

# 000 STATION2RADAR: QUERY-CONDITIONED GAUSSIAN 001 002 SPLATTING FOR PRECIPITATION FIELD 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 008 ABSTRACT 009

011 Precipitation forecasting relies on heterogeneous data. Weather radar is accurate,  
012 but coverage is geographically limited and costly to maintain. Weather stations  
013 provide accurate but sparse point measurements, while satellites offer dense, high-  
014 resolution coverage without direct rainfall retrieval. To overcome these limitations,  
015 we propose Query-Conditioned Gaussian Splatting (QCGS), the first framework  
016 to fuse automatic weather station (AWS) observations with satellite imagery for  
017 generating precipitation fields. Unlike conventional 2D Gaussian splatting, which  
018 renders the entire image plane, QCGS selectively renders only queried precipitation  
019 regions, avoiding unnecessary computation in non-precipitating areas while  
020 preserving sharp precipitation structures. The framework combines a radar point  
021 proposal network that identifies rainfall-support locations with an implicit neural  
022 representation (INR) network that predicts Gaussian parameters for each point.  
023 QCGS enables efficient, resolution-flexible precipitation field generation in real  
024 time. Through extensive evaluation with benchmark precipitation products, QCGS  
025 demonstrates over 50% improvement in RMSE compared to conventional gridded  
026 precipitation products, and consistently maintains high performance across multiple  
027 spatiotemporal scales.

## 028 1 INTRODUCTION

031 Recent data-driven models, including transformer-(Bi et al. (2023); Lam et al. (2023); Pathak et al.  
032 (2022); Nguyen et al. (2023); Chen et al. (2023b;a) and diffusion-(Price et al. (2025)) based forecasters  
033 trained on ERA5, now rival or surpass traditional numerical weather prediction models (NWP) at  
034 medium ranges.

035 Yet precipitation remains particularly challenging. (Bonavita, 2024; Liu et al., 2024; An et al.,  
036 2025) Both NWP and current global models run at coarse resolutions of tens of kilometers (e.g.,  
037 ERA5), while the precipitation features most relevant for local impacts emerge at the sub-grid  
038 scale, intermittently and locally.<sup>1</sup> This scale mismatch complicates observation and limits the  
039 usefulness of forecasts for downstream decisions. Historically, short-range precipitation prediction  
040 relied on radar echo extrapolation at its native resolution, since NWP could not resolve small-scale  
041 convection. Operational systems therefore propagate reflectivity fields with optical-flow methods  
042 such as Lucas–Kanade (Pulkkinen et al., 2019), with skill fundamentally limited by radar fidelity.  
043 Deep learning reinforced this paradigm: radar-centric benchmarks (Veillette et al., 2020) enabled  
044 models from ConvLSTM (Shi et al., 2015) to diffusion-based nowcasting models (Gao et al., 2023; Yu  
045 et al., 2024a; Gong et al., 2024a;b) to achieve strong short-lead performance. However, precipitation  
046 forecasting is far from solved. Most pipelines assume radar as the primary input, but radar networks  
047 are costly and geographically limited, making these approaches feasible mainly in regions like Europe  
048 and the United States. Moreover, radar resolution is effectively fixed, restricting representation of  
049 processes below that scale.

050 These limitations motivate approaches that move beyond radar-only inputs. Conventional attempts  
051 to construct precipitation fields without radar have relied on statistical interpolation from gauges.  
052 Methods such as Barnes interpolation, kriging, or optimal interpolation (Alaka & Elvander, 1972;

053 <sup>1</sup>Rainfall often forms in localized, rapidly evolving structures smaller than the pixels of global models,  
leaving these subgrid-scale processes unresolved in numerical weather prediction models.

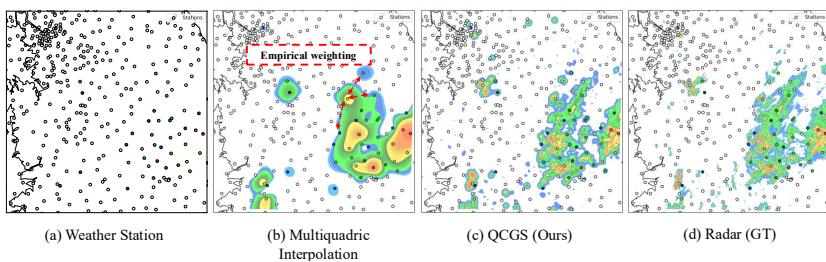


Figure 1: Constructing precipitation fields from sparse AWS observations. (b) Classical Gaussian interpolation oversmooths and blurs rainfall boundaries. (c) QCGS leverages satellite context and gauge anchors to place Gaussians selectively, producing resolution-flexible and structurally consistent fields. (d) Ground-truth radar at 2 km for reference.

Biau et al., 1999; Barnes, 1964) represent observations by assigning Gaussian weights across a grid. While effective in principle, these interpolation methods tend to blur sharp precipitation boundaries and are highly sensitive to station density and empirically chosen kernel parameters.

Recently, satellite-only approaches such as Sat2Radar (Veillette et al., 2020; Park et al., 2025) have been proposed to approximate precipitation fields directly from spaceborne imagery. However, satellite estimates carry substantial bias and uncertainty, often provide outputs only at fixed resolution, and cannot directly leverage the physical accuracy of gauges. In parallel, several fusion-based approaches have been explored, correcting satellite products or radar imagery with gauge observations (Ruan et al., 2025; Benoit, 2021; Curcio et al., 2025). These methods improve gridded precipitation estimates by bringing them closer to ground values, but they operate strictly on fixed-resolution grids and do not cover continuous, resolution-free field reconstructions. Moreover, approaches such as (Benoit, 2021) require radar reflectivity as input, whereas our goal is explicitly radar-free precipitation generation.

In summary, radar-based methods have inherently limited spatial coverage and fixed resolution, making them unable to resolve the fine-scale rainfall features that are of operational importance.

In this work, we propose to combine satellite imagery with automatic weather station (AWS) measurements to generate precipitation fields without requiring radar. Our key insight is that the Gaussian weighting long used in objective analysis is, from a representational perspective, equivalent to Gaussian Splatting (GS) (Kerbl et al., 2023). Traditional interpolation computes a weighted sum of point observations using Gaussian kernels; GS generalizes this idea by modeling each observation as a Gaussian ‘blob’ with learnable parameters, enabling resolution-agnostic rendering and selective concentration of computation.

Formally, Gaussian-weighted interpolation at query location  $\mathbf{x}$  is

$$f_{\text{GW}}(\mathbf{x}) = \frac{\sum_{i=1}^N K_\sigma(\mathbf{x} - \mu_i) y_i}{\sum_{j=1}^N K_\sigma(\mathbf{x} - \mu_j)}, \quad (1)$$

where  $y_i$  is the observation at station  $\mu_i$  and  $K_\sigma$  is a Gaussian kernel. Gaussian Splatting (GS) instead defines

$$f_{\text{GS}}(\mathbf{x}) = \sum_{i=1}^N a_i K_{\Sigma_i}(\mathbf{x} - \mu_i), \quad (2)$$

with learnable amplitude  $a_i$  and covariance  $\Sigma_i$ . Classical Gaussian weighting is recovered as a special case of GS with fixed isotropic kernels, while GS further allows anisotropy, adaptive amplitudes, and resolution-free rendering, which are key advantages for representing sharp and localized precipitation fields.

We introduce **Query-Conditioned Gaussian Splatting (QCGS)** for precipitation field generation. QCGS takes satellite imagery and automatic weather station (AWS) observations as inputs and outputs a continuous precipitation field on an arbitrary scale, without requiring radar. Unlike standard GS, which directly fits Gaussian primitives to ground-truth fields, QCGS conditions Gaussian parameters on satellite–AWS context, enabling generalization across regions and seasons.

108 QCGS consists of three components: (1) *Selective rendering*, which evaluates only precipitation-  
 109 support regions, suppressing non-rain areas and improving efficiency. (2) *AWS–satellite fusion*, where  
 110 dense satellite features provide spatial coverage and sparse AWS gauges act as accurate anchors,  
 111 together proposing candidate Gaussian locations. (3) *INR-based parameterization*, in which an  
 112 implicit neural network maps local satellite features and query locations to Gaussian parameters  
 113 (amplitude and covariance), allowing adaptive, anisotropic blob shapes and resolution-free rendering.  
 114 Through this design, QCGS moves beyond traditional empirical weighting (as illustrated in Fig. 1) and  
 115 produces high-resolution precipitation fields that preserve sharp structures, remain computationally  
 116 efficient, and generalize effectively.  
 117

## 118 2 RELATED WORK

120 We discuss three relevant areas: Gaussian Splatting for efficient field generation, Implicit Neural  
 121 Representations (INR) for coordinate-conditioned modeling, and data-driven methods in meteorology.  
 122

### 123 2.1 GAUSSIAN SPLATTING

125 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) accelerates NeRF (Mildenhall et al., 2021) by  
 126 representing scenes with Gaussian kernels and avoiding redundant rendering, enabling real-time  
 127 performance (Wu et al., 2024; Huang et al., 2024; Yu et al., 2024b; Guédon & Lepetit, 2024; Yang  
 128 et al., 2024). Recent work has extended this idea to 2D images for compression and super-resolution,  
 129 such as GaussianImage (Zhang et al., 2024), Image-GS (Zhang et al., 2025), and LIG (Zhu et al.,  
 130 2025), which allocate Gaussians adaptively based on gradients or frequency content. Follow-ups  
 131 like GaussianSR (Hu et al., 2025), ContinuousSR (Peng et al., 2025), and GSASR (Chen et al.,  
 132 2025) introduced kernel banks and feed-forward prediction for scalability and generalization. While  
 133 effective, these methods remain image-specific, motivating our adaptation to precipitation fields.  
 134

### 135 2.2 IMPLICIT NEURAL REPRESENTATIONS

136 INR (Sitzmann et al., 2020) encodes signals as continuous coordinate-to-value mappings, widely  
 137 applied to 3D scene reconstruction (Mildenhall et al., 2021; Barron et al., 2021; Martin-Brualla  
 138 et al., 2021; Barron et al., 2022; Müller et al., 2022), image compression, and arbitrary-scale super-  
 139 resolution (Chen et al., 2021; Yang et al., 2021; Cao et al., 2023; Lee & Jin, 2022). Its strength lies  
 140 in resolution-free modeling, but INRs must query all coordinates and lack explicit spatial structure,  
 141 limiting efficiency. Nonetheless, their representational flexibility motivates our query-conditioned  
 142 adaptation for precipitation fields.  
 143

### 144 2.3 APPLICATIONS OF DEEP LEARNING IN METEOROLOGY

145 Deep learning has transformed meteorology, especially in precipitation nowcasting and weather  
 146 prediction. ConvLSTM (Shi et al., 2015) pioneered spatiotemporal forecasting, followed by GAN-  
 147 based (Ravuri et al., 2021) and transformer-based (Bi et al., 2023) approaches that rival or surpass  
 148 NWP models. More recent methods span precipitation forecasting (Gao et al., 2022b; Veillette et al.,  
 149 2020; Gong et al., 2024a; Yu et al., 2024a; Yoon et al., 2023; Gao et al., 2023) and global atmospheric  
 150 variable prediction (Bi et al., 2023; Lam et al., 2023; Kochkov et al., 2024; Chen et al., 2023b; Xu  
 151 et al., 2024; Xiao et al., 2023). Despite progress, most rely on radar or reanalysis data (e.g., ERA5).  
 152 Recent data assimilation methods (Xiao et al., 2023) attempt to reduce this dependency, but to our  
 153 knowledge, our work is the first to directly generate precipitation initial conditions from satellite and  
 154 station data.  
 155

