment

that joins θ′ and θ as in (11).

Proof. By the second order Taylor expansion about θ̄, we have L(θ′) = L(θ̄) + ⟨θ′ − θ̄,∇θL(θ̄)⟩+
1
2 (θ

′ − θ̄)⊤ ∂2L(θ̃)
∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1]. Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄)

= (θ′ − θ̄)⊤
1

n

n∑
i=1

[
ℓ′′i
∂f(θ̃;xi)

∂θ

∂f(θ̃;xi)

∂θ

⊤

+ ℓ′i
∂2f(θ̃;xi)

∂θ2

]
(θ′ − θ̄)

=
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θ̄,

∂f(θ̃;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

ℓ′i(θ
′ − θ̄)⊤

∂2f(θ̃;xi)

∂θ2
(θ′ − θ̄)︸ ︷︷ ︸

I2

.

where ℓi = ℓ(yi, f(θ̃,xi)), ℓ′i =
∂ℓ(yi,z)

∂z

∣∣∣∣
z=f(θ̃,xi))

, and ℓ′′i = ∂2ℓ(yi,z)
∂z2

∣∣∣∣
z=f(θ̃,xi))

. Now, note that

I1 =
1

n

n∑
i=1

ℓ′′i

〈
θ′ − θ̄,

∂f(θ̃;xi)

∂θ

〉2

(a)

≤ b

n

n∑
i=1

∥∥∥∥∥∂f(θ̃;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θ̄∥22

(b)

≤ bϱ2∥θ′ − θ̄∥22 ,
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where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma 4.1.

For I2, let λt = 1
n∥[ℓ

′
i]i∥22. Further, with Qt,i = (θ′ − θ̄)⊤ ∂2f(θ̃;xi)

∂θ2 (θ′ − θ̄), we have

|Qt,i| =

∣∣∣∣∣(θ′ − θ̄)⊤
∂2f(θ̃t;xi)

∂θ2
(θ′ − θ̄)

∣∣∣∣∣ ≤ ∥θ′ − θ̄∥22

∥∥∥∥∥∂2f(θ̃t;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θ̄∥22√
m

.

Then, we have

I2 =
1

n

n∑
i=1

ℓ′i(θ
′ − θ̄)⊤

∂2f(θ̃;xi)

∂θ2
(θ′ − θ̄)

≤

∣∣∣∣∣
n∑

i=1

(
1√
n
ℓ′i

)(
1√
n
Qi

)∣∣∣∣∣
(a)

≤
(
1

n
∥[ℓ′i]i∥22

)1/2
(
1

n

n∑
i=1

Q2
i

)1/2

≤
√
λt
cH∥θ′ − θ̄∥22√

m
,

where (a) follows by Cauchy-Schwartz. Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) ≤
[
bϱ2 +

cH
√
λt√
m

]
∥θ′ − θ̄∥22 .

This completes the proof.

Lemma 5.1 (RSC ⇒ RPL). Let Bt := Qt
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt). In the setting of Theorem 5.1,

if αt > 0, then the tuple (Bt, θt) satisfies the Restricted Polyak-Łojasiewicz (RPL) condition, i.e.,

L(θt)− inf
θ∈Bt

L(θ) ≤ 1

2αt
∥∇θL(θt)∥22 , (12)

with probability at least (1− 2(L+1)
m ).

Proof. Define
L̂θt(θ) := L(θt) + ⟨θ − θt,∇θL(θt)⟩+

αt

2
∥θ − θt∥22 .

By Theorem 5.1, ∀θ′ ∈ Bt, we have

L(θ′) ≥ L̂θt(θ
′) . (39)

Further, note that L̂θt(θ) is minimized at θ̂t+1 := θt −∇θL(θt)/αt and the minimum value is:

inf
θ
L̂θt(θ) = L̂θt(θ̂t+1) = L(θt)−

1

2αt
∥∇θL(θt)∥22 .

