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ABSTRACT

Precipitation forecasting relies on heterogeneous data. Weather radar is accurate,
but coverage is geographically limited and costly to maintain. Weather stations
provide accurate but sparse point measurements, while satellites offer dense, high-
resolution coverage without direct rainfall retrieval. To overcome these limitations,
we propose Query-Conditioned Gaussian Splatting (QCGS), the first framework
to fuse automatic weather station (AWS) observations with satellite imagery for
generating precipitation fields. Unlike conventional 2D Gaussian splatting, which
renders the entire image plane, QCGS selectively renders only queried precipita-
tion regions, avoiding unnecessary computation in non-precipitating areas while
preserving sharp precipitation structures. The framework combines a radar point
proposal network that identifies rainfall-support locations with an implicit neural
representation (INR) network that predicts Gaussian parameters for each point.
QCGS enables efficient, resolution-flexible precipitation field generation in real
time. Through extensive evaluation with benchmark precipitation products, QCGS
demonstrates over 50% improvement in RMSE compared to conventional gridded
precipitation products, and consistently maintains high performance across multiple
spatiotemporal scales.

1 INTRODUCTION

Recent data-driven models, including transformer-(Bi et al. (2023); Lam et al. (2023); Pathak et al.
(2022); Nguyen et al. (2023); Chen et al. (2023b;a) and diffusion-(Price et al. (2025)) based forecasters
trained on ERA5, now rival or surpass traditional numerical weather prediction models (NWP) at
medium ranges.

Yet precipitation remains particularly challenging. (Bonavita, 2024; Liu et al., 2024; An et al.,
2025) Both NWP and current global models run at coarse resolutions of tens of kilometers (e.g.,
ERA5), while the precipitation features most relevant for local impacts emerge at the sub-grid
scale, intermittently and locally.1 This scale mismatch complicates observation and limits the
usefulness of forecasts for downstream decisions. Historically, short-range precipitation prediction
relied on radar echo extrapolation at its native resolution, since NWP could not resolve small-scale
convection. Operational systems therefore propagate reflectivity fields with optical-flow methods
such as Lucas–Kanade (Pulkkinen et al., 2019), with skill fundamentally limited by radar fidelity.
Deep learning reinforced this paradigm: radar-centric benchmarks (Veillette et al., 2020) enabled
models from ConvLSTM (Shi et al., 2015) to diffusion-based nowcasting models (Gao et al., 2023; Yu
et al., 2024a; Gong et al., 2024a;b) to achieve strong short-lead performance. However, precipitation
forecasting is far from solved. Most pipelines assume radar as the primary input, but radar networks
are costly and geographically limited, making these approaches feasible mainly in regions like Europe
and the United States. Moreover, radar resolution is effectively fixed, restricting representation of
processes below that scale.

These limitations motivate approaches that move beyond radar-only inputs. Conventional attempts
to construct precipitation fields without radar have relied on statistical interpolation from gauges.
Methods such as Barnes interpolation, kriging, or optimal interpolation (Alaka & Elvander, 1972;

1Rainfall often forms in localized, rapidly evolving structures smaller than the pixels of global models,
leaving these subgrid-scale processes unresolved in numerical weather prediction models.
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(a) Weather Station (b) Multiquadric

Interpolation

(c) QCGS (Ours) (d) Radar (GT)

Empirical weighting

Figure 1: Constructing precipitation fields from sparse AWS observations. (b) Classical Gaussian
interpolation oversmooths and blurs rainfall boundaries. (c) QCGS leverages satellite context and
gauge anchors to place Gaussians selectively, producing resolution-flexible and structurally consistent
fields. (d) Ground-truth radar at 2 km for reference.

Biau et al., 1999; Barnes, 1964) represent observations by assigning Gaussian weights across a grid.
While effective in principle, these interpolation methods tend to blur sharp precipitation boundaries
and are highly sensitive to station density and empirically chosen kernel parameters.

Recently, satellite-only approaches such as Sat2Radar (Veillette et al., 2020; Park et al., 2025) have
been proposed to approximate precipitation fields directly from spaceborne imagery. However, satel-
lite estimates carry substantial bias and uncertainty, often provide outputs only at fixed resolution, and
cannot directly leverage the physical accuracy of gauges. In parallel, several fusion-based approaches
have been explored, correcting satellite products or radar imagery with gauge observations (Ruan
et al., 2025; Benoit, 2021; Curcio et al., 2025). These methods improve gridded precipitation esti-
mates by bringing them closer to ground values, but they operate strictly on fixed-resolution grids
and do not cover continuous, resolution-free field reconstructions. Moreover, approaches such as
(Benoit, 2021) require radar reflectivity as input, whereas our goal is explicitly radar-free precipitation
generation.

In summary, radar-based methods have inherently limited spatial coverage and fixed resolution,
making them unable to resolve the fine-scale rainfall features that are of operational importance.

In this work, we propose to combine satellite imagery with automatic weather station (AWS) mea-
surements to generate precipitation fields without requiring radar. Our key insight is that the Gaussian
weighting long used in objective analysis is, from a representational perspective, equivalent to Gaus-
sian Splatting (GS) (Kerbl et al., 2023). Traditional interpolation computes a weighted sum of point
observations using Gaussian kernels; GS generalizes this idea by modeling each observation as a
Gaussian “blob” with learnable parameters, enabling resolution-agnostic rendering and selective
concentration of computation.

Formally, Gaussian-weighted interpolation at query location x is

fGW(x) =

∑N
i=1 Kσ(x− µi) yi∑N
j=1 Kσ(x− µj)

, (1)

where yi is the observation at station µi and Kσ is a Gaussian kernel. Gaussian Splatting (GS) instead
defines

fGS(x) =

N∑
i=1

ai KΣi
(x− µi), (2)

with learnable amplitude ai and covariance Σi. Classical Gaussian weighting is recovered as a special
case of GS with fixed isotropic kernels, while GS further allows anisotropy, adaptive amplitudes, and
resolution-free rendering, which are key advantages for representing sharp and localized precipitation
fields.