## 156 3 PRELIMINARIES

158 We summarize the key notions from the perspective of *2D image rendering*.  
 159

160 **Implicit Neural Representations (INR).** An INR models an image as a continuous function  
 161

$$f_{\theta} : \mathbb{R}^2 \rightarrow \mathbb{R}^C,$$

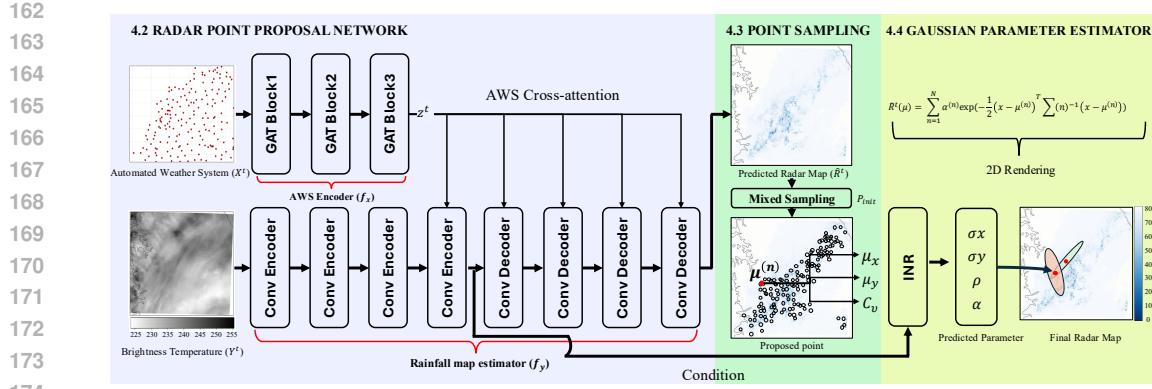


Figure 2: Overview of the proposed QCGS pipeline. AWS observations and satellite BT imagery are fused to produce a coarse surrogate field and candidate rainfall-support points. A rainfall-aware sampling strategy and an INR-based Gaussian estimator then predict splatting parameters, yielding resolution-flexible precipitation fields via selective Gaussian rendering.

that maps *spatial coordinates*  $\mathbf{x} \in \mathbb{R}^2$  to values. Rendering an  $H \times W$  image requires evaluating  $f_\theta$  at all pixel centers  $\mathbf{x} \in \Omega$ , which scales as  $\mathcal{O}(HW)$ . INRs are resolution-free and differentiable w.r.t. coordinates, but dense querying makes high-resolution synthesis slow.

**Gaussian Splatting.** 3D Gaussian Splatting (3DGS) represents a scene as a set of anisotropic 3D Gaussian primitives. Each primitive has a center  $\mu_k \in \mathbb{R}^3$ , covariance  $\Sigma_k \in \mathbb{S}_{++}^3$ , opacity  $\alpha_k$ , and color  $c_k$ . Rendering proceeds by projecting the Gaussians to the image plane, linearizing the covariance with the Jacobian of the projection, and compositing front-to-back with depth ordering:

$$I(u) = \sum_{k=1}^K T_k(u) \alpha_k G_k(u) c_k,$$

where  $T_k(u)$  is the accumulated transmittance and  $G_k(u)$  the screen-space Gaussian footprint.

In contrast, **2D Gaussian Splatting (2DGS)** removes geometry-specific elements and operates directly on the image plane. No 3D positions, projections, or depth ordering are required. Each primitive is simply a 2D Gaussian with center

$$\mu_i \in \mathbb{R}^2, \quad \Sigma_i \in \mathbb{S}_{++}^2, \quad \alpha_i \in \mathbb{R}.$$

The rendered value at a pixel location  $\mathbf{x} \in \Omega$  is

$$I(\mathbf{x}) = \sum_{i=1}^K \alpha_i \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x} - \mu_i)\right).$$

Thus 2DGS retains the resolution-free rendering benefits of 3DGS while being simpler and computationally cheaper, making it well suited for representing sharp, localized precipitation fields.

## 4 METHOD

As illustrated in Fig. 2, QCGS follows a three-stage pipeline that fuses AWS gauge observations with satellite imagery to generate precipitation fields. Importantly, the radar point proposal network and the Gaussian rendering module are trained separately.

We first train the radar point proposal network to produce reliable rainfall-support locations, and then train the Gaussian rendering stage on top of these fixed proposals. Thus, QCGS operates as a two-stage model in terms of training, even though the full pipeline consists of three conceptual components.

216 4.1 TASK DEFINITION  
217218 We aim to estimate a high-resolution precipitation field  $R^t(\mathbf{x})$  using two inputs at time  $t$ : a  
219 satellite image  $Y^t \in \mathbb{R}^{H \times W}$  and sparse AWS measurements  $X^t = \{x_i^t \mid i \in \mathcal{I}\}$  located at irregular  
220 coordinates  $\{\mu_i\}$ .221 Formally, the goal is to learn a mapping  
222

223 
$$\mathcal{F}_\Theta : (Y^t, X^t) \mapsto R^t(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$

224 where  $\Omega$  denotes a continuous 2D spatial domain. Unlike standard Sat→Radar image-to-image  
225 translation (Park et al., 2025), our input consists of *both* a dense image and an irregular point set, and  
226 the output must be defined on *arbitrary* query locations rather than a fixed grid.227 Because the satellite image is coarse (2 km resolution) and the output precipitation field may be  
228 queried at much finer scales (e.g., 0.5 km or continuous coordinates), the task also exhibits a super-  
229 resolution nature:

230 
$$R^t : \Omega_{\text{coarse}} \rightarrow \Omega_{\text{fine}}, \quad |\Omega_{\text{fine}}| \gg |\Omega_{\text{coarse}}|.$$
  
231

232 The model parameters are estimated by minimizing reconstruction loss against radar observations  
233 during training:

234 
$$\Theta^* = \arg \min_{\Theta} \mathcal{L}(R^t, \mathcal{F}_\Theta(Y^t, X^t)),$$
  
235

236 In summary, the task is a hybrid problem combining *image + point fusion, continuous field recon-  
237 struction, and resolution-free rendering*.238 4.2 RADAR POINT PROPOSAL NETWORK  
239240 Automatic weather station (AWS) observations provide direct gauge measurements of rainfall.  
241 Although they offer ground truth rainfall values, the data are sparse and often contain missing values  
242 or outliers. In contrast, satellite-based brightness temperature (BT) imagery  $Y^t \in \mathbb{R}^{H \times W}$  provides  
243 dense spatial coverage and is generally reliable, but it only correlates indirectly with precipitation.  
244 We combine these two complementary sources to compensate for their respective limitations.245 At each time step  $t \in \mathcal{T}$ , the set of AWS observations is defined as

246 
$$X^t = \{x_i^t \mid i \in \mathcal{I}\}, \quad \mathcal{I} = \{1, \dots, n\},$$
  
247

248 where  $x_i^t$  denotes the rainfall measured at station  $i$  and  $n = |\mathcal{I}|$  is the number of stations. Since  $X^t$   
249 may include missing values or anomalies, we employ a graph attention network (Velickovic et al.,  
250 2017)  $f_x(\cdot; \theta_x)$  to extract a robust representation:

251 
$$z^t = f_x(X^t).$$
  
252

253 The satellite BT image  $Y^t$  is processed by an encoder–decoder network  $f_y(\cdot; \theta_y)$  to produce a dense  
254 rainfall prediction:

255 
$$\hat{R}^t = f_y(Y^t, z^t),$$
  
256

257 where the AWS representation  $z^t$  is fused with the decoder via cross-attention.258 During training, the model parameters are optimized by minimizing the mean squared error (MSE)  
259 between the predicted rainfall  $\hat{R}^t$  and the radar-derived ground truth  $R^t$ :

260 
$$\mathcal{L}_{\text{MSE}} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \|\hat{R}^t - R^t\|_2^2.$$
  
261

262 4.3 RAINFALL-AWARE POINT SAMPLING  
263264 In precipitation forecasting, light rain rarely leads to disasters, while heavy precipitation events  
265 are much more likely to trigger hazards and accidents. Therefore, the most critical objective is  
266 to accurately predict regions of heavy precipitation. Uniformly sampling points across the entire

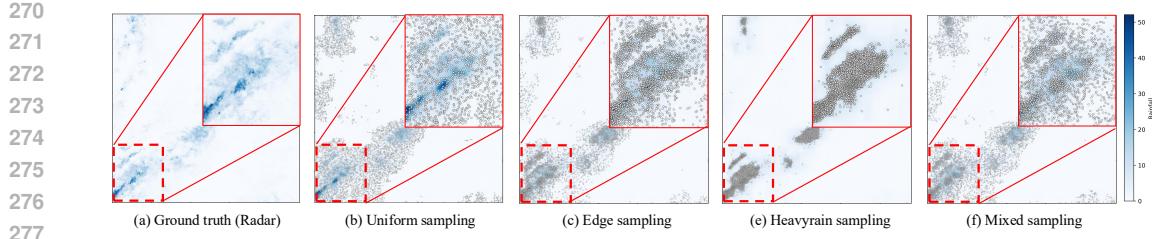


Figure 3: Visualization of different point sampling strategies for precipitation fields. (a) Ground truth radar field, (b) uniform sampling, (c) edge-based sampling, (d) heavy-rain sampling, and (e) our mixed strategy. Uniform sampling provides overall coverage but fails to capture details in heavy rainfall regions. Edge-based sampling emphasizes boundaries but overlooks texture information. Heavy-rain sampling concentrates points on strong precipitation, leaving light-rain areas underrepresented. In contrast, our mixed strategy balances these factors, yielding both accurate representation of heavy rainfall and adequate spatial coverage across the entire field.

prediction field  $\hat{R}^t$  is inefficient, as it treats all regions equally regardless of their importance. To overcome this limitation, we design a sampling strategy that incorporates three factors: (1) gradients of  $\hat{R}^t$  to emphasize edges, (2) uniform coverage within  $\hat{R}^t$ , and (3) rainfall intensity to prioritize heavy-rain regions.

We denote image-domain coordinates as  $\mathbf{x} \in \Omega$ , and write  $\hat{R}^t(\mathbf{x})$  for its rainfall value.

