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ABSTRACT

The advancement of Large Language Models (LLMs) has remarkably pushed the
boundaries towards artificial general intelligence (AGI), with their exceptional
ability on understanding diverse types of information, including but not limited
to images and audio. Despite this progress, a critical gap remains in empowering
LLMs to proficiently understand and reason on graph data. Recent studies under-
score LLMs’ underwhelming performance on fundamental graph reasoning tasks.
In this paper, we endeavor to unearth the obstacles that impede LLMs in graph
reasoning, pinpointing the common practice of converting graphs into natural lan-
guage descriptions (Graph2Text) as a fundamental bottleneck. To overcome this
impediment, we introduce GraphLLM, a pioneering end-to-end approach that syn-
ergistically integrates graph learning models with LLMs. This integration equips
LLMs with the capability to proficiently interpret and reason on graph data, har-
nessing the superior expressive power of graph learning models. Our empirical
evaluations across four fundamental graph reasoning tasks validate the effective-
ness of GraphLLM. The results exhibit a substantial average accuracy enhance-
ment of 54.44%, alongside a noteworthy context reduction of 96.45% across var-
ious graph reasoning tasks.1

1 INTRODUCTION

The AI community has witnessed the emergence of powerful pre-trained Large Language Models
(LLMs) (Brown et al., 2020; Chowdhery et al., 2022; OpenAI, 2023; Touvron et al., 2023), which
leads to the pursuit of the potential realization of Artificial General Intelligence (AGI). Inspired by
the fact that an intelligent agent, like the human brain, processes information of diverse types, there
is a trend towards empowering LLMs to understand various forms of data, such as audio (Huang
et al., 2023) and images (Alayrac et al., 2022). Despite significant strides in interpreting multi-
modal information (Yin et al., 2023), empowering LLMs to understand graph data remains relatively
unexplored. Graphs, which represent entities as nodes and relationships as edges, are ubiquitous
in numerous fields, e.g. molecular networks, social networks. An intelligent agent is expected to
reason with graph data to facilitate many tasks such as drug discovery (Stokes et al., 2020) and chip
design (Mirhoseini et al., 2021).

Current efforts have revealed that LLM’s performance on some fundamental graph reasoning tasks
is (unexpectedly) subpar. As noted by Wang et al. (2023a), even with tailor-made prompts, LLMs
muster an accuracy of barely 33.5% when tasked with calculating the shortest path on a graph with
up to 20 nodes. Their research also highlighted that fine-tuning OPT-2.7B (Zhang et al., 2022) failed
to elicit the graph reasoning ability. Similarly, our experiments indicate that fine-tuning more recent
LLaMA2-7B/13B (Touvron et al., 2023) still results in underwhelming performances in several
fundamental graph reasoning tasks. This raises an essential question: What hinders the ability of
LLMs on graph reasoning tasks?

We posit that the key obstacle to LLMs’ graph reasoning ability can be attributed to the prevailing
practice of converting graphs into natural language descriptions (Graph2Text). A majority of the
existing attempts to apply LLMs to graph data, such as the studies by Wang et al. (2023a); Guo
et al. (2023); Ye et al. (2023), employ Graph2Text strategy to convert graph data into textual de-
scriptions. While the Graph2Text-based methodology facilitates direct processing of graph data by

1Codes and datasets are available at https://anonymous.4open.science/r/GraphLLM-4455.
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Figure 1: Demonstration of Graph2Text vs. GraphLLM. The LLM is tasked with computing the
minimum quantity of dark matter necessary to transition from the starting wormhole to the ending
wormhole, given the connectivity graph and the textual descriptions of each node.

LLMs through textual descriptions, it introduces following inherent shortcomings that curtail the
ability of LLMs on graph reasoning tasks:

1. LLMs, when using the Graph2Text strategy, are compelled to discern implicit graph structures
from sequential text. In contrast to dedicated graph learning models that inherently process graph
structures, LLMs may face difficulties in learning on graph based on sequential graph descriptions.

2. The Graph2Text-based methodology inherently results in a lengthy context of graph description,
as illustrated in Figure 1. This could pose a challenge for LLMs to identify essential information
for graph reasoning tasks from the lengthy contexts (Liu et al., 2023).

To tackle the aforementioned limitations and enhance the ability of LLMs in graph reasoning, we
introduce GraphLLM. Contrary to the Graph2Text strategy of converting graphs into textual de-
scriptions, GraphLLM’s core idea is to synergistically integrate a graph learning module (graph
transformer) with the LLM to enhance graph reasoning ability. By synergizing the LLM and the
graph transformer, GraphLLM harnesses the strengths of both and offers a more powerful and effi-
cient solution to applying LLMs for graph reasoning tasks. Specifically, GraphLLM possesses the
following two key advantages over Graph2Text-based methodology:

1. Collaborative Synergy. GraphLLM takes an end-to-end approach to integrate graph learning
models and LLMs within a single, cohesive system. By synergizing with graph learning models,
LLMs can harness its superior expressive power on graph data. Compared to Graph2Text-based
methodology, GraphLLM achieves an average accuracy improvement from 43.75% to 98.19% on
four fundamental graph reasoning tasks.

2. Context Condensation. GraphLLM condenses graph information into a concise, fixed-length
prefix, thereby circumventing the need of Graph2Text strategy to produce lengthy graph descrip-
tions. Compared to Graph2Text-based methodology, GraphLLM substantially reduces the context
length by 96.45%.