Then, we have

inf
θ∈Bt

L(θ)
(a)

≥ inf
θ∈Bt

L̂θt(θ) ≥ inf
θ
L̂θt(θ) = L(θt)−

1

2αt
∥∇θL(θt)∥22 ,

where (a) follows from (39). Rearranging terms completes the proof.

B.2 CONVERGENCE WITH RESTRICTED STRONG CONVEXITY

Lemma 5.2 (Local Loss Reduction in Bt). Let αt, β be as in Theorems 5.1 and 5.2 respectively,
and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Consider Assumptions 1, 2, and 4, and gradient descent
with step size ηt = ωt

β , ωt ∈ (0, 2). Then, for any θt+1 ∈ arginfθ∈Bt
L(θ), we have with probability

at least (1− 2(L+1)
m ),

L(θt+1)− L(θt+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θt+1)) . (13)
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Proof. Since L is β-smooth by Theorem 5.2, we have

L(θt+1) ≤ L(θt) + ⟨θt+1 − θt,∇θL(θt)⟩+
β

2
∥θt+1 − θt∥22

= L(θt)− ηt∥∇θL(θt)∥22 +
βη2t
2

∥∇θL(θt)∥22

= L(θt)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(40)

Since θ̄t+1 ∈ arginfθ∈Bt
L(θ) and αt > 0 by assumption, from Lemma 5.1 we obtain

−∥∇θL(θt)∥22 ≤ −2αt(L(θt)− L(θ̄t+1)) .

Hence

L(θt+1)− L(θ̄t+1) ≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(a)

≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
2αt(L(θt)− L(θ̄t+1))

=

(
1− 2αtηt

(
1− βηt

2

))
(L(θt)− L(θ̄t+1))

where (a) follows for any ηt ≤ 2
β because this implies 1− βηt

2 ≥ 0. Choosing ηt = ωt

β , ωt ∈ (0, 2),

L(θt+1)− L(θ̄t+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) .

This completes the proof.

Theorem 5.3 (Global Loss Reduction in BSpec
ρ,ρ1

(θ0)). Let αt, β be as in Theorems 5.1 and 5.2
respectively, and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Let θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θt+1 ∈

arginfθ∈Bt
L(θ), and γt := L(θt+1)−L(θ∗)

L(θt)−L(θ∗) . Let αt, β be as in Theorems 5.1 and 5.2 respectively,
and Bt := Qt

κ ∩ BSpec
ρ,ρ1

(θ0) ∩ BEuc
ρ2

(θt). Consider Assumptions 1, 2, and 4, and gradient descent

with step size ηt = ωt

β , ωt ∈ (0, 2). Then, with probability at least (1− 2(L+1)
m ), we have we have

γt ∈ [0, 1) and

L(θt+1)− L(θ∗) ≤
(
1− αtωt

β
(1− γt)(2− ωt)

)
(L(θt)− L(θ∗)) . (14)

Proof. We start by showing γt =
L(θ̄t+1)−L(θ∗)
L(θt)−L(θ∗) satisfies 0 ≤ γt < 1. Since θ∗ ∈ arginf

θ∈BSpec
ρ,ρ1

(θ0)

L(θ)

and θt+1 ∈ BSpec
ρ,ρ1

(θ0) by the definition of gradient descent and Assumption 4, we have

L(θ∗) ≤ L(θt+1)
(a)

≤ L(θt)−
ωt

β

(
1− ωt

2

)
∥∇θL(θt)∥22 < L(θt) ,

where (a) follows from (40). Since L(θ̄t+1) ≥ L(θ∗) and L(θt) > L(θ∗), we have γt ≥ 0. Further,
we have L(θ̄t+1) < L(θt), and so we have γt < 1. To see this, consider two cases: (i) θt+1 ∈ Bt

and (ii) θt+1 ̸∈ Bt. When θt+1 ∈ Bt, we have L(θ̄t+1) ≤ L(θt+1) < L(θt). When θt+1 ̸∈ Bt,
we only consider the case L(θt+1) < L(θ̄t+1); otherwise, if L(θt+1) ≥ L(θ̄t+1) then it follows
L(θ̄t+1) < L(θt) by (40). So, let us consider level sets of the loss between L(θt+1) and L(θt).
Because of the definition of Qt

κ (which defines a cone), the RSC property due to θ′ ∈ Bt, and
the smoohtness of the loss, we will have some θ′ ∈ Bt living in one of those level sets such that
L(θt+1) ≤ L(θ′) < L(θt), but then L(θ̄t+1) ≤ L(θ′) by definition, implying L(θ̄t+1) < L(θt).
Hence, γt < 1.