We introduce Query-Conditioned Gaussian Splatting (QCGS) for precipitation field generation.
QCGS takes satellite imagery and automatic weather station (AWS) observations as inputs and outputs
a continuous precipitation field on an arbitrary scale, without requiring radar. Unlike standard GS,
which directly fits Gaussian primitives to ground-truth fields, QCGS conditions Gaussian parameters
on satellite–AWS context, enabling generalization across regions and seasons.

2
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QCGS consists of three components: (1) Selective rendering, which evaluates only precipitation-
support regions, suppressing non-rain areas and improving efficiency. (2) AWS–satellite fusion, where
dense satellite features provide spatial coverage and sparse AWS gauges act as accurate anchors,
together proposing candidate Gaussian locations. (3) INR-based parameterization, in which an
implicit neural network maps local satellite features and query locations to Gaussian parameters
(amplitude and covariance), allowing adaptive, anisotropic blob shapes and resolution-free rendering.

Through this design, QCGS moves beyond traditional empirical weighting (as illustrated in Fig. 1) and
produces high-resolution precipitation fields that preserve sharp structures, remain computationally
efficient, and generalize effectively.

2 RELATED WORK

We discuss three relevant areas: Gaussian Splatting for efficient field generation, Implicit Neural
Representations (INR) for coordinate-conditioned modeling, and data-driven methods in meteorology.

2.1 GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) accelerates NeRF (Mildenhall et al., 2021) by
representing scenes with Gaussian kernels and avoiding redundant rendering, enabling real-time
performance (Wu et al., 2024; Huang et al., 2024; Yu et al., 2024b; Guédon & Lepetit, 2024; Yang
et al., 2024). Recent work has extended this idea to 2D images for compression and super-resolution,
such as GaussianImage (Zhang et al., 2024), Image-GS (Zhang et al., 2025), and LIG (Zhu et al.,
2025), which allocate Gaussians adaptively based on gradients or frequency content. Follow-ups
like GaussianSR (Hu et al., 2025), ContinuousSR (Peng et al., 2025), and GSASR (Chen et al.,
2025) introduced kernel banks and feed-forward prediction for scalability and generalization. While
effective, these methods remain image-specific, motivating our adaptation to precipitation fields.

2.2 IMPLICIT NEURAL REPRESENTATIONS

INR (Sitzmann et al., 2020) encodes signals as continuous coordinate-to-value mappings, widely
applied to 3D scene reconstruction (Mildenhall et al., 2021; Barron et al., 2021; Martin-Brualla
et al., 2021; Barron et al., 2022; Müller et al., 2022), image compression, and arbitrary-scale super-
resolution (Chen et al., 2021; Yang et al., 2021; Cao et al., 2023; Lee & Jin, 2022). Its strength lies
in resolution-free modeling, but INRs must query all coordinates and lack explicit spatial structure,
limiting efficiency. Nonetheless, their representational flexibility motivates our query-conditioned
adaptation for precipitation fields.

2.3 APPLICATIONS OF DEEP LEARNING IN METEOROLOGY

Deep learning has transformed meteorology, especially in precipitation nowcasting and weather
prediction. ConvLSTM (Shi et al., 2015) pioneered spatiotemporal forecasting, followed by GAN-
based (Ravuri et al., 2021) and transformer-based (Bi et al., 2023) approaches that rival or surpass
NWP models. More recent methods span precipitation forecasting (Gao et al., 2022b; Veillette et al.,
2020; Gong et al., 2024a; Yu et al., 2024a; Yoon et al., 2023; Gao et al., 2023) and global atmospheric
variable prediction (Bi et al., 2023; Lam et al., 2023; Kochkov et al., 2024; Chen et al., 2023b; Xu
et al., 2024; Xiao et al., 2023). Despite progress, most rely on radar or reanalysis data (e.g., ERA5).
Recent data assimilation methods (Xiao et al., 2023) attempt to reduce this dependency, but to our
knowledge, our work is the first to directly generate precipitation initial conditions from satellite and
station data.

3 PRELIMINARIES

We summarize the key notions from the perspective of 2D image rendering.

Implicit Neural Representations (INR). An INR models an image as a continuous function

fθ : R2→RC ,

3
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Figure 2: Overview of the proposed QCGS pipeline. AWS observations and satellite BT imagery
are fused to produce a coarse surrogate field and candidate rainfall-support points. A rainfall-aware
sampling strategy and an INR-based Gaussian estimator then predict splatting parameters, yielding
resolution-flexible precipitation fields via selective Gaussian rendering.

that maps spatial coordinates x ∈ R2 to values. Rendering an H×W image requires evaluating fθ at
all pixel centers x ∈ Ω, which scales as O(HW ). INRs are resolution-free and differentiable w.r.t.
coordinates, but dense querying makes high-resolution synthesis slow.

Gaussian Splatting. 3D Gaussian Splatting (3DGS) represents a scene as a set of anisotropic
3D Gaussian primitives. Each primitive has a center µk ∈ R3, covariance Σk ∈ S3++, opacity αk,
and color ck. Rendering proceeds by projecting the Gaussians to the image plane, linearizing the
covariance with the Jacobian of the projection, and compositing front-to-back with depth ordering:

I(u) =

K∑
k=1

Tk(u)αk Gk(u) ck,

where Tk(u) is the accumulated transmittance and Gk(u) the screen-space Gaussian footprint.

In contrast, 2D Gaussian Splatting (2DGS) removes geometry-specific elements and operates
directly on the image plane. No 3D positions, projections, or depth ordering are required. Each
primitive is simply a 2D Gaussian with center

µi ∈ R2, Σi ∈ S2++, αi ∈ R.