Our experiments on four fundamental graph reasoning tasks covering text substructure counting,
maximum triplet sum, shortest path, and bipartite graph matching, demonstrate that GraphLLM
boosts the graph reasoning ability of LLM by an average accuracy improvement of 54.44%, while
achieving a remarkable context reduction of 96.45% and 3.42x inference acceleration.
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2 PRELIMINARY

Definition 2.1. (Input Graph) Given an instance of instruction pair (Input, Instruction,
Response), the Input graph is a set V of n node {d0,d1, . . . ,dn−1}, where di is the textual
feature2 of i-th node, with graph structure E on V . The graph structure E : V × V → {0, 1} is
defined as follows:

E(di,dj) =

{
1, if there is a relationship between di and dj

0, otherwise
(1)

Thus the Input graph G can be denoted as a tuple {V, E}. Graph2Text-based methodology intro-
duces graph description language A(V, E) → TextDescription.
Definition 2.2. (Fine-tuning on Graph Reasoning Tasks) Given a pre-trained LLM M with pa-
rameters θ, a dataset of m instruction pairs {(Inputi,Instructioni,Responsei)i=0,...,m−1},
where each Inputi is a graph Gi = {Vi, Ei}, and a task-specific objective function L, the fine-
tuning process aims to learn task-specific parameters θ⋆ by minimizing the following loss function:

θ⋆ = argmin
θ′

m−1∑
i=0

L(M(V, E ,Instruction; θ′);Response) (2)

where M( ;θ′) represents the output of the fine-tuned LLM M with parameters θ′. Note that in
Eq. (2) the subscripts of V, E ,Instruction and Response are omitted for clarity.

Prefix Tuning Given a pre-trained LLM with an L-layer transformer, prefix tuning fixes the orig-
inal LLM parameters and only prepends K trainable continuous tokens (prefixes) to the keys and
values of the attention at every transformer layer. Taking the l-th attention layer as an example
(l < L), prefix vectors Pl ∈ RK×dM

is concatenated with the original keys Kl ∈ R∗×dM

and values
Vl ∈ R∗×dM

, where dM is the dimension of LLM, formulated as:

K ′
l = [Pl;Kl] ; V

′
l = [Pl;Vl] ∈ R(K+∗)×dM

(3)

The new prefixed keys K ′
l and values V ′

l are then subjected to the l-th attention layer of LLM. For
simplicity, we denote the vanilla attention computation as Ol = Attn(Ql,Kl,Vl). The computa-
tion of attention becomes:

Ol = Attn(Ql, [Pl;Kl] , [Pl;Vl]) (4)

In vanilla prefix tuning, prefixes are initialized from a trainable parameter tensor P ∈ RL×K×dM

.

3 GRAPHLLM

3.1 GENERAL FRAMEWORK OF GRAPHLLM

Reason on Graphs Since graphs inherently represent entities and their interrelationships, reason-
ing on graphs requires simultaneous consideration of both the entities (nodes) and their relationships
(edges). Consequently, graph reasoning tasks encompass two sub-objectives: node understanding
and structure understanding. For example, in the context of counting specific substructures within a
molecular graph, one must discern the types of atoms from node descriptions (node understanding)
and recognize the chemical bonds derived from the graph’s structure (structure understanding). In
the proposed GraphLLM, we intentionally devise modules addressing these dual objectives.

As demonstrated in Figure 2, GraphLLM consists of the following three main steps:
2In this paper, we operate under the assumption that nodes (or entities) can be characterized by textual

features, which is applicable to various real-world graphs, such as user profiles in social networks or atom
property descriptions in molecular graphs.
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Figure 2: An illustration of reasoning on a toy molecular graph with GraphLLM. The LLM is
requested to identify the number of C-C-O triangles in the molecule.

1. Node Understanding (§3.2): A textual transformer encoder-decoder is used to extract semantic
information crucial to solving graph reasoning tasks from node textual descriptions. The encoder-
decoder is newly initialized and updated with the guidance of the pre-trained LLM.

2. Structure Understanding (§3.3): A graph transformer is employed to learn on the graph structure
by aggregating the node representations obtained from the textual encoder-decoder. In this way,
the graph representation produced by the graph transformer can incorporate both node semantic
information and graph structure information simultaneously.

3. Graph-enhanced Prefix Tuning for LLMs (§3.4): GraphLLM derives the graph-enhanced prefix
from the graph representation. During graph-enhanced prefix tuning, the LLM synergizes with the
graph transformer by end-to-end fine-tuning, therefore boosting the LLM’s capability in conduct-
ing graph reasoning tasks with proficiency.

3.2 ENCODER-DECODER FOR NODE UNDERSTANDING

The goal of the encoder-decoder is to extract the required information from the nodes based on
the specific graph reasoning task. For example, when identifying substructures within molecule,
it is necessary to extract atom types from the descriptions of the atoms. For the shortest path
task, discerning the cost associated with each node from their descriptions is essential. Therefore,
GraphLLM employs a textual transformer encoder-decoder architecture to adaptively extract node
information required for graph reason tasks.

Specifically, a textual transformer encoder first applies self-attention to the node description, gener-
ating a context vector that captures the semantic meaning pertinent to graph reasoning tasks. Sub-
sequently, a transformer decoder produce the node representation Hi through the cross-attention be-
tween the context vector ci and the query Q. The query Q is a newly-initialized trainable embedding.
For convenience, we provide a brief overview of the computation process of the encoder-decoder
in Eq. (5). Detailed information can be found in Appendix A.1.

ci = TransformerEncoder(diWD) (5a)
Hi = TransformerDecoder(Q; ci) (5b)

where di ∈ R∗×dM

is the embeddings3 of the textual description of node i (∗ represents description’s
length). WD ∈ RdM×d is a down-projection matrix to reduce the dimension. d is the dimension of
the node understanding encoder-decoder and the structure understanding graph transformer. ci ∈
R∗×d is node i’s context vector and Hi ∈ RL×K×d is the node i’ representation. Q ∈ RL×K×d is

3The textual descriptions of the nodes are tokenized and embedded by LLM’s tokenizer and frozen embed-
ding table to align with the downstream frozen LLM.
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learnable query embedding, where L is the layer number of LLM transformer and K is the length
of prefix.

In GraphLLM, we adopt a lightweight transformer encoder-decoder (0.05B parameters for LLaMA
2 7B backbone). In practice, a newly-initialized encoder-decoder can effectively learn to capture
node information required for graph reasoning tasks under the guidance of the pre-trained LLM.

