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Abstract

Modern machine learning models are complicated. Most of them rely on convoluted
latent representations of their input to issue a prediction. To achieve greater
transparency than a black-box that connects inputs to predictions, it is necessary
to gain a deeper understanding of these latent representations. To that aim, we
propose SimplEx: a user-centred method that provides example-based explanations
with reference to a freely selected set of examples, called the corpus. SimplEx uses
the corpus to improve the user’s understanding of the latent space with post-hoc
explanations answering two questions: (1) Which corpus examples explain the
prediction issued for a given test example? (2) What features of these corpus
examples are relevant for the model to relate them to the test example? SimplEx
provides an answer by reconstructing the test latent representation as a mixture of
corpus latent representations. Further, we propose a novel approach, the Integrated
Jacobian, that allows SimplEx to make explicit the contribution of each corpus
feature in the mixture. Through experiments on tasks ranging from mortality
prediction to image classification, we demonstrate that these decompositions are
robust and accurate. With illustrative use cases in medicine, we show that SimplEx
empowers the user by highlighting relevant patterns in the corpus that explain
model representations. Moreover, we demonstrate how the freedom in choosing
the corpus allows the user to have personalized explanations in terms of examples
that are meaningful for them.

1 Introduction and related work

How can we make a machine learning model convincing? If accuracy is undoubtedly necessary,
it is rarely sufficient. As these models are used in critical areas such as medicine, finance and the
criminal justice system, their black-box nature appears as a major issue [1, 2, 3]. With the necessity
to address this problem, the landscape of explainable artificial intelligence (XAI) developed [4, 5].
A first approach in XAI is to focus on white-box models that are interpretable by design. However,
restricting to a class of inherently interpretable models often comes at the cost of lower prediction
accuracy [6]. In this work, we rather focus on post-hoc explainability techniques. These methods
aim at improving the interpretability of black-box models by complementing their predictions with
various kinds of explanations. In this way, it is possible to understand the prediction of a model
without sacrificing its prediction accuracy.
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Feature importance explanations are undoubtedly the most widespread type of post-hoc explanations.
Popular feature importance methods include SHAP [7, 8, 9], LIME [10], Integrated Gradients [11],
Contrastive Examples [12] and Masks [13, 14, 15]. These methods complement the model prediction
for an input example with a score attributed to each input feature. This score reflects the importance
of each feature for the model to issue its prediction. Knowing which features are important for a
model prediction certainly provides more information on the model than the prediction by itself.
However, these methods do not provide a reason as to why the model pays attention to these particular
features.

Another approach is to contextualize each model prediction with the help of relevant examples. In
fact, recent works [16] have demonstrated that human subjects often find example-based explanations
more insightful than feature importance explanations. Complementing the model’s predictions with
relevant examples previously seen by the model is commonly known as Case-Based Reasoning
(CBR) [17, 18, 19]. The implementations of CBR generally involve models that create a synthetic
representation of the dataset, where examples with similar patterns are summarized by prototypes [20,
21, 22]. At inference time, these models relate new examples to one or several prototypes to issue a
prediction. In this way, the patterns that are used by the model to issue a prediction are made explicit
with the help of relevant prototypes. A limitation of this approach is the restricted model architecture.
The aforementioned procedure requires to opt for a family of models that rely on prototypes to issue
a prediction. This family of model might not always be the most suitable for the task at hand. This
motivates the development of generic post-hoc methods that make few or no assumption on the
model.

The most common approach to provide example-based explanations for a wide variety of models
mirrors feature importance methods. The idea is to complement the model prediction by attributing
a score to each training example. This score reflects the importance of each training example for
the model to issue its prediction. This score will typically be computed by simulating the effect of
removing each training instance from the training set on the learned model [23]. Popular examples of
such methods include Influence Functions [24] and Data-Shapley [25, 26]. These methods offer the
advantage of being flexible enough to be used with a wide variety of models. They produce scores
that describe what the model could have predicted if some examples were absent from the training
set. This is very interesting in a data valuation perspective. However, in an explanation perspective, it
is not clear how to reconstruct the model predictions with these importance scores.

