
Comparing High Entropy RL to Navmesh for Automated Collision Bug Testing

Comparing High Entropy Reinforcement Learning to
Navmesh for Automated Collision Bug Testing

Aurélien Chambon1, Nicolas Grelier1

{aurelien.chambon, nicolas.grelier}@pullupent.com

1PulluP Entertainment

Abstract

Automatic bug testing in video games is a topic of growing interest for industry and
academia. Reinforcement learning (RL) is emerging as a promising approach, partic-
ularly for detecting collision bugs, which are tedious and time-consuming for Quality
Assurance (QA) analysts to evaluate manually. However, prior works often rely on vi-
sual inspection of results of RL navigation agents. In this short paper, we introduce an
early-stage method for automating collision bug detection by comparing the traversal
time of an RL navigation agent with that of a navmesh agent. We pretrain this agent in
an obstacle free environment, deploy it along a route and exploit entropy-driven RL ex-
ploration to bypass obstacles, before resetting to the pretrained policy to continue map
coverage. This approach enables scalable map analysis for detecting clipping and colli-
sion issues, while automatically flagging anomalies for developer review. Additionally,
we provide early insights on the impact of high entropy tuning in our method.

1 Introduction

The video game industry has grown steadily over the past few decades. Budgets for major titles
now reach hundreds of millions of dollars, enabling greater complexity in gameplay, graphics, and
map size. Like all software, video games are prone to bugs, which can disrupt immersion or force
players to restart levels. To minimize such issues in commercial releases, developers and publishers
perform QA testing. This often involves identifying collision bugs that let players bypass obstacles
or get stuck where they should move freely.

To our knowledge, these tests are typically tedious and time-consuming, requiring exhaustive checks
across all obstacles, directions, and platform builds (e.g., PC, Xbox, PlayStation, Nintendo). Exist-
ing research on automatic collision bug detection using RL has shown promise; however, most prior
work relies heavily on visual inspection to identify bugs and does not scale to full-map evaluations.

In this short paper, we present an early idea for collision tests automation using a high entropy RL
agent. To detect missing collisions and stuck states, we compare the agent’s traversal time to that
of the navmesh: a precomputed shortest path between any two reachable points in the level. This
allows to automatically notifying developers for further review. We also present early insights on
the impact of high entropy tuning in our method.

2 Related Work

The application of RL in video games initially focused on using games as controlled environments
for evaluating and benchmarking algorithms. This approach can be referred to as games for AI
(Yannakakis & Togelius, 2018). More recently, the demonstrated success of RL agents achiev-
ing superhuman performance in these environments has spurred the integration of adversarial RL-



Reinforcement Learning and Video Games Workshop 2025

based agents into commercial games, such as Gran Turismo (Wurman et al., 2022) or For Honor
(Bairamian et al., 2024), marking the approach of AI for games.

In the context of AI for games, RL-based agents are employed not only to play alongside or against
human players, but also for Quality Assurance (QA) testing. These automated tests fall into two
main categories: gameplay testing (difficulty evaluation, player behavior modeling), and technical
testing (collision detection bugs and frame rate anomalies) (Le Pelletier de Woillemont et al., 2022).

In the literature, gameplay testing is often approached through Imitation Learning (IL) to repli-
cate human-like behavior when evaluating elements that are hard to measure with standard metrics
(Ahlberg et al., 2023). While gameplay testing often benefits from the expertise of QA analysts
and designers to iteratively refine game mechanics and user experience, technical testing typically
involves repetitive tasks better suited for automation, like map walkthroughs. Gillberg et al. (2023)
leveraged Proximal Policy Optimization (PPO) to propose an approach replacing traditional scripted
solutions for main path QA testing where scripting becomes impractical due to the high degree of
navigational freedom in Dead Space (2023) and Battlefield 2042.