3.3 GRAPH TRANSFORMER FOR STRUCTURE UNDERSTANDING

Aiming at structure understanding, GraphLLM utilizes a graph transformer to learn from the graph
structure. In our framework, the core advantage of the graph transformer over other commonly used
graph learning modules (Kipf & Welling, 2017; Veličković et al., 2018) lies in its decoupling of
node information and structural information. In the graph transformer, both the positional encoding,
which captures the structural information of the graph, and the node representations are indepen-
dently fed into the transformer blocks and subsequently updated during the learning process. We
empirically find that the decoupling of node understanding and structure understanding enhances
GraphLLM’s graph reasoning ability. The graph transformer primarily consists of two key designs:
positional encoding and attention mechanism on graph.

The positional encoding ei,j between node i and node j is initialized using relative random walk
probabilities (RRWP) encoding (Ma et al., 2023). Let A be the adjacency matrix of a graph {V, E}
and D be the degree matrix. Define the random walk matrix M := D−1A, I the identity matrix.
The positional encoding ei,j for each node pair i, j ∈ V can be formulated as follows:

Ri,j = [Ii,j ,Mi,j ,M
2
i,j , ...,M

C−1
i,j ] ∈ RC (6a)

ei,j = Φ(Ri,j) ∈ Rd (6b)

in which C is a parameter controlling the maximum length of random walks considered. Ri,j is
updated by an elementwise MLP Φ : RC → Rd to get the relative positional encoding ei,j , which
encodes the structural relationship between node i and node j.

We adopt attention design of the graph transformer introduced by Ma et al. (2023). Note that the
graph transformer adapts self attention on hi := Hi[l, k, :] ∈ Rd (l ∈ [0, L− 1]; k ∈ [0,K − 1]) of
each index [l, k] independently. Given h

(0)
i = hi, e

(0)
i,j = ei,j , the t-th layer of graph transformer

(t < T ) can be formulated as:

ê
(t)
i,j = σ(ρ((WQh

(t)
i +WKh

(t)
j )⊙WEwe

(t)
i,j ) +WEbe

(t)
i,j ) ∈ Rd (7a)

αij = Softmaxj∈V(WAê
(t)
i,j ) ∈ R (7b)

h
(t+1)
i =

∑
j∈V

αij ·WVh
(t)
j ∈ Rd (7c)

where WQ,WK,WEw,WEb,WV ∈ Rd×d and WA ∈ R1×d are learnable weight matrices; ⊙
indicates elementwise multiplication; and ρ(x) := (ReLU(x))1/2 − (ReLU(−x))1/2. We also
include feed-forward module, residual connection and normalization in our implementation, but
they are omitted here for simplicity, which are detailed shown in Appendix A.2. The representation
Hi of node i is derived by gathering h

(T )
i of each index [l, k].

For node-level graph reasoning tasks, the Input graph representation G = Hi, where node i is to be
inferred. For graph-level graph reasoning tasks, the Input graph representation G =

∑
i∈V Hi/|V|

by mean-pooling on the graph.

3.4 GRAPH-ENHANCED PREFIX TUNING FOR LLMS

To produce a Response in human language for a graph reasoning task, LLMs utilize graph-
enhanced tunable prefix derived from the graph representation G during the tuning process. Specifi-
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cally, the graph-enhanced prefix P is obtained by applying a linear projection to the graph represen-
tation G as illustrated in Eq. (8), where WU ∈ Rd×dM

is a matrix converting the dimension.

P = GWU + B (8)

Then P ∈ RL×K×dM

is prepended to each attention layer of the LLM as shown in Eqs. (3) and (4).

Connection to Prefix Tuning It’s worth noting that when WU is a zero matrix, GraphLLM degen-
erates into vanilla prefix tuning as P = G0 + B. From this perspective, GraphLLM is an enhance-
ment of prefix tuning. In GraphLLM, the LLM synergizes with the powerful graph transformer to
incorporate additional context information crucial to graph reasoning into the prefix. Consequently,
the LLM can produce appropriate response for the graph reasoning task by interpreting the contexts
encapsulated within the graph-enhanced prefix.

4 EXPERIMENT

In this section, we aim to empirically substantiate three central hypotheses posited in this study.

• Q1: Does GraphLLM effectively enhance the graph reasoning ability of the LLM?
• Q2: Can GraphLLM address the issue of lengthy context caused by Graph2Text strategy?
• Q3: How does GraphLLM perform in terms of computational efficiency?

4.1 EXPERIMENTAL SETTINGS

Graph Reasoning Tasks We follow the design of the graph reasoning tasks in Wang et al. (2023a),
which proposes a series of graph reasoning tasks with varying complexity on randomly generated
graphs. Note that in Wang et al. (2023a), the nodes are identified and described by a single number
index simply. This over-simplification potentially hinders a comprehensive evaluation of the model’s
capabilities in node understanding. Consequently, we develop four graph reasoning tasks where
each node has a textual entity description of around 50 tokens. These tasks can simultaneously test
the abilities of node understanding and structure understanding, which are both crucial for graph
reasoning tasks. We present the illustration of the graph tasks in Figure 3, and the dataset statistics
are provided in Table 1.

Table 1: Statistics of the graph reasoning task datasets.

Substructure Counting Maximum Triplet Sum Shortest Path Bipartite Graph Matching

Avg. |V| / Avg. |E| 15 / 22.3 15 / 26.6 20 / 32.4 20 / 14.0
No. of Tokens in Node Desc. 52-59 39-82 48-58 34-61

• Task 1: Substructure Counting Let G = {V, E} be a molecular graph, where each atom in V has
a text description di that includes the element type of the atom. LLMs are tasked with counting
the number of specific substructure, e.g. carbon-carbon-oxygen triangle.

• Task 2: Maximum Triplet Sum Let G = {V, E} be a friendship graph, where each person in V
has a text description di that includes the age of the person. In this task, LLMs are instructed to
identify the maximum cumulative age among all possible triplets formed by selecting a specific
individual, their direct friends, and the friends of those friends.

• Task 3: Shortest Path Let G = {V, E} be a graph that represents interconnected wormholes. Each
wormhole in V requires a different amount of dark matter for activation, which is included in the
text description di of each node. Activating a wormhole enables spatial jumps to any connected
wormhole. LLMs are required to compute the path from the starting wormhole to the destination
wormhole that requires the least amount of dark matter.