Let  $\hat{R}^t \in \mathbb{R}^{H \times W}$  be a coarse precipitation field at time  $t$ , and define the rain-support mask as

$$\mathcal{S}_t = \{\mathbf{x} \mid \hat{R}^t(\mathbf{x}) > \tau\},$$

with a threshold  $\tau$ . We then construct a convex mixture of three normalized terms:

$$P_{\text{init}}(\mathbf{x}) = \alpha G_{\mathcal{S}_t}(\mathbf{x}) + \beta U_{\mathcal{S}_t}(\mathbf{x}) + \gamma H(\mathbf{x}), \quad \alpha, \beta, \gamma \geq 0, \quad \alpha + \beta + \gamma = 1,$$

where

$$U_{\mathcal{S}_t}(\mathbf{x}) = \frac{\#\{\mathbf{x} \in \mathcal{S}_t\}}{\sum_{h,w} \#\{(h,w) \in \mathcal{S}_t\} + \varepsilon}, \quad G_{\mathcal{S}_t}(\mathbf{x}) = \frac{\#\{\mathbf{x} \in \mathcal{S}_t\} \|\nabla \hat{R}^t(\mathbf{x})\|_2}{\sum_{h,w} \#\{(h,w) \in \mathcal{S}_t\} \|\nabla \hat{R}^t(h,w)\|_2 + \varepsilon}, \quad H(\mathbf{x}) = \frac{\exp(\hat{R}^t(\mathbf{x})/T)}{\sum_{h,w} \exp(\hat{R}^t(h,w)/T)}.$$

Here,  $\nabla \hat{R}^t(\mathbf{x})$  denotes the spatial gradient of the coarse precipitation field,  $T > 0$  is a temperature parameter controlling the sharpness toward heavy-rain pixels, and  $\varepsilon > 0$  is a small constant (set to  $10^{-8}$  in our experiments) introduced to ensure numerical stability when the denominator approaches zero.

#### 4.4 INR-BASED GAUSSIAN PARAMETER ESTIMATOR

Our objective is to generate dense, high-quality precipitation fields from satellite imagery and sparse AWS observations, even without radar ground truth. Conventional Gaussian splatting often overfits to a single image and does not generalize; we instead design an INR-based estimator that predicts Gaussian parameters only at rainfall-support queries, avoiding unnecessary computation in dry regions.

Given proposal points  $\mu^{(n)} = \{(u_x^{(n)}, u_y^{(n)}, s^{(n)})\}_{n=1}^N$  from the Radar Point Proposal Network, the estimator is conditioned on intermediate satellite features  $f_y(Y^t, z^t) \in \mathbb{R}^{H' \times W' \times D}$ . Through cross-attention, we predict Gaussian parameters

$$\theta^{(n)} = \{\sigma_x^{(n)}, \sigma_y^{(n)}, \rho^{(n)}, \alpha^{(n)}\},$$

where  $(\sigma_x^{(n)}, \sigma_y^{(n)}, \rho^{(n)})$  define the covariance  $\Sigma^{(n)} \in \mathbb{S}_{++}^2$  and  $\alpha^{(n)}$  controls the Gaussian amplitude. At AWS stations with nonzero rainfall, we directly set  $\alpha^{(n)} = s^{(n)}$ , anchoring the field to ground-truth observations.

Training minimizes reconstruction error against radar fields with regularization:

$$\mathcal{L} = \frac{1}{|\Omega|} \sum_{\mathbf{x} \in \Omega} (\tilde{R}^t(\mathbf{x}) - R^t(\mathbf{x}))^2 + \lambda_\sigma \sum_n (\sigma_x^{(n)} + \sigma_y^{(n)}) + \lambda_\alpha \sum_n \alpha^{(n)}.$$

324 The final precipitation map is rendered by differentiable 2D Gaussian splatting:  
 325

$$326 \quad 327 \quad \tilde{R}^t(\mathbf{x}) = \sum_{n=1}^N \alpha^{(n)} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu^{(n)})^\top \Sigma^{(n)^{-1}} (\mathbf{x} - \mu^{(n)})\right), \\ 328$$

329 with  $\mu^{(n)} = (u_x^{(n)}, u_y^{(n)})$ . This operator is fully differentiable, enabling end-to-end training.  
 330

## 332 5 EXPERIMENTS

334 We evaluate QCGS on satellite and AWS gauge data from 2023, and compare against both classical  
 335 gridded precipitation products (IMERG from the national aeronautics and space administration  
 336 (NASA), MSWEP from University of Maryland, GSMAp from the Japan aerospace exploration  
 337 agency (JAXA)) and deep learning baselines based on image-to-image translation.

338

### 339 5.1 EXPERIMENTAL SETTING

340  
 341 **Dataset.** We use three data sources: (i) automatic weather station (AWS) gauges providing sparse  
 342 point-wise rainfall measurements over land, (ii) GK2A geostationary satellite imagery (IR 10.5 $\mu$ m  
 343 channel, 2 km resolution), and (iii) KMA HSP weather radar fields (0.5 km resolution). We crop the  
 344 study domain to a  $480 \times 480$  grid ( $35.5^\circ$ – $37.8^\circ$ N,  $126.4^\circ$ – $129.1^\circ$ E), where gauge density is relatively  
 345 high. Models are trained on hourly data from 2019–2022 and validated on 2023. Although training  
 346 is performed at 2 km resolution, we also evaluate at 0.5 km to demonstrate the ability of QCGS to  
 347 render rainfall fields at arbitrary scales.

348  
 349 **Evaluation Metrics.** We evaluate QCGS using RMSE for overall error and LPIPS (Zhang et al.,  
 350 2018) for perceptual similarity. For grid-point verification, we report Critical Success Index (CSI),  
 351 **Categorical CSI**, Fraction Skill Score (FSS; Roberts & Lean (2008)) with a  $5 \times 5$  window, and bias.  
 352 We also compute Pearson and Spearman correlations to assess spatial patterns and extremes.

353  
 354 **Comparison Methods.** We benchmark QCGS against three categories of baselines. For classical  
 355 interpolation, we use Barnes (Barnes, 1973), Multi-quadric(MQ, Nuss & Titley (1994)), and  
 356 Kriging (Lucas et al., 2022) methods. For operational products, we include IMERG (Huffman  
 357 et al., 2015) (NASA), a global  $0.1^\circ$  multi-satellite retrieval widely used in hydrology; MSWEP (Beck  
 358 et al., 2019) (University of Maryland), a long-term  $0.1^\circ$  dataset that blends gauges, satellite, and  
 359 reanalysis; and GSMAp (Mega et al., 2018) (JAXA), a near-real-time  $0.1^\circ$  product combining passive  
 360 microwave radiometers with geostationary infrared sensors. We also compare GK2A rain rate 2-km  
 361 product as regional quantitative precipitation estimation. For data-driven baselines, we compare  
 362 against NPM (Park et al., 2025), the first model to demonstrate precipitation forecasting from satellite  
 363 imagery alone, where we use the sat-to-radar stage for fairness; BBDM (Li et al., 2023), a diffusion-  
 364 based image-to-image framework adapted for precipitation downscaling; and Pix2PixHD (Wang  
 365 et al., 2018), a conditional GAN commonly applied to satellite-to-rainfall mapping, though often  
 366 limited in preserving sharp convective structures.

367 By comparing against both operational references and learning-based models, we ensure that QCGS  
 368 is evaluated against the full spectrum of established standards and state-of-the-art deep methods.

369  
 370 **Implementation Details.** We fix the number of query points to  $K=6000$ , which provides a optimal  
 371 balance between fidelity and efficiency. The surrogate radar field  $\hat{R}$  is produced by a ConvNeXt-based  
 372 U-Net with four encoder/decoder stages and skip connections, using group normalization and GELU  
 373 activations. AWS observations are embedded via a three-layer Graph Attention Network (8 heads,  
 374 hidden size 128) and fused with satellite features in the decoder through cross-attention.

375 For point selection, we adopt a rainfall-aware strategy combining edge, intensity, and uniform  
 376 terms (0.3/0.4/0.3), with non-maximum suppression to avoid redundancy. Each query is passed to  
 377 a five-layer MLP INR (hidden size 128, sinusoidal encoding), which predicts Gaussian parameters  
 378  $\{\sigma_x, \sigma_y, \rho, \alpha\}$ . At AWS sites with nonzero rainfall,  $\alpha$  is set directly to the observed value, anchoring  
 the generated fields.

378  
 379  
 380  
 381  
 382 Table 1: Quantitative results across multiple spatiotemporal scales. Each block shows the number of  
 383 evaluated cases in parentheses. QCGS is trained at 2 km and downsampled to  $0.1^\circ$  for comparison  
 384 with global products. Best scores per block are in **bold**.  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394

| Temporal scale (cases) | Category          | Method    | Res.        | RMSE $\downarrow$ | LPIPS $\downarrow$ | CSI $\uparrow$ | FSS $\uparrow$ | CC $\uparrow$ | Bias $\approx 1$ |
|------------------------|-------------------|-----------|-------------|-------------------|--------------------|----------------|----------------|---------------|------------------|
| Snapshot (1154)        | Data-driven       | Pix2PixHD | 0.5 km      | 2.45              | 0.62               | 0.59           | 0.71           | 0.55          | 0.82             |
|                        |                   | NPM       | 0.5 km      | 1.95              | 0.58               | 0.59           | 0.78           | 0.68          | 0.88             |
|                        |                   | BBDM      | 0.5 km      | 1.68              | 0.54               | 0.64           | 0.84           | 0.75          | 0.93             |
|                        | Satellite Product | GK2A      | 2.0 km      | 2.89              | 0.40               | 0.20           | 0.37           | 0.12          | -                |
|                        |                   | Barnes    | 2.0 km      | 2.56              | 0.39               | 0.47           | 0.68           | 0.42          | 0.98             |
|                        |                   | Kriging   | 2.0 km      | 2.43              | 0.40               | 0.50           | 0.69           | 0.45          | 1.03             |
|                        |                   | 3DMQ      | 2.0 km      | 2.47              | 0.41               | 0.49           | 0.68           | 0.44          | 1.00             |
|                        | Ours              | QCGS      | 0.5 km      | 1.23              | 0.49               | 0.74           | 0.91           | 0.90          | 1.02             |
|                        |                   | QCGS      | 2.0 km      | <b>1.00</b>       | <b>0.19</b>        | <b>0.76</b>    | <b>0.96</b>    | <b>0.93</b>   | 1.03             |
| Hourly mean (1154)     | Satellite Product | IMERG     | $0.1^\circ$ | 1.66              | 0.34               | 0.50           | 0.72           | 0.42          | 0.85             |
|                        | Satellite Product | GSMaP     | $0.1^\circ$ | 1.95              | 0.38               | 0.43           | 0.64           | 0.39          | 0.78             |
|                        | Ours              | QCGS      | $0.1^\circ$ | <b>1.33</b>       | <b>0.21</b>        | <b>0.66</b>    | <b>0.93</b>    | <b>0.74</b>   | 0.97             |
| Daily accum. (70)      | Satellite Product | IMERG     | $0.1^\circ$ | 14.08             | 0.33               | 0.85           | 0.92           | 0.72          | 0.95             |
|                        | Satellite Product | GSMaP     | $0.1^\circ$ | 15.89             | 0.35               | 0.92           | 0.82           | 0.70          | 0.88             |
|                        | Satellite Product | MSWEP     | $0.1^\circ$ | 12.44             | 0.32               | <b>0.95</b>    | 0.91           | 0.78          | 1.07             |
|                        | Ours              | QCGS      | $0.1^\circ$ | <b>6.68</b>       | <b>0.21</b>        | 0.93           | <b>0.99</b>    | <b>0.95</b>   | 1.02             |

395  
 396 Training uses Adam ( $1 \times 10^{-4}$  initial lr,  $1 \times 10^{-5}$  weight decay, cosine schedule, gradient clipping  
 397 at 1.0), batch size 16, for 100 epochs. Regularization terms  $\lambda_\sigma = 10^{-3}$  and  $\lambda_\alpha = 10^{-4}$  prevent  
 398 over-smoothing. All experiments are conducted on 8×NVIDIA H200 GPUs.  
 399

## 400 5.2 QUANTITATIVE RESULTS

401  
 402 **Comparison with data-driven approaches.** All data-driven baselines (Pix2PixHD, NPM, BBDM)  
 403 were trained and evaluated directly at 0.5 km resolution for fairness. In contrast, QCGS was trained  
 404 only at 2 km resolution and later rendered to 0.5 km during evaluation. Despite this apparent  
 405 disadvantage, QCGS consistently achieved the best performance across all metrics, as summarized in  
 406 Table 1. This robustness can be explained by two key design choices.