29



Published as a conference paper at ICLR 2023

Now, with ωt ∈ (0, 2), we have

L(θt+1)− L(θ∗)
= L(θt+1)− L(θ̄t+1) + L(θ̄t+1)− L(θ∗)

≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) +

(
1− αtωt

β
(2− ωt)

)
(L(θ̄t+1)− L(θ∗))

+

(
L(θ̄t+1)−

(
1− αtωt

β
(2− ωt)

)
L(θ̄t+1)

)
−
(
L(θ∗)−

(
1− αtωt

β
(2− ωt)

)
L(θ∗)

)
=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) + αtωt

β
(2− ωt)(L(θ̄t+1)− L(θ∗))

=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) + αtωt

β
(2− ωt)γt(L(θt)− L(θ∗))

=

(
1− αtωt

β
(1− γt)(2− ωt)

)
(L(θt)− L(θ∗)) .

That completes the proof.

C ANALYSIS FOR MODELS WITH k OUTPUTS

In this section, we illustrate that our results can be extended to neural models with k outputs.

C.1 OPTIMIZATION SETUP WITH k OUTPUTS

Consider a training set D = {xi,yi}ni=1,xi ∈ X ⊆ Rd,yi ∈ Y ⊆ Rk, k ≥ 1. We will denote by
X ∈ Rn×d the matrix whose ith row is x⊤

i . The goal is to minimize the square loss:

L(θ) = 1

n

n∑
i=1

∥yi − ŷi∥22 =
1

n

n∑
i=1

k∑
h=1

(yih − fh(θ;xi))
2 ,

where the prediction ŷi := f(θ;xi) ∈ Rk is from a deep model, fh(θ;xi), h ∈ [k] denotes the hth
output, and θ ∈ Rp denotes the parameter vector. In our setting f is a feed-forward multi-layer
(fully-connected) neural network with depth L and widths ml, l ∈ [L] := {1, . . . , L} given by

α(0)(x) = x ,

α(l)(x) = ϕ

(
1

√
ml−1

W (l)α(l−1)(x)

)
, l = 1, . . . , L ,

f(θ;x) = α(L+1)(x) =
1

√
mL

V ⊤α(L)(x) ,

(41)

where W (l) ∈ Rml×ml−1 , l ∈ [L] are layer-wise weight matrices, V ∈ RmL×k is the last layer
matrix, ϕ(·) is the smooth (pointwise) activation function, and the total set of parameters

θ := (vec(W (1))⊤, . . . , vec(W (L))⊤, V ⊤)⊤ ∈ R
∑L

l=1 mlml−1+kmL , (42)

with m0 = d. Note that the total number of parameters is p =
∑L

l=1mlml−1 + kmL. For simplicity,
we will assume that the width of all the layers is the same, i.e., ml = m, l ∈ [L].

Define the pointwise loss ℓih := (yih − ŷih)
2 and denote its first- and second-derivative w.r.t. ŷih as

ℓ′ih := −2(yih − ŷih) and ℓ′′ih := 2. Let fh(θ;x), h ∈ [k] denote the hth output, and let the gradient
and Hessian of fh(θ;xi) w.r.t. θ be denoted as

∇fih :=
∂fh(θ;xi)

∂θ
, and ∇2fih :=

∂2fh(θ;xi)

∂θ2
.
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By chain rule, the gradient and Hessian of the empirical loss w.r.t. θ are given by

∂L(θ)
∂θ

=
1

n

n∑
i=1

k∑
h=1

ℓ′ih∇fih ,

∂2L(θ)
∂θ2

=
1

n

n∑
i=1

k∑
h=1

[
ℓ′′ih∇fih∇f⊤ih + ℓ′ih∇2fih

]
.