• Task 4: Bipartite Graph Matching Let G = {V, E} be a graph that depicts the application
relationship between applicants and jobs. An edge in E represents an applicant applying for a
specific job. Each job can only accept one applicant and a job applicant can be appointed for only
one job. The text description di of each node provides information about either the job or the
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Figure 3: Illustration of the graph reasoning tasks. Each Input graph consists of a number of nodes
characterized by textual node descriptions and the graph structure between the nodes.

applicant. LLMs are required to compute the maximum possible number of applicants who can
find the jobs they are interested in.

Each task consists of 2,000/2,000/6,000 graph instance for training/validation/test. The textual de-
scriptions of the nodes are generated by gpt-3.5-turbo according to specific instructions and
manually verified. The graph descriptions of these tasks using Graph2Text strategy are presented in
the Appendix D.

Baselines We compare GraphLLM with two categories of approaches: prompting and fine-tuning.
The prompting approaches encompass the following strategies: zero-shot prompting, few-shot in-
context learning (Brown et al., 2020) and few-shot chain-of-thought (CoT) prompting (Wei et al.,
2022). The fine-tuning approaches include widely adopted prefix tuning (Li & Liang, 2021) and
LoRA (Hu et al., 2022). Due to context length limit, all tasks are confined to one shot for few-
shot methods. For LoRA, we apply low rank adaption only on attention module (attn) and on both
attention module and feed-forward networks (attn+ffn) (Zhang et al., 2023). For all the baselines,
we follow Wang et al. (2023a); Guo et al. (2023) to design prompts which describe the Input
graph in natural language (Graph2Text). To analyze the performance gap that may emerge from
utilizing different graph description languages, we utilized two prevalent methods to describe the
graph structure: adjacency list and edge list.

Imeplementations We use LLaMA 2 7B/13B (Touvron et al., 2023) as our LLM backbone. For
all tested methods, we set the temperature τ to 0 to ensure that the LLM’s response is deterministic.
We adopt Exact Match Accuracy as metrics for the four graph reasoning tasks. All experiments are
conducted on 4 × 80G A100 GPUs. Complete experiment setups such as hyperparameters, batch
size, optimizer, learning rates are in Appendix B.
Table 2: Performance on Graph Reasoning Tasks. Shown is the mean ± s.d. of 3 runs with different
random seeds. Highlighted are the top and second-best.

Input Format Method LLaMA2-7B LLaMA2-13B

Substructure
Counting

Maximum Triplet
Sum

Shortest
Path

Bipartite Graph
Matching

Substructure
Counting

Maximum Triplet
Sum

Shortest
Path

Bipartite Graph
Matching

Adjacency
List

Zero-shot 0.2260 0.1110 0.0000 0.3630 0.0145 0.0925 0.0010 0.1180
Few-shot 0.2735 0.1445 0.0575 0.3280 0.2780 0.1430 0.0520 0.2675
Few-shot CoT 0.2177 0.0585 0.1089 0.2399 0.2150 0.0544 0.1552 0.1048

LoRA(attn) 0.5012±.0054 0.4427±.0031 0.2119±.0004 0.7383±.1078 0.4926±.0068 0.4080±.0009 0.1251±.0019 0.7792±.0353
LoRA(attn+ffn) 0.5400±.0363 0.4723±.0115 0.1652±.0420 0.6941±.0691 0.4948±.0035 0.4274±.0459 0.1181±.0051 0.8010±.0490
Prefix Tuning 0.5003±.0134 0.3887±.0346 0.2173±.0078 0.5534±.0739 0.4610±.0444 0.3377±.0038 0.1608±.0376 0.4640±.0314

Edge List
(Random Order)

Zero-shot 0.2460 0.1260 0.0000 0.4325 0.0805 0.1265 0.0010 0.0055
Few-shot 0.2610 0.1420 0.0111 0.3687 0.2655 0.1423 0.1110 0.3230
Few-shot CoT 0.2127 0.0565 0.1069 0.1411 0.2320 0.0767 0.1351 0.0464

LoRA(attn) 0.5035±.0007 0.4224±.0040 0.2011±.0074 0.6457±.0243 0.4920±.0172 0.4143±.0059 0.1240±.0008 0.6319±.0199
LoRA(attn+ffn) 0.5101±.0051 0.4552±.0319 0.2011±.0046 0.5446±.0364 0.4904±.0051 0.4489±.0157 0.1958±.0180 0.6126±.0338
Prefix Tuning 0.3925±.0612 0.3780±.0131 0.1656±.0273 0.4599±.0187 0.3319±.1148 0.3525±.0048 0.1246±.0014 0.5228±.0575

GraphLLM 0.9990±.0007 0.9577±.0058 0.9726±.0011 0.9981±.0015 0.9890±.0021 0.9392±.0064 0.9619±.0038 0.9934±.0064
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4.2 PERFORMANCE ON GRAPH REASONING TASKS (Q1)

Table 2 delineates the performance differentials between GraphLLM and Graph2Text-based method-
ologies across the four graph reasoning tasks. From this comparative analysis, we can infer sev-
eral key insights: (1). The zero-shot, few-shot, and chain-of-thought Graph2Text-based prompting
methods deliver subpar performance, indicating the limitations of LLMs in generalizing to graph
reasoning tasks without additional fine-tuning. (2). Even with fine-tuning on graph reasoning tasks,
Graph2Text-based methodology significantly lag behind the performance achieved by GraphLLM.
This discrepancy suggests that the Graph2Text-based approaches can constitute a significant obsta-
cle preventing LLMs from adapting to graph reasoning tasks. (3). The choice between the two
primary graph description languages (adjacency/edge list) doesn’t lead to a consistent enhancement
in the performance of Graph2Text-based methods. This finding confirms that the impediments in-
troduced by the Graph2Text methodology aren’t tied to a specific graph description language. (4).
On average, GraphLLM achieves an Exact Match Accuracy of 98.19% over the four tasks, in con-
trast to the top-performing Graph2Text-based method, which manages only 47.35%. This difference
underscores the effectiveness of our approach in facilitating LLMs in graph reasoning tasks.