407 First, QCGS explicitly fuses AWS observations. Although gauges are sparse, their ground-level  
 408 accuracy provides strong local anchors that substantially enhance field reconstruction and correct  
 409 biases that purely satellite-driven models cannot address. Our ablation study (Sec. 5.4) confirms  
 410 this, since removing AWS information causes a sharp decline in both pixel-wise accuracy and spatial  
 411 correlation.

412 Second, QCGS leverages Gaussian Splatting (GS) to achieve resolution-free rendering. While existing  
 413 models are tied to the resolution of their training grid (for example, 0.5 km), GS allows QCGS to  
 414 generate rainfall fields at arbitrary scales while focusing computation on rainfall-support regions.  
 415 This capability preserves fine-scale convective boundaries without requiring retraining, in contrast to  
 416 conventional super-resolution methods that often blur or oversmooth extremes.

417 Taken together, AWS fusion and GS-based resolution-free rendering explain why QCGS outperforms  
 418 models trained at higher resolution. Table 1 highlights this advantage clearly, showing that even  
 419 with 2 km training QCGS surpasses state-of-the-art 0.5 km baselines in both accuracy and structural  
 420 fidelity.

421  
 422  
 423 **Comparison with classical interpolation.** Classical interpolation methods such as Barnes, Kriging,  
 424 and 3DMQ rely on fixed Gaussian kernels to spread each gauge observation across the grid. As  
 425 shown in Table 1, these approaches produce smooth rainfall patterns with limited structural fidelity.  
 426 Their RMSE values remain above 2.4 at 2 km resolution, and their CSI and FSS scores saturate  
 427 around 0.47–0.50 and 0.68–0.69, respectively. This reflects the inherent limitation of using static,  
 428 isotropic kernels that cannot adapt to precipitation geometry, resulting in blurred boundaries and  
 429 underestimation.

430 In contrast, QCGS learns anisotropic and spatially adaptive Gaussian primitives conditioned on  
 431 satellite features, enabling sharper and more meteorologically consistent rainfall structures. QCGS  
 reduces RMSE to 1.00 at 2 km, and improves CSI from 0.50 (Kriging) to 0.76 and FSS from 0.69 to

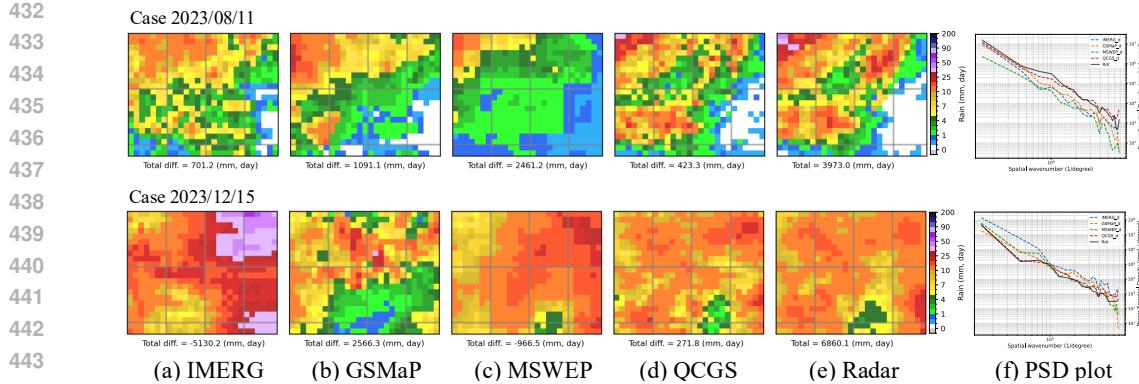


Figure 4: Panels (a)–(e) show the comparison of daily accumulated rainfall (mm, day) between radar and four rainfall products: IMERG, GSMAp, MSWEP, and QCGS. The “total diff.” panel indicates the difference between radar and each product. Panel (f) the PSD at different scales (=wavelengths), at different cases.

0.96, representing a substantial improvement across all metrics. These results demonstrate that QCGS generalizes classical Gaussian-weighted interpolation and significantly enhances its representational capacity for high-resolution precipitation field reconstruction.

**Comparison with operational products.** We benchmarked QCGS against operational datasets including IMERG (NASA/GSFC), GSMAp (JAXA), and MSWEP (Utrecht). These products provide global coverage, are purely satellite–driven, and apply sophisticated bias correction using rain gauges and reanalysis, which often reduces systematic errors. Nevertheless, as shown in Table 1, QCGS achieves consistently lower RMSE and higher correlation, despite being trained only with regional satellite imagery and sparse AWS measurements.

For fairness, 10-minute radar was aggregated into hourly means and daily accumulations, and all datasets were reprojected to radar coordinates using GDAL. QCGS outputs were trained at 2 km and later downsampled to  $0.1^\circ$  grids for comparison.

The key advantage of QCGS is that AWS fusion anchors local rainfall intensities, enabling sharper and more accurate regional fields than purely satellite products. At the same time, this also represents a limitation: whereas IMERG, GSMAp, and MSWEP remain purely satellite-based and thus globally deployable, QCGS currently depends on sparse but precise ground observations. In other words, QCGS delivers higher fidelity at regional scales, while operational products retain broader applicability.

### 5.3 QUALITATIVE RESULTS

**Case study and spectral analysis.** Figure 4 compares daily accumulated precipitation from radar, three operational products (IMERG, GSMAp, MSWEP), and QCGS. QCGS produces fields visually closest to radar, reducing absolute differences and preserving localized convective cells. By contrast, GSMAp systematically underestimates intensity, while IMERG and MSWEP exhibit case-dependent over- and underestimation.

The power spectral density (PSD) analysis further shows that QCGS matches radar across most scales, retaining both large-scale organization and mesoscale structure. Operational products lose variance at high wavenumbers, with MSWEP appearing oversmoothed. QCGS slightly overestimates the smallest scales, reflecting both preserved subgrid variation and minor artifacts. Overall, QCGS maintains the spectral balance of precipitation fields better than existing products.

### 5.4 ABLATION STUDY

**Architecture (Table 2-(a)).** Starting from a U-Net (ConvNeX) trained for Sat to RDR translation, adding AWS fusion provides a clear improvement by anchoring rainfall intensities at gauge locations.

486  
 487 Table 2: Comprehensive ablation study on CSI. (a) Effect of architecture choices: AWS fusion  
 488 and Gaussian Splatting (GS) progressively improve performance. (b) Effect of sampling strategy:  
 489 combining gradient, regular, and heavy-rain sampling yields the best CSI. (c) Effect of the number of  
 490 query points: performance saturates around  $K=6000$ . Best results are in **bold**.

| Architecture             | CSI↑        | Reg. | Grad. | Heavy | CSI↑ | $K$ points | CSI↑        |
|--------------------------|-------------|------|-------|-------|------|------------|-------------|
| <b>AWS (only)</b>        | 0.53        |      |       |       | 0.68 | 1000       | 0.69        |
| U-Net (ConvNeXt)         | 0.62        |      |       |       | 0.71 | 3000       | 0.72        |
| + AWS fusion             | 0.73        | ✓    | ✓     |       | 0.70 | 6000       | 0.76        |
| + AWS fusion + GS (ours) | <b>0.76</b> |      | ✓     | ✓     | 0.74 | 9000       | <b>0.77</b> |

(a) Architecture.

(b) Sampling strategy.

(c) Number of query

points.

502 Incorporating Gaussian Splatting (GS) further improves performance by enabling resolution-free  
 503 rendering of localized rainfall, achieving the highest CSI.

504 **Sampling strategy (Table 2-(b)).** Regular interval sampling alone performs the worst, while gradient-  
 505 or heavy-rain-based strategies provide moderate gains. Combining all three (gradient, regular, heavy-  
 506 rain) yields the best CSI (0.76), confirming the importance of jointly covering boundaries, background  
 507 regions, and rainfall extremes.

508 **Number of query points (Table 2-(c)).** Increasing the number of sampled points  $K$  steadily  
 509 improves CSI up to  $K=6000$ , where the score reaches 0.76. Using more points ( $K=9000$ ) yields  
 510 only a marginal gain (0.77) while increasing computation, so we adopt  $K=6000$  as the default  
 511 trade-off between accuracy and efficiency.

## 514 6 CONCLUSION

515  
 516 We introduced Query-Conditioned Gaussian Splatting (QCGS), a framework for generating high-  
 517 quality precipitation fields from sparse and heterogeneous observations. By treating each observation  
 518 as a Gaussian kernel and conditioning splatting on satellite imagery, QCGS selectively renders  
 519 rainfall regions, reducing computation while preserving sharp boundaries. The integration of Implicit  
 520 Neural Representations further enables resolution-free parameterization and strong generalization  
 521 across regions and seasons. Extensive experiments show that QCGS mitigates representativeness  
 522 errors, reconstructs rainfall even in gauge-sparse settings, and produces resolution-flexible fields that  
 523 align closely with radar observations. These outputs are valuable not only for data assimilation but  
 524 also as high-quality training data for data-driven forecasting, bridging the gap between point-based  
 525 and gridded products. Overall, QCGS provides a scalable and physically consistent approach to  
 526 multi-source precipitation integration, offering a promising pathway for enhancing both traditional  
 527 NWP systems and emerging AI-based weather prediction models.

528  
 529 **Limitations and Future Work** Despite its strengths, QCGS has two main limitations. First, the  
 530 method relies on automatic weather station (AWS) data to anchor rainfall intensities. In regions  
 531 with insufficient gauge networks, its applicability is therefore limited. Second, our experiments  
 532 were confined to the regional scale; scaling up the approach to the global domain remains an open  
 533 challenge.

534 Looking forward, we see two promising directions. An intriguing observation is that QCGS-generated  
 535 fields already align more closely with AWS measurements than raw radar reflectivity, even without  
 536 any reflectivity-to-rainfall correction Fig. 6. This suggests that QCGS may offer bias-free alternatives  
 537 to conventional radar products. Future work will further investigate this property, with the long-term  
 538 goal of extending QCGS toward a scalable, global system that can complement or even substitute  
 539 radar-based precipitation monitoring.

540 REFERENCES  
541

542 Mikhail A Alaka and Robert C Elvander. Optimum interpolation from observations of mixed quality.  
543 *Monthly Weather Review*, 100(8):612–624, 1972.

544 Sojung An, Tae-Jin Oh, Eunha Sohn, and Donghyun Kim. Deep learning for precipitation nowcasting:  
545 A survey from the perspective of time series forecasting. *Expert Systems with Applications*, 268:  
546 126301, 2025.