For the last layer, note that

fh(θ;xi) =
1√
m
vT
hα

(L)(x)

where vh ∈ Rm is the last layer vector corresponding to output fh and V = [vh] ∈ Rm×k is the last
layer matrix. For the analysis, we update the definition of the spectral norm ball to work with each
last layer vector vh:

BSpec
ρ,ρ1

(θ̄) :=
{
θ ∈ Rp as in (42) | ∥W (ℓ) −W

(ℓ)∥2 ≤ ρ, ℓ ∈ [L], ∥vh − v̄h∥2 ≤ ρ1, h ∈ [k]
}
,

(43)

Similarly, we update the initialization so each of the last layer vectors are unit norm.

Assumption 5 (Initialization). The initialization weights w(l)
0,ij ∼ N (0, σ2

0) for l ∈ [L] where
σ0 = σ1

2
(
1+

√
log m√
2m

) , σ1 > 0, and v0,h, h ∈ [k] are random unit vectors with ∥v0,h∥2 = 1. Further,

we assume the input data satisfies: ∥xi∥2 =
√
d, i ∈ [n].

Based on the setup, following Theorem 4.1, we get the following result for the Hessian of each fh:

Theorem C.1 (Hessian Spectral Norm Bound). Under Assumptions 1, and 5, for θ ∈ BSpec
ρ,ρ1

(θ0) as

in (43), ρ1 = O(poly(L)), with probability at least (1− 2(L+1)
m ), for any xi, i ∈ [n], we have∥∥∇2

θf(θ;xi)
∥∥
2
≤ cH√

m
, (44)

with cH = O(poly(L)(1 + γ2L)) where γ := σ1 +
ρ√
m

.

C.2 RESTRICTED STRONG CONVEXITY AND SMOOTHNESS

Let us assume we have a sequence of iterates {θt}t≥0 from gradient descent. Our RSC analysis will
rely on the following Q̃t

κ-sets at step t, which avoids directions almost orthogonal to the average
gradient of the predictor.

Definition C.1 (Q̃t
κ sets). For iterate θt ∈ Rp, let ḡt = 1

nk

∑n
i=1

∑k
h=1 ∇θfh(θt;xi). For any

κ ∈ (0, 1], define Q̃t
κ := {θ | | cos(θ − θt, ḡt)| ≥ κ}.

We define the set Bt := Q̃t
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt). We focus on establishing RSC w.r.t. the tuple

(Bt, θt), whereBSpec
ρ,ρ1

(θ0) becomes the feasible set for the optimization andBEuc
ρ2

(θt) is an Euclidean
ball around the current iterate.

Theorem C.2 (RSC for k-output Square Loss). For square loss, under Assumptions 1, 5, and 3,
with probability at least (1− 2(L+1)

m ), ∀θ′ ∈ Q̃t
κ ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

L(θ′) ≥ L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
αt

2
∥θ′ − θt∥22 ,

with αt = c1k ∥ḡt∥22 −
kc2√
m

(45)

where ḡt =
1
nk

∑n
i=1

∑k
h=1 ∇θfh(θt;xi), c1 = 2κ2 and c2 = 2cH(2ϱρ2 +

√
kcρ1,γ), with cH is

as in Theorem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L satisfies RSC
w.r.t. (Q̃t

κ ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), θt) whenever αt > 0.

31



Published as a conference paper at ICLR 2023

Proof. For any θ′ ∈ Q̃t
κ ∩Bρ(θ0), by the second order Taylor expansion around θt, we have

L(θ′) = L(θt) + ⟨θ′ − θt,∇θL(θt)⟩+
1

2
(θ′ − θt)