Table 3: Performance of gpt-3.5-turbo and gpt-4
with Graph2Text strategy (converting input graph into ad-
jacency list described in natural language), evaluated on
30 random samples due to the money cost.

LLM Method Substructure
Counting

Maximum Triplet
Sum

Shortest
Path

Bipartite Graph
Matching

gpt-3.5-
turbo

Zero-shot 0.2667 0.5667 0.2000 0.1000
Few-shot 0.3000 0.3000 0.2667 0.0667
Few-shot CoT 0.3667 0.7000 0.7333 0.2667

gpt-4
Zero-shot 0.6000 0.7333 0.6667 0.3333
Few-shot 0.5000 0.8667 0.5667 0.5000
Few-shot CoT 0.5000 0.9333 0.8667 0.8667

LLaMA 2-7B GraphLLM 0.9990 0.9577 0.9726 0.9981

Evaluation on Stronger LLMs We
also evaluate the Graph2Text strategy
on more powerful gpt-3.5-turbo
and gpt-4, illustrated on Table 3.
The results indicate that even the ad-
vanced gpt-4 falls short in basic
graph reasoning tasks, limiting its ap-
plication in more complex scenarios
such as drug design. GraphLLM pro-
vides a lightweight fine-tuning method
that enables the LLM to synergize
with graph reasoning modules. No-
tably, GraphLLM with LLaMA 2 7B as
the backbone LLM shows relative im-
provements of 2.61%, 99.8%, 12.22%,
and 15.16% compared to gpt-4 few-shot CoT on the four fundamental graph reasoning tasks,
respectively.

4.3 COMPARATIVE ANALYSIS ON CONTEXT REDUCTION (Q2)

Table 4 demonstrates the LLM context length for graph reasoning tasks utilizing Graph2Text-based
methods and GraphLLM, respectively. Notably, GraphLLM reduces the context length by a substan-
tial 96.45% across the four graph reasoning tasks averagely. This substantial reduction is achieved
as GraphLLM encodes both node descriptions and structural information into a fixed-length pre-
fix (5 additional prefix tokens in our GraphLLM’s implementation). In contrast, Graph2Text-based
methods describe the graph in natural language, including both node descriptions and graph struc-
ture. This approach inherently results in an extended context, potentially hampering the efficiency
and effectiveness of LLMs on graph reasoning.

Figure 4 illustrates the performance of Graph2Text-based methods and GraphLLM on the substruc-
ture counting task when the size of graph increases. More concretely, the average node number of the
graph instances in the substructure counting dataset is incrementally increased from 15 to 45, with a
step size of 10. We compare GraphLLM with Graph2Text-based prefix tuning and LoRA, ignoring
other less effective baseline methods. We additionally compare GraphLLM with Graph2Text-based
few-shot CoT on gpt-3.5-turbo-16k, because the context limit of gpt-3.5-turbo/gpt-4
is exceeded when the node number reaches 25. We observe that with the increase in graph size, the
context size of the Graph2Text-based method also expands, leading to a corresponding decline in
performance. It is noteworthy that as the graph size increases to 45 nodes, Graph2Text-based meth-
ods with LLaMA 2 as backbone exceeds the context length limit (4096 tokens), and the performance
of gpt-3.5-turbo-16k also dropped to 0. In comparison, GraphLLM still retains an accuracy
of 0.9645. This stability highlights the robustness of GraphLLM, contrasting with the declining
performance and efficiency observed in Graph2Text-based methods as graph size expands.
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Table 4: Context length of different methods on graph
reasoning tasks, measured by average token number
processed by the LLaMA 2 tokenizer. A/B shown is
the context length of Graph2Text-based methods with
adjacency list/edge list as graph description language.

Method Avg. Context Length

Substructure
Counting

Maximum Triplet
Sum

Shortest
Path

Bipartite Graph
Matching

Zero-shot 1.3K / 1.3K 1.4K / 1.4K 1.8K / 1.7K 1.2K / 1.2K
Few-shot 2.6K / 2.5K 2.8K / 2.8K 3.1K / 2.9K 2.4K / 2.7K
Few-shot CoT 2.8K / 2.7K 3.0K / 2.9K 3.3K / 3.1K 2.5K / 2.8K

LoRA 1.3K / 1.3K 1.4K / 1.4K 1.8K / 1.7K 1.2K / 1.2K
Prefix Tuning 1.3K / 1.3K 1.4K / 1.4K 1.8K / 1.7K 1.2K / 1.2K

GraphLLM 0.040K (↓96.92%) 0.052K (↓96.29%) 0.048K (↓97.18%) 0.055K (↓95.42%)

0.052K

1.3K
3.1K

OOL

1.3K
2.4K 3.1K

2.4K 4.1K 5.4K 7.0K

4.1K 
4.1K 

GraphLLM LoRA Prefix Tuning gpt-3.5-turbo-16k

2515 35 45

Acc.

0.2

0.4

0.6

0.8

1.0

2.4K

0.052K 0.052K 0.052K

Figure 4: Performance on substructure
counting tasks when increasing the node
number |V| of graph instances. A(B) rep-
resents context length and the correspond-
ing performance. ”OOL” denotes exceed-
ing context length limit.

4.4 ANALYSIS ON COMPUTATIONAL EFFICIENCY (Q3)

LoRA(attn)

Prefix Tuning

Few-shotZero-shot Few-shot CoT

GraphLLM

0 0.5 1.0 1.5 2.0 2.5
0.2

0.4

0.6

0.8

1.0
Acc

Time/sec.

0.0484

0.1568

0.1694
0.1541 0.6506 2.4122

Figure 5: Avg. inference time on the sub-
structure counting task on LLaMA 2 7B .

Inference Acceleration Figure 5 illustrates the com-
parison of inference times on substructure counting
task between GraphLLM and Graph2Text-based meth-
ods. Notably, GraphLLM achieves a speedup of 3.42
times compared to the best-performing Graph2Text-
based method. The complete results of the inference
time for other tasks are provided in the Appendix. The
experimental results indicate that the inference accel-
eration achieved by GraphLLM, due to the context re-
duction for graph reasoning tasks, considerably sur-
passes the additional time overhead introduced by the
graph learning module.