So far, we have only discussed works that provide explanations of a model output, which is the tip of
the iceberg. Modern machine learning models involve many convoluted transformations to deduce
the output from an input. These transformations are expressed in terms of intermediate variables that
are often called latent variables. Some treatment of these latent variables is necessary if we want
to provide explanations that take the model complexity into account. This motivates several works
that push the explainability task beyond the realm of model outputs. Among the most noticeable
contributions in this endeavour, we cite Concept Activation Vectors that create a dictionary between
human friendly concepts (such as the presence of stripes in an image) and their representation in
terms of latent vectors [27]. Another interesting contribution is the Deep k-Nearest Neighbors model
that contextualizes the prediction for an example with its Nearest Neighbours in the space of latent
variables, the latent space [28]. An alternative exploration of the latent space is offered by the
representer theorem that allows, under restrictive assumptions, to use latent vectors to decompose a
model’s prediction in terms of its training examples [29].

Figure 1: An example of corpus decomposition with SimplEx.

Contribution In this work,
we introduce a novel ap-
proach called SimplEx that
lies at the crossroad of the
above research directions.
SimplEx outputs post-hoc
explanations in the form of
Figure 1, where the model’s
prediction and latent repre-
sentation for a test example
is approximated as a mix-
ture of examples extracted
from a corpus of examples.
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In each case, SimplEx highlights the role played by each feature of each corpus example in the latent
space decomposition. SimplEx centralizes many functionalities that, to the best of our knowledge,
constitute a leap forward from the previous state of the art. (1) SimplEx gives the user freedom to
choose the corpus of examples whom with the model’s predictions are decomposed. Unlike previous
methods such as the representer theorem, there is no need for this corpus of examples to be equal
to the model’s training set. This is particularly interesting for two reasons: (a) the training set of a
model is not always accessible (b) the user might want explanations in terms of examples that make
sense for them. For instance, a doctor might want to understand the predictions of a risk model in
terms of patients they know. (2) The decompositions of SimplEx are valid, both in latent and output
space. We show that, in both cases, the corpus mixtures discovered by SimplEx offer significantly
more precision and robustness than previous methods such as Deep k-Nearest Neighbors and the
representer theorem. (3) SimplEx details the role played by each feature in the corpus mixture. This
is done by introducing Integrated Jacobians, a generalization of Integrated Gradients that makes
the contribution of each corpus feature explicit in the latent space decomposition. This creates a
bridge between two research directions that have mostly developed independently: feature importance
and example-based explanations [19, 30]. In Section 3 of the supplementary material, we report a
user-study involving 10 clinicians. This study supports the significance of our contribution.

2 SimplEx

In this section, we formulate our method rigorously. Our purpose is to explain the black-box prediction
for an unseen test example with the help of a set of known examples that we call the corpus. We start
with a clear statement of the family of black-boxes for which our method applies. Then, we detail
how the set of corpus examples can be used to decompose a black-box representation for the unseen
example. Finally, we show that the corpus decomposition can offer explanations at the feature level.

2.1 Preliminaries

Let X ⊆ RdX be an input (or feature) space and Y ⊆ RdY be an output (or label) space, where
dX and dY are respectively the dimension of the input and the output space. Our task is to explain
individual predictions of a given black-box f : X → Y . In order to build our explainability method,
we need to make an assumption on the family of black-boxes that we wish to interpret.
Assumption 2.1 (Black-box Restriction). We restrict to black-boxes f : X → Y that can be
decomposed as f = l ◦ g, where g : X → H maps an input x ∈ X to a latent vector h = g (x) ∈ H
and l : H → Y linearly maps1 a latent vector h ∈ H to an output y = l(h) = Ah ∈ Y . In the
following, we call H ⊆ RdH the latent space. Typically, this space has higher dimension than the
output space dH > dY .
Remark 2.1. In the context of deep-learning, this assumption requires that the last hidden layer maps
linearly to the output. While it is often the case, it is crucial in the following since we will use the
fact that linear combinations in latent space correspond to linear combinations in output space. Our
purpose is to gain insights on the structure of the latent space.
Remark 2.2. This assumption is compatible with regression and classification models, we just need
to clarify what we mean by output in the case of classification. If f is a classification black-box that
predicts the probabilities for each class, it will typically take the form in Assumption 2.1 up to a
normalizing map φ (typically a softmax): f = φ ◦ l ◦ g. In this case, we ignore2 the normalizing map
φ and define the output to be y = (l ◦ g) (x).