⊤ ∂
2L(θ̃t)
∂θ2

(θ′ − θt) ,

where θ̃t = ξθ′ + (1− ξ)θt for some ξ ∈ [0, 1]. We note that θ̃t ∈ BSpec
ρ,ρ1

(θ0) since,

•
∥∥∥θ̃(l)t − θ

(l)
0

∥∥∥
2
=
∥∥∥ξθ′(l) − ξθ

(l)
0 + (1− ξ)θ

(l)
t − (1− ξ)θ

(l)
0

∥∥∥
2
≤ ξ

∥∥∥θ′(l) − θ
(l)
0

∥∥∥
2
+ (1−

ξ)
∥∥∥θ(l)t − θ

(l)
0

∥∥∥
2
≤ ρ, for any l ∈ [L], where the last inequality follows from our assumption

θ
′(l)
t θ

(l)
t ∈ BSpec

ρ,ρ1
(θ0); and

•
∥∥∥θ̃(L+1)

t − θ
(L+1)
0

∥∥∥
2
=
∥∥∥Ṽ − V0

∥∥∥
F

≤ kρ1, by following a similar derivation as in the
previous point.

Focusing on the quadratic form in the Taylor expansion and recalling the form of the Hessian, we get

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt)

= (θ′ − θt)
⊤ 1

n

n∑
i=1

k∑
h=1

[
ℓ′′ih

∂fh(θ̃t;xi)

∂θ

∂fh(θ̃t;xi)

∂θ

⊤

+ ℓ′ih
∂2fh(θ̃t;xi)

∂θ2

]
(θ′ − θt)

=
1

n

n∑
i=1

k∑
h=1

ℓ′′ih

〈
θ′ − θt,

∂fh(θ̃t;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

k∑
h=1

ℓ′ih(θ
′ − θt)

⊤ ∂
2fh(θ̃t;xi)

∂θ2
(θ′ − θt)︸ ︷︷ ︸

I2

,

where ℓih = ℓ(yih, fh(θ̃t,xi)), ℓ′ih = ∂ℓ(yih,z)
∂z

∣∣∣∣
z=fh(θ̃t,xi))

, and ℓ′′ih = ∂2ℓ(yih,z)
∂z2

∣∣∣∣
z=fh(θ̃t,xi))

.
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Now, note that

I1 =
1

n

n∑
i=1

k∑
h=1

ℓ′′ih

〈
θ′ − θt,

∂fh(θ̃t;xi)

∂θ

〉2

≥ 2

n

n∑
i=1

k∑
h=1

〈
θ′ − θt,

∂fh(θt;xi)

∂θ
+

(
∂fh(θ̃t;xi)

∂θ
− ∂fh(θt;xi)

∂θ

)〉2

=
2

n

n∑
i=1

k∑
h=1

〈
θ′ − θt,

∂fh(θt;xi)

∂θ

〉2

+
2

n

n∑
i=1

k∑
h=1

〈
θ′ − θt,

∂fh(θ̃t;xi)

∂θ
− ∂fh(θt;xi)

∂θ

〉2

+
4

n

n∑
i=1

k∑
h=1

〈
θ′ − θt,

∂fh(θt;xi)

∂θ

〉〈
θ′ − θt,

∂fh(θ̃t;xi)

∂θ
− ∂fh(θt;xi)

∂θ

〉
(a)

≥ 2

n

n∑
i=1

k∑
h=1

〈
θ′ − θt,

∂fh(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

k∑
h=1

∥∥∥∥∂fh(θt;xi)

∂θ

∥∥∥∥
2

∥∥∥∥∥∂fh(θ̃t;xi)

∂θ
− ∂fh(θt;xi)

∂θ

∥∥∥∥∥
2

∥θ′ − θt∥22

(b)

≥ 2k

〈
θ′ − θt,

1

nk

n∑
i=1

k∑
h=1

∂fh(θt;xi)

∂θ

〉2

− 4

n

n∑
i=1

k∑
h=1

ϱ
cH√
m
∥θ̃t − θt∥2∥θ′ − θt∥22

(c)

≥ 2k

〈
θ′ − θt,

1

nk

n∑
i=1

k∑
h=1

∂fh(θt;xi)

∂θ

〉2

− 4kϱcH√
m

∥θ′ − θt∥32

(d)