547 Stanley L Barnes. A technique for maximizing details in numerical weather map analysis. *Journal of  
548 Applied Meteorology (1962-1982)*, pp. 396–409, 1964.

549 Stanley L Barnes. Mesoscale objective map analysis using weighted time-series observations. 1973.

550 Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and  
551 Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.  
552 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5855–5864,  
553 2021.

554 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf  
555 360: Unbounded anti-aliased neural radiance fields. In *Proceedings of the IEEE/CVF conference  
556 on computer vision and pattern recognition*, pp. 5470–5479, 2022.

557 Hylke E Beck, Eric F Wood, Ming Pan, Colby K Fisher, Diego G Miralles, Albert IJM Van Dijk,  
558 Tim R McVicar, and Robert F Adler. Mswep v2 global 3-hourly 0.1 precipitation: methodology  
559 and quantitative assessment. *Bulletin of the American Meteorological Society*, 100(3):473–500,  
560 2019.

561 Lionel Benoit. Radar and rain gauge data fusion based on disaggregation of radar imagery. *Water  
562 Resources Research*, 57(2):e2020WR027899, 2021.

563 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-  
564 range global weather forecasting with 3d neural networks. *Nature*, 619(7970):533–538, 2023.

565 Gérard Biau, Eduardo Zorita, Hans von Storch, and Hans Wackernagel. Estimation of precipitation  
566 by kriging in the eof space of thesea level pressure field. *Journal of Climate*, 12(4):1070–1085,  
567 1999.

568 Massimo Bonavita. On some limitations of current machine learning weather prediction models.  
569 *Geophysical Research Letters*, 51(12):e2023GL107377, 2024.

570 Jiezhang Cao, Qin Wang, Yongqin Xian, Yawei Li, Bingbing Ni, Zhiming Pi, Kai Zhang, Yulun  
571 Zhang, Radu Timofte, and Luc Van Gool. Ciaosr: Continuous implicit attention-in-attention  
572 network for arbitrary-scale image super-resolution. In *Proceedings of the IEEE/CVF Conference  
573 on Computer Vision and Pattern Recognition*, pp. 1796–1807, 2023.

574 Du Chen, Liyi Chen, Zhengqiang Zhang, and Lei Zhang. Generalized and efficient 2d gaussian  
575 splatting for arbitrary-scale super-resolution. *arXiv preprint arXiv:2501.06838*, 2025.

576 Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming Ma,  
577 Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather forecast  
578 beyond 10 days lead. *arXiv preprint arXiv:2304.02948*, 2023a.

579 Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. Fuxi: a  
580 cascade machine learning forecasting system for 15-day global weather forecast. *npj climate and  
581 atmospheric science*, 6(1):190, 2023b.

582 Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local  
583 implicit image function. In *Proceedings of the IEEE/CVF conference on computer vision and  
584 pattern recognition*, pp. 8628–8638, 2021.

585 Felipe Curcio, Pedro Castro, Augusto Fonseca, Rafaela Castro, Raquel Franco, Eduardo Ogasawara,  
586 Victor Stepanenko, Fabio Porto, Mariza Ferro, and Eduardo Bezerra. Towards a spatiotemporal  
587 fusion approach to precipitation nowcasting. *arXiv preprint arXiv:2505.19258*, 2025.

594 Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better video prediction.  
 595 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.  
 596 3170–3180, 2022a.

597 Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan Yeung.  
 598 Earthformer: Exploring space-time transformers for earth system forecasting. *Advances in Neural*  
 599 *Information Processing Systems*, 35:25390–25403, 2022b.

600 Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle Maddix, Yi Zhu, Mu Li,  
 601 and Yuyang Bernie Wang. Prediff: Precipitation nowcasting with latent diffusion models. *Advances*  
 602 *in Neural Information Processing Systems*, 36:78621–78656, 2023.

603 Junchao Gong, Lei Bai, Peng Ye, Wanghan Xu, Na Liu, Jianhua Dai, Xiaokang Yang, and Wanli  
 604 Ouyang. Cascast: Skillful high-resolution precipitation nowcasting via cascaded modelling. *arXiv*  
 605 *preprint arXiv:2402.04290*, 2024a.

606 Junchao Gong, Siwei Tu, Weidong Yang, Ben Fei, Kun Chen, Wenlong Zhang, Xiaokang Yang,  
 607 Wanli Ouyang, and Lei Bai. Postcast: Generalizable postprocessing for precipitation nowcasting  
 608 via unsupervised blurriness modeling. *arXiv preprint arXiv:2410.05805*, 2024b.

609 Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh  
 610 reconstruction and high-quality mesh rendering. In *Proceedings of the IEEE/CVF Conference on*  
 611 *Computer Vision and Pattern Recognition*, pp. 5354–5363, 2024.

612 Jintong Hu, Bin Xia, Bin Chen, Wenming Yang, and Lei Zhang. Gaussiansr: High fidelity 2d gaussian  
 613 splatting for arbitrary-scale image super-resolution. In *Proceedings of the AAAI Conference on*  
 614 *Artificial Intelligence*, volume 39, pp. 3554–3562, 2025.

615 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for  
 616 geometrically accurate radiance fields. In *ACM SIGGRAPH 2024 conference papers*, pp. 1–11,  
 617 2024.

618 George J Huffman, David T Bolvin, Dan Braithwaite, Kuolin Hsu, Robert Joyce, Pingping Xie, and  
 619 Soo-Hyun Yoo. Nasa global precipitation measurement (gpm) integrated multi-satellite retrievals  
 620 for gpm (imerg). *Algorithm theoretical basis document (ATBD) version*, 4(26):30, 2015.

621 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting  
 622 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

623 Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan  
 624 Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for  
 625 weather and climate. *Nature*, 632(8027):1060–1066, 2024.

626 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran  
 627 Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful  
 628 medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.

629 Jaewon Lee and Kyong Hwan Jin. Local texture estimator for implicit representation function.  
 630 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.  
 631 1929–1938, 2022.

632 Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian  
 633 bridge diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and*  
 634 *pattern Recognition*, pp. 1952–1961, 2023.

635 Cheng-Chin Liu, Kathryn Hsu, Melinda S Peng, Der-Song Chen, Pao-Liang Chang, Ling-Feng Hsiao,  
 636 Chin-Tzu Fong, Jing-Shan Hong, Chia-Ping Cheng, Kuo-Chen Lu, et al. Evaluation of five global  
 637 ai models for predicting weather in eastern asia and western pacific. *npj Climate and Atmospheric*  
 638 *Science*, 7(1):221, 2024.

639 Matthew P Lucas, Ryan J Longman, Thomas W Giambelluca, Abby G Frazier, Jared Mclean, Sean B  
 640 Cleveland, Yu-Fen Huang, and Jonghyun Lee. Optimizing automated kriging to improve spatial  
 641 interpolation of monthly rainfall over complex terrain. *Journal of Hydrometeorology*, 23(4):  
 642 561–572, 2022.

648 Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,  
 649 and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.  
 650 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7210–  
 651 7219, 2021.

652 Tomoaki Mega, Tomoo Ushio, Matsuda Takahiro, Takuji Kubota, Misako Kachi, and Riko Oki.  
 653 Gauge-adjusted global satellite mapping of precipitation. *IEEE Transactions on Geoscience and*  
 654 *Remote Sensing*, 57(4):1928–1935, 2018.

655 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and  
 656 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*  
 657 *of the ACM*, 65(1):99–106, 2021.

658 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics  
 659 primitives with a multiresolution hash encoding. *ACM transactions on graphics (TOG)*, 41(4):  
 660 1–15, 2022.

661 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:  
 662 A foundation model for weather and climate. *arXiv preprint arXiv:2301.10343*, 2023.

663 Wendell A Nuss and David W Titley. Use of multiquadric interpolation for meteorological objective  
 664 analysis. AMS, 1994.

665 Young-Jae Park, Doyi Kim, Minseok Seo, Hae-Gon Jeon, and Yeji Choi. Data-driven precipitation  
 666 nowcasting using satellite imagery. In *Proceedings of the AAAI Conference on Artificial*  
 667 *Intelligence*, volume 39, pp. 28284–28292, 2025.

668 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,  
 669 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-  
 670 net: A global data-driven high-resolution weather model using adaptive fourier neural operators.  
 671 *arXiv preprint arXiv:2202.11214*, 2022.

672 Long Peng, Anran Wu, Wenbo Li, Peizhe Xia, Xueyuan Dai, Xinjie Zhang, Xin Di, Haoze Sun,  
 673 Renjing Pei, Yang Wang, et al. Pixel to gaussian: Ultra-fast continuous super-resolution with 2d  
 674 gaussian modeling. *arXiv preprint arXiv:2503.06617*, 2025.

675 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic  
 676 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic  
 677 weather forecasting with machine learning. *Nature*, 637(8044):84–90, 2025.

678 Seppo Pulkkinen, Daniele Nerini, Andrés A Pérez Hortal, Carlos Velasco-Forero, Alan Seed, Urs  
 679 Germann, and Loris Foresti. Pysteps: An open-source python library for probabilistic precipitation  
 680 nowcasting (v1. 0). *Geoscientific Model Development*, 12(10):4185–4219, 2019.

681 Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan  
 682 Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation  
 683 nowcasting using deep generative models of radar. *Nature*, 597(7878):672–677, 2021.

684 Nigel M Roberts and Humphrey W Lean. Scale-selective verification of rainfall accumulations from  
 685 high-resolution forecasts of convective events. *Monthly Weather Review*, 136(1):78–97, 2008.

686 Fengxue Ruan, Fengrui Chen, Qiao Liu, and Zhaobo Song. Fusion of satellite and gauge precipita-  
 687 tion observations through coupling spatio-temporal properties with tree-based machine learning.  
 688 *Journal of Hydrology*, pp. 134240, 2025.

689 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.  
 690 Convolutional lstm network: A machine learning approach for precipitation nowcasting. *Advances*  
 691 *in neural information processing systems*, 28, 2015.

692 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-  
 693 plicit neural representations with periodic activation functions. *Advances in neural information*  
 694 *processing systems*, 33:7462–7473, 2020.

702 Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim  
 703 Salimans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather model  
 704 for precipitation forecasting. *arXiv preprint arXiv:2003.12140*, 2020.

705 Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir: A storm event imagery dataset for  
 706 deep learning applications in radar and satellite meteorology. *Advances in Neural Information  
 707 Processing Systems*, 33:22009–22019, 2020.

708 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,  
 709 et al. Graph attention networks. *stat*, 1050(20):10–48550, 2017.

710 Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-  
 711 resolution image synthesis and semantic manipulation with conditional gans. In *Proceedings of  
 712 the IEEE conference on computer vision and pattern recognition*, pp. 8798–8807, 2018.

713 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,  
 714 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings  
 715 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 20310–20320, 2024.

716 Yi Xiao, Lei Bai, Wei Xue, Kang Chen, Tao Han, and Wanli Ouyang. Fengwu-4dvar: Cou-  
 717 pling the data-driven weather forecasting model with 4d variational assimilation. *arXiv preprint  
 718 arXiv:2312.12455*, 2023.

719 Wanghan Xu, Fenghua Ling, Tao Han, Hao Chen, Wanli Ouyang, and LEI BAI. Generalizing weather  
 720 forecast to fine-grained temporal scales via physics-ai hybrid modeling. *Advances in Neural  
 721 Information Processing Systems*, 37:23325–23351, 2024.