The rendered value at a pixel location x ∈ Ω is

I(x) =

K∑
i=1

αi exp
(
− 1

2 (x− µi)
⊤Σ−1

i (x− µi)
)
.

Thus 2DGS retains the resolution-free rendering benefits of 3DGS while being simpler and computa-
tionally cheaper, making it well suited for representing sharp, localized precipitation fields.

4 METHOD

As illustrated in Fig. 2, QCGS follows a three-stage pipeline that fuses AWS gauge observations with
satellite imagery to generate precipitation fields. Importantly, the radar point proposal network and
the Gaussian rendering module are trained separately.

We first train the radar point proposal network to produce reliable rainfall-support locations, and
then train the Gaussian rendering stage on top of these fixed proposals. Thus, QCGS operates as
a two-stage model in terms of training, even though the full pipeline consists of three conceptual
components.
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4.1 TASK DEFINITION

We aim to estimate a high-resolution precipitation field Rt(x) using two inputs at time t: a
satellite image Y t∈RH×W and sparse AWS measurements Xt = {xt

i | i ∈ I} located at irregular
coordinates {µi}.

Formally, the goal is to learn a mapping

FΘ : (Y t, Xt) 7−→ Rt(x), x ∈ Ω,

where Ω denotes a continuous 2D spatial domain. Unlike standard Sat→Radar image-to-image
translation (Park et al., 2025), our input consists of both a dense image and an irregular point set, and
the output must be defined on arbitrary query locations rather than a fixed grid.

Because the satellite image is coarse (2 km resolution) and the output precipitation field may be
queried at much finer scales (e.g., 0.5 km or continuous coordinates), the task also exhibits a super-
resolution nature:

Rt : Ωcoarse → Ωfine, |Ωfine| ≫ |Ωcoarse|.

The model parameters are estimated by minimizing reconstruction loss against radar observations
during training:

Θ∗ = argmin
Θ

L
(
Rt, FΘ(Y

t, Xt)
)
,

In summary, the task is a hybrid problem combining image + point fusion, continuous field recon-
struction, and resolution-free rendering.

4.2 RADAR POINT PROPOSAL NETWORK

Automatic weather station (AWS) observations provide direct gauge measurements of rainfall.
Although they offer ground truth rainfall values, the data are sparse and often contain missing values
or outliers. In contrast, satellite-based brightness temperature (BT) imagery Y t ∈ RH×W provides
dense spatial coverage and is generally reliable, but it only correlates indirectly with precipitation.
We combine these two complementary sources to compensate for their respective limitations.

At each time step t ∈ T , the set of AWS observations is defined as

Xt = {xt
i | i ∈ I}, I = {1, . . . , n},

where xt
i denotes the rainfall measured at station i and n = |I| is the number of stations. Since Xt

may include missing values or anomalies, we employ a graph attention network (Velickovic et al.,
2017) fx(·; θx) to extract a robust representation:

zt = fx(X
t).

The satellite BT image Y t is processed by an encoder–decoder network fy(·; θy) to produce a dense
rainfall prediction:

R̂t = fy(Y
t, zt),

where the AWS representation zt is fused with the decoder via cross-attention.

During training, the model parameters are optimized by minimizing the mean squared error (MSE)
between the predicted rainfall R̂t and the radar-derived ground truth Rt:

LMSE =
1

|T |
∑
t∈T

∥∥R̂t −Rt
∥∥2
2
.

4.3 RAINFALL-AWARE POINT SAMPLING

In precipitation forecasting, light rain rarely leads to disasters, while heavy precipitation events
are much more likely to trigger hazards and accidents. Therefore, the most critical objective is
to accurately predict regions of heavy precipitation. Uniformly sampling points across the entire

5
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(a) Ground truth (Radar) (b) Uniform sampling (c) Edge sampling (e) Heavyrain sampling (f) Mixed sampling

Figure 3: Visualization of different point sampling strategies for precipitation fields. (a) Ground truth
radar field, (b) uniform sampling, (c) edge-based sampling, (d) heavy-rain sampling, and (e) our mixed
strategy. Uniform sampling provides overall coverage but fails to capture details in heavy rainfall
regions. Edge-based sampling emphasizes boundaries but overlooks texture information. Heavy-rain
sampling concentrates points on strong precipitation, leaving light-rain areas underrepresented. In
contrast, our mixed strategy balances these factors, yielding both accurate representation of heavy
rainfall and adequate spatial coverage across the entire field.

prediction field R̂t is inefficient, as it treats all regions equally regardless of their importance. To
overcome this limitation, we design a sampling strategy that incorporates three factors: (1) gradients
of R̂t to emphasize edges, (2) uniform coverage within R̂t, and (3) rainfall intensity to prioritize
heavy-rain regions.

We denote image-domain coordinates as x ∈ Ω, and write R̂t(x) for its rainfall value.

Let R̂t ∈ RH×W be a coarse precipitation field at time t, and define the rain-support mask as

St = {x | R̂t(x) > τ},
with a threshold τ . We then construct a convex mixture of three normalized terms:

Pinit(x) = αGSt
(x) + β USt

(x) + γ H(x), α, β, γ ≥ 0, α+ β + γ = 1,

where

USt(x) =
⊮{x∈St}∑

h,w ⊮{(h,w)∈St}+ε , GSt(x) =
⊮{x∈St} ∥∇R̂t(x)∥2∑

h,w ⊮{(h,w)∈St} ∥∇R̂t(h,w)∥2+ε
, H(x) = exp(R̂t(x)/T )∑

h,w exp(R̂t(h,w)/T )
.

Here, ∇R̂t(x) denotes the spatial gradient of the coarse precipitation field, T > 0 is a temperature
parameter controlling the sharpness toward heavy-rain pixels, and ε > 0 is a small constant (set to
10−8 in our experiments) introduced to ensure numerical stability when the denominator approaches
zero.