≥ 2κ2k

∥∥∥∥∥ 2

nk

n∑
i=1

k∑
h=1

∂fh(θt;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θt∥22 −
4kϱcH√

m
∥θ′ − θt∥32

= k

2κ2

∥∥∥∥∥ 1

nk

n∑
i=1

k∑
h=1

∂fh(θt;xi)

∂θ

∥∥∥∥∥
2

2

− 4ϱcH∥θ′ − θt∥2√
m

 ∥θ′ − θt∥22 ,

where (a) follows by Cauchy-Schwartz inequality; (b) follows by Jensen’s inequality (first term)
and the use of Theorem 4.1 and Lemma 4.1 due to θ̃t ∈ BSpec

ρ,ρ1
(θ0); (c) follows from

∥∥∥θ̃t − θt

∥∥∥
2
=

∥ξθ′ + (1− ξ)θt − θt∥2 = ξ ∥θ′ − θt∥ ≤ ∥θ′ − θt∥2; (d) follows since θ′ ∈ Qt
κ and from the fact

that p⊤q = cos(p, q) ∥p∥ ∥q∥ for any vectors p, q.

For analyzing I2, first note that for square loss, ℓ′ih,t = 2(ŷih,t − yih) with ŷih,t = fh(θt;xi), so that

for the vector [ℓ′ih,t], we have 1
n∥[ℓ

′
ih,t]∥22 = 4

n

∑n
i=1

∑k
h=1(ŷih,t − yih)

2 = 4L(θt). Further, with

Qih,t = (θ′ − θt)
⊤ ∂2fh(θ̃t;xi)

∂θ2 (θ′ − θt), we have

|Qih,t| =

∣∣∣∣∣(θ′ − θt)
⊤ ∂

2fh(θ̃t;xi)

∂θ2
(θ′ − θt)

∣∣∣∣∣ ≤ ∥θ′ − θt∥22

∥∥∥∥∥∂2fh(θ̃t;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θt∥22√
m

.

Now, note that

I2 =
1

n

n∑
i=1

k∑
h=1

ℓ′ih,tQih,t

≥ −

∣∣∣∣∣
n∑

i=1

k∑
h=1

(
1√
n
ℓ′ih,t

)(
1√
n
Qih,t

)∣∣∣∣∣
(a)

≥ −

(
1

n

n∑
i=1

k∑
h=1

ℓ′ih,t
2

)1/2(
1

n

n∑
i=1

k∑
h=1

Q2
ih,t

)1/2

≥ −2

√
L(θ̃t)

cHk∥θ′ − θt∥22√
m

,
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where (a) follows by Cauchy-Schwartz inequality.

Putting the lower bounds on I1 and I2 back, with ḡt =
1
nk

∑n
i=1

∑k
h=1

∂fh(θt;xi)
∂θ , we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥ k

2κ2 ∥ḡt∥22 −
4ϱcH∥θ′ − θt∥2 + 2cH

√
L(θ̃t)

√
m

 ∥θ′ − θt∥22 .

Now, since θ′ ∈ BEuc
ρ2

(θt), ∥θ′ − θt∥2 ≤ ρ2, so we have

(θ′ − θt)
⊤ ∂

2L(θ̃t)
∂θ2

(θ′ − θt) ≥ k

2κ2 ∥ḡt∥22 −
4ϱcHρ2 + 2cH

√
L(θ̃t)

√
m

 ∥θ′ − θt∥22

≥ k

(
2κ2 ∥ḡt∥22 −

4ϱcHρ2 + 2cH
√
kcρ1,γ√

m

)
∥θ′ − θt∥22 ,

where the last inequality follows from Lemma 4.2. That completes the proof.

Theorem C.3 (Local Smoothness for k–output Square Loss). Under Assumptions 1, 5, and 3, with
probability at least (1− 2(L+1)

m ), ∀θ, θ′ ∈ BSpec
ρ,ρ1

(θ0),

L(θ′) ≤ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+
β

2
∥θ′ − θ∥22 , with β = 2kϱ2 +

2kcH
√
kcρ1,γ√
m

, (46)

with cH as in Theorem 4.1, ϱ as in Lemma 4.1, and cρ1,γ as in Lemma 4.2. Consequently, L is locally
β-smooth.