722 Jingyu Yang, Sheng Shen, Huanjing Yue, and Kun Li. Implicit transformer network for screen  
 723 content image continuous super-resolution. *Advances in Neural Information Processing Systems*,  
 724 34:13304–13315, 2021.

725 Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable  
 726 3d gaussians for high-fidelity monocular dynamic scene reconstruction. In *Proceedings of the  
 727 IEEE/CVF conference on computer vision and pattern recognition*, pp. 20331–20341, 2024.

728 Donggeun Yoon, Minseok Seo, Doyi Kim, Yeji Choi, and Donghyeon Cho. Deterministic guidance  
 729 diffusion model for probabilistic weather forecasting. *arXiv preprint arXiv:2312.02819*, 2023.

730 Demin Yu, Xutao Li, Yunming Ye, Baoquan Zhang, Chuyao Luo, Kuai Dai, Rui Wang, and Xunlai  
 731 Chen. Diffcast: A unified framework via residual diffusion for precipitation nowcasting. In  
 732 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 733 27758–27767, 2024a.

734 Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free  
 735 3d gaussian splatting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern  
 736 recognition*, pp. 19447–19456, 2024b.

737 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
 738 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on  
 739 computer vision and pattern recognition*, pp. 586–595, 2018.

740 Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Yan Wang, Hongwei Qin, Guo Lu, Jing Geng,  
 741 and Jun Zhang. Gaussianimage: 1000 fps image representation and compression by 2d gaussian  
 742 splatting. In *European Conference on Computer Vision*, pp. 327–345. Springer, 2024.

743 Yunxiang Zhang, Bingxuan Li, Alexandr Kuznetsov, Akshay Jindal, Stavros Diolatzis, Kenneth Chen,  
 744 Anton Sochenov, Anton Kaplanyan, and Qi Sun. Image-gs: Content-adaptive image representation  
 745 via 2d gaussians. In *Proceedings of the Special Interest Group on Computer Graphics and  
 746 Interactive Techniques Conference Papers*, pp. 1–11, 2025.

747 Lingting Zhu, Guying Lin, Jinnan Chen, Xinjie Zhang, Zhenchao Jin, Zhao Wang, and Lequan Yu.  
 748 Large images are gaussians: High-quality large image representation with levels of 2d gaussian  
 749 splatting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.  
 750 10977–10985, 2025.

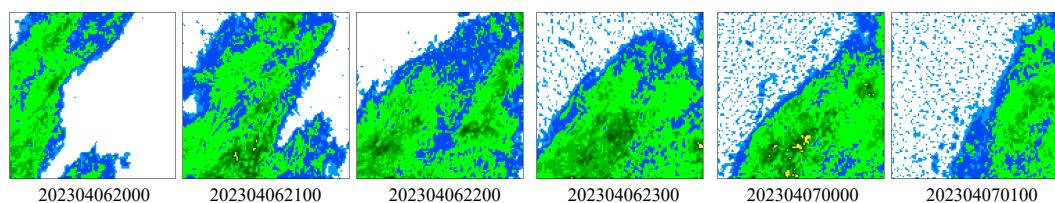


Figure 5: Examples of consecutive one-hour QCGS-generated frames. The last three frames exhibit rainfall patterns that were absent in the first three, indicating temporal inconsistencies. Such frame-to-frame mismatch can hinder the performance of video prediction models that rely on coherent temporal dynamics.

## A APPENDIX

### A.1 INFERENCE DATA FOR PRECIPITATION FORECASTING

We further evaluated the utility of QCGS-generated radar fields as inference inputs for data-driven precipitation forecasting models. Specifically, we tested three representative baselines: **MetNet-v2** (Sønderby et al., 2020), PreDiff (Gao et al., 2023), and SimVP (Gao et al., 2022a). We followed a standard nowcasting protocol in which seven past frames at ten-minute intervals are used as input and six future frames (up to +60 minutes) are predicted. **MetNet-v2 directly predicts precipitation at the target lead time, while PreDiff and SimVP follow a many-to-many forecasting scheme.**

All baselines were originally trained only in the radar to radar setting, and we performed no retraining or adaptation when using QCGS inputs. Despite this clear train to test mismatch, QCGS-driven forecasting still preserved meaningful predictive skill. As summarized in Table 3, the CSI at the 1 mm threshold decreased from 0.664 to 0.381 for PreDiff and from 0.591 to 0.252 for SimVP. MetNet-v2 showed only a small decrease, from 0.390 to 0.374.

We attribute this degradation to two main factors. First, QCGS does not currently enforce temporal coherence across frames, and this results in inconsistencies in the time dimension (see Fig. 5). Second, QCGS produces fields that are closer to AWS gauge values, while radar reflectivity is empirically calibrated to rain rate through the standard  $Z$ - $R$  relationship. This creates a mismatch for forecasting models that were trained only with radar inputs.

**The smaller degradation observed in MetNet-v2 is consistent with its single-step prediction design, which is less sensitive to inter-frame consistency than many-to-many models.**

Future work includes extending QCGS with temporal conditioning to provide coherent dynamics across consecutive frames, and retraining downstream forecasting models directly on QCGS-generated inputs. This may reduce the performance gap between QCGS-based and radar-based forecasting.

Table 3: Forecasting performance at +60 minutes using QCGS-generated radar fields as inputs. Baselines were trained only on radar-to-radar data and used without retraining.

| Model                            | CSI@1mm ( $R \rightarrow R$ ) | CSI@1mm ( $QCGS \rightarrow R$ ) |
|----------------------------------|-------------------------------|----------------------------------|
| MetNet-v2 Sønderby et al. (2020) | 0.390                         | 0.374                            |
| SimVP Gao et al. (2022a)         | 0.591                         | 0.252                            |
| PreDiff Gao et al. (2023)        | 0.664                         | 0.381                            |

### A.2 QCGS vs. RADAR

Before comparing QCGS with radar products, Figure 8 provides an overview of the qualitative differences among AWS observations, global rainfall products, and QCGS. As shown, QCGS better preserves fine-scale precipitation structures while mitigating large-scale biases commonly observed

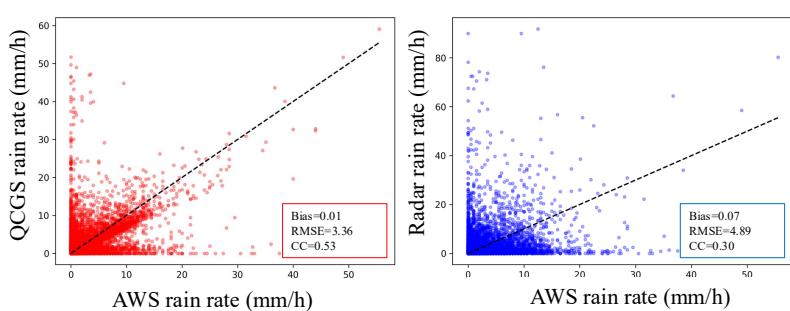


Figure 6: Bias, RMSE, and correlation coefficient (CC) of AWS rain rate compared with QCGS and radar. QCGS consistently achieves lower bias and RMSE and higher CC relative to radar, demonstrating closer agreement with gauge observations.

in conventional global products. This contextual comparison highlights the importance of evaluating QCGS against radar-derived fields.

Radar rainfall products are derived by converting reflectivity ( $Z$ ) into rain rate ( $R$ ) through empirical  $Z$ - $R$  relations. As such, they are not direct rainfall measurements and often suffer from systematic biases, especially in convective storms or orographically complex regions. In contrast, QCGS is trained on radar targets but incorporates AWS anchors at inference. Remarkably, the resulting fields often align more closely with gauge observations than radar itself. This suggests that QCGS not only reproduces radar-like spatial patterns but also implicitly corrects radar biases by leveraging point-level AWS data.

Figure 6 provides quantitative evidence: compared to radar, QCGS achieves lower bias and RMSE and higher correlation coefficients when evaluated against AWS observations. These improvements indicate that the inclusion of AWS anchors yields rainfall fields that are both more accurate and more consistent with ground truth.

Figure 7 presents case studies where gridded fields are directly matched with AWS locations. Here, QCGS preserves rainfall intensity more faithfully than radar, particularly in high-rainfall events. Importantly, AWS evaluations were performed using standard point-to-grid matching with spatial averaging, ensuring that the observed improvements are not an artifact of directly injecting AWS values but reflect genuine gains in field representation.

Taken together, these findings highlight a potential paradigm shift: QCGS offers rainfall maps that are simultaneously radar-consistent and gauge-calibrated, bridging the gap between remote sensing products and in-situ truth. In the long term, this property points to the possibility of QCGS serving as a complementary or even superior alternative to radar-derived rainfall estimates.

### A.3 ADDITIONAL QUANTITATIVE ANALYSIS.

Beyond continuous metrics such as RMSE and correlation, it is important to evaluate precipitation skill in a categorical manner across different rainfall intensities. To provide a more complete assessment, we present two complementary threshold-based analyses.

Table 4 reports CSI scores at 1, 5, and 10 mm using hourly data. These thresholds reflect light, moderate, and heavy rainfall. QCGS consistently outperforms satellite products across all intensity levels, and the improvement is most pronounced for heavy rainfall, where accurate detection is crucial.

To complement the hourly evaluation, Table 5 presents daily POD, FAR, and CSI metrics at 10, 50, and 100 mm per day. This daily-scale analysis captures the model’s ability to detect accumulated precipitation extremes, which are critical for hydrological and disaster-related applications. QCGS

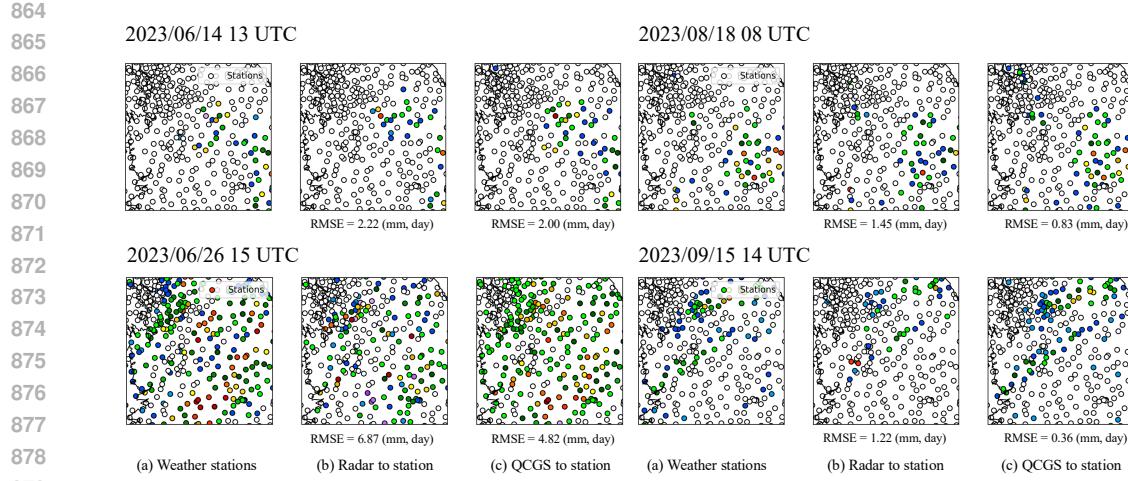


Figure 7: Case studies comparing QCGS and radar against AWS stations. Gridded fields are spatially matched to AWS locations, showing that QCGS preserves local rainfall intensities more faithfully than radar.