4.4 INR-BASED GAUSSIAN PARAMETER ESTIMATOR

Our objective is to generate dense, high-quality precipitation fields from satellite imagery and sparse
AWS observations, even without radar ground truth. Conventional Gaussian splatting often overfits
to a single image and does not generalize; we instead design an INR-based estimator that predicts
Gaussian parameters only at rainfall-support queries, avoiding unnecessary computation in dry
regions.

Given proposal points µ(n) = {(u(n)
x , u

(n)
y , s(n))}Nn=1 from the Radar Point Proposal Network,

the estimator is conditioned on intermediate satellite features fy(Y t, zt) ∈ RH′×W ′×D. Through
cross-attention, we predict Gaussian parameters

θ(n) = {σ(n)
x , σ(n)

y , ρ(n), α(n)},

where (σ(n)
x , σ

(n)
y , ρ(n)) define the covariance Σ(n) ∈ S2++ and α(n) controls the Gaussian amplitude.

At AWS stations with nonzero rainfall, we directly set α(n) = s(n), anchoring the field to ground-truth
observations.

Training minimizes reconstruction error against radar fields with regularization:

L = 1
|Ω|

∑
x∈Ω

(R̃t(x)−Rt(x))2 + λσ

∑
n

(σ(n)
x + σ(n)

y ) + λα

∑
n

α(n).

6
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The final precipitation map is rendered by differentiable 2D Gaussian splatting:

R̃t(x) =

N∑
n=1

α(n) exp
(
− 1

2 (x− µ(n))⊤Σ(n)−1

(x− µ(n))
)
,

with µ(n) = (u
(n)
x , u

(n)
y ). This operator is fully differentiable, enabling end-to-end training.

5 EXPERIMENTS

We evaluate QCGS on satellite and AWS gauge data from 2023, and compare against both classical
gridded precipitation products (IMERG from the national aeronautics and space administration
(NASA), MSWEP from University of Maryland, GSMaP from the Japan aerospace exploration
agency (JAXA)) and deep learning baselines based on image-to-image translation.

5.1 EXPERIMENTAL SETTING

Dataset. We use three data sources: (i) automatic weather station (AWS) gauges providing sparse
point-wise rainfall measurements over land, (ii) GK2A geostationary satellite imagery (IR 10.5µm
channel, 2 km resolution), and (iii) KMA HSP weather radar fields (0.5 km resolution). We crop the
study domain to a 480×480 grid (35.5◦–37.8◦N, 126.4◦–129.1◦E), where gauge density is relatively
high. Models are trained on hourly data from 2019–2022 and validated on 2023. Although training
is performed at 2 km resolution, we also evaluate at 0.5 km to demonstrate the ability of QCGS to
render rainfall fields at arbitrary scales.

Evaluation Metrics. We evaluate QCGS using RMSE for overall error and LPIPS (Zhang et al.,
2018) for perceptual similarity. For grid-point verification, we report Critical Success Index (CSI),
Categorical CSI, Fraction Skill Score (FSS; Roberts & Lean (2008)) with a 5× 5 window, and bias.
We also compute Pearson and Spearman correlations to assess spatial patterns and extremes.

Comparison Methods. We benchmark QCGS against three categories of baselines. For classi-
cal interpolation, we use Barnes (Barnes, 1973), Multi-quadric(MQ, Nuss & Titley (1994)), and
Kriging (Lucas et al., 2022) methods. For operational products, we include IMERG (Huffman
et al., 2015) (NASA), a global 0.1° multi-satellite retrieval widely used in hydrology; MSWEP (Beck
et al., 2019) (University of Maryland), a long-term 0.1° dataset that blends gauges, satellite, and
reanalysis; and GSMaP (Mega et al., 2018) (JAXA), a near–real-time 0.1° product combining passive
microwave radiometers with geostationary infrared sensors. We also compare GK2A rain rate 2-km
product as regional quantitative precipitation estimation. For data-driven baselines, we compare
against NPM (Park et al., 2025), the first model to demonstrate precipitation forecasting from satellite
imagery alone, where we use the sat-to-radar stage for fairness; BBDM (Li et al., 2023), a diffusion-
based image-to-image framework adapted for precipitation downscaling; and Pix2PixHD (Wang
et al., 2018), a conditional GAN commonly applied to satellite-to-rainfall mapping, though often
limited in preserving sharp convective structures.

By comparing against both operational references and learning-based models, we ensure that QCGS
is evaluated against the full spectrum of established standards and state-of-the-art deep methods.

Implementation Details. We fix the number of query points to K=6000, which provides a optimal
balance between fidelity and efficiency. The surrogate radar field R̂ is produced by a ConvNeXt-based
U-Net with four encoder/decoder stages and skip connections, using group normalization and GELU
activations. AWS observations are embedded via a three-layer Graph Attention Network (8 heads,
hidden size 128) and fused with satellite features in the decoder through cross-attention.

For point selection, we adopt a rainfall-aware strategy combining edge, intensity, and uniform
terms (0.3/0.4/0.3), with non-maximum suppression to avoid redundancy. Each query is passed to
a five-layer MLP INR (hidden size 128, sinusoidal encoding), which predicts Gaussian parameters
{σx, σy, ρ, α}. At AWS sites with nonzero rainfall, α is set directly to the observed value, anchoring
the generated fields.

7
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Table 1: Quantitative results across multiple spatiotemporal scales. Each block shows the number of
evaluated cases in parentheses. QCGS is trained at 2 km and downsampled to 0.1◦ for comparison
with global products. Best scores per block are in bold.