Proof. By the second order Taylor expansion about θ̄ ∈ BSpec
ρ,ρ1

(θ0), we have L(θ′) = L(θ̄) + ⟨θ′ −
θ̄,∇θL(θ̄)⟩+ 1

2 (θ
′ − θ̄)⊤ ∂2L(θ̃)

∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1]. Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄)

= (θ′ − θ̄)⊤
1

n

n∑
i=1

k∑
h=1

[
ℓ′′ih

∂fh(θ̃;xi)

∂θ

∂fh(θ̃;xi)

∂θ

⊤

+ ℓ′ih
∂2fh(θ̃;xi)

∂θ2

]
(θ′ − θ̄)

=
1

n

n∑
i=1

k∑
h=1

ℓ′′ih

〈
θ′ − θ̄,

∂fh(θ̃;xi)

∂θ

〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

k∑
h=1

ℓ′ih(θ
′ − θ̄)⊤

∂2fh(θ̃;xi)

∂θ2
(θ′ − θ̄)︸ ︷︷ ︸

I2

,

where ℓih = ℓ(yi, fh(θ̃,xi)), ℓ′ih = ∂ℓ(yih,z)
∂z

∣∣∣∣
z=fh(θ̃,xi))

, and ℓ′′ih = ∂2ℓ(yih,z)
∂z2

∣∣∣∣
z=fh(θ̃,xi))

.

Now, note that

I1 =
1

n

n∑
i=1

k∑
h=1

ℓ′′ih

〈
θ′ − θ̄,

∂fh(θ̃;xi)

∂θ

〉2

(a)

≤ 2

n

n∑
i=1

k∑
h=1

∥∥∥∥∥∂fh(θ̃;xi)

∂θ

∥∥∥∥∥
2

2

∥θ′ − θ̄∥22

(b)

≤ 2kϱ2∥θ′ − θ̄∥22 ,
where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma 4.1.

For I2, first note that for square loss, ℓ′ih = 2(ŷih − yih) with ŷih = fh(θ̃;xi), so that for the vector
[ℓ′ih], we have 1

n∥[ℓ
′
ih]∥22 = 4

n

∑n
i=1

∑k
h=1(ŷih − yih)

2 = 4L(θ̃). Further, with

Qih = (θ′ − θ̄)⊤
∂2fh(θ̃t;xi)

∂θ2
(θ′ − θ̄),
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we have

|Qih| =

∣∣∣∣∣(θ′ − θ̄)⊤
∂2fh(θ̃;xi)

∂θ2
(θ′ − θ̄)

∣∣∣∣∣ ≤ ∥θ′ − θ̄∥22

∥∥∥∥∥∂2fh(θ̃;xi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θ̄∥22√
m

.

Then, we have

I2 =
1

n

n∑
i=1

k∑
h=1

ℓ′ih(θ
′ − θ̄)⊤

∂2fh(θ̃;xi)

∂θ2
(θ′ − θ̄)

≤

∣∣∣∣∣
n∑

i=1

k∑
h=1

(
1√
n
ℓ′ih

)(
1√
n
Qih

)∣∣∣∣∣
(a)

≤

(
1

n

k∑
h=1

∥[ℓ′ih]∥22

)1/2(
1

n

n∑
i=1

k∑
h=1

Q2
ih

)1/2

≤ 2

√
L(θ̃)kcH∥θ′ − θ̄∥22√

m
,

where (a) follows by Cauchy-Schwartz. Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) ≤

2kϱ2 + 2kcH

√
L(θ̃)

√
m

 ∥θ′ − θ̄∥22

≤

[
2kϱ2 +

2kcH
√
kcρ1,γ√
m

]
∥θ′ − θ̄∥22 ,

where the last inequality follows from Lemma 4.2. That completes the proof.

Note that we now have the RSC and smoothness results for the k-output case similar to the single
output case. With these properties, the rest of the convergence analysis for the k-output case stays the
same as before.
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