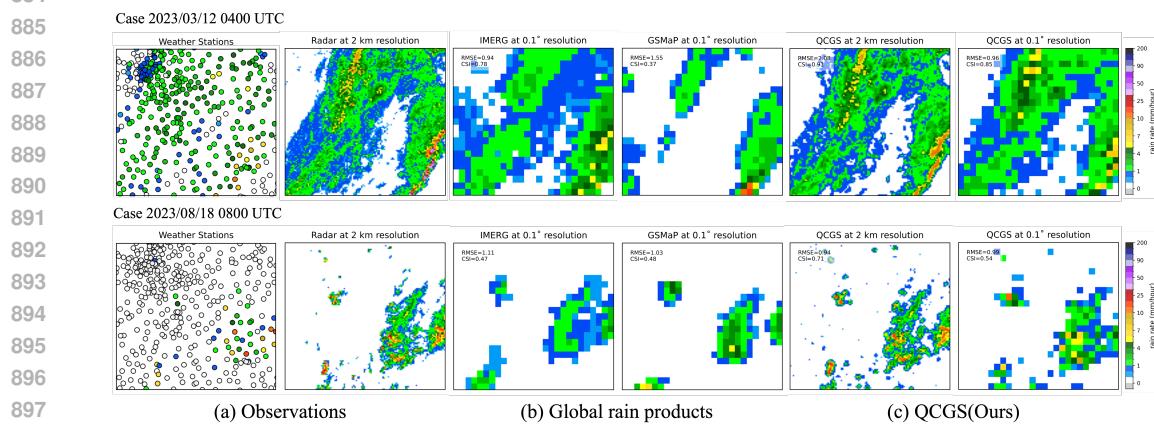


Figure 8: Qualitative comparison of observations, global rainfall products, and QCGS. QCGS preserves fine-scale precipitation structures and reduces large-scale biases relative to conventional products.

achieves the best POD and CSI across all daily thresholds, while maintaining reasonable FAR values. In contrast, satellite products either miss many high-rainfall days or exhibit high false-alarm rates.

Together, the hourly and daily analyses provide a comprehensive characterization of model performance. QCGS consistently surpasses satellite products across all intensity levels and temporal scales, confirming its ability to reconstruct precipitation structure more faithfully than existing methods.

## A 4 CROSS-DOMAIN EXPERIMENTAL RESULTS

As shown in Fig. 9, we use Regions 1 and 2 (top) for training, while Regions 3 and 4 (bottom) are excluded from training. Table 6 presents the experimental results. QCGS shows only a small performance drop in unseen regions. We believe this is due to two reasons: (1) although the regions differ, they are geographically close and share similar meteorological patterns, and (2) the number of activated AWS stations varies significantly depending on the rainfall intensity. For example, heavy-rain days may activate more than 700 AWS stations, while light-rain days may activate fewer than 100. This naturally exposes the model to diverse spatial AWS configurations during training.

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 4: CSI scores at different rainfall thresholds (mm per hour) using hourly data. QCGS is evaluated at multiple spatial resolutions (0.5, 2, and 10 km).

| Threshold | QCGS (0.5 km) | QCGS (2 km) | QCGS (10 km) | IMERG | GSMaP |
|-----------|---------------|-------------|--------------|-------|-------|
| 1         | 0.657         | 0.703       | 0.506        | 0.366 | 0.308 |
| 5         | 0.415         | 0.483       | 0.306        | 0.140 | 0.129 |
| 10        | 0.311         | 0.401       | 0.232        | 0.046 | 0.065 |

926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 5: Categorical POD, FAR, and CSI scores at different rainfall thresholds (mm per day) for daily accumulation data.

| Threshold | POD          |              |              | FAR          |              |              | CSI          |              |              |
|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|           | 10           | 50           | 100          | 10           | 50           | 100          | 10           | 50           | 100          |
| QCGS      | <b>0.703</b> | <b>0.579</b> | <b>0.646</b> | <b>0.125</b> | <b>0.329</b> | <b>0.423</b> | <b>0.657</b> | <b>0.455</b> | <b>0.434</b> |
| IMERG     | 0.679        | 0.369        | 0.117        | 0.267        | 0.616        | 0.614        | 0.541        | 0.173        | 0.039        |
| GSMaP     | 0.591        | 0.358        | 0.277        | 0.262        | 0.710        | 0.754        | 0.493        | 0.165        | 0.119        |
| MSWEP     | 0.714        | 0.315        | 0.096        | 0.286        | 0.554        | 0.584        | 0.553        | 0.191        | 0.067        |

### A.5 VISUAL QUALITY ABLATION STUDY

Figure 10 presents a qualitative comparison among Radar, QCGS, AWS-only, and Satellite-only baselines. The AWS-only reconstruction exhibits isolated Gaussian blobs, which occur because point-based gauge measurements cannot fully represent the entire spatial domain. The Satellite-only baseline appears noticeably blurred, largely due to relying solely on pixel-wise MSE loss without ground-level anchors. In contrast, QCGS produces sharper, more coherent precipitation structures that closely resemble radar observations, benefiting from its Gaussian splatting-based rendering and AWS–satellite fusion. These visual results further confirm that QCGS delivers superior perceptual fidelity compared to other ablated variants.

### A.6 VISUAL QUALITY COMPARISON WITH CLASSICAL INTERPOLATION

Figure 11 presents a qualitative comparison between classical interpolation methods and the AWS-only variant of QCGS. All methods are evaluated under identical input, target, and output conditions to ensure a fair comparison. As shown in the figure, QCGS produces noticeably sharper and more coherent precipitation structures compared to classical approaches, demonstrating superior visual quality.

### A.7 ADDITIONAL QUALITATIVE ANALYSIS.

This section reports qualitative examples, which are randomly sampled rather than cherry-picked, to ensure fair illustration of model behavior.

Figure 8 highlights a representative case. Radar reports an area of intense rainfall, whereas QCGS produces a similar spatial pattern but with lower intensity. At first glance, this could be interpreted as an underestimation by QCGS. However, inspection of AWS gauge measurements (case: 2023/03/12 04:00) reveals that strong rainfall was not observed at ground level. This indicates that in this instance, radar likely overestimated rainfall intensity, while QCGS produced fields more consistent with in-situ truth. Such cases highlight the value of incorporating gauge anchors, which allow QCGS to mitigate biases inherent in radar-only products.

Figure 12 presents two challenging cases (2023/07/11 07 UTC and 2023/08/09 12 UTC) where QCGS underperforms compared to conventional products. In both events, QCGS struggles to capture the spatial extent and intensity of the observed precipitation system. This limitation is particularly evident in convective episodes with rapidly evolving structures, where sparse AWS anchors provide insufficient coverage. The examples illustrate that while QCGS often achieves strong performance, it is not universally superior across all conditions. These cases highlight the need for future extensions, such as incorporating temporal coherence or additional observation sources, to further improve robustness.



Figure 9: Training and evaluation regions. Regions 1 and 2 are used for model training, while Regions 3 and 4 are excluded.

| Metric             | Cross-domain | In-domain |
|--------------------|--------------|-----------|
| RMSE $\downarrow$  | 1.01         | 1.00      |
| CSI $\uparrow$     | 0.76         | 0.76      |
| Bias=1             | 1.03         | 1.03      |
| FSS=1 (ne=5)       | 0.96         | 0.96      |
| LPIPS $\downarrow$ | 0.25         | 0.19      |
| pCC $\uparrow$     | 0.93         | 0.93      |
| rCC $\uparrow$     | 0.91         | 0.92      |

Table 6: Cross-domain evaluation results.

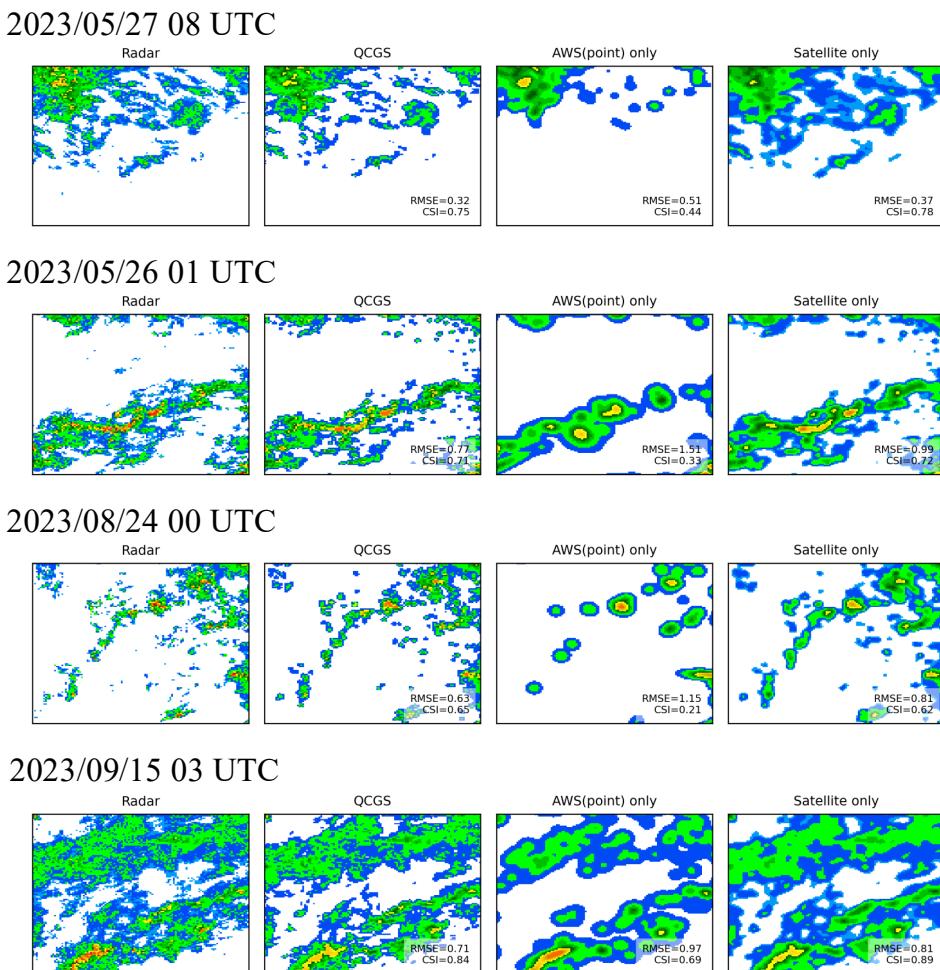


Figure 10: Visual comparison of Radar, QCGS, AWS-only, and Satellite-only across several cases.