Temporal scale (cases) Category Method Res. RMSE↓ LPIPS↓ CSI↑ FSS↑ CC↑ Bias≈1

Snapshot (1154)

Data-driven Pix2PixHD 0.5 km 2.45 0.62 0.59 0.71 0.55 0.82
Data-driven NPM 0.5 km 1.95 0.58 0.59 0.78 0.68 0.88
Data-driven BBDM 0.5 km 1.68 0.54 0.64 0.84 0.75 0.93

Satellite Product GK2A 2.0 km 2.89 0.40 0.20 0.37 0.12 -
Classical Interp. Barnes 2.0 km 2.56 0.39 0.47 0.68 0.42 0.98
Classical Interp. Kriging 2.0 km 2.43 0.40 0.50 0.69 0.45 1.03
Classical Interp. 3DMQ 2.0 km 2.47 0.41 0.49 0.68 0.44 1.00

Ours QCGS 0.5 km 1.23 0.49 0.74 0.91 0.90 1.02
Ours QCGS 2.0 km 1.00 0.19 0.76 0.96 0.93 1.03

Hourly mean (1154)
Satellite Product IMERG 0.1◦ 1.66 0.34 0.50 0.72 0.42 0.85
Satellite Product GSMaP 0.1◦ 1.95 0.38 0.43 0.64 0.39 0.78
Ours QCGS 0.1◦ 1.33 0.21 0.66 0.93 0.74 0.97

Daily accum. (70)

Satellite Product IMERG 0.1◦ 14.08 0.33 0.85 0.92 0.72 0.95
Satellite Product GSMaP 0.1◦ 15.89 0.35 0.92 0.82 0.70 0.88
Satellite Product MSWEP 0.1◦ 12.44 0.32 0.95 0.91 0.78 1.07
Ours QCGS 0.1◦ 6.68 0.21 0.93 0.99 0.95 1.02

Training uses Adam (1×10−4 initial lr, 1×10−5 weight decay, cosine schedule, gradient clipping
at 1.0), batch size 16, for 100 epochs. Regularization terms λσ = 10−3 and λα = 10−4 prevent
over-smoothing. All experiments are conducted on 8×NVIDIA H200 GPUs.

5.2 QUANTITATIVE RESULTS

Comparison with data-driven approaches. All data-driven baselines (Pix2PixHD, NPM, BBDM)
were trained and evaluated directly at 0.5 km resolution for fairness. In contrast, QCGS was trained
only at 2 km resolution and later rendered to 0.5 km during evaluation. Despite this apparent
disadvantage, QCGS consistently achieved the best performance across all metrics, as summarized in
Table 1. This robustness can be explained by two key design choices.

First, QCGS explicitly fuses AWS observations. Although gauges are sparse, their ground-level
accuracy provides strong local anchors that substantially enhance field reconstruction and correct
biases that purely satellite-driven models cannot address. Our ablation study (Sec. 5.4) confirms
this, since removing AWS information causes a sharp decline in both pixel-wise accuracy and spatial
correlation.

Second, QCGS leverages Gaussian Splatting (GS) to achieve resolution-free rendering. While existing
models are tied to the resolution of their training grid (for example, 0.5 km), GS allows QCGS to
generate rainfall fields at arbitrary scales while focusing computation on rainfall-support regions.
This capability preserves fine-scale convective boundaries without requiring retraining, in contrast to
conventional super-resolution methods that often blur or oversmooth extremes.

Taken together, AWS fusion and GS-based resolution-free rendering explain why QCGS outperforms
models trained at higher resolution. Table 1 highlights this advantage clearly, showing that even
with 2 km training QCGS surpasses state-of-the-art 0.5 km baselines in both accuracy and structural
fidelity.

Comparison with classical interpolation. Classical interpolation methods such as Barnes, Kriging,
and 3DMQ rely on fixed Gaussian kernels to spread each gauge observation across the grid. As
shown in Table 1, these approaches produce smooth rainfall patterns with limited structural fidelity.
Their RMSE values remain above 2.4 at 2 km resolution, and their CSI and FSS scores saturate
around 0.47–0.50 and 0.68–0.69, respectively. This reflects the inherent limitation of using static,
isotropic kernels that cannot adapt to precipitation geometry, resulting in blurred boundaries and
underestimation.

In contrast, QCGS learns anisotropic and spatially adaptive Gaussian primitives conditioned on
satellite features, enabling sharper and more meteorologically consistent rainfall structures. QCGS
reduces RMSE to 1.00 at 2 km, and improves CSI from 0.50 (Kriging) to 0.76 and FSS from 0.69 to
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(a) IMERG (b) GSMaP (c) MSWEP (d) QCGS (e) Radar                (f) PSD plot

Case 2023/08/11

Case 2023/12/15

Figure 4: Panels (a)–(e) show the comparison of daily accumulated rainfall (mm, day) between radar
and four rainfall products: IMERG, GSMaP, MSWEP, and QCGS. The “total diff.” panel indicates
the difference between radar and each product. Panel (f) the PSD at different scales (=wavelengths),
at different cases.

0.96, representing a substantial improvement across all metrics. These results demonstrate that QCGS
generalizes classical Gaussian-weighted interpolation and significantly enhances its representational
capacity for high-resolution precipitation field reconstruction.

Comparison with operational products. We benchmarked QCGS against operational datasets
including IMERG (NASA/GSFC), GSMaP (JAXA), and MSWEP (Utrecht). These products provide
global coverage, are purely satellite–driven, and apply sophisticated bias correction using rain gauges
and reanalysis, which often reduces systematic errors. Nevertheless, as shown in Table 1, QCGS
achieves consistently lower RMSE and higher correlation, despite being trained only with regional
satellite imagery and sparse AWS measurements.

For fairness, 10-minute radar was aggregated into hourly means and daily accumulations, and all
datasets were reprojected to radar coordinates using GDAL. QCGS outputs were trained at 2 km and
later downsampled to 0.1◦ grids for comparison.