5 RELATED WORK

LLMs exhibit the ability to understand diverse types of information and craft contextually relevant
text responses, including but not limited to images (Wang et al., 2023b), audio (Huang et al., 2023),
and point clouds (Xu et al., 2023). Endeavors to empower LLMs with the ability to understand
graph data have been ongoing. Generally, these efforts can be categorized into two main categories.
The first category includes models that employ a large language model to interface with individual
graph models or APIs (Zhang, 2023; Wei et al., 2023). Nevertheless, these interactive systems still
encounter limitations in accessing the internal graph reasoning process, which hinder their ability
to seamlessly integrate graph learning and large language models. The second category includes
models that employ an end-to-end training strategy. Notably, Wang et al. (2023a) make an attempt
to fine-tune an opt-2.5B model on a Graph2Text corpus of basic graph reasoning tasks. However,
their efforts fail to elicit graph reasoning ability of LLMs. The task of enhancing the graph rea-
soning ability of LLMs in an end-to-end manner remains unresolved. To our knowledge, our work
stands out as a pioneering effort in successfully integrating the graph learning model with LLMs,
demonstrably enhancing graph reasoning ability. GraphLLM takes a unified, end-to-end approach
to integrate graph learning models and LLMs, enhancing the overall efficiency by synergizing the
strengths of both within a single, cohesive system.

6 DISCUSSION

We introduce GraphLLM, an integrated end-to-end approach that synergizes LLMs with graph learn-
ing models to enhance the graph reasoning capabilities of LLMs.We hope our work can provide in-
sights and guidance for future research in the domain of enabling LLMs to comprehend graph data
and tackle advanced graph-related tasks.
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A DETAILED FORMULATION OF GRAPHLLM

A.1 DETAILS OF TEXTUAL TRANSFORMER ENCODER-DECODER

Details of the textual transformer encoder-decoder architecture are shown in Figure 6. In each layer
of the transformer encoder, the sequential node textual features pass through the multi-head self-
attention module without masking, allowing for a contextual understanding of the text sequence.
The resulting encoded sequence, ci, engages in the cross-attention with fixed-size query embeddings
in the transformer decoder. This process enables query embeddings to extract essential information
from it. Finally, the output of the transformer decoder, Hi, contains specific information from the
encoded sequence ci, serving as the node representation.

Add & Norm

Add & Norm

Multi-Head Self-Attention

FFN

Node Textual Features 

Multi-Head Self-Attention

Add & Norm

Multi-Head Attention

Add & Norm

FFN

Add & Norm

Query

Node Representation 

QKV QKV

QKV

Figure 6: Architecture of the textual transformer encoder-decoder in GraphLLM.

A.2 COMPLETE FORMULATION OF GRAPH TRANSFORMER

A complete graph transformer layer comprises a multi-head attention module, a feed-forward net-
work, along with the residual connection and layer normalization associated with each of these
components. For the t-th layer in the graph transformer, the attention computation, excluding the
multi-head part, is as follows:

ê
(t)
i,j = σ(ρ((WQh

(t)
i +WKh

(t)
j )⊙WEwe

(t)
i,j ) +WEbe

(t)
i,j ) ∈ Rd (9a)

αij = Softmaxj∈Vi
(WAê

(t)
i,j ) ∈ R (9b)

ĥ
(t)
i =

∑
j∈Vi

αij ·WVh
(t)
j ∈ Rd (9c)

where WQ,WK,WEw,WEb,WV ∈ Rd×d and WA ∈ R1×d are learnable weight matrices; σ is a
non-linear activation (ReLU by default); ρ(x) := (ReLU(x))1/2 − (ReLU(−x))1/2; ⊙ indicates
elementwise multiplication.

The different attention heads are combined as a whole, and this combination is then subject to a
residual connection and passed through layer normalization to obtain the output of the multi-head
attention module.

h
(t),attn
i = LayerNorm(Concat({ĥ(t)

i,h}
Nh

h=1)WO + h
(t)
i ) (10a)

e
(t),attn
i,j = LayerNorm(Concat({ê(t)i,j,h}

Nh

h=1)WEo + e
(t)
i,j ) (10b)

where WO,WEo ∈ Rd×d are learnable weight matrices, Nh denotes the number of attention heads
and h

(t),attn
i , e

(t),attn
i,j are the normalized outputs of the attention module.
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The feed-forward network, the corresponding residual connection and layer normalization can be
formulated as:

h
(t+1)
i = LayerNorm(Feedforward(h(t),attn

i ) + h
(t),attn
i ) (11a)

e
(t+1)
i,j = LayerNorm(Feedforward(e(t),attni,j ) + e

(t),attn
i,j ) (11b)

where h
(t+1)
i , e

(t+1)
i,j are the outputs of the entire t-th graph transformer layer.

B SETUP

We provide the hyperparameters of our method for different graph tasks in Table 5. For the baseline
methods that require fine-tuning of LLM, we ensure fair comparison by training them for the same
number of epochs as GraphLLM. Additionally, we conducted a search for some important hyper-
parameters. Specifically, we search the rank parameter of the LoRA from a set {4, 8, 16} and the
number of prefix tokens in prefix tuning from a set {5, 10, 20}.

Table 5: Hyperparameters of GraphLLM for the four datasets.

Hyperparameter Substructure
Counting

Maximum Triplet
Sum Shortest Path Bipartite Graph

Matching

Textual Encoder 4 4 4 4
Textual Decoder 4 4 4 4
Graph Transformer 4 4 4 4

Hidden dim 768 768 768 768
Heads 6 6 6 6

Dropout 0 0 0 0
Graph pooling - - - mean
Prefix 5 5 5 5

PE dim 8 8 8 8

Batch size 32 32 32 32
Learning Rate 5e− 5 5e− 5 5e− 5 5e− 5
Epochs 15 20 20 15
Warmup epochs 1 1 1 1

Weight decay 1e− 1 1e− 1 1e− 1 1e− 1

Tunable parameters 0.0933B 0.0933B 0.0933B 0.0933B

C SUPPLEMENTAL EXPERIMENT RESULTS

C.1 INFERENCE TIME

In Table 6, we provide the inference time of different methods on LLaMA 2 7B and 13B. The
results are calculated by taking the average inference time of all instances in the test set. From the
results, we can observe that due to the reduction in context for graph reasoning tasks, GraphLLM
exhibits a significant advantage in terms of inference time compared to Graph2Text-based methods.
Furthermore, this advantage becomes more pronounced as the LLM’s scale increases.

C.2 ABLATION STUDY ON GRAPH TRANSFORMER

We experiment with different design choices on the structure understanding module. Specifically,
we replace the aggregation mechanism via attention in graph transformer with other commonly used
graph learning layer. Here we adopt GIN (Xu et al., 2019) and GAT (Veličković et al., 2018), while
keeping the other modules unchanged in each case. Table 7 shows the experimental results on the
four graph reasoning tasks. GIN variant and GAT variant only achieve average accuracies of 24.2%
and 17.3%, respectively. The significant disparity in accuracy between GIN variant, GAT variant,
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Table 6: Inference time on the four graph reasoning tasks.

Input Format Method LLaMA2-7B LLaMA2-13B

Maximum Path
Sum

Substructure
Counting

Shortest
Path

Bipartite Graph
Matching

Maximum Path
Sum

Substructure
Counting

Shortest
Path

Bipartite Graph
Matching

Adjacency
List

Zero-shot 0.1673 0.1541 0.2649 0.1385 0.2878 0.2670 0.4517 0.2402
Few-shot 0.4269 0.6506 0.5168 0.6116 0.7479 1.1150 0.8848 1.0604
CoT 4.9367 2.4122 5.5155 4.2542 8.2850 4.1148 9.2961 7.2886

LoRA(attn) 0.1710 0.1568 0.2804 0.1420 0.2926 0.2698 0.4601 0.2455
LoRA(attn+ffn) 0.1818 0.1654 0.2842 0.1503 0.3071 0.2842 0.4813 0.2586
Prefix Tuning 0.1846 0.1694 0.2947 0.1519 0.3161 0.2910 0.4963 0.2603

Edge List
(Random Order)

Zero-shot 0.1642 0.1447 0.2521 0.1486 0.2869 0.2508 0.4355 0.2573
Few-shot 0.4216 0.6259 0.4938 0.6560 0.7350 1.0678 0.8457 1.1473
CoT 4.8385 2.3190 5.3227 4.5724 8.1369 3.9703 9.0008 7.8130

LoRA(attn) 0.1678 0.1465 0.2569 0.1511 0.2923 0.2539 0.4431 0.2622
LoRA(attn+ffn) 0.1783 0.1556 0.2714 0.1597 0.3054 0.2670 0.4636 0.2758
Prefix Tuning 0.1777 0.1623 0.2757 0.1632 0.3080 0.2821 0.4724 0.2825

GraphLLM 0.0449 0.0484 0.0734 0.0523 0.0583 0.0616 0.0937 0.0665

and GraphLLM indicates that the practice of decoupling node information and structural informa-
tion plays an essential role in improving GraphLLM’s structure understanding ability, subsequently
enhancing the graph reasoning capability.

Table 7: Ablation study on graph transformer.

Ablation Maximum Triplet
Sum

Substructure
Counting

Shortest
Path

Bipartite Graph
Matching

GT → GINConv 0.2237±.0060 0.3878±.0650 0.2122±.0053 0.1427±.0019
GT → GATConv 0.1819±.0053 0.2598±.0102 0.1443±.0017 0.1052±.0015

GraphLLM 0.9577±.0058 0.9990±.0007 0.9726±.0011 0.9981±.0015
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D EXAMPLES OF GRAPH REASONING TASKS

Substructure Counting

Input:

Here are the descriptions of 15 atoms in a molecule.

Atom 1: The Carbon atom has an atomic number of 6, denoted as ”C”. Carbon has an elec-
tronegativity value of approximately 3.25. The covalent radius of a Carbon atom is about ...

Atom 2: The Carbon atom has an atomic number of 6, denoted as ”C”. Carbon has an elec-
tronegativity value of approximately 2.16. The covalent radius of a Carbon atom is about ...

Atom 3: The Oxygen atom has an atomic number of 8, denoted as ”O”. Oxygen has an elec-
tronegativity value of approximately 3.52. The covalent radius of a Oxygen atom is about ...

...

Atom 15: The Nitrogen atom has an atomic number of 7, denoted as ”N”. Nitrogen has an
electronegativity value of approximately 2.95. The covalent radius of a Nitrogen atom is ...

These atoms are connected as the following undirected graph to form the molecule:

Atom 1 is connected with: Atom 2, Atom 3, Atom 4, Atom 5, Atom 6, Atom 7, Atom 8.

Atom 2 is connected with: Atom 1, Atom 3, Atom 5, Atom 8.

Atom 3 is connected with: Atom 1, Atom 2.

...

Atom 15 is connected with: Atom 8, Atom 14.

How many carbon-carbon-oxygen triangles containing Atom 1 are in the molecule?

Response on gpt-4 Failure Case :

A carbon-carbon-oxygen triangle would consist of two carbon atoms and one oxygen atom.
Since Atom 1 is a carbon atom and must be included in the triangle, we are looking for triangles
where the other two atoms are one carbon and one oxygen.

Looking at the connections of Atom 1, it is connected to the following carbon atoms: Atom 2,
Atom 4, Atom 6, Atom 7. It is also connected to the following oxygen atoms: Atom 3, Atom
5, Atom 8.

Now we need to see if any of these carbon atoms are connected to any of these oxygen atoms.

- Atom 2 (carbon) is connected to Atom 3 (oxygen) and Atom 8 (oxygen).

- Atom 4 (carbon) is not connected to any of the oxygen atoms connected to Atom 1.

- Atom 6 (carbon) is not connected to any of the oxygen atoms connected to Atom 1.

- Atom 7 (carbon) is not connected to any of the oxygen atoms connected to Atom 1.

So, there are two carbon-carbon-oxygen triangles that contain Atom 1: Atom 1 - Atom 2 -
Atom 3 and Atom 1 - Atom 2 - Atom 8.

Correct Answer:

There are 3 C-C-O triangles containing Atom 1.
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Maximum Triplet Sum

Input:

Here are the descriptions of 15 people.

Person 1: She is Wilma Lyons, and she is a sixty-year-old. With her colorful hair and uncon-
ventional fashion sense, she stands out as a true original. Her unassuming nature and humility
create an environment ...

Person 2: Meet Manuel Cornelius, who is 30 years of age. With her adventurous spirit and love
for the outdoors, she’s always up for exploring new places and experiences. She possesses an
air of sophistication and grace, seen in her timeless fashion ...

...

Person 15: Her petite frame and delicate features give her a dainty and ethereal presence. Her
name is Cornelia Brooks, and she’s forty years old. Her contagious enthusiasm and energy
inspire others to ...

The relationship between them can be described as the following undirected graph:

Person 1 is connected with: Person 14, Person 8.

Person 2 is connected with: Person 11, Person 14, Person 15.

Person 3 is connected with: Person 11, Person 5, Person 13, Person 6.

...

Person 15 is connected with: Person 2, Person 7, Person 9, Person 10, Person 11.

Question: What is the maximum sum of age of a triplet composed of Person 1, her friends and
friends of friends?

Response on gpt-4 Failure Case :

Person 1 is connected with Person 14 and Person 8.

Person 14 is connected with Person 1, Person 2, Person 7, Person 12, Person 13. Among these,
Person 2, Person 7, and Person 12 are not connected with Person 1, so they can be the third
person on the path. Their ages are 50, 30, and 60 respectively.

Person 8 is connected with Person 1, Person 11, Person 6. Among these, Person 11 and Person
6 are not connected with Person 1, so they can be the third person on the path. Their ages are
40 and 40 respectively.

So the maximum sum of the 3 people’s age on the path is 60 (Person 1) + 60 (Person 14) + 60
(Person 12) = 180.

Correct Answer:

The maximum sum is 160.
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Shortest Path

Input:

Here are the descriptions of 20 wormholes.

It is wormhole 1, and it is located in galaxy ARP 188. This wormhole is about 5463 light-years
away from Earth and requires 20 pounds of dark matter to activate.

It is wormhole 2, and it is located in galaxy Horsehead Nebula. This wormhole is about 7606
light-years away from Earth and requires 20 pounds of dark matter to activate.

It is wormhole 3, and it is located in galaxy Large Magellanic Cloud. This wormhole is about
4214 light-years away from Earth and requires 40 pounds of dark matter to activate.

It is wormhole 4, and it is located in galaxy Pelican Nebula. This wormhole is about 3920
light-years away from Earth and requires 40 pounds of dark matter to activate.

...

It is wormhole 20, and it is located in galaxy Needle Galaxy. This wormhole is about 844
light-years away from Earth and requires 30 pounds of dark matter to activate.

These wormholes are connected as the following undirected graph:

Wormhole 1 is connected with: Wormhole 8, Wormhole 9, Wormhole 12, Wormhole 19.

Wormhole 2 is connected with: Wormhole 3, Wormhole 13, Wormhole 17, Wormhole 20.

Wormhole 3 is connected with: Wormhole 2, Wormhole 7, Wormhole 8, Wormhole 13.

...

Wormhole 20 is connected with: Wormhole 2, Wormhole 9, Wormhole 13.

Question: Starting from wormhole 1, How much dark matter we’ll need at the minimum to
reach Wormhole 2?

Response on gpt-4 Failure Case :

From the descriptions, we know that:

- Wormhole 1 requires 20 pounds of dark matter to activate.

- Wormhole 8 requires 20 pounds of dark matter to activate.

- Wormhole 3 requires 40 pounds of dark matter to activate.

- Wormhole 2 requires 20 pounds of dark matter to activate.

Adding these up, you need a total of 20 + 20 + 40 + 20 = 100 pounds of dark matter to reach
wormhole 2 from wormhole 1.

Correct Answer:

We need 80 pounds.
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Bipartite Graph Matching

Input:

Here are the descriptions of 10 job applicants.

Applicant 1: She is Adam Lamarr, and she is 51 years old. She wants to find a job. She’s
an urban planner, designing sustainable cities, harmonizing architecture and environment for
better living.

...

Applicant 10: He is Travis Wight, and he is 18 years old. He wants to find a job. He finds peace
in practicing meditation and mindfulness, nurturing his well-being.

Here are the descriptions of 10 jobs.

Job 1: The average salary for a year is 47326.6 dollars, and it needs to work 38 hours every
week. We want applicants with related experience.

...

Each applicant is interested in some of the jobs, and the relationship can be described as the
following graph.

Applicant 1 is interested in: Job 9.

Applicant 2 is interested in: Job 6.

...

Applicant 10 is interested in: Job 6.

Each job can only accept one applicant and a job applicant can be appointed for only one job.
For most how many applicants can find the job they are interested in?

Response on gpt-4 Failure Case :

First, let’s look at the jobs that only have one applicant interested in them. These are Job 9, Job
4, and Job 10. Applicant 1, Applicant 3, Applicant 8, and Applicant 7 can be appointed to these
jobs respectively.

Next, let’s look at the jobs that have multiple applicants interested in them. These are Job 1,
Job 5, Job 6, and Job 7.

For Job 1, the only remaining interested applicant is Applicant 7, so she can be appointed to
this job.

For Job 5, the only interested applicant is Applicant 5, so he can be appointed to this job.

For Job 6, there are three interested applicants: Applicant 2, Applicant 5, and Applicant 9.
Since Applicant 5 has already been appointed to Job 5, we can appoint Applicant 2 to Job 6.

For Job 7, the only interested applicant is Applicant 5, but he has already been appointed to Job
5. Therefore, Job 7 will remain vacant.

In conclusion, the maximum number of applicants that can find the job they are interested in is
6: Applicant 1, Applicant 3, Applicant 8, Applicant 7, Applicant 5, and Applicant 2.

Correct Answer:

5 Applicants.
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