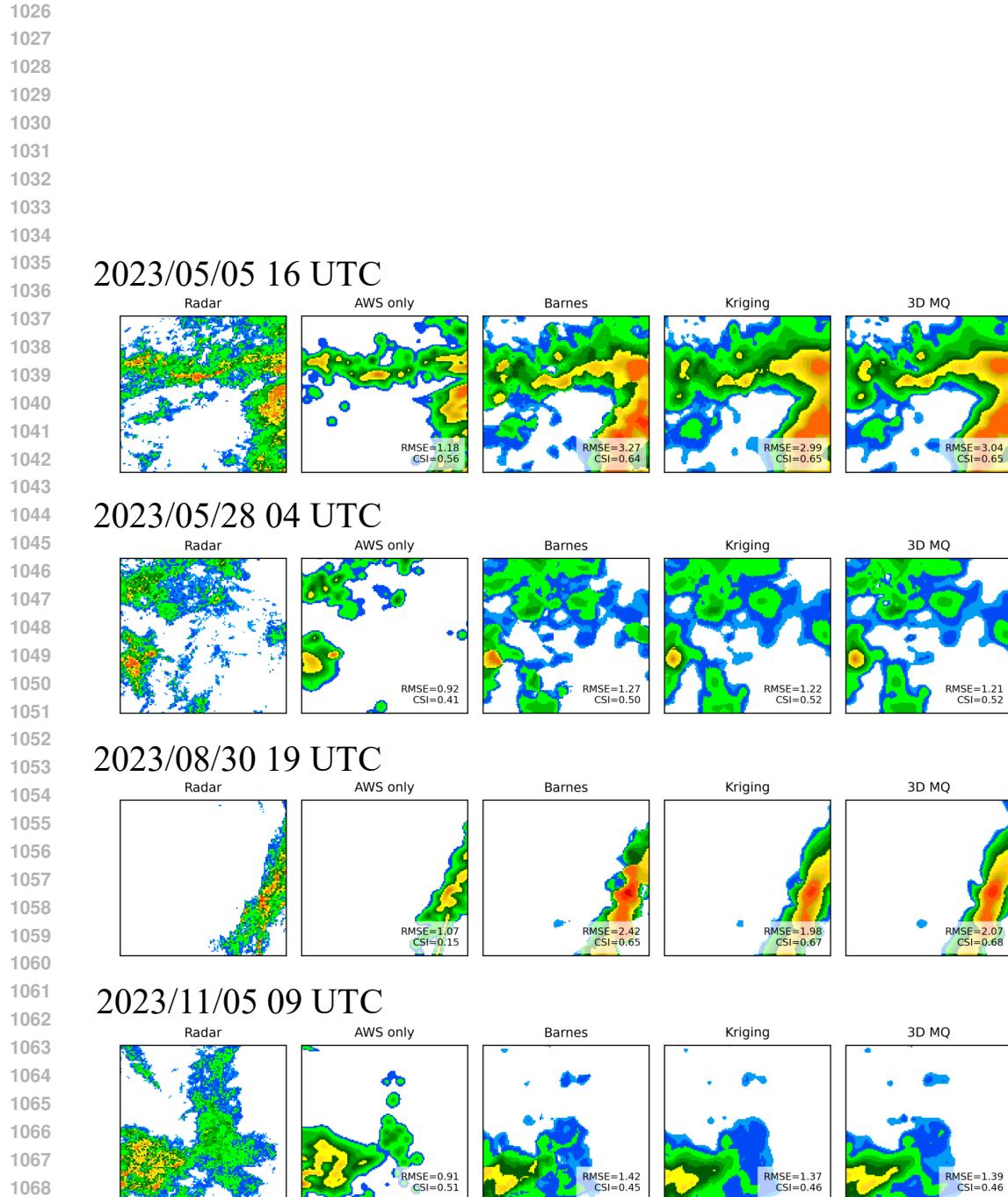


Figure 11: Qualitative comparison between classical interpolation methods and QCGS (AWS-only).

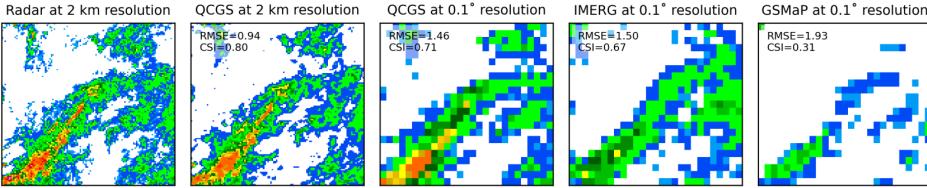
1080

1081

1082

2023/05/05 05 UTC

1083



1084

1085

1086

1087

1088

1089

1090

2023/06/20 20 UTC

1091

1092

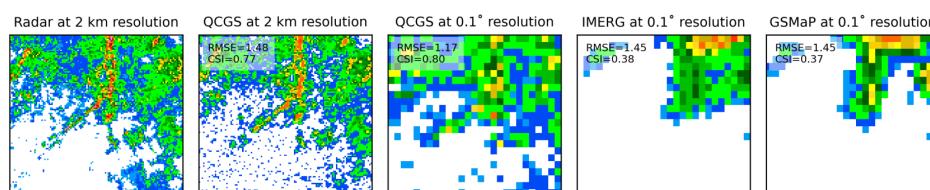
1093

1094

1095

1096

1097



1098

2023/07/11 06 UTC

1099

1100

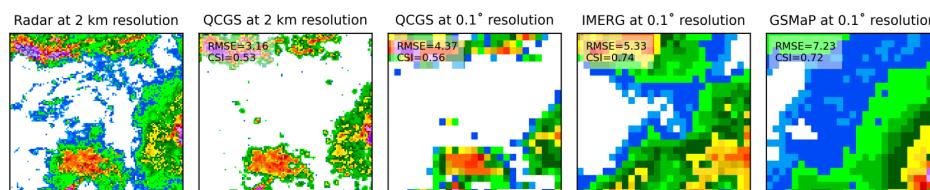
1101

1102

1103

1104

1105



1106

2023/08/09 12 UTC

1107

1108

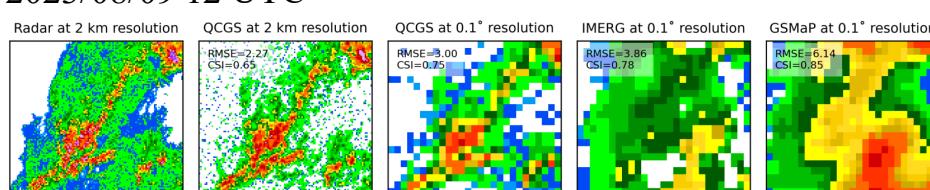
1109

1110

1111

1112

1113



1114

2023/08/23 20 UTC

1115

1116

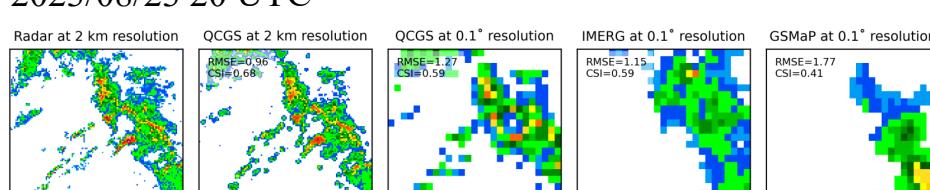
1117

1118

1119

1120

1121



1122

2023/12/14 19 UTC

1123

1124

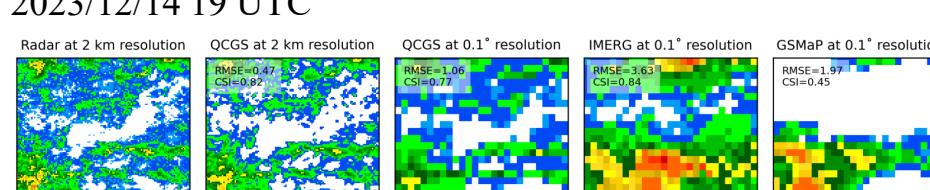
1125

1126

1127

1128

1129



1130

1131

1132

1133

Figure 12: Qualitative comparison of precipitation fields from radar, QCGS, IMERG, and GSMAp. Radar provides the reference, while QCGS preserves fine-scale structures more faithfully than global products. IMERG and GSMAp show smoother fields with biases in convective regions.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

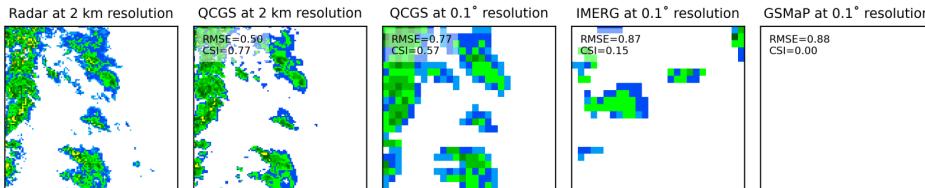
1184

1185

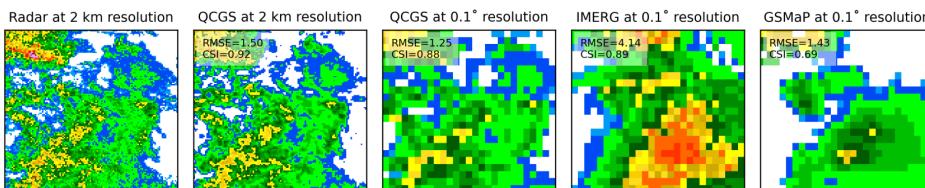
1186

1187

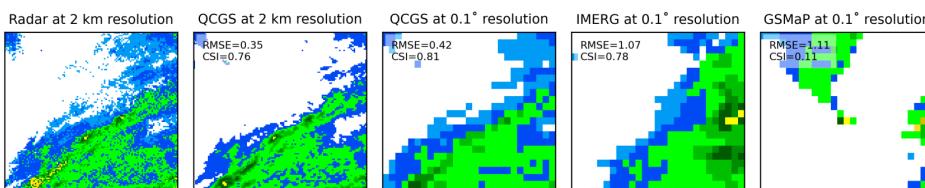
2023/01/06 13 UTC



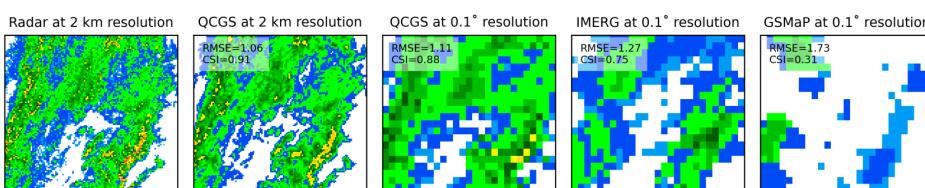
2023/01/12 21 UTC



2023/02/09 18 UTC



2023/03/12 03 UTC



2023/03/12 04 UTC



2023/04/04 13 UTC

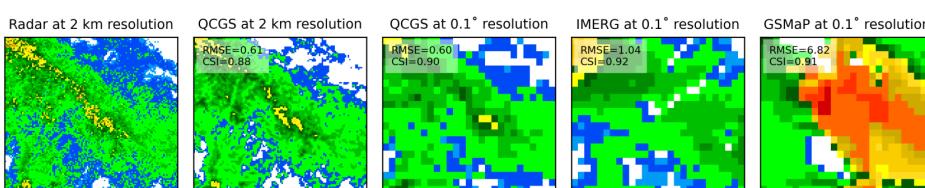


Figure 13: Qualitative comparison of precipitation fields from radar, QCGS, IMERG, and GSMAp. Radar provides the reference, while QCGS preserves fine-scale structures more faithfully than global products. IMERG and GSMAp show smoother fields with biases in convective regions.