Beyond main path evaluation, QA testing must also ensure the absence of technical issues such as
collision bugs, ensuring obstacles cannot be passed through. Bergdahl et al. (2020) used PPO to
detect collision-related bugs by tasking randomly initialized agents with locating randomly placed
orbs, visually exposing missing collision boundaries. However, their approach requires manual
inspection and is limited to individual obstacles. In contrast, Gordillo et al. (2021) incorporated
intrinsic curiosity into the reward function to promote broad exploration across the entire map, using
terminal states to identify stuck regions. Like the former, they rely on visual 3D path renderings
to detect collision issues. In this early work, we focus on AI for games applied to technical QA
testing. We aim to extend these two approaches by developing a method relying on high entropy
RL for systematically investigating entire game maps to detect collision bugs and efficiently notify
developers of potential issues.

3 Proposition

In this section, we introduce our method for collision bug finding based on RL. The core idea is to
compare the time taken by the RL agent to reach target locations against that of a navmesh agent,
which serves as ground truth. The pipeline, illustrated in Figure 1, consists of two components:
route generation and walkthrough, along with collision checking and a reset strategy.

Navmesh

pipi+1

p0

pN

Figure 1: Illustration of the proposed method

3.1 RL setup and Overview of the method

In our approach, a navigation RL agent is used to reach a target, following a policy π using a
policy gradient method based on entropy regulation, within a Partially Observable Markov Deci-
sion Process parametrized by the tuple (S,A, T , R,Ω,O, γ,H,Nmax). Here, S denotes the state
space, encompassing all information available within the game engine that characterizes the agent’s



Comparing High Entropy RL to Navmesh for Automated Collision Bug Testing

state. The observable portion of this space is O, comprising the agent’s horizontal velocity
(
R2

)
and forward vector angle (R) both relative to the target, the target’s position relative

(
R2

)
to the

agent, and nine raycasts proportions
(
[0, 1]9

)
. Each raycast is sent within the agent frame of refer-

ence, originates from [0, 0, h] and extends lray meters toward [cos(θi), sin(θi), h] with θ0 = 0 and
∀1 ≤ i ≤ 4, θi = π

4i , θi+4 = −θi. The parameter h corresponds to half of the agent’s capsule
collider height. The action space is defined as A = [−1, 1]2, including two continuous actions for
forward/backward movement and rotation. T is the transition function, R : S× [0, H] → R denotes
the reward function that is bound to change, with H being the episode horizon in timesteps. We use
a fixed discount factor γ = 0.99, and introduce Nmax as the configurable maximum amount of steps
allowed in the environment for a given task.

During pretraining, the agent operates in an obstacle-free environment of size A × Am2 and is
tasked with reaching a randomly placed target point. Once the target is reached, it is reset to a new
random location. The agent is trained using a specific reward function RPr, designed to incentivize
rapid target reaching. For s ∈ S and t ∈ [0, H], let ∆Tar(s, t), or simply ∆Tar, denote the Euclidian
distance between the target and the agent at timestep t. The reward RPr consists in a weighted
sum of a flat reward for reaching the target, a continuous reward representing the speed towards the
target, and a third component that decreases with each timestep.

RPr(s, t) = w11{0}(∆Tar)− w2
d∆Tar

dt
− w3t with (w1, w2, w3) ∈ R3

+ (1)

Once the agent has learned to navigate efficiently, the resulting policy πPr is stored. We leverage
this pretrained behavior to guide the agent along a predefined route that covers the entire map,
divided into small segments. This allows us to detect if the agent can get stuck or clip through the
environment.

3.2 Route generation and walkthrough

First, we manually split the map into connected subareas, defined as regions that are reachable
without jumping or interacting with in-game elements. Within each subarea, we build a grid-based
route designed to provide full coverage of each accessible region within the level (Figure 1).

For each route, the agent is initialized at a designated starting point p0 and follows the predefined
route, which is divided into small segments of fixed length ls, until it reaches the endpoint pN. Upon
completing a route in one area, the agent is teleported to the starting point of the next area.

For each segment [pi, pi+1], we record the time (in timesteps) taken by the RL agent to travel the
segment δRL

i and compare it to the reference time δNav
i of a navmesh agent, serving as ground truth.

If the RL agent takes significantly longer than the navmesh
(
δRL
i > δNav

i

)
, or fails to reach point

pi+1, the segment is flagged as anomalous and reported to the development team. Such anomalies
may indicate areas where players can fall through the map or become stuck.

3.3 Collision checking and reset strategy

Obstacles can be readily detected when pi+1 lies within a mesh. In such cases, the agent initiates a
RL phase to learn how to reach the next reachable point as fast as possible. The reward function is
changed to RObs, to encourage the agent to reach the target location in minimal time while avoiding
the obstacle. Let ∆Obs denote the distance between the nearest obstacle and the agent at timestep t.

RObs(s, t) = w11{0}(∆Tar)− w2
d∆Tar

dt
− w3t− w41{0}(∆Obs) with w4 ∈ R+ (2)

Initially, the agent attempts to reach the target by running directly into the obstacle, which is what we
desire in order to uncover missing collisions. Over time, its entropy-driven exploration enables it to
learn avoidance using the raycast observations. In parallel, we compute δNav

i and use it to implement



Reinforcement Learning and Video Games Workshop 2025

an adaptive reset and bypass strategy. Specifically, for each segment, the episode horizon H and the
maximum duration of the navigation task Nmax are set proportionally to δNav

i . This prevents the
agent from exploring irrelevant distant regions or being stuck on the task.

If the RL agent successfully reaches the target, we compare its best completion time δRL
i

against δNav
i . If the RL agent is faster

(
δNav
i > δRL

i

)
, this may indicate a collision issue such as

passing through geometry or a flaw in the navmesh representation. Conversely, if the RL agent
consistently fails to reach the target within the allocated time, it is a warning to investigate if the
navmesh agent’s success is intended. Both are flagged and reported to the development team. Fi-
nally, the policy is reset back to πPr once the obstacle has been successfully bypassed, allowing the
agent to return to its original exploratory behavior.

4 Early Insights: High Entropy Weight Tuning

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

50

100

150

c2

t T
ar

×103

(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

100

200

300

400

500

c2

t R
an

d
×103

(b)

0 100 200 300 400
0

50

100

150

tRand

t T
ar

×103

×103

(c)

c2 = 0.05

c2 = 0.25

Figure 2: Entropy tuning analysis on time to reach target and reaching a random behavior

We use a modified Learning Agents plugin for a 3D game on Unreal Engine (details on modi-
fications and hyperparameters are provided in the Appendix). It is based on a recurrent PPO,
and therefore incorporates a weighted entropy bonus in the loss function Schulman et al. (2017):
LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)].

In this section, we study how the entropy coefficient c2 affects the agent’s ability to diverge from πPr

to bypass obstacles and find collision bugs. We hypothesize higher entropy improves exploration but
excessive values lead to erratic behavior, easily detected as near immobility due to random rotation.

Post-pretraining, we deploy the agent in a small environment with an obstacle and a target behind it.
In Figure 2, we evaluate different c2 values by (a) measuring the timestep to reach the target tTar,
(b) the timestep to reach a random behavior tRand, and (c) the relation between the two. Our early
insights show that decreasing the number of timesteps needed to reach the target comes at the price
of decreasing the number of timesteps before the agent acts erratically. As we want to minize the
former, and maximize the latter, one has a choice to make.

5 Conclusion, limitations and future work

In this short paper, we presented the early idea of a method for automating collision testing across
an entire map by comparing the travel time of a RL-based navigation and a navmesh agent. Our
approach allows for automatic flagging of anomalies, which are then notified to the developers.

Two key limitations are reliance on the navmesh as ground truth; inaccurate navmesh baking under-
mines our method’s validity. Secondly, the agent’s inability to jump limits jump-related bug findings,
as remaining grounded is necessary for valid travel time comparisons with the navmesh agent.

In future work, we aim to empirically validate the method, examine the necessity of resetting to the
pretrained policy for effective bug detection, incorporate additional actions, and further analyze the
tradeoff related to the entropy coefficient and its impact on exploration and bug discovery.



Comparing High Entropy RL to Navmesh for Automated Collision Bug Testing

Appendix

In this appendix, we detail the modifications made to the plugin Learning Agents for Unreal Engine
and the parameters used for the experiment described in section 4.

Notably, we revert to the theoretical PPO from Schulman et al. (2017). First, the advantage is
normalized rather than clipped. Additionally, we apply an L2 loss for the critic and implement the
PPO clipped loss function that incorporates the advantage term within the min operation:

LCLIP
t (θ) = min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât) (3)

For reproducibility, the full set of parameters used in section 4 is listed in Table 1. These parameters
were obtained empirically, by manual testing and fine-tuning.

Table 1: Parameters used in section 4

VARIABLE VALUE
Agents in parallel 4
Rollout buffer size 1e4
Learning rate Policy & Critic 1e− 4
Policy & Critic Batch size 512
Policy window size 8
Critic warmup iterations 8
Iterations per gather 4
Epsilon clip 0.2
GAE Lambda 0.95
Discount factor 0.99
Policy & Critic Neural Network size 1× 128
Memory state size 64
c1 1e− 3
A 35m
w1 20
w2 1e− 2
w3 1e− 3
w4 50
ls, lray 20m

References

William Ahlberg, Alessandro Sestini, Konrad Tollmar, and Linus Gisslén. Generating personas
for games with multimodal adversarial imitation learning. In 2023 IEEE Conference on Games
(CoG), pp. 1–8, 2023. DOI: 10.1109/CoG57401.2023.10333167.

Daniel Bairamian, Philippe Marcotte, Joshua Romoff, Gabriel Robert, and Derek Nowrouzezahrai.
Minimax exploiter: A data efficient approach for competitive self-play. In Proceedings of the
23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’24, pp.
114–122, Richland, SC, 2024. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9798400704864.

Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. Augmenting automated
game testing with deep reinforcement learning. In 2020 IEEE Conference on Games (CoG), pp.
600–603, 2020. DOI: 10.1109/CoG47356.2020.9231552.



Reinforcement Learning and Video Games Workshop 2025

Jonas Gillberg, Joakim Bergdahl, Alessandro Sestini, Andrew Eakins, and Linus Gisslén. Technical
challenges of deploying reinforcement learning agents for game testing in AAA games. In 2023
IEEE Conference on Games (CoG), pp. 1–8, 2023. DOI: 10.1109/CoG57401.2023.10333194.

Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving playtesting
coverage via curiosity driven reinforcement learning agents. In 2021 IEEE Conference on Games
(CoG), pp. 1–8. IEEE Press, 2021. DOI: 10.1109/CoG52621.2021.9619048. URL https:
//doi.org/10.1109/CoG52621.2021.9619048.

Pierre Le Pelletier de Woillemont, Rémi Labory, and Vincent Corruble. Automated play-testing
through RL based human-like play-styles generation. Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 18(1):146–154, Oct. 2022.
DOI: 10.1609/aiide.v18i1.21958. URL https://ojs.aaai.org/index.php/AIIDE/
article/view/21958.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett,
Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Ki-
tano. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature,
602(7896):223–228, Feb 2022. ISSN 1476-4687. DOI: 10.1038/s41586-021-04357-7. URL
https://doi.org/10.1038/s41586-021-04357-7.

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer, 2018.
https://gameaibook.org.

https://doi.org/10.1109/CoG52621.2021.9619048
https://doi.org/10.1109/CoG52621.2021.9619048
https://ojs.aaai.org/index.php/AIIDE/article/view/21958
https://ojs.aaai.org/index.php/AIIDE/article/view/21958
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/s41586-021-04357-7
https://gameaibook.org