The key advantage of QCGS is that AWS fusion anchors local rainfall intensities, enabling sharper
and more accurate regional fields than purely satellite products. At the same time, this also repre-
sents a limitation: whereas IMERG, GSMaP, and MSWEP remain purely satellite-based and thus
globally deployable, QCGS currently depends on sparse but precise ground observations. In other
words, QCGS delivers higher fidelity at regional scales, while operational products retain broader
applicability.

5.3 QUALITATIVE RESULTS

Case study and spectral analysis. Figure 4 compares daily accumulated precipitation from radar,
three operational products (IMERG, GSMaP, MSWEP), and QCGS. QCGS produces fields visually
closest to radar, reducing absolute differences and preserving localized convective cells. By contrast,
GSMaP systematically underestimates intensity, while IMERG and MSWEP exhibit case-dependent
over- and underestimation.

The power spectral density (PSD) analysis further shows that QCGS matches radar across most
scales, retaining both large-scale organization and mesoscale structure. Operational products lose
variance at high wavenumbers, with MSWEP appearing oversmoothed. QCGS slightly overestimates
the smallest scales, reflecting both preserved subgrid variation and minor artifacts. Overall, QCGS
maintains the spectral balance of precipitation fields better than existing products.

5.4 ABLATION STUDY

Architecture (Table 2-(a)). Starting from a U-Net (ConvNeX) trained for Sat to RDR translation,
adding AWS fusion provides a clear improvement by anchoring rainfall intensities at gauge locations.

9
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Table 2: Comprehensive ablation study on CSI. (a) Effect of architecture choices: AWS fusion
and Gaussian Splatting (GS) progressively improve performance. (b) Effect of sampling strategy:
combining gradient, regular, and heavy-rain sampling yields the best CSI. (c) Effect of the number of
query points: performance saturates around K=6000. Best results are in bold.

Architecture CSI↑
AWS (only) 0.53
U-Net (ConvNeXt) 0.62
+ AWS fusion 0.73
+ AWS fusion + GS (ours) 0.76

(a) Architecture.

Reg. Grad. Heavy CSI↑
✓ 0.68

✓ 0.71
✓ 0.70

✓ ✓ 0.73
✓ ✓ 0.74

✓ ✓ 0.72
✓ ✓ ✓ 0.76

(b) Sampling strategy.

K points CSI↑
1000 0.69
3000 0.72
6000 0.76
9000 0.77

(c) Number of query
points.

Incorporating Gaussian Splatting (GS) further improves performance by enabling resolution-free
rendering of localized rainfall, achieving the highest CSI.
Sampling strategy (Table 2-(b)). Regular interval sampling alone performs the worst, while gradient-
or heavy-rain–based strategies provide moderate gains. Combining all three (gradient, regular, heavy-
rain) yields the best CSI (0.76), confirming the importance of jointly covering boundaries, background
regions, and rainfall extremes.
Number of query points (Table 2-(c)). Increasing the number of sampled points K steadily
improves CSI up to K=6000, where the score reaches 0.76. Using more points (K=9000) yields
only a marginal gain (0.77) while increasing computation, so we adopt K=6000 as the default
trade-off between accuracy and efficiency.

6 CONCLUSION

We introduced Query-Conditioned Gaussian Splatting (QCGS), a framework for generating high-
quality precipitation fields from sparse and heterogeneous observations. By treating each observation
as a Gaussian kernel and conditioning splatting on satellite imagery, QCGS selectively renders
rainfall regions, reducing computation while preserving sharp boundaries. The integration of Implicit
Neural Representations further enables resolution-free parameterization and strong generalization
across regions and seasons. Extensive experiments show that QCGS mitigates representativeness
errors, reconstructs rainfall even in gauge-sparse settings, and produces resolution-flexible fields that
align closely with radar observations. These outputs are valuable not only for data assimilation but
also as high-quality training data for data-driven forecasting, bridging the gap between point-based
and gridded products. Overall, QCGS provides a scalable and physically consistent approach to
multi-source precipitation integration, offering a promising pathway for enhancing both traditional
NWP systems and emerging AI-based weather prediction models.

Limitations and Future Work Despite its strengths, QCGS has two main limitations. First, the
method relies on automatic weather station (AWS) data to anchor rainfall intensities. In regions
with insufficient gauge networks, its applicability is therefore limited. Second, our experiments
were confined to the regional scale; scaling up the approach to the global domain remains an open
challenge.

Looking forward, we see two promising directions. An intriguing observation is that QCGS-generated
fields already align more closely with AWS measurements than raw radar reflectivity, even without
any reflectivity-to-rainfall correction Fig. 6. This suggests that QCGS may offer bias-free alternatives
to conventional radar products. Future work will further investigate this property, with the long-term
goal of extending QCGS toward a scalable, global system that can complement or even substitute
radar-based precipitation monitoring.
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Figure 5: Examples of consecutive one-hour QCGS-generated frames. The last three frames exhibit
rainfall patterns that were absent in the first three, indicating temporal inconsistencies. Such frame-
to-frame mismatch can hinder the performance of video prediction models that rely on coherent
temporal dynamics.

A APPENDIX

A.1 INFERENCE DATA FOR PRECIPITATION FORECASTING

We further evaluated the utility of QCGS-generated radar fields as inference inputs for data-driven
precipitation forecasting models. Specifically, we tested three representative baselines: MetNet-
v2 (Sønderby et al., 2020), PreDiff (Gao et al., 2023), and SimVP (Gao et al., 2022a). We followed a
standard nowcasting protocol in which seven past frames at ten-minute intervals are used as input
and six future frames (up to +60 minutes) are predicted. MetNet-v2 directly predicts precipitation at
the target lead time, while PreDiff and SimVP follow a many-to-many forecasting scheme.

All baselines were originally trained only in the radar to radar setting, and we performed no retraining
or adaptation when using QCGS inputs. Despite this clear train to test mismatch, QCGS-driven
forecasting still preserved meaningful predictive skill. As summarized in Table 3, the CSI at the 1 mm
threshold decreased from 0.664 to 0.381 for PreDiff and from 0.591 to 0.252 for SimVP. MetNet-v2
showed only a small decrease, from 0.390 to 0.374.