Our explanations for f rely on a set of examples that we call the corpus. These examples will typically
(but not necessarily) be a representative subset of the black-box training set. The corpus set has to be
understood as a set of reference examples that we want to use as building blocks to interpret unseen
examples. In order to index these examples, it will be useful to denote by [n1 : n2] the set of natural
numbers between the natural numbers n1 and n2 with n1 < n2. Further, we denote [n] = [1 : n] the
set of natural numbers between 1 and n ≥ 1. The corpus of examples is a set C = {xc | c ∈ [C]}
containing C ∈ N∗ examples xc ∈ X . In the following, superscripts are labels for examples and
subscripts are labels for vector components. In this way, xci has to be understood as the component i
of corpus example c.

1The map can in fact be affine. In the following, we omit the bias term b ∈ Y that can be reabsorbed in g.
2There is no loss of information as the output allows us to reconstruct class probabilities p via p = φ (y).
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2.2 A corpus of examples to explain a latent representation

Our purpose is to understand a prediction f(x) for an unseen test example x with the help of the
corpus. How can we decompose the prediction f(x) in terms of corpus predictions f(xc)? A
naive attempt would be to express x as a mixture of inputs from the corpus C: x =

∑C
c=1 w

cxc

with weights wc ∈ [0, 1] that sum to one
∑C

c=1 w
c = 1. The weakness of this approach is that

the signification of the mixture weights is not conserved if the black-box f is not a linear map:
f(
∑C

c=1 w
cxc) 6=∑C

c=1 w
cf(xc).

Fortunately, Assumption 2.1 offers us a better vector space to perform a corpus decomposition of
the unseen example x. We first note that the map g induces a latent representation of the corpus
g(C) = {hc = g(xc) | xc ∈ C} ⊂ H. Similarly, x has a latent representation h = g(x) ∈ H.
Following the above line of reasoning, we could therefore perform a corpus decomposition in latent
space h =

∑C
c=1 w

chc. Now, by using the linearity of l, we can compute the black-box output of this
mixture in latent space: l(

∑C
c=1 w

chc) =
∑C

c=1 w
cl(hc). In this case, the weights that are used to

decompose the latent representation h in terms of the latent representation of the corpus g(C) also
reflect the way in which the black-box prediction f(x) can be decomposed in terms of the corpus
outputs f(C). This hints that the latent spaceH is endowed with the appropriate geometry to make
corpus decompositions. More formally, we think in terms of the convex hull spanned by the corpus.
Definition 2.1 (Corpus Hull). The corpus convex hull spanned by a corpus C with latent representation
g(C) = {hc = g(xc) | xc ∈ C} ⊂ H is the convex set

CH (C) =
{

C∑
c=1

wchc

∣∣∣∣∣ wc ∈ [0, 1] ∀c ∈ [C] ∧
C∑

c=1

wc = 1

}
.

Remark 2.3. This is the set of latent vectors that are a mixture of the corpus latent vectors.

At this stage, it is important to notice that an exact corpus decomposition is not possible if h 6∈ CH(C).
In such a case, the best we can do is to find the element ĥ ∈ CH(C) that best approximates h. IfH is
endowed with a norm ‖ · ‖H, this corresponds to the convex optimization problem

ĥ = argmin
h̃ ∈ CH(C)

‖ h− h̃ ‖H . (1)

By definition, the corpus representation ĥ of h can be expanded3 as a mixture of elements from
g(C): ĥ =

∑C
c=1 w

chc. The weight can naturally be interpreted as a measure of importance in the
reconstruction of h with the corpus. Clearly, wc ≈ 0 for some c ∈ [C] indicates that hc does not play
a significant role in the corpus representation ĥ of h. On the other hand, wc ≈ 1 indicates that hc

generates the corpus representation ĥ by itself.

At this stage, a natural question arises: how can we know if the corpus approximation ĥ is a good
approximation for h? The answer is given by the residual vector h− ĥ that measures the shift between
the latent representation h = g(x) and the corpus hull CH(C). It is natural to use this residual vector
to detect examples that cannot be explained with the selected corpus of examples C.
Definition 2.2 (Corpus Residual). The corpus residual associated to a latent vector h ∈ H and its
corpus representation ĥ ∈ CH(C) solving (1) is the quantity

rC(h) =‖ h− ĥ ‖H= min
h̃ ∈ CH(C)

‖ h− h̃ ‖H .

gx1

x2
x3

h1

h2

h3x
h

ĥ

Figure 2: Corpus convex hull and residual.

In Section 1.1 of the supplementary material,
we show that the corpus residual also controls
the quality of the corpus approximation in out-
put space Y . All the corpus-related quantities
that we have introduced so far are summarized
visually in Figure 2. Note that this Figure is a
simplification of the reality as C will typically
be larger than 3 and dX , dH will typically be higher than 2. We are now endowed with a rigorous
way to decompose a test example in terms of corpus examples in latent space. In the next section, we
detail how to pull-back this decomposition to input space.

3Note that this decomposition might not be unique, more details in Section 1 of the supplementary material.
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2.3 Transferring the corpus explanation in input space

Now that we are endowed with a corpus decomposition ĥ =
∑C

c=1 w
chc that approximates h, it

would be convenient to have an understanding of the corpus decomposition in input space X . For
the sake of notation, we will assume that the corpus approximation is good so that it is unnecessary
to draw a distinction between the latent representation h of the unseen example x and its corpus
decomposition ĥ. If we want to understand the corpus decomposition in input space, a natural
approach [11] is to fix a baseline input x0 together with its latent representation h0 = g(x0). Let us
now decompose the representation shift h− h0 in terms of the corpus:

h− h0 =

C∑
c=1

wc
(
hc − h0

)
. (2)

With this decomposition, we understand the total shift in latent space h− h0 in terms of individual
contributions from each corpus member. In the following, we focus on the comparison between the
baseline and a single corpus example xc together with its latent representation hc by keeping in mind
that the full decomposition (2) can be reconstructed with the whole corpus. To bring the discussion in
input spaceX , we interpret the shift in latent space hc−h0 as resulting from a shift xc−x0 in the input
space. We are interested in the contribution of each feature to the latent space shift. To decompose
the shift in latent space in terms of the features, we parametrize the shift in input space with a line
γc : [0, 1] → X that goes from the baseline to the corpus example: γc(t) = x0 + t · (xc − x0) for
t ∈ [0, 1]. Together with the black-box, this line induces a curve in latent space g ◦ γc : [0, 1]→ H
that goes from the baseline latent representation h0 to the corpus example latent representation hc.
Let us now use an infinitesimal decomposition of this curve to make the contribution of each input
feature explicit. If we assume that g is differentiable at γc(t), we can use a first order approximation
of the curve at the vicinity of t ∈ (0, 1) to decompose the infinitesimal shift in latent space:

g ◦ γc(t+ δt)− g ◦ γc(t)︸ ︷︷ ︸
Infinitesimal shift in latent space

=

dX∑
i=1

∂g
∂xi

∣∣∣∣
γc(t)

dγci
dt

∣∣∣∣
t

δt+ o(δt)

=

dX∑
i=1

∂g
∂xi

∣∣∣∣
γc(t)

(xci − x0i ) · δt+ o(δt),

where we used γci (t) = x0i + t · (xci − x0i ) to obtain the second equality. In this decomposition, each
input feature contributes additively to the infinitesimal shift in latent space. It follows trivially that
the contribution of the input feature corresponding to input dimension i ∈ [dX ] is given by

δjci (t) = (xci − x0i ) ·
∂g
∂xi

∣∣∣∣
γc(t)

δt ∈ H.

In order to compute the overall contribution of feature i to the shift, we let δt→ 0 and we sum the
infinitesimal contributions along the line γc. If we assume4 that g is almost everywhere differentiable,
this sum converges to an integral in the limit δt→ 0 . This motivates the following definitions.
Definition 2.3 (Integrated Jacobian & Projection). The integrated Jacobian between a baseline
(x0,h0 = g(x0)) and a corpus example (xc,hc = g(xc)) ∈ X ×H associated to feature i ∈ [dX ] is

jci =
(
xci − x0i

) ∫ 1

0

∂g
∂xi

∣∣∣∣
γc(t)

dt ∈ H,

where γc(t) ≡ x0 + t ·
(
xc − x0

)
for t ∈ [0, 1]. This vector indicates the shift in latent space

induced by feature i of corpus example c when comparing the corpus example with the baseline. To
summarize this contribution to the shift h− h0 described in (2), we define the projected Jacobian

pci = projh−h0 (jci ) ≡
〈 h− h0 , jci 〉

〈 h− h0 , h− h0 〉
∈ R,

where 〈·,·〉 is an inner product forH and the normalization is chosen for the purpose of Proposition 2.1.
Remark 2.4. The integrated Jacobian can be seen as a latent-space generalization of Integrated
Gradients [11]. In Section 1.3 of the supplementary material, we establish the relationship between
the two quantities: IGc

i = l(jci ).
4This is not restrictive, DNNs with ReLU activation functions satisfy this assumption for instance.
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Figure 3: Integrated Jacobian and projection.

We summarize the Jacobian quantities in Fig-
ure 3. By inspecting the figure, we notice that
projected Jacobians encode the contribution of
feature i from corpus example c to the overall
shift in latent space: pci > 0 implies that this
feature creates a shift pointing in the same direc-
tion as the overall shift; pci < 0 implies that this
feature creates a shift pointing in the opposite
direction and pci = 0 implies that this feature
creates a shift in an orthogonal direction. We
use the projections to summarize the contribution of each feature in Figures 1 , 8 & 9. The colors
green and red indicate respectively a positive and negative projection. In addition to these geometrical
insights, Jacobian quantities come with natural properties.

Proposition 2.1 (Properties of Integrated Jacobians). Consider a baseline (x0,h0 = g(x0)) and a
test example together with their latent representation (x,h = g(x)) ∈ X × H. If the shift h − h0

admits a decomposition (2), the following properties hold.

(A) :
C∑

c=1

dX∑
i=1

wcjci = h− h0 (B) :

C∑
c=1

dX∑
i=1

wcpci = 1.

Proof. The proof is provided in Section 1.4 of the supplementary material.

These properties show that the integrated Jacobians and their projections are the quantities that we are
looking for: they transfer the corpus explanation into input space. The first equality decomposes the
shift in latent space in terms of contributions wcjci arising from each feature of each corpus example.
The second equality sets a natural scale to the contribution of each feature. For this reason, it is
natural to use wcpci to measure the contribution of feature i of corpus example c.

3 Experiments

In this section, we evaluate quantitatively several aspects of our method. In a first experiment, we
verify that the corpus decomposition scheme described in Section 2 yields good approximations for
the latent representation of test examples extracted from the same dataset as the corpus examples. In
a realistic clinical use case, we illustrate the usage of SimplEx in a set-up where different corpora
reflecting different datasets are used. The experiments are summarized below. In Section 2 of
the supplementary material, we provide more details and further experiments with time series and
synthetic data. The code for our method and experiments is available on the Github repository
https://github.com/JonathanCrabbe/Simplex. All the experiments have been replicated on
different machines.

3.1 Precision of corpus decomposition

Description The purpose of this experiment is to check if the corpus decompositions described in
Section 2 allows us to build good approximations of the latent representation of test examples. We
start with a datasetD that we split into a training setDtrain and a testing setDtest. We train a black-box
f for a given task on the training set Dtrain. We randomly sample a set of corpus examples from the
training set C ⊂ Dtrain (we omit the true labels for the corpus examples) and a set of test examples
from the testing set T ⊂ Dtest. For each test example x ∈ T , we build an approximation ĥ for
h = g(x) with the corpus examples latent representations. In each case, we let the method use only
K corpus examples to build the approximation. We repeat the experiment for several values of K.

Metrics We are interested in measuring the precision of the corpus approximation in latent space
and in output space. To that aim, we use the R2 score in both spaces. In this way, R2

H measures the
precision of the corpus approximation ĥ with respect to the true latent representation h. Similarly,
R2
Y measures the precision of the corpus approximation ŷ = l(ĥ) with respect to the true output

y = l(h). Both of these metrics satisfy −∞ < R2 ≤ 1. A higher R2 score is better with R2 = 1

6
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Figure 4: Precision of corpus decomposition for prostate cancer (avg ± std).

10 20 30 40 50
K

0.90

0.92

0.94

0.96

0.98

R
2 H

SimplEx

KNN Uniform

KNN Distance

(a) R2
H score for the latent approximation

10 20 30 40 50
K

0.93

0.94

0.95

0.96

0.97

0.98

0.99

R
2 Y

SimplEx

KNN Uniform

KNN Distance

(b) R2
Y score for the output approximation

Figure 5: Precision of corpus decomposition for MNIST (avg ± std).

corresponding to a perfect approximation. All the metrics are computed over the test examples T .
The experiments are repeated 10 times to report standard deviations across different runs.

Baselines We compare our method5 (SimplEx) with 3 baselines. A first approach, inspired by [28],
consists in using the K-nearest corpus neighbours in latent space to build the latent approximation
ĥ. Building on this idea, we introduce two baselines (1) KNN Uniform that takes the average
latent representation of the K-nearest corpus neighbours of h in latent space (2) KNN Distance that
computes the same average with weights wc inversely proportional to the distance ‖ h − hc ‖H.
Finally, we use the representer theorem [29] to produce an approximation ŷ of y with the corpus C.
Unlike the other methods, the representer theorem does not allow to produce an approximation in
latent space.

Datasets We use two different datasets with distinct tasks for our experiment: (1) 240,486 patients
enrolled in the American SEER program [31]. We consider the binary classification task of predicting
cancer mortality for patients with prostate cancer. We train a multilayer perceptron (MLP) for this
task. Since this task is simple, we show that a corpus of C = 100 patients yields good approximations.
(2) 70,000 MNIST images of handwritten digits [32]. We consider the multiclass classification task
of identifying the digit represented on each image. We train a convolutional neural network (CNN)
for the image classification. This classification task is more complex than the previous one (higher
dX and dY ), we show that a corpus of C = 1, 000 images yields good approximations in this case.

Results The results for SimplEx and the KNN baselines are presented in Figure 4 & 5. Several
things can be deduced from these results: (1) It is generally harder to produce a good approximation
in latent space than in output space as R2

H < R2
Y for most examples (2) SimplEx produces the

most accurate approximations, both in latent and output space. These approximations are of high
quality with R2 ≈ 1. (3) The trends are qualitatively different between SimplEx and the other
baselines. The accuracy of SimplEx increases with K and stabilizes when a small number of corpus
members contribute (K = 5 in both cases). The accuracy of the KNN baselines increases with K,

5To enforce SimplEx to select K examples, we add a L1 penalty making the C −K smallest weights vanish.
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reaches a maximum for a small K and steadily decreases for larger K. This can be understood
easily: whenK increases beyond the number of relevant corpus examples, irrelevant examples will be
added in the decomposition. SimplEx will typically annihilate the effect of these irrelevant examples
by setting their weights wc to zero in the corpus decomposition. The KNN baselines include the
irrelevant corpus members in the decomposition, which alters the quality of the approximation. This
suggests that K has to be tuned for each example with KNN baselines, while the optimal number of
corpus examples to contribute is learned by SimplEx. (4) The standard deviations indicate that the
performances of SimplEx are more consistent across different runs. This is particularly true in the
prostate cancer experiment, where the corpus size C is smaller. This suggests that SimplEx is more
robust than the baselines. (5) For the representer theorem, we have R2

Y = −(6.6± 6.1) · 107 for the
prostate cancer dataset and R2

Y = −(7.2± 6.6) for MNIST. This corresponds to poor estimations of
the black-box output. We propose some hypotheses to explain this observation in Section 2.1 of the
supplementary material.

3.2 Significance of Jacobian Projections

Description The purpose of this experiment is to check if SimplEx’s Jacobian Projections are a good
measure of the importance for each corpus feature in constructing the test latent representation h. In
the same setting as in the previous experiment, we start with a corpus C of C = 500 MNIST images.
We build a corpus approximation for an example x ∈ X with latent representation h = g(x) ∈ H.
The precision of this approximation is reflected by its corpus residual rC(h). For each corpus example
xc ∈ C, we would like to identify the features that are the most important in constructing the corpus
decomposition of h. With SimplEx, this is reflected by the Jacobian Projections pci . We evaluate these
scores for each feature i ∈ [dX ] of each corpus example c ∈ [C]. For each corpus image xc ∈ C, we
select the n most important pixels according to the Jacobian Projections and the baseline. In each
case, we build a mask mc that replaces these n most important pixels by black pixels. This yields a
corrupted corpus image xc

cor = mc � xc, where � denotes the Hadamard product. By corrupting all
the corpus images, we obtain a corrupted corpus Ccor . We analyse how well this corrupted corpus
approximates h, this yields a residual rCcor (h).

Metric We are interested in measuring the effectiveness of the corpus corruption. This is reflected
by the metric δcor(h) = rCcor (h)− rC(h) . A higher value for this metric indicates that the features
selected by the saliency method are more important for the corpus to produce a good approximation
of h in latent space. We repeat this experiment for 100 test examples and for different numbers n of
perturbed pixels.

Baseline As a baseline for our experiment, we use Integrated Gradients, which is close in spirit to our
method. In a similar fashion, we compute the Integrated Gradients IGc

i for each feature i ∈ [dX ] of
each corpus example c ∈ [C] and construct a corrupted corpus based on these scores.

Results The results are presented in the form of box plots in Figure 6. We observe that the corruptions
induced by the Jacobian Projections are significantly more impactful when few pixels are perturbed.
The two methods become equivalent when more pixels are perturbed. This demonstrates that Jacobian
Projections are more suitable to measure the importance of features when performing a latent space
reconstruction, as it is the case for SimplEx.

3.3 Use case: clinical risk model across countries

Very often, clinical risk models are produced and validated with the data of patients treated at a single
site [33]. This can cause problems when these models are deployed at different sites for two reasons:
(1) Patients from different sites can have different characteristics (2) Rules that are learned for one
site might not be true for another site. One possible way to alleviate this problem would be to detect
patients for which the model prediction is highly extrapolated and/or ambiguous. In this way, doctors
from different sites can make an enlightened use of the risk model rather than blindly believing the
model’s predictions. We demonstrate that SimplEx provides a natural framework for this set-up.

As in the previous experiment, we consider a dataset DUSA containing patients enrolled in the
American SEER program [31]. We train and validate an MLP risk model with DUSA. To give a
realistic realization of the above use-case, we assume that we want to deploy this risk model in a
different site: the United Kingdom. For this purpose, we extract DUK from the set of 10,086 patients
enrolled in the British Prostate Cancer UK program [34]. These patients are characterized by the
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Figure 6: Increase in the corpus residual caused by each method (higher is better).

same features for both DUK and DUSA. However, the datasets DUK and DUSA differ by a covariate
shift: patients from DUK are in general older and at earlier clinical stages.

When comparing the two populations in terms of the model, a first interesting question to ask is
whether the covariate shift between DUSA and DUK affects the model representation. To explore this
question, we take a first corpus of American patients CUSA ⊂ DUSA. If there is indeed a difference in
terms of the latent representations, we expect the representations of test examples fromDUK to be less
closely approximated by their decomposition with respect to CUSA. If this is true, the corpus residuals
associated to examples of DUK will typically larger than the ones associated to DUSA. To evaluate
this quantitatively, we consider a mixed set of test examples T sampled from both DUK and DUSA:
T ⊂ DUK t DUSA. We sample 100 examples from both sources: | T ∩ DUK| = |T ∩ DUSA| = 100.
We then approximate the latent representation of each example h ∈ g(T ) and compute the associated
corpus residual rCUSA(h). We sort the test examples from T by decreasing order of corpus residual
and we use this sorted list to see if we can detect the examples from DUK. We use previous baselines
for comparison, results are shown in Figure 7.
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Figure 7: Detecting UK patients (avg.±std.).

Several things can be deduced from this experiment.
(1) The results strongly suggest that the difference be-
tween the two datasets DUSA and DUK is reflected in
their latent representations. (2) The corpus residuals
from SimplEx offer the most reliable way to detect
examples that are different from the corpus examples
CUSA. None of the methods matches the maximal
baseline since some examples of DUSA resemble ex-
amples from DUK. (3) When the corpus examples
are representative of the training set, as it is the case
in the experiment, our approach based on SimplEx
provides a systematic way to detect test examples that
have representations that are different from the ones
produced at training time. A doctor should be more
sceptical with respect to model predictions associated
to larger residual with respect to CUSA as these arise from an extrapolation region of the latent space.

Let us now make the case more concrete. Suppose that an American and a British doctor use the
above risk model to predict the outcome for their patients. Each doctor wants to decompose the
predictions of the model in terms of patients they know. Hence, the American doctor selects a
corpus of American patients CUSA ⊂ DUSA and the British doctor selects a corpus of British patients
CUK ⊂ DUK. Both corpora have the same size CUSA = CUK = 1, 000. We suppose that the doctors
know the model prediction and the true outcome for each patient in their corpus. Both doctors are
sceptical about the risk model and want to use SimplEx to decide when it can be trusted. This leads
them to a natural question: is it possible to anticipate misclassification with the help of SimplEx?

In Figure 8 & 9, we provide two typical examples of misclassified British patients from DUK \ CUK
together with their decomposition in terms of the two corpora CUSA and CUK. These two examples
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exhibit two qualitatively different situations. In Figure 8, both the American and the British doctors
make the same observation: the model relates the test patient to corpus patients that are mostly
misclassified by the model. With the help of SimplEx, both doctors will rightfully be sceptical with
respect to the model’s prediction.

In Figure 9, something even more interesting occurs: the two corpus decompositions suggest different
conclusions. In the American doctor’s perspective, the prediction for this patient appears perfectly
coherent as all patients in the corpus decomposition have very similar features and all of them are
rightfully classified. On the other hand, the British doctor will reach the opposite conclusion as the
most relevant corpus patient is misclassified by the model. In this case, we have a perfect illustration
of the limitation of the transfer of a risk model from one site (America) to another (United Kingdom):
similar patients from different sites can have different outcomes. In both cases, since the test patient
is British, only the decomposition in terms of CUK really matters. In both cases, the British doctor
could have anticipated the misclassification of each patient with SimplEx.

Figure 8: A first misclassified patient.

Figure 9: A second misclassified patient.

4 Discussion

We have introduced SimplEx, a method that decomposes the model representations at inference time
in terms of a corpus. Through several experiments, we have demonstrated that these decompositions
are accurate and can easily be personalized to the user. Finally, by introducing Integrated Jacobians,
we have brought these explanations to the feature level.

We believe that our bridge between feature and example-based explainability opens up many avenues
for the future. A first interesting extension would be to investigate how SimplEx can be used to
understand latent representations involved in unsupervised learning. For instance, SimplEx could be
used to study the interpretability of self-expressive latent representations learned by autoencoders [35].
A second interesting possibility would be to design a rigorous scheme to select the optimal corpus for
a given model and dataset. Finally, a formulation where we allow the corpus to vary on the basis of
observations would be particularly interesting for online learning.
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