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Abstract

Ordinal regression (OR, also called ordinal classification) is the classification of ordinal data
in which the underlying target variable is discrete and has a natural ordinal relation. For
OR problems, threshold methods are often employed since they are considered to capture
the ordinal relation of data well: they learn a one-dimensional transformation (1DT) of
an observation of the explanatory variables and classify the data by labeling that learned
1DT according to the rank of the interval to which the 1DT belongs among intervals on
the real line separated by threshold parameters. In many conventional methods, the thresh-
old parameters are determined regardless of the learning result of the 1DT and the task
under consideration. Such conventional settings may deteriorate the classification perfor-
mance. We, therefore, propose a novel computationally efficient method for determining the
threshold parameters: it learns each threshold parameter independently through solving a
problem relaxed from the minimization of the empirical task risk for the learned 1DT. The
proposed labeling procedure experimentally gave superior classification performance with a
feasible degree of additional computational load compared to four related existing labeling
procedures in many of tried cases.

1 Introduction

Ordinal regression (OR) (or called ordinal classification) is the classification of ordinal data in which
the underlying target variable is discrete and labeled from a label set (ordinal scale) that is equipped with
a natural ordinal relation; see Section 2.1 for a detailed formulation. The ordinal scale is typically formed
as a graded (interval) summary of objective indicators like age groups {‘0–9’, ‘10–19’, . . . , ‘90–99’, ‘100–’}
or graded evaluation of subjectivity like human rating {‘excellent’, ‘good’, ‘average’, ‘bad’, ‘terrible’}, and
ordinal data appear in various practical applications: age estimation (Niu et al., 2016; Cao et al., 2020),
information retrieval (Liu, 2011), movie rating (Yu et al., 2006), and questionnaire survey in social research
(Bürkner & Vuorre, 2019).

One-dimensional transformation (1DT)-based methods are often applied to the OR problems as
a simple way to capture the ordinal relation of data. They typically learn a 1DT of an observation of
the explanatory variables (and bias parameters of the number of classes minus one) and build a classifier
based on that learned 1DT, as we will formalize in Section 2.2. Most existing 1DT-based methods are
formulated in the form of employing one of four labeling procedures to map the learned 1DT to a class label.
Threshold labelings used in threshold methods (or called threshold models) (Shashua & Levin, 2003;
Chu & Keerthi, 2007; Pedregosa et al., 2017; Cao et al., 2020; Agarwal, 2008) include minimum threshold
(MT), summation threshold (ST), and nearest-neighbor threshold (NNT) labelings, which we will
review in Sections 3.1, 3.2, and 3.3. They assign a label to the learned 1DT as the rank of the interval to which
the 1DT belongs among intervals on the real line separated by threshold parameters. Likelihood-based
(LB) labeling (see Section 3.4) is applied when the learning procedure uses a loss function characterizable
as statistical modeling of conditional probabilities of the data and designed to minimize the task risk under
the expectation that the model is correctly specified to the data distribution.

These existing labeling procedures, however, have respective concerns. The ST, MT, and NNT labelings use
the learned bias parameters, their derivatives, or fixed points as the threshold parameters, but these settings
are generally not motivated by minimizing the task risk. So their settings of the threshold parameters
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actually can become sub-optimal for the minimization of the task risk, as we will demonstrate in Example 1.
On the other hand, the LB labeling is designed to minimize the task risk if the assumed statistical model
is correctly specified to the distribution of the data (see Theorem 1). However, its underlying statistical
model has a strongly restricted representation ability owing to the use of the 1DT and can be misspecified
to the data, so its performance can be degraded depending on the distribution of the data. In standard
classification methods, a proper shape of the surrogate loss function guarantees the optimality of their
decision boundaries irrelevant to the data distribution; recall Fisher consistency or classification calibration
(Lin, 2004; Bartlett et al., 2006; Liu, 2007; Pires et al., 2013). In contrast, such a guarantee regarding the
optimality of decision boundaries (threshold parameters if using a threshold labeling) does not hold in typical
1DT-based methods, as suggested also in (Pedregosa et al., 2017).

Previous studies have done little theoretical work on the properties of these existing labelings, so we first study
the relationship between these labelings. In particular, we show in Theorem 2 that not only the MT, ST, and
NNT labelings but also the LB labeling is a threshold labeling in typical usages. This finding motivates us to
search for a better labeling function among the class of threshold labelings. Under the expectation that the
1DT is learned successfully and the empirical (training) task risk becomes a good estimator of the (test) task
risk, we define the optimal threshold (OT) labeling as one that exactly minimizes the empirical task risk
for the learned 1DT and propose to additionally learn the threshold parameters by minimizing that risk. A
solution based on the brute-force search for the OT labeling is quite computationally demanding. Thus, we
further propose a more computationally efficient alternative labeling, independently optimized threshold
(IOT) labeling: it applies threshold parameters each of which is independently learned through solving a
problem relaxed from the minimization of the empirical task risk for the learned 1DT. Algorithm 1 for the
IOT labeling can be performed with the computational complexity of quasi-linear order O(n log n) regarding
the training sample size n. Also, as a performance guarantee of the IOT labeling, we show in Theorem 3
that the IOT labeling becomes the OT labeling as long as the resulting threshold parameters follow an
appropriate order that we expected in formulating the relaxed problem to obtain threshold parameters for
the IOT labeling.

In this study, we further took numerical experiments for the OR task for real-world ordinal data to confirm
the practical effectiveness of the proposed IOT labeling (see Section 5). We then found following observations
in many of tried cases:

• On the optimality condition (see Section 5.3.1): Algorithm 1 to determine the threshold parameters
for the IOT labeling served appropriately ordered threshold parameters, which implies that a 1DT-
based method with the IOT labeling gave a smaller training task risk than methods with other
labeling functions for the same learned 1DT model.

• On the generalization performance (see Section 5.3.2): The IOT labeling gave superior generalization
performance (more exactly, smaller test task risk) than the MT, ST, NNT, and LB labelings. Also,
a modified threshold method with the IOT labeling outperformed an existing 1DT-based method
using the ST labeling that has been declared by (Cao et al., 2020) to be state-of-the-art in 2020 for
the age estimation from the facial image.

• On the computational efficiency (see Section 5.3.3): The IOT labeling is more disadvantageous
in terms of the computational efficiency than the existing labelings as the training sample size n
increases, but Algorithm 1 for the IOT labeling just required additional computation time of fewer
than 0.133 times the learning procedure for a DNN-based 1DT model even when n ≈ 118,000.
Namely, we confirmed that the IOT labeling is computationally feasible.

Therefore, this paper proposes a modified threshold method using the IOT labeling that could provide better
classification performance than existing 1DT-based methods at the expense of some computational efficiency,
on the ground of the fact (Theorem 2) that the MT, ST, and NNT labelings and LB labeling in typical
usages are possibly sub-optimal threshold labelings, its conditional theoretical optimality (Theorem 3), and
experimental effectiveness.
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2 Preliminaries

2.1 Formulation of OR Problem

OR is the classification of ordinal data. The ordinal data have an underlying discrete target variable
Y ∈ [K] B {1, . . . ,K} that is equipped with an ordinal relation naturally interpretable in the relationship
with explanatory variables X ∈ Rd, where K and d are supposed to be integers larger than or equal to
3 and 1 respectively.1 We here suppose that the target labels are encoded to 1, . . . ,K in an order-preserving
manner, like from ‘excellent’, . . . , ‘terrible’ to 1, . . . ,5.

The task of the OR is basically the same as that of the standard (including cost-sensitive) classification, to
obtain a good classifier f : Rd → [K]. For a user-specified task loss ℓ : [K]2 → [0,∞), it is formulated
as minimization of the task risk E[ℓ( f (X),Y )], where the expectation value E[·] is basically taken for all
random variables in its argument (here X and Y). Popular task losses for OR tasks include not only the
zero-one loss ℓzo( j, k) B 1j,k , where 1c takes 1 if a condition c is true and 0 otherwise, but also V-shaped
losses (for cost-sensitive tasks) reflecting one’s preference of smaller prediction errors over larger ones such
as the absolute deviation loss ℓad( j, k) B | j − k |, squared loss ℓsq( j, k) B ( j − k)2, and ℓzo,c( j, k) B 1 | j−k |>c
with c ≥ 0.

2.2 Formulation of 1DT-Based Methods and Threshold Methods

In this paper, we discuss only 1DT-based methods that have been developed in the OR research. We here
provide notations and terminologies common for 1DT-based methods.

Many 1DT-based methods are designed according to the framework of surrogate risk minimization that allows
for continuous optimization, so as to evade the difficulty of directly minimizing the task risk. They can have
parameters b = (b1, . . . , bK−1) ∈ RK−1 (we call these the bias parameters) besides a 1DT g : Rd → R
to be learned respectively from the classes B and G, and we denote a surrogate loss function used in such
situations as ϕ(g(x),b, y) and call it the bias-parametric surrogate loss function. Note that the notations
b0 B −∞ and bK B +∞ (and same ones added with bar or tilde symbol) are used together in the discussion
for bias-parametric losses, to ease the description. On the other hand, a surrogate loss function used with
no learnable bias parameters is called the bias-nonparametric surrogate loss function and denoted as
ϕ(g(x), y) with a 1DT g ∈ G.

Suppose that one has the sample Dn B {(xi, yi)}ni=1, each of which is drawn independently from an identical
distribution of (X,Y ). First, 1DT-based methods learn the 1DT model g (and bias parameters b) from the
class G (and B) through the minimization of the empirical surrogate risk, ming∈G

1
n

∑n
i=1 ϕ(g(xi), yi) (or

ming∈G,b∈B
1
n

∑n
i=1 ϕ(g(xi),b, yi)), or its regularized version. For the class B when using a bias-parametric

loss, several methods impose the ordering constraint b1 ≤ · · · ≤ bK−1 on the bias parameters b. As one way
to implement this constraint, Franses & Paap (2001) mentioned to parametrize the bias parameters b as

b1 = b′1, and bk = bk−1 + b′k
2 for k = 2, . . . ,K − 1, (1)

with other parameters b′1, . . . , b
′
K−1 ∈ R.

Next, 1DT-based methods build up a classifier as f = h ◦ ḡ with a learned 1DT ḡ and a labeling function
h : R → [K]. Most existing 1DT-based methods can be seen as adopting one of the MT, ST, NNT,
and LB labelings, depending on the properties of their surrogate loss like being bias-parametric or bias-
nonparametric, and statistical or non-statistical (defined in Section 3.4), as we will review in the succeeding

1For better modeling of the ordinal data, it would be important to provide a mathematical characterization and further
discussion of the natural ordinal relation. However, it would have a relation closer to the learning procedure of the 1DT and bias
parameters (defined in Section 2.2), and its necessity is not so great for the analysis and proposal of this study, so we will not
mention it in this paper. Refer to, for example, an OR study (da Costa et al., 2008) for the discussion on such characterizations.

2Simplification of description is applied to this formulation: Let
∑m

k=l f (k) be 0 irrelevant to the function f if l > m, and
φ(g(x) − b0) = φ(bK − g(x)) = 0.
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Table 1: It shows classes of surrogate loss functions used for 1DT-based methods, their representative
instances, and commonly-used labelings. Note that we found no widely-used bias-nonparametric statistical
losses and that our proposed IOT labeling is applicable along with every loss function.2

Surrogate Loss Functions
Classes Representative Instances

Commonly-Used Labelings

Non-statistical

Immediate threshold (IT) ϕ(g(x),b, y) = φ(g(x) − by−1) + φ(by − g(x)),

(bias-parametric)

All threshold (AT) ϕ(g(x),b, y) = ∑y−1
k=1 φ(g(x) − bk) +

∑K−1
k=y φ(bk − g(x))

φ is popular in binary classification: φ(u) = max{1 − u,0}
(Shashua & Levin, 2003), e−u (Lin & Li, 2006)

MT (Shashua & Levin, 2003; Chu & Keerthi, 2007), ST (Pedregosa et al., 2017)

Statistical

NLL ϕ(g(x),b, y) = − log(σ(by − g(x)) − σ(by−1 − g(x))),

(bias-parametric)

AT with φ(u) = − log(σ(u)) (ANLCL)
σ is a CDF: σ(u) = 1/(1 + e−u) (McCullagh, 1980),∫ u

−∞(2π)
−1/2e−v

2/2 dv (Chu & Ghahramani, 2005)
LB (McCullagh, 1980), ST (Cao et al., 2020)

Bias-nonparametric Regression ϕ(g(x), y) = φ(y − g(x))

(non-statistical) φ is popular in regression: φ(u) = |u| (Agarwal, 2008), u2 (Kramer et al., 2001)
NNT (Agarwal, 2008)

sections; see also Table 1. In particular, a 1DT-based method that uses a threshold labeling

hthr(u; t) B 1 +
K−1∑
k=1

1u≥tk (2)

as its labeling function h is called the threshold method, where we call t = (t1, . . . , tK−1) ∈ RK−1 the
threshold parameters.3 Note that the threshold labeling hthr(u; t) has the following properties:

Proposition 1. The threshold labeling hthr(u; t) is non-decreasing and right-continuous in u ∈ R and in-
variant regarding the permutation of the threshold parameters t1, . . . , tK−1. Conversely, an arbitrary non-
decreasing right-continuous function h : R → [K] can be represented by a threshold labeling hthr(·; t) with
certain threshold parameters t ∈ RK−1 (i.e., there exist t ∈ RK−1 such that h(u) = hthr(u; t) for any u ∈ R)
or their permutation. Also, if t1, . . . , tK−1 take only L different values, then hthr(u; t) has L change points
u = u1, . . . ,uL such that hthr(ul − ϵ ; t) , hthr(ul; t) with a sufficiently small ϵ > 0 for l = 1, . . . , L.

The last result implies that the threshold labeling is the simplest as the labeling function in the sense that
the resulting classifier has only (K − 1) decision boundaries for the learned 1DT at most.

2.3 Formulation of Policy of This Study

This study aims for a better labeling, especially for a better threshold labeling. Thus, regarding the learning
procedure of a 1DT (and bias parameters), that is, the surrogate loss ϕ and class G (and B), this paper
adopts those by existing studies, and we do not discuss the goodness of the learning procedure. Assuming
that a learned 1DT ḡ is given, we will discuss the goodness of the labeling function h with the task risk
E[ℓ(h(ḡ(X)),Y )] or the empirical task risk 1

n

∑n
i=1 ℓ(h(ḡ(xi)), yi) as the criterion.

3As we will review in Section 3.2, the ST labeling is a threshold labeling that applies the learned bias parameters as the
threshold parameters. Therefore, several studies on the threshold methods supposing to use the ST labeling formulate the
methods without distinguishing the bias and threshold parameters, unlike our formulation; ours can be seen as a generalization
of such previous one and is also a contribution of this paper.
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3 Review and Analysis of Existing 1DT-Based Methods and Labeling Functions

3.1 Minimum Threshold (MT) Labeling

Threshold methods have been studied actively in the machine learning literature. Most of early threshold
methods using a bias-parametric surrogate loss have been formulated with the MT labeling.

The previous OR studies (Herbrich, 2000; Shashua & Levin, 2003; Lin & Li, 2006; Chu & Keerthi, 2007)
have developed various large-margin-type methods. For instance, support vector OR (SVOR) proposed
by Shashua & Levin (2003) learns the 1DT g and bias parameters b for the data point (X,Y ) = (x, y) with
the bias-parametric surrogate loss

ϕsvor(g(x),b, y) B max{1 + by−1 − g(x),0} +max{1 − by + g(x),0}, (3)

under the class restriction G = {g : Rd → R} and B = RK−1. Chu & Keerthi (2007) proposed to impose the
explicit ordering constraint on the bias parameters during the learning procedure, that is, it instead uses the
class B = {b ∈ RK−1 | b1 ≤ · · · ≤ bK−1}. They have proposed the methods, on the basis of the MT labeling
hmt(·; b̄) with the learned bias parameters b̄, namely their methods predict a label of X = x as

f (x) = hmt(ḡ(x); b̄), with hmt(u; b) B min{k ∈ [K] | u < bk}. (4)

The MT labeling is a threshold labeling and has the following relationship to the formulation of the threshold
labeling (2):
Proposition 2. Given b̄ ∈ RK−1 together with b̄0 B −∞ and b̄K B +∞, let tk be b̄ik with ik B min{ j ∈
{0, . . . , k} | b̄k ≤ b̄j} for each k = 1, . . . ,K − 1. Then, one has that hmt(u; b̄) = hthr(u; t) with t = (t1, . . . , tK−1).
Also, hmt(u; b̄) = hthr(u; b̄) if b̄1 ≤ · · · ≤ b̄K−1.

Using the MT labeling hmt(·; b̄) implies that decision boundaries are set depending only on the values of
learned bias parameters b̄. This setting is almost like a convention, and its goodness is not supported by
theoretical discussion. This convention may be a negative factor that degrades the classification performance
of threshold methods, as demonstrated below:
Example 1. The surrogate loss function ϕsvor(·,b, k) of SVOR is a continuous convex upper bound of the
zero-one task loss function with the MT labeling ℓzo(hmt(·; b), k) when b is appropriately ordered (i.e., b1 ≤
· · · ≤ bK−1): ϕsvor(·,b, k) is a convex function and ϕsvor(·,b, k) ≥ ℓzo(hmt(·; b), k). So one may think that
SVOR and the task with the zero-one task loss (Task-Z) have friendly compatibility, from an analogy of
a well-known result, classification calibration (Bartlett et al., 2006), in binary classification. However, the
following demonstration shows that the MT labeling may be sub-optimal in minimizing the task risk as a
labeling function for the combination of SVOR and Task-Z.

We consider a 4-class OR problem (let K = 4), and suppose that the data appear only on 4 different points
x[1], . . . ,x[4] in Rd and follow the probability distribution, Pr(x[i]) = 0.25 and (Pr(1|x[i]), . . . ,Pr(K |x[i])) =
(0.5,0.4,0,0.1), (0.3,0.5,0,0.2), (0.2,0,0.5,0.3), (0.1,0,0.4,0.5) for i = 1, . . . ,4.4

It can be shown that the surrogate risk minimizer {ḡ, b̄} B arg ming∈G,b∈B E[ϕsvor(g(X),b,Y )] satisfies b̄1 =

b̄2 = b̄3 = 0, ḡ(x[1]) = ḡ(x[2]) = −1, and ḡ(x[3]) = ḡ(x[4]) = 1 (ignore the translation invariance) by
several simple calculations. The MT labeling predicts a label of the data on x[i] as hmt(ḡ(x[i]); b̄) = 1,1,4,4
for i = 1, . . . ,4 (E[ℓzo(hmt(ḡ(X); b̄),Y )] = 0.6), despite that using different threshold parameters (say t =
(−2,0,2)) can predict it as hmt(ḡ(x[i]); t) = 2,2,3,3 for i = 1, . . . ,4 and yield a smaller value of the task risk
(E[ℓzo(hmt(ḡ(X); t),Y )] = 0.55). □

3.2 Summation Threshold (ST) Labeling

More recent papers in machine learning (Pedregosa et al., 2017; Cao et al., 2020) have discussed and proposed
threshold methods that are similar to ones reviewed in the previous section but formulated based on the

4We abbreviate the marginal probability Pr(X = x) to Pr(x) and the conditional probability Pr(Y = y |X = x) to Pr(y |x)
(this abbreviation applies to an estimate P̂r as well).
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different ST labeling. The ST labeling is also a certain threshold labeling hthr(·; t) with threshold parameters
t depending only on the values of learned bias parameters b̄, and the classifier can be represented in the
notation of this paper as

f (x) = hst(ḡ(x); b̄), with hst(u; b) = hthr(u; b). (5)

While the difference between the MT labeling hmt(u; b̄) and ST labeling hst(u; b̄) and the significance of the
difference are discussed little in the existing research, we have to remark that they are different when the
learned bias parameters b̄ are not ordered; recall Proposition 2.

What is important in our discussion is that the setting t = b̄ for threshold labeling hthr(·; t) is not motivated
by minimization of the task risk and may degrade the classification performance of threshold methods, as in
the case of the MT labeling. Threshold parameters b̄ of the ST labeling are also sub-optimal as the threshold
parameters under the setting in Example 1, since hmt(·; b̄) = hst(·; b̄) there.

3.3 Nearest-Neighbor Threshold (NNT) Labeling

Bias-nonparametric surrogate losses are often applied for OR problems together with the NNT labeling, a
threshold labeling that rounds the learned 1DT to its nearest label.

For instance, Agarwal (2008) used the absolute-deviation (AD) loss ϕad(g(x), y) B |y−g(x)| for the data
point (x, y) to learn a 1DT model g, and makes a label prediction via the threshold labeling hthr(·; t) with
the threshold parameters tk = k + 1/2, k = 1, . . . ,K − 1.

Similarly to the MT and ST labelings used with bias-parametric losses, the threshold parameters of the NNT
labeling may not be optimal for minimizing the task risk depending on the underlying data distribution and
task loss, since threshold parameters are determined without considering both the learned 1DT and the task
to solve.

3.4 Likelihood-Based (LB) Labeling

In the OR research based on statistics, several methods have been developed according to the statistical
modeling of the conditional probabilities of the data through a 1DT (McCullagh, 1980; Williams, 2006;
Chu & Ghahramani, 2005). They apply bias-parametric statistical surrogate loss functions associated with
their statistical modeling, where we call a loss function designed based on the modeling of conditional
probabilities of data as the statistical surrogate loss function. For such methods, not only the threshold
labelings but also the LB labeling that grounds on their assumed statistical model is a commonly-used option
for the labeling function.

For example, ordinal logistic regression (OLR) (McCullagh, 1980) models the conditional probabilities
Pr(y |x), (x, y) ∈ Rd × [K] by

P̂r(y |x; g̃, b̃) B σ(b̃y − g̃(x)) − σ(b̃y−1 − g̃(x)), (6)

with the sigmoid function σ = σolr with σolr(u) B 1/(1 + e−u), assumed 1DT g̃ : Rd → R, assumed bias
parameters b̃ B (b̃1, . . . , b̃K−1) ∈ RK−1, b̃0 B −∞, and b̃K B +∞. Other options for the link function
σ : R→ [0,1] should satisfy the properties of a cumulative distribution function (CDF) that is non-decreasing
and σ(−∞) = 0 and σ(+∞) = 1, so that the model (6) is normalized, i.e.,

∑K
y=1 P̂r(y |x; g̃, b̃) = 1. Gaussian

process OR (GPOR) proposed by Chu & Ghahramani (2005) uses the CPD function of the standard Gaussian
distribution (a.k.a. the inverse function of the probit function) σgpor(u) B

∫ u

−∞(2π)
−1/2e−v

2/2 dv. Also, they
assume that bias parameters b̃k , k = 1, . . . ,K − 1 are non-decreasing in the index so that the conditional
probability model P̂r(y |x; g̃; b̃) gets non-negative for any (x, y) ∈ Rd×[K] and g̃ under the non-decreasingness
of σ.

These methods typically learn the 1DT model g and bias parameters b for the data (X,Y ) = (x, y) with the
bias-parametric surrogate loss function

ϕnll(g(x),b, y) B − log(σ(by − g(x)) − σ(by−1 − g(x))), (7)
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which amounts to the negative log likelihood (NLL) loss function for the specified statistical model (6).
Also, Cao et al. (2020) used (for σ = σolr) another loss function

ϕanlcl(g(x),b, y) B −
y−1∑
k=1

log(σ(g(x) − bk)) −
K−1∑
k=y

log(σ(bk − g(x))), (8)

which we call the all negative log cumulative likelihoods (ANLCL) loss function. The learning
procedure for this loss function is characterized as the minimization of sum of the NLLs of the models of
cumulative conditional probabilities Pr(Y ≤ k |X = x) for binary classification problems, ‘k or less’ vs. ‘more
than k’, k = 1, . . . ,K − 1.

The above interpretation on using the surrogate losses ϕnll and ϕanlcl under the statistical model (6) can be
mathematically understood as follows:
Theorem 1. Assume that the random variable (X,Y ) underlying the data has conditional probabilities that
can be represented as (6): Pr(y |x) = P̂r(y |x; g̃, b̃) for every y ∈ [K] and any x ∈ Rd in the support of the
distribution of X with σ that is non-decreasing and satisfies σ(−∞) = 0 and σ(+∞) = 1 (and σ(−·) = 1−σ(·)
for ϕ = ϕanlcl) such as σolr and σgpor, g̃ : Rd → R, and b̃ ∈ RK−1 satisfying b̃1 ≤ · · · ≤ b̃K−1. Let (ϕ,B)
be (ϕnll, {b ∈ RK−1 | b1 ≤ · · · ≤ bK−1}), (ϕanlcl,R

K−1), or (ϕanlcl, {b ∈ RK−1 | b1 ≤ · · · ≤ bK−1}), and
G be {g : Rd → R}. Then, any surrogate risk minimizer {ḡ, b̄} ∈ arg ming∈G,b∈B E[ϕ(g(X),b,Y )] satisfies
P̂r(y |x; ḡ, b̄) = Pr(y |x) for any x ∈ Rd in the support of the distribution of X.

Note that such a characterization has not been known for the (non-statistical) surrogate loss of SVOR
reviewed in the previous section.

Considering Theorem 1 and the equality E[ℓ( f (x),Y )] = ∑K
k=1 Pr(k |x)ℓ( f (x), k), and aiming to minimize the

task risk, min f :Rd→[K] E[ℓ( f (X),Y )], these methods can predict a label of an observation X = x by the
classifier

f (x) = hlb(ḡ(x); b̄, ℓ) = arg min
j∈[K]

K∑
k=1

P̂r(k |x; ḡ, b̄)ℓ( j, k) (9)

with learned 1DT ḡ, learned bias parameters b̄, and the LB labeling

hlb(u; b, ℓ) B arg min
j∈[K]

K∑
k=1

{σ(bk − u) − σ(bk−1 − u)}ℓ( j, k), (10)

under the expectation that the assumed statistical model (6) correctly represents the actual statistical
behavior of the data and it is learned successfully.5

These methods tend to perform better when their assumed statistical model represents the actual statistical
behavior of the data well. One can, however, find that the condition in Theorem 1 is very restrictive.
Therefore, in many practical situations, their statistical model would deviate from the actual statistical
behavior of the data, and then their 1DT model may not be learned appropriately, and the LB labeling
hlb(·; b̄, ℓ) may be sub-optimal for the learned 1DT model ḡ.

One may still consider that the LB labeling is more flexible, in that it is generally not restricted within the
class of non-decreasing threshold labelings, and superior to threshold labelings. However, we found that the
LB labeling takes the form of the threshold labeling, for typical statistical models such as ones in OLR and
GPOR (i.e., the link function σ such as σolr,σgpor) and for typical task losses such as ℓ = ℓzo, ℓzo,c, ℓad, ℓsq.
Theorem 2. Suppose that σ is non-decreasing and satisfies σ(−∞) = 0 and σ(+∞) = 1 and that b̄1 ≤ · · · ≤
b̄K−1. Then, the LB labeling hlb(u; b̄, ℓ) is

(i) a certain threshold labeling hthr(u; t) for some t ∈ RK−1, if ℓ(k, l) at each fixed k ∈ [K] is non-
increasing in l for l ≤ k and non-decreasing in l for l ≥ k, and ℓk ,l( j) B ℓ(k, j) − ℓ(k, j + 1) − ℓ(l, j) +

5There can be a situation where objective functions with different j of (10) take the same value in principle, but such a
situation hardly occurs. Thus, this paper assumes that such a situation does not occur at all and does not discuss it.
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ℓ(l, j + 1) at each fixed different k, l ∈ [K] is non-positive (resp. non-negative) for all j ∈ [K − 1]
respectively when k < l (resp. k > l), such as ℓ = ℓad, ℓsq,

(ii) a certain threshold labeling hthr(u; t) for some t ∈ RK−1, if ℓ = ℓzo, ℓzo,c with c ∈ [0, bK/2c), σ is
differentiable, σ′(v) is even and non-increasing in v if v > 0, and σ′(v1)−σ′(v2)

σ(v1)−σ(v2) is non-increasing in
v1 with fixed v2 and in v2 with fixed v1 if v1 < v2, such as σolr and σgpor, where bvc is the greatest
integer less than or equal to v,

(iii) the threshold labeling hthr(u; b̄) that is same as the MT labeling hmt(u; b̄) and ST labeling hst(u; b̄), if
ℓ = ℓad and σ(0) = 0.5.

Here, Theorem 2 (i) assumes that the task loss ℓ is V-shaped, and the condition on ℓk ,l in Theorem 2 (i)
holds under the convexity of ℓ defined below:
Corollary 1. ℓk ,l( j) at each fixed different k, l ∈ [K] is non-positive and non-negative for all j ∈ [K − 1]
respectively when k < l and k > l, if the task risk ℓ is convex in the difference of the two arguments:

ℓ( j3, k3) ≤
( j3 − k3) − ( j1 − k1)
( j2 − k2) − ( j1 − k1)

ℓ( j1, k1) +
( j2 − k2) − ( j3 − k3)
( j2 − k2) − ( j1 − k1)

ℓ( j2, k2) (11)

for all j1, . . . , k3 ∈ [K] such that j1 − k1 , j2 − k2 and j1 − k1 ≤ j3 − k3 ≤ j2 − k2.

The condition on σ in Theorem 2 (ii) comes from the consideration for non-convex task losses.

4 Our Proposal: Independently Optimized Threshold (IOT) Labeling

4.1 Optimal Threshold (OT) Labeling

In typical usages, not only the MT, ST, and NNT labelings, but also the LB labeling is a threshold labeling,
as we confirmed in Theorem 2. Thus, we consider that it would be meaningful to aim for a better threshold
labeling for improving the classification performance of existing 1DT-based methods. Recalling that the final
goal is to make the task risk E[ℓ( f (X),Y )] small, and expecting that the 1DT was learned successfully and
the empirical (training) task risk becomes a good estimator of the (test) task risk, we adopt the empirical
task risk,

R(t; ℓ, ḡ,Dn) B
1
n

n∑
i=1
ℓ(hthr(ḡ(xi); t), yi) (12)

for a given learned 1DT model ḡ, as the optimality criterion for the threshold parameters:
Definition 1. We call the threshold parameters t̄ot ∈ arg mint∈RK−1 R(t; ℓ, ḡ,Dn) as the OT parameters
and the corresponding threshold labeling hthr(·; t̄ot) as the OT labeling.

Accordingly, we further propose to learn the threshold parameters t by minimizing the objective function
R(t; ℓ, ḡ,Dn).
We have to provide two remarks on the additional learning of the decision boundaries (here threshold
parameters) after the learning of the learner model (here a 1DT). The first remark is that, although the
additional learning can be applied to other classification methods such as binary classification methods,
its significance for 1DT-based methods stems from the fact that the uniformly (namely, irrelevant to the
data distribution) optimal decision boundaries are not known for 1DT-based methods in many cases. For
example, Lin (2004); Bartlett et al. (2006); Liu (2007); Pires et al. (2013) showed that well-known methods
in standard (including multi-class and cost-sensitive) classification have such an optimality guarantee, but
most 1DT-based methods do not, as demonstrated below:
Example 2. This example shows that a threshold labeling for SVOR does not have a guarantee of the
optimality in the sense of the Bayes optimality.

8
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Assume the setting in Example 1. The Bayes optimal classifier f̄ B arg min f :Rd→[K] E[ℓzo( f (X),Y )] predicts
a label of the data on x[i] as f̄ (x[i]) = 1,2,3,4 for i = 1, . . . ,4 and yields E[ℓzo( f̄ (X),Y )] = 0.5. However,
a classifier based on a threshold labeling with OT parameters t can achieve E[ℓzo(hthr(ḡ(X); t),Y )] = 0.55,
which is higher than 0.5, at best.

Note that this example, showing that a classifier of 1DT-based methods can be sub-optimal, does not deny
the practical utility of 1DT-based methods. Using a simple 1DT model that will be easy to learn may reduce
the resulting generalization gap in a finite-size sample situation. □

Also, the other remark is that the additional learning has a risk of enlarging the generalization gap. One
can adjust the labeling function h so that h(ḡ(xi)) = yi for every training example i = 1, . . . ,n if allowing
arbitrary formats and yi1 = yi2 for any i1, i2 s.t. xi1 = xi2 , but the resulting classifier h ◦ ḡ would have quite
low generalization performance. On the other hand, we here consider the additional learning of the labeling
function among the class of threshold labelings. A threshold labeling has up to (K − 1) decision boundaries,
that is, it is strictly restricted, and we expect that the degree of the generalization gap will not differ much
with any threshold labelings.

4.2 Trouble with Brute-Force Search

In preparation for calculating the OT parameters, sort {(ḡ(xi), yi)}ni=1 in the ascending order of {ḡ(xi)}ni=1,
and represent the result as {(ḡ′i , y′i )}ni=1 with the modified index i so that ḡ′1 ≤ · · · ≤ ḡ′n. The sorting operation
typically costs quasi-linear order O(n log n) computation loads in average (e.g., merge, heap, and quick sorts).

Assuming that the threshold parameter tk belongs to an interval [ḡ′i−1, ḡ
′
i ), the objective function R(t; ℓ, ḡ,Dn)

with fixed t1, . . . , tk−1, tk+1, . . . , tK−1 remains the same value wherever tk is. Therefore, the OT parameters can
be obtained by

min
t

R(t; ℓ, ḡ,Dn), subject to t1, . . . , tK−1 ∈ {ci(ḡ,Dn)}n+1
i=1 , (13)

with considering only the endpoints and midpoints

ci(ḡ,Dn) B

−∞ for i = 1,
(ḡ′i−1 + ḡ

′
i )/2 for i = 2, . . . ,n,

+∞ for i = n + 1
(14)

(in total (n+1)) as the candidates. Also, since R(t; ℓ, ḡ,Dn) is invariant with respect to the permutation of the
threshold parameters t, the search area of (13) can be further restricted to the ordered ones. Namely, we can
incorporate the condition t1 ≤ · · · ≤ tK−1 into (13). However, even under such restrictions, the problem (13)
has

(n+K−1
n

)
candidates for the minimizer (recall the combination with repetition), where

(n+K−1
n

)
= O(nK−1)

when n � K, and a solution based on the brute-force search takes a seriously high computation cost when
the sample size n is large.

4.3 Proposal of Independently Optimized Threshold (IOT) Labeling

Therefore, we propose to learn the threshold parameters independently through relaxed problems of the
problem (13) (Algorithm 1), for higher computational efficiency; we call a threshold labeling consisting of
threshold parameters obtained by Algorithm 1 the IOT labeling. The algorithm is developed according to
the conditional relation

R(t; ℓ, ḡ,Dn) =
K−1∑
k=1

Rk(tk ; ℓ, ḡ,Dn) −
K−1∑
k=2

Rk(+∞; ℓ, ḡ,Dn)︸                     ︷︷                     ︸
independent on t

if t1 ≤ · · · ≤ tK−1 (15)

9
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Figure 1: This figure is to help understanding of the equation (15). The 1DT ḡ′i located in the box marked
with k is labeled as k, and the corresponding task loss is ℓ(k, y′i ).

Algorithm 1: To determine the threshold parameters for the IOT labeling6

Input: Task loss ℓ, learned 1DT ḡ, and training data Dn = {(xi, yi)}ni=1.
/* Preparation. */

1 Sort {(ḡ(xi), yi)}ni=1 in the ascending order of {ḡ(xi)}ni=1, and represent the result as {(ḡ′i , y′i )}ni=1 with
the modified index i so that ḡ′1 ≤ · · · ≤ ḡ′n.

/* Narrow down candidates for the threshold parameters. */
2 for k = 1, . . . ,K − 1 do
3 Initialization: Rk ,1 = 0.
4 for i = 1, . . . ,n do
5 Sequential update: Rk ,i+1 = Rk ,i + ℓ(k, y′i ) − ℓ(k + 1, y′i ).
6 For {ik ,1, . . . , ik ,nk } = arg mini{Rk ,i}n+1

i=1 , let {cik , j (ḡ,Dn)}nkj=1 be candidates for tk .
/* Determine the threshold parameters. */

7 Determine t̄1 so that t̄1 ≤ t̄2 will be more possible to hold: t̄1 = min{ci1, j (ḡ,Dn)}i1j=1.
8 for k = 2, . . . ,K − 1 do
9 Determine t̄k so that t̄k−1 ≤ t̄k if possible and t̄k ≤ t̄k+1 will be more possible to hold:

if cik ,nk (ḡ,Dn) ≥ t̄k−1 then
t̄k = min{cik , j (ḡ,Dn) | cik , j (ḡ,Dn) ≥ t̄k−1}nkj=1.

else
t̄k = cik ,nk (ḡ,Dn).

Output: Threshold parameters t̄ = (t̄1, . . . , t̄K−1).

with the functions Rk , k = 1, . . . ,K − 1 defined by

Rk(t; ℓ, ḡ,Dn) B
1
n

n∑
i=1
ℓ(hthr(ḡ(xi); (· · · ,−∞, t︸︷︷︸

k-th

,+∞, · · · )), yi), (16)

which is an empirical task risk when it labels ḡ′(xi) < t as k and ḡ′(xi) ≥ t as (k + 1); see Figure 1, where
the summation of the red parts implies the left-hand side term of (15), and the summation of the blue
parts implies the latter term of the right-hand side of (15). This relation implies the equivalence between
minimizing the empirical task risk R(t; ℓ, ḡ,Dn) and minimizing Rk(tk ; ℓ, ḡ,Dn), k = 1, . . . ,K −1 independently
for each k when the threshold parameters satisfy the order condition (t1 ≤ · · · ≤ tK−1). Therefore, Algorithm 1
independently solves the latter relaxed subproblems associated with each threshold parameter.

The for-loop in Line 2 of Algorithm 1 can be parallel-processed. The computation cost required in addition
to the sorting operation of Algorithm 1 is O(n) less than O(n log n) in the training sample size n. Furthermore,
we could prove that the IOT labeling becomes the OT labeling, as long as the obtained threshold parameters
t̄ eventually follow the appropriate order t̄1 ≤ · · · ≤ t̄K−1.

10
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Theorem 3. For any task loss ℓ, 1DT ḡ, and data Dn, the threshold parameters t = t̄ obtained by Algorithm 1
minimize R(t; ℓ, ḡ,Dn) if they satisfy the order condition t̄1 ≤ · · · ≤ t̄K−1.

It would be difficult to judge before the learning whether the resulting threshold parameters follow the
appropriate order, since the threshold parameters depend on the learned 1DT ḡ whose theoretical properties
are little known as reviewed in Section 3. The condition of the above theorem can be easily checked thanks
to the important property that the computational load is not so large. Also, we expect that the condition
will be met for a typical task loss ℓ, surrogate loss ϕ, and ordinal data Dn, and succeeded learning of the
1DT; see the experimental verification in Section 5.

Note that when the order condition t̄1 ≤ · · · ≤ t̄K−1 does not hold, Algorithm 1 has no performance guarantee.
We set t̄k = cik ,nk (ḡ,Dn) if cik ,nk (ḡ,Dn) < t̄k−1 in Line 9, so as to mitigate the influence of the violation of the
order condition t̄k−1 ≤ t̄k . One can select another option such as t̄k = t̄k−1 (for that setting, the statement of
Theorem 3 needs to be modified).

4.4 Relationship to Previous Works

Most studies on 1DT-based methods discuss the learning procedure, especially various options for the sur-
rogate loss function. On the other hand, there are several previous works (Herbrich et al., 1999; Lin & Li,
2006) that have proposed labeling procedures different from the popular labeling procedures reviewed in
Section 3 (albeit their proposed labeling procedures may be minor in that ideas for those have not been
widely adopted in subsequent works). We here review the discussion of these previous works, and describe
the relationship between their methods (especially the one by (Lin & Li, 2006)) and the IOT labeling.

Herbrich et al. (1999) considered pairwise ranking based on the 1DT of the explanatory variables and a
hinge-type loss, under the task with the zero-one task loss. Their method (Herbrich et al., 1999, (12))
determines the threshold parameters on the basis of a unique criterion that emphasizes the shape of the used
hinge-type loss and is different from the empirical task risk and empirical surrogate risk, and their threshold
labeling has no optimality guarantee in minimization of the empirical task risk.

Lin & Li (2006) considered three methods for determining the threshold parameters; see (4), (7), and (8) of
the reference. The third method is developed for the AT surrogate loss function with φ(u) = e−u and is the
same as the MT and ST labelings in this paper. Also, one can understand that (7) tries to minimize (an upper
bound of) the empirical surrogate risk based on the IT surrogate loss function with φ(u) = e−u and ordering
constraint of the bias parameters, and the second labeling procedure also can be seen to follow the idea of
the MT and ST labelings. Finally, the objective function (4) for the first method is defined as the empirical
task risk with the absolute deviation task loss. However, they did not mention the relevance between the
objective function and the task under consideration. Although Lin & Li (2006) presented a description on
the threshold parameters determination based on the zero-one task loss at the part following (4), they tried
only the threshold parameters determined by minimizing the empirical task risk with the absolute deviation
task loss when they considered the task with the zero-one task loss in their experiments. The main claim
of our consideration in Section 4 is that the threshold parameters should be determined via minimizing
the (empirical) task risk for the task under consideration. Therefore, our consideration in Section 4 can
be interpreted as a variant of the method (Lin & Li, 2006, (4)) with respect to the relevance between the
objective function for determining the threshold parameters and the task under consideration. Also, Lin & Li
(2006) described that (4) can be solved by dynamic programming, although they did not describe a more
explicit procedure. Algorithm 1 may be similar to the one that they envisioned, but this paper presents
the explicit procedure for a generic task loss as Algorithm 1 and reveals an optimality condition of that
procedure in Theorem 3.

6We need to calculate Rk (t; ℓ, ḡ, Dn), k = 1, . . . , K − 1 only for t ∈ {ci (ḡ, Dn)}n+1
i=1 , and so we simplified their notation to

Rk ,i . The resulting threshold parameters do not vary under the linear transformation of {Rk ,i }. We thus initialized Rk ,1 with
0 and omitted the averaging operation in Algorithm 1. These objects have the relationship,

Rk ,i = n {Rk (ci (ḡ, Dn); ℓ, ḡ, Dn) − Rk (−∞; ℓ, ḡ, Dn)} for k = 1, . . . , K − 1, i = 1, . . . , n + 1. (17)
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5 Numerical Experiments

5.1 Purposes

We took numerical experiments to answer the questions,

• whether Algorithm 1 for the IOT labeling serves appropriately ordered threshold parameters, which
is related to whether the IOT labeling improves the training task risk for 1DT-based methods,

• whether a modified threshold method with the IOT labeling yields better practical classification
performance (i.e., smaller test task risk) than existing 1DT-based methods using other labelings,

• whether Algorithm 1 for the IOT labeling is computationally feasible.

We will present positive answers for the respective questions in Sections 5.3.1, 5.3.2, and 5.3.3.

5.2 Settings

5.2.1 Datasets and Preprocessing

In the experiments, we used the five various-domain datasets, LEV (lectures evaluation), ERA (employee
rejection/acceptance), SWD (social workers decision), WQR (winequality-red), and CAR (car evaluation)
datasets, and the three face-age datasets, MORPH-2 (MORPH Album2), CACD, and AFAD datasets
(Ricanek & Tesafaye, 2006; Chen et al., 2014; Niu et al., 2016). The main reason why we used the various-
domain and face-age datasets is respectively to experiment with many datasets in various domains and to
confirm whether the proposed method achieves the performance competitive to the state-of-the-art method
in a modern application. For most of the experimental settings, such as preprocessing of datasets, task, and
evaluation, we referred to those of the previous study (Cao et al., 2020).7

For the various-domain datasets, we selected those with the total sample size ntot ≥ 1000
from datasets that Gutierrez et al. (2015) used as OR datasets, and used them following
the usage in (Gutierrez et al., 2015). One can obtain the various-domain datasets from a
researchers’ site (http://www.uco.es/grupos/ayrna/orreview) of (Gutierrez et al., 2015), or our
GitHub repository (https://github.com/Anonymous). We purchased the MORPH-2 dataset at
(https://ebill.uncw.edu/C20231_ustores/web/) and preprocessed it so that the face spanned the whole
image with the nose tip, which was located by facial landmark detection (Sagonas et al., 2016), at the
center by using EyepadAlign function by Raschka (2018). While this dataset contains 55,134 facial im-
ages with ages from 16 to 77, we used 55,013 images with ages from 16 to 70. The CACD dataset can
be downloaded from (https://bcsiriuschen.github.io/CARC/). We preprocessed this dataset similarly
to the MORPH-2 dataset. Since the CACD dataset collects images from the Internet using computer vi-
sion techniques, it includes some facial images inappropriate for our consideration. Excluding images, in
which no face or more than two faces were detected in the preprocessing, from the original 163,446 im-
ages, we used 159,402 facial images in the age range of 14–62 years. For the AFAD dataset obtainable
at (https://github.com/afad-dataset/tarball), because faces in its images were already centered, we
took no further preprocessing, and used its 164,418 images with ages 15–40. For these face-age datasets, we
treated the age rank as the target variable.

For the various-domain datasets, we randomly divided each dataset into 72 % training, 8 % validation, and
20 % test sets. For the face-age datasets, we resized all images to 128 × 128 × 3 pixels (3 stems from RGB
channels) and randomly divided each dataset into 72 % training, 8 % validation, and 20 % test sets, and the
training phase used images randomly cropped with the size of 120 × 120 × 3 pixels as input to improve the
stability of the model against the difference of facial positions, and validation and test phases used images
center-cropped to the same size, following (Cao et al., 2020)’s procedures.

7For the face-age datasets, we used a part of codes published in (https://github.com/Raschka-research-group/coral-cnn)
by Cao et al. (2020), but results of our reproduction of their method differ from theirs mainly because we changed a learning
rate from 5 × 10−5 to 10−3. See (https://github.com/Anonymous) for used program codes.
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Table 2: It shows basic dataset properties, the total sample size ntot, the dimension d of the explanatory
variables, and the number K of classes of the target variable, of all the used datasets.

LEV ERA SWD WQR CAR MORPH-2 CACD AFAD

ntot 1000 1000 1000 1599 1728 55013 159402 164418
d 4 4 10 11 21 1282 × 3 1282 × 3 1282 × 3
K 5 9 4 6 4 55 49 26

We summarized basic dataset properties, the total sample size ntot, the dimension d of the explanatory
variables, and the number K of classes of the target variable, of all the used datasets in Table 2.

5.2.2 Tasks and Methods

We considered two popular tasks in the experiments: minimization of the task risk for the absolute deviation
loss ℓad( j, k) = | j − k | (we call Task-A) and that for the squared loss ℓsq( j, k) = ( j − k)2 (we call Task-S).

For the various-domain datasets, we applied a 1DT model based on a 4-layer fully-connected neural network,
in which every hidden layer has 20 nodes activated with the sigmoid function in addition to bias nodes.
Also, for the face-age datasets, we applied a 1DT model based on ResNet-34 (He et al., 2016), a modern
CNN architecture, following (Cao et al., 2020)’s implementation. It modifies a fully-connected (the number
of classes)-output final layer of the conventional ResNet-34 to a fully-connected 1-output layer.

Our tried loss functions are the SVOR loss (3), NLL (7)8 and ANLCL (8) losses for the statistical model (6)
with the sigmoid function σ = σolr, and AD loss ϕ = ϕad, each of which is a representative instance of bias-
parametric non-statistical, bias-parametric statistical, and bias-nonparametric losses used in the 1DT-based
methods. Also, in another taxonomy, SVOR is an IT loss, and ANLCL is an AT loss; see Table 1.

For the learning procedure of the 1DT model and the bias parameters with bias-parametric losses, we
examined two ways, with and without the ordering constraint on the bias parameters.

Without the ordering constraint on the bias parameters, we tried the MT, ST, and IOT labelings along with
the SVOR loss, the MT (equal to ST), LB, and IOT labelings along with the NLL loss, the MT, ST, LB,
and IOT labelings along with the ANLCL loss, the NNT and IOT labelings along with the AD loss. When
the NLL loss is used, learned bias parameters will be ordered (otherwise, the objective function takes Not a
Number), and the MT and ST labelings bring the same result. With the ordering constraint, the MT and
ST labelings become the same.

Note that Cao et al. (2020) declare that their method (ANLCL, Off, ST), which is a combination of the
ANLCL loss and the ST labeling without the ordering constraint on the bias parameters, is the state-of-the-
art method for the face-age datasets in 2020.

5.2.3 Training and Evaluation

During the validation and test phases, models are evaluated based on the mean absolute error (MAE) and
the root of the mean squared error (RMSE), which are defined for a classifier f and m used data points
as 1

m

∑m
i=1 ℓad( f (xi), yi) and { 1

m

∑m
i=1 ℓsq( f (xi), yi)}1/2, for the Task-A and Task-S. Here, the root operation

of the RMSE is only for adjusting the scale of the error and does not affect our discussion related to the
optimality of IOT and so on.

We ran 20 trials with randomly-set different divisions of training, validation, and test sets and initial pa-
rameters of the network. In each trial, we trained the network using Adam of the learning rate 10−3 with
DataLoader of batch_size 256 for the face-age datasets or integer ≤ 0.072 · ntot for the various-domain
datasets and num_workers 16 (in Pytorch) as an optimization procedure for 200 epochs. For the learning
rate, although Cao et al. (2020) used 5 × 10−5, we selected the one with the best validation result for most
combinations of the datasets, methods, and tasks, from {10−5,10−4, · · · ,10−1} in our preliminary experi-

8For numerical stability (to avoid log(0)), we used an approximation of NLL loss in which the logarithmic function log(·) of
(7) is replaced to log(· + 10−8) in the experiments.
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ments. Additionally, for a method using the IOT labeling, we calculated the threshold parameters according
to Algorithm 1 at the end of every training epoch.

The above errors were evaluated on the validation set at the end of every training epoch, and then we
adopted a model at the timing with the smallest error among the obtained validation error sequences as the
test model.

We judge the significance on the classification performance of the labeling function by the one-sided Wilcoxon
rank sum test with p-value 0.05 based on errors for 20 trials of methods using different labeling functions,
in each combination of the dataset, error, and surrogate loss function.

5.3 Results

5.3.1 Order of Threshold Parameters obtained by Algorithm 1

In all the combinations of datasets, tasks, surrogate losses, and 20 trials, Algorithm 1 for the IOT labeling
served appropriately ordered threshold parameters for a learned 1DT of the test model. Of course, it has
no guarantee that the algorithm will serve ordered threshold parameters for an insufficiently-trained 1DT
model, for example, a 1DT model with initial parameters. It, however, served ordered threshold parameters
for a 1DT model after every epoch in most cases.

Figure 2 shows the learning curves of MAE and RMSE versus training epoch in a certain trial, as demonstra-
tion. In this trial, threshold parameters obtained by Algorithm 1 were ordered at all the epochs. Therefore,
as shown by Theorem 3, one can see that using the IOT labeling improves the training task risk at each
epoch (every blue curve is located below related red and green curves).

5.3.2 Generalization Performance

Table 3 shows the mean and standard deviation of the errors, for the test model, evaluated on the test set.
Theorem 3 and the fact that the threshold parameters obtained by Algorithm 1 were appropriately ordered
do not directly imply the superiority relation of the test task risks of different methods based on different
1DT models. However, in many tried cases, the IOT labeling improved not only the MT, ST, and NNT
labelings but also the LB labeling (in statistical methods) regarding the test task risk. Especially for the
face-age datasets, modified threshold methods using the IOT labeling provided better performance than
(Cao et al., 2020)’s method (ANLCL, Off, ST) that was the state-of-the-art in 2020. These results suggest
the success of the IOT labeling in the subject (aiming for a better labeling procedure) of our research.

5.3.3 Calculation Time

We are also interested in the computational efficiency of the IOT labeling. The IOT labeling is more
disadvantageous in terms of the computational efficiency than other existing labelings as the training sample
size increases. Thus, for the AFAD dataset with the largest sample size, we evaluated computation times
required for the four methods with the MT, ST, LB, and IOT labelings, under the fixed setting with the
ANLCL loss and without ordering constraint of bias parameters, and Task-A, in a certain trial (using
different losses and randomness due to random seeding would little affect the computation time). Note that
we experimented with program codes based on Python 3.8.12 and Pytorch 1.10.1 (see also footnote 7) under
the computation environment with a CPU Intel Xeon Silver 4108 and a GPU GeForce RTX A6000.

The training procedure is common for all the labelings, and to update the network parameters using the
optimization algorithm and all training data points, where we used Adam with DataLoader of batch_size
256 and num_workers 16 (in Pytorch) for optimization. The validation procedure is to evaluate the validation
task risk 1

m

∑m
i=1 ℓad(h(g(xi)), yi) for a given 1DT model g and a given labeling h. Since the MT, ST, and

LB labelings are pre-designed they do not need additional computations to learn the labeling h, but the
IOT labeling does (as Algorithm 1). Thus, for the IOT labeling, we further evaluated the computation time
taken for Algorithm 1, where we used quick sort, which was the default as sort in Pytorch, for Line 1 of
Algorithm 1.
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Figure 2: It shows the learning curves of MAE and RMSE evaluated on training and test sets in a certain
trial versus training epoch, for methods with the ANLCL loss and the MT, LB, and IOT labelings and
without the ordering constraint on the bias parameters, and for all the used datasets. In this trial, since the
bias parameters were ordered consequently, the MT labeling and LB labeling for the Task-A were equal to
the ST labeling (this result demonstrates Theorem 2 (iii) about the relation of the LB and ST labelings).

Table 4 shows the mean (over 200 epochs) of these computation times. The modified threshold method
using the IOT labeling took just at most 51.666+7.387+4.309

51.666+4.249 ≈ 1.133 times as long as a conventional threshold
method even if we calculated a validation error every epoch, despite that the AFAD dataset has as many as
164,418×0.72 ≈ 118,000 training data points. The ratio depends on the computational environments and was
about 1.081 when using a GPU GeForce RTX 2080 Ti. These results would demonstrate the computational
feasibility of the IOT labeling.
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Table 3: It shows the mean (M) and standard deviation (S) of the test errors in the form ‘MS’. For a method
using a bias-parametric loss, we respectively mark (On) and (Off) under the loss if it adopts the ordering
constraint of the bias parameters and does not. The smaller the mean of an error, the better that method
is for that dataset and that task. In each block specified with the dataset, error, and loss, we highlighted
in bold font the best results that were tie each other and superior to all other results with respect to the
one-sided Wilcoxon rank sum test with a significance level of 0.05, if they exist. Also, we colored the best
result in red for each combination of dataset and error.

Loss Labeling LEV ERA SWD WQR CAR MORPH-2 CACD AFAD

M
A

E
fo

r
Ta

sk
-A

SVOR MT,ST .482.023 1.262.052 .465.034 .462.018 .130.009 3.147.067 6.776.146 3.927.091
(On) IOT .420.039 1.229.057 .441.029 .447.028 .062.011 3.016.029 6.386.078 3.643.016

SVOR
MT .532.028 1.280.048 .453.038 .465.019 .130.012 2.944.029 5.280.029 3.526.031

(Off) ST .532.028 1.280.048 .453.038 .465.019 .090.010 2.944.029 5.280.029 3.514.033
IOT .418.040 1.226.061 .445.027 .450.028 .060.010 2.910.030 5.242.029 3.401.021

NLL
MT,ST .426.037 1.269.062 .448.035 .448.026 .078.018 2.783.019 5.146.026 3.336.015

(On) LB .426.037 1.269.062 .448.035 .448.026 .078.018 2.783.019 5.146.026 3.336.015
IOT .421.042 1.229.054 .438.028 .450.024 .054.010 2.777.022 5.138.026 3.335.015

NLL
MT,ST .427.042 1.268.056 .447.033 .445.021 .079.013 2.797.015 5.158.025 3.340.019

(Off) LB .427.042 1.268.056 .447.033 .445.021 .079.013 2.797.015 5.158.025 3.340.019
IOT .420.038 1.222.061 .442.025 .447.024 .054.011 2.788.023 5.157.025 3.335.016

ANLCL
MT,ST .422.039 1.271.054 .443.035 .444.021 .088.011 2.756.020 5.165.030 3.368.017

(On) LB .422.039 1.271.054 .443.035 .444.021 .088.011 2.756.020 5.165.030 3.368.017
IOT .424.045 1.219.055 .440.035 .451.029 .051.009 2.752.017 5.162.028 3.368.015

MT .446.048 1.273.055 .462.041 .444.020 .100.012 2.773.025 5.159.019 3.376.015
ANLCL ST .446.048 1.273.055 .462.041 .444.020 .100.012 2.773.025 5.159.019 3.376.015

(Off) LB .446.048 1.273.055 .462.041 .444.020 .100.012 2.773.025 5.159.019 3.376.015
IOT .417.036 1.218.058 .442.033 .449.026 .049.009 2.769.018 5.157.019 3.369.014

AD NNT .455.037 1.297.049 .478.024 .467.023 .091.011 2.811.021 5.141.035 3.337.012
IOT .422.040 1.230.061 .447.021 .446.025 .063.011 2.806.025 5.147.036 3.345.017

R
M

SE
fo

r
Ta

sk
-S

SVOR MT,ST .755.023 1.640.064 .706.029 .738.018 .450.021 4.290.096 8.701.151 5.174.121
(On) IOT .698.044 1.598.056 .692.026 .729.027 .268.033 4.059.036 8.294.066 4.825.017

SVOR
MT .792.024 1.671.071 .714.040 .741.017 .450.027 4.015.043 7.379.048 4.779.056

(Off) ST .792.024 1.671.071 .714.040 .741.017 .306.021 4.017.045 7.379.048 4.727.040
IOT .695.047 1.595.056 .694.020 .728.024 .260.037 3.984.037 7.329.043 4.566.022

NLL
MT,ST .701.045 1.634.057 .694.033 .722.026 .302.056 3.798.049 7.340.038 4.557.022

(On) LB .711.040 1.636.051 .690.025 .721.028 .293.042 3.795.045 7.336.041 4.509.022
IOT .695.046 1.608.054 .696.022 .728.024 .242.027 3.787.039 7.357.043 4.509.011

NLL
MT,ST .700.048 1.638.060 .705.035 .723.025 .285.040 3.837.026 7.333.041 4.563.026

(Off) LB .710.043 1.640.056 .691.027 .726.027 .299.024 3.839.028 7.332.043 4.527.022
IOT .697.048 1.605.057 .690.023 .728.023 .241.029 3.829.029 7.292.028 4.515.019

ANLCL
MT,ST .698.047 1.629.055 .697.032 .719.022 .300.022 3.773.027 7.380.032 4.585.028

(On) LB .710.042 1.633.042 .695.026 .722.026 .285.019 3.772.027 7.372.031 4.534.025
IOT .700.047 1.595.047 .694.029 .722.023 .226.021 3.764.024 7.402.033 4.537.016

MT .719.050 1.628.057 .722.039 .722.024 .320.021 3.790.030 7.370.047 4.590.033
ANLCL ST .719.050 1.628.057 .722.039 .722.024 .320.021 3.790.030 7.370.047 4.590.033

(Off) LB .715.041 1.635.043 .689.022 .723.026 .289.016 3.788.027 7.359.047 4.537.021
IOT .697.047 1.599.051 .691.027 .722.026 .226.025 3.781.026 7.376.027 4.534.017

AD NNT .720.043 1.654.043 .708.024 .743.021 .325.026 3.844.033 7.303.036 4.571.023
IOT .707.044 1.599.055 .698.019 .725.022 .267.024 3.829.038 7.287.037 4.540.018

6 Conclusion and Future Prospect

We showed in Theorem 2 that not only the MT, ST, and NNT labelings but also the LB labeling is a threshold
labeling in typical settings. In this study we considered the OT labeling to obtain higher classification
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Table 4: It shows the mean calculation time for 1 epoch (in seconds), when using the ANLCL loss without
the ordering constraint on the bias parameters, under the Task-A.

Labeling all MT ST LB IOT
Phase training validation validation validation Algorithm 1 validation

Time 51.666 4.679 4.249 4.686 7.387 4.309

performance than these threshold labelings used in the existing studies and proposed the IOT labeling as
a more computationally efficient alternative labeling. Theorem 3 provides a condition for the IOT labeling
to be the OT labeling. Experiments in this paper showed the satisfaction of the optimality condition,
superior classification performance, and computational feasibility of the IOT labeling. On the ground of
these consequences, we suggest a modified threshold method using the IOT labeling among the 1DT-based
methods.

We are also interested in the selection of the learning procedure, especially the surrogate loss function, of
the threshold method. One may be able to take systematic discussion on the goodness of the loss function
by fixing components of the threshold method other than the loss function to the optimal ones. In such
discussion, the OT and IOT labelings will serve as the optimal other components. This is a future prospect.
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A Proof of Consistency of Statistical Methods

We here give proof of the theorem related to the interpretation of statistical loss functions.

Proof of Theorem 1. We can characterize the surrogate risk minimization for the NLL loss (7) as maximum
likelihood estimation for the statistical model (6) for multi-class classification problem through the equation

min
g∈G,b∈B

E[ϕnll(g(X),b,Y )] = min
g∈G,b∈B

E

[ K∑
y=1

Pr(y |X)ϕnll(g(X),b, y)
]

= min
g∈G,b∈B

E

[
−

K∑
y=1

Pr(y |X) log P̂r(y |X; g,b)
]
.

(18)

According to the method of Lagrange multiplier, one solution of a point-wise (at each X = x) minimization
problem

min
{P̂r(k |x)}k

−
K∑
y=1

Pr(y |x) log P̂r(y |x), subject to
K∑
y=1

P̂r(y |x) = 1 (19)

is P̂r(y |x) = Pr(y |x) = P̂r(y |x; g̃, b̃), y = 1, . . . ,K, where the existence of such {g̃(x), b̃} is assumed in the
statement of the theorem. This solution applies for any x ∈ Rd, and one can see that a solution of (18) is
{g̃, b̃}, which completes the proof of the statement for the NLL loss (7).

Also, for the ANLCL loss (8), we can provide the following characterization:

E[ϕanlcl(g(X),b,Y )]

= E

[
−

K∑
y=1

Pr(y |X)
{y−1∑
k=1

log
{
1 − P̂r(Y ≤ k |X; g,b)

}
+

K−1∑
k=y

log
{
P̂r(Y ≤ k |X; g,b)

}}]
= −

K−1∑
y=1
E

[
Pr(Y ≤ y |X) log P̂r(Y ≤ y |X; g,b)+ {1 − Pr(Y ≤ y |X)} log

{
1 − P̂r(Y ≤ y |X; g,b)

}]
,

(20)

where P̂r(Y ≤ y |X; g,b) B ∑y
k=1 P̂r(k |X; g,b) and the expectation value E[·] is taken for X. On the ground

of the binary version, ‘y or less’ vs. ‘more than y’ (y = 1, . . . ,K − 1), of (19), one can prove the statement
similarly. □

One may consider the (our-called) immediate negative log cumulative likelihoods (INLCL) loss function,

ϕinlcl(g(x),b, y) B − log(σ(g(x) − by−1)) − log(σ(by − g(x))), (21)

which follows the framework of the IT loss in Table 1. However, it is difficult to characterize the surrogate
risk minimization with the INLCL loss as a problem with a known solution unlike those for the NLL and
ANLCL losses, and the optimality condition for the INLCL loss is unknown.

B Proof of Relationships between Labeling Functions

This section provides proofs of Theorem 2 and Corollary 1 regarding the relationships between the LB and
threshold labelings. Propositions 1 and 2 would be trivial, so we omit proofs of them.

First, we prove Theorem 2.

Proof of Theorem 2. We introduce the functions

Lj(u) B
K∑
k=1

{σ(b̄k − u) − σ(b̄k−1 − u)}ℓ( j, k) = ℓ( j,K) +
K−1∑
k=1
σ(b̄k − u){ℓ( j, k) − ℓ( j, k + 1)}, (22)
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with j = 1, . . . ,K, where the equation holds since b̄0 = −∞, b̄K = +∞, σ(−∞) = 0, and σ(+∞) =
1. The classifier based on the LB labeling, f (x) = arg min j∈[K]

∑K
k=1 P̂r(k |x; ḡ, b̄)ℓ( j, k), is equal to

arg min j∈[K] Lj(ḡ(x)). According to Proposition 1, the LB labeling is a certain threshold labeling if and
only if arg min j∈[K]{Lj(u1)}Kj=1 ≤ arg min j∈[K]{Lj(u2)}Kj=1 for any u1,u2 ∈ R such that u1 ≤ u2. The latter
condition holds if the situation

Lk(u) > Ll(u) for u ∈ (s1, s2) and Lk(u) < Ll(u) for u ∈ (s2, s3) with k < l, s1 < s2 < s3 (23)

does not occur. In the following we assume k < l for the indices k, l ∈ [K].
Proof of (i). Under the assumption described in the statement of the theorem, the difference

Lk(u) − Ll(u) = {ℓ(k,K) − ℓ(l,K)}︸                 ︷︷                 ︸
non-negative

constant

+

K−1∑
j=1

σ(b̄j − u)︸     ︷︷     ︸
non-negative

non-increasing

{ℓ(k, j) − ℓ(k, j + 1) − ℓ(l, j) + ℓ(l, j + 1)}︸                                                  ︷︷                                                  ︸
non-positive

constant

(24)

is non-decreasing with respect to u. Thus, Lk(u) ≤ Ll(u) for u ≤ p and Lk(u) ≥ Ll(u) for u ≥ p for a some point
p, Lk(u) ≤ Ll(u) for any u, or Lk(u) ≥ Ll(u) for any u, which implies that the above-mentioned situation (23)
does not occur. Note that, for the instances ℓ = ℓad, ℓsq, one has that

ℓk ,l( j) = ℓ(k, j) − ℓ(k, j + 1) − ℓ(l, j) + ℓ(l, j + 1) =
{
−2 · 1k≤ j≤l−1 for ℓ = ℓad,

2(k − l), for ℓ = ℓsq.
(25)

This completes the proof of the statement (i).

Proof of (ii). For ℓ = ℓzo,c with c ∈ [0, bK/2c) where ℓzo = ℓzo,0, the function Lj(u) reduces to

Lj(u) = 1 − {σ(bj − u) − σ(aj − u)}, (26)

with aj B b̄max{0, j−c } and bj B b̄min{ j+c,K }, where aj < bj . Lemma 1 (described after the proof of Theorem 2)
shows the shape of the function Lj(u): Under the assumption of Theorem 2 (ii), Lj(u) is minimized at
u = (aj + bj)/2 B cj , symmetric in u around u = cj , non-increasing in u for u < cj , and non-decreasing in
u when u > cj , from Lemma 1 (i) and (ii). Also, assuming that cj is fixed, then Lj(u) is non-decreasing in
bj − aj , from Lemma 1 (iii).

When bk − ak = bl − al, the translated two curves Lk(u) and Ll(u) have just one intersection point at
u = (ck + cl)/2, and it holds that Lk(u) ≤ Ll(u) for u ≤ (ck + cl)/2 and Lk(u) ≥ Ll(u) for u ≥ (ck + cl)/2.
Therefore, the situation (23) does not occur if bk − ak = bl − al.

Then, assume bk − ak < bl − al (the following proof strategy for this setting can be applied to the other
setting bk − ak > bl − al). In this setting, Lk(u) > Ll(u) for u ≥ cl due to the shape of the functions Lk and
Ll. Also, within [ck, cl], they can have one intersection point p at most such that Lk(u) ≤ Ll(u) for u ∈ [ck, p]
and Lk(u) ≥ Ll(u) for u ∈ [p, cl], since Lk(u) and Ll(u) are respectively non-decreasing and non-increasing in
u. Therefore, the situation (23) can be satisfied only in such a situation that there exists a point p satisfying

Lk(p) = Ll(p), L ′
k(p) < L ′

l (p), and p ≤ ck . (27)

The existence of such a point p implies that

σ′(ak − p) − σ′(bk − p)
σ(ak − p) − σ(bk − p) <

σ′(al − p) − σ′(bl − p)
σ(al − p) − σ(bl − p) with ak ≤ al, bk ≤ bl, ak ≤ bk, al ≤ bl, p ≤ ck . (28)

However, the assumption that σ′(v1)−σ′(v2)
σ(v1)−σ(v2) is non-increasing in v1 with fixed v2 and in v2 with fixed v1 when

v1 < v2 shows that

σ′(ak − p) − σ′(bk − p)
σ(ak − p) − σ(bk − p) ≥ σ

′(ak − p) − σ′(bl − p)
σ(ak − p) − σ(bl − p) ≥ σ

′(al − p) − σ′(bl − p)
σ(al − p) − σ(bl − p) , (29)
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which contradicts to the equation (28). Therefore, the situation (23) does not occur also when bk−ak < bl−al.

Note that, especially when σ = σolr, one can show that

σ′(v1) − σ′(v2)
σ(v1) − σ(v2)

=
σolr(v1)(1 − σolr(v1)) − σolr(v2)(1 − σolr(v2))

σolr(v1) − σolr(v2)
= 1 − {σolr(v1) + σolr(v2)}, (30)

is decreasing in v1 with fixed v2 and in v2 with fixed v1. Moreover, when σ = σgpor, one has that

σ′(v1) − σ′(v2)
σ(v1) − σ(v2)

∝ e−v
2
1 /2 − e−v

2
2 /2

σgpor(v1) − σgpor(v2)
B f1(v1, v2), (31)

that the derivative of f1(v1, v2) with respect to v1,

∂

∂v1
f1(v1, v2) =

−v1e−v
2
1 /2{σgpor(v1) − σgpor(v2)} −

(
e−v

2
1 /2 − e−v

2
2 /2

)
1√
2π

e−v
2
1 /2

{σgpor(v1) − σgpor(v2)}2 (32)

has the same sign as

f2(v1, v2) B −v1{σgpor(v1) − σgpor(v2)} −
(

1
√

2π
e−v

2
1 /2 − 1

√
2π

e−v
2
2 /2

)
, (33)

and that the derivative of f2(v1, v2) with respect to v2 is

∂

∂v2
f2(v1, v2) = (v1 − v2)

1
√

2π
e−v

2
2 /2. (34)

Since ∂
∂v2

f2(v1, v2) < 0 when v1 < v2 and f2(v1, v1) = 0, it holds that f2(v1, v2), which has the same sign as
∂

∂v1
σ′(v1)−σ′(v2)
σ(v1)−σ(v2) , is negative when v1 < v2, that is, σ′(v1)−σ′(v2)

σ(v1)−σ(v2) is decreasing in v1 with fixed v2 when v1 < v2;
monotonicity in v2 with fixed v1 can be proved by the same discussion.

Proof of (iii). Regarding the MT and ST labelings, let y = hthr(u; b̄) under the assumption b̄1 ≤ · · · ≤ b̄K−1,
which implies that b̄1 ≤ · · · ≤ b̄y−1 ≤ u ≤ b̄y ≤ · · · ≤ b̄K−1. Regarding the LB labeling for the likelihood
model (6), one has that, with the abbreviations σk B σ(b̄k − u) for k = 1, . . . ,K,

Lj(u) =
K∑
k=1

{σk − σk−1}| j − k |,

= | j − 1|{σ1 − σ0} + | j − 2|{σ2 − σ1} + · · · + 2{σj−2 − σj−3} + {σj−1 − σj−2}
+ {σj+1 − σj} + 2{σj+2 − σj+1} + · · · + | j − K + 1|{σK−1 − σK−2} + | j − K |{σK − σK−1}

= −| j − 1| σ0︸