We attribute this degradation to two main factors. First, QCGS does not currently enforce temporal
coherence across frames, and this results in inconsistencies in the time dimension (see Fig. 5). Second,
QCGS produces fields that are closer to AWS gauge values, while radar reflectivity is empirically
calibrated to rain rate through the standard Z-R relationship. This creates a mismatch for forecasting
models that were trained only with radar inputs.

The smaller degradation observed in MetNet-v2 is consistent with its single-step prediction design,
which is less sensitive to inter-frame consistency than many-to-many models.

Future work includes extending QCGS with temporal conditioning to provide coherent dynam-
ics across consecutive frames, and retraining downstream forecasting models directly on QCGS-
generated inputs. This may reduce the performance gap between QCGS-based and radar-based
forecasting.

Table 3: Forecasting performance at +60 minutes using QCGS-generated radar fields as inputs.
Baselines were trained only on radar-to-radar data and used without retraining.

Model CSI@1mm (R→R) CSI@1mm (QCGS→R)
MetNet-v2 Sønderby et al. (2020) 0.390 0.374
SimVP Gao et al. (2022a) 0.591 0.252
PreDiff Gao et al. (2023) 0.664 0.381

A.2 QCGS VS. RADAR

Before comparing QCGS with radar products, Figure 8 provides an overview of the qualitative
differences among AWS observations, global rainfall products, and QCGS. As shown, QCGS better
preserves fine-scale precipitation structures while mitigating large-scale biases commonly observed
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Figure 6: Bias, RMSE, and correlation coefficient (CC) of AWS rain rate compared with QCGS
and radar. QCGS consistently achieves lower bias and RMSE and higher CC relative to radar,
demonstrating closer agreement with gauge observations.

in conventional global products. This contextual comparison highlights the importance of evaluating
QCGS against radar-derived fields.

Radar rainfall products are derived by converting reflectivity (Z) into rain rate (R) through empirical
Z–R relations. As such, they are not direct rainfall measurements and often suffer from systematic
biases, especially in convective storms or orographically complex regions. In contrast, QCGS is
trained on radar targets but incorporates AWS anchors at inference. Remarkably, the resulting fields
often align more closely with gauge observations than radar itself. This suggests that QCGS not
only reproduces radar-like spatial patterns but also implicitly corrects radar biases by leveraging
point-level AWS data.

Figure 6 provides quantitative evidence: compared to radar, QCGS achieves lower bias and RMSE
and higher correlation coefficients when evaluated against AWS observations. These improvements
indicate that the inclusion of AWS anchors yields rainfall fields that are both more accurate and more
consistent with ground truth.

Figure 7 presents case studies where gridded fields are directly matched with AWS locations. Here,
QCGS preserves rainfall intensity more faithfully than radar, particularly in high-rainfall events.
Importantly, AWS evaluations were performed using standard point-to-grid matching with spatial
averaging, ensuring that the observed improvements are not an artifact of directly injecting AWS
values but reflect genuine gains in field representation.

Taken together, these findings highlight a potential paradigm shift: QCGS offers rainfall maps that
are simultaneously radar-consistent and gauge-calibrated, bridging the gap between remote sensing
products and in-situ truth. In the long term, this property points to the possibility of QCGS serving as
a complementary or even superior alternative to radar-derived rainfall estimates.

A.3 ADDITIONAL QUANTITATIVE ANALYSIS.

Beyond continuous metrics such as RMSE and correlation, it is important to evaluate precipitation
skill in a categorical manner across different rainfall intensities. To provide a more complete
assessment, we present two complementary threshold-based analyses.

Table 4 reports CSI scores at 1, 5, and 10 mm using hourly data. These thresholds reflect light,
moderate, and heavy rainfall. QCGS consistently outperforms satellite products across all intensity
levels, and the improvement is most pronounced for heavy rainfall, where accurate detection is
crucial.

To complement the hourly evaluation, Table 5 presents daily POD, FAR, and CSI metrics at 10, 50,
and 100 mm per day. This daily-scale analysis captures the model’s ability to detect accumulated
precipitation extremes, which are critical for hydrological and disaster-related applications. QCGS
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(a) Weather stations (b) Radar to station (c) QCGS to station

2023/06/14 13 UTC

2023/06/26 15 UTC

2023/08/18 08 UTC

2023/09/15 14 UTC

RMSE = 2.22 (mm, day) RMSE = 2.00 (mm, day) RMSE = 1.45 (mm, day) RMSE = 0.83 (mm, day)

RMSE = 1.22 (mm, day) RMSE = 0.36 (mm, day)RMSE = 6.87 (mm, day) RMSE = 4.82 (mm, day)

(a) Weather stations (b) Radar to station (c) QCGS to station

Figure 7: Case studies comparing QCGS and radar against AWS stations. Gridded fields are spatially
matched to AWS locations, showing that QCGS preserves local rainfall intensities more faithfully
than radar.

Figure 8: Qualitative comparison of observations, global rainfall products, and QCGS. QCGS
preserves fine-scale precipitation structures and reduces large-scale biases relative to conventional
products.

achieves the best POD and CSI across all daily thresholds, while maintaining reasonable FAR values.
In contrast, satellite products either miss many high-rainfall days or exhibit high false-alarm rates.

Together, the hourly and daily analyses provide a comprehensive characterization of model perfor-
mance. QCGS consistently surpasses satellite products across all intensity levels and temporal scales,
confirming its ability to reconstruct precipitation structure more faithfully than existing methods.

A.4 CROSS-DOMAIN EXPERIMENTAL RESULTS

As shown in Fig. 9, we use Regions 1 and 2 (top) for training, while Regions 3 and 4 (bottom)
are excluded from training. Table 6 presents the experimental results. QCGS shows only a small
performance drop in unseen regions. We believe this is due to two reasons: (1) although the regions
differ, they are geographically close and share similar meteorological patterns, and (2) the number
of activated AWS stations varies significantly depending on the rainfall intensity. For example,
heavy-rain days may activate more than 700 AWS stations, while light-rain days may activate fewer
than 100. This naturally exposes the model to diverse spatial AWS configurations during training.
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Table 4: CSI scores at different rainfall thresholds (mm per hour) using hourly data. QCGS is
evaluated at multiple spatial resolutions (0.5, 2, and 10 km).

Threshold QCGS (0.5 km) QCGS (2 km) QCGS (10 km) IMERG GSMaP
1 0.657 0.703 0.506 0.366 0.308
5 0.415 0.483 0.306 0.140 0.129
10 0.311 0.401 0.232 0.046 0.065

Table 5: Categorical POD, FAR, and CSI scores at different rainfall thresholds (mm per day) for daily
accumulation data.

POD FAR CSI
Threshold 10 50 100 10 50 100 10 50 100

QCGS 0.703 0.579 0.646 0.125 0.329 0.423 0.657 0.455 0.434
IMERG 0.679 0.369 0.117 0.267 0.616 0.614 0.541 0.173 0.039
GSMaP 0.591 0.358 0.277 0.262 0.710 0.754 0.493 0.165 0.119
MSWEP 0.714 0.315 0.096 0.286 0.554 0.584 0.553 0.191 0.067

A.5 VISUAL QUALITY ABLATION STUDY

Figure 10 presents a qualitative comparison among Radar, QCGS, AWS-only, and Satellite-only
baselines. The AWS-only reconstruction exhibits isolated Gaussian blobs, which occur because
point-based gauge measurements cannot fully represent the entire spatial domain. The Satellite-only
baseline appears noticeably blurred, largely due to relying solely on pixel-wise MSE loss without
ground-level anchors. In contrast, QCGS produces sharper, more coherent precipitation structures
that closely resemble radar observations, benefiting from its Gaussian splatting–based rendering and
AWS–satellite fusion. These visual results further confirm that QCGS delivers superior perceptual
fidelity compared to other ablated variants.

A.6 VISUAL QUALITY COMPARISON WITH CLASSICAL INTERPOLATION

Figure 11 presents a qualitative comparison between classical interpolation methods and the AWS-
only variant of QCGS. All methods are evaluated under identical input, target, and output conditions
to ensure a fair comparison. As shown in the figure, QCGS produces noticeably sharper and more
coherent precipitation structures compared to classical approaches, demonstrating superior visual
quality.

A.7 ADDITIONAL QUALITATIVE ANALYSIS.

This section reports qualitative examples, which are randomly sampled rather than cherry-picked, to
ensure fair illustration of model behavior.

Figure 8 highlights a representative case. Radar reports an area of intense rainfall, whereas QCGS
produces a similar spatial pattern but with lower intensity. At first glance, this could be interpreted as
an underestimation by QCGS. However, inspection of AWS gauge measurements (case: 2023/03/12
04:00) reveals that strong rainfall was not observed at ground level. This indicates that in this instance,
radar likely overestimated rainfall intensity, while QCGS produced fields more consistent with in-situ
truth. Such cases highlight the value of incorporating gauge anchors, which allow QCGS to mitigate
biases inherent in radar-only products.

Figure 12 presents two challenging cases (2023/07/11 07 UTC and 2023/08/09 12 UTC) where
QCGS underperforms compared to conventional products. In both events, QCGS struggles to capture
the spatial extent and intensity of the observed precipitation system. This limitation is particularly
evident in convective episodes with rapidly evolving structures, where sparse AWS anchors provide
insufficient coverage. The examples illustrate that while QCGS often achieves strong performance, it
is not universally superior across all conditions. These cases highlight the need for future extensions,
such as incorporating temporal coherence or additional observation sources, to further improve
robustness.
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1 2

43

Figure 9: Training and evaluation regions.
Regions 1 and 2 are used for model training,
while Regions 3 and 4 are excluded.

Metric Cross-domain In-domain
RMSE↓ 1.01 1.00
CSI↑ 0.76 0.76
Bias=1 1.03 1.03
FSS=1 (ne=5) 0.96 0.96
LPIPS↓ 0.25 0.19
pCC↑ 0.93 0.93
rCC↑ 0.91 0.92

Table 6: Cross-domain evaluation results.

2023/05/27 08 UTC

2023/05/26 01 UTC

2023/08/24 00 UTC

2023/09/15 03 UTC

Figure 10: Visual comparison of Radar, QCGS, AWS-only, and Satellite-only across several cases.
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2023/05/05 16 UTC

2023/05/28 04 UTC

2023/08/30 19 UTC

2023/11/05 09 UTC

Figure 11: Qualitative comparison between classical interpolation methods and QCGS (AWS-only).
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2023/05/05 05 UTC

2023/06/20 20 UTC

2023/07/11 06 UTC

2023/08/09 12 UTC

2023/08/23 20 UTC

2023/12/14 19 UTC

Figure 12: Qualitative comparison of precipitation fields from radar, QCGS, IMERG, and GSMaP.
Radar provides the reference, while QCGS preserves fine-scale structures more faithfully than global
products. IMERG and GSMaP show smoother fields with biases in convective regions.
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2023/01/06 13 UTC

2023/01/12 21 UTC

2023/02/09 18 UTC

2023/03/12 03 UTC

2023/03/12 04 UTC

2023/04/04 13 UTC

Figure 13: Qualitative comparison of precipitation fields from radar, QCGS, IMERG, and GSMaP.
Radar provides the reference, while QCGS preserves fine-scale structures more faithfully than global
products. IMERG and GSMaP show smoother fields with biases in convective regions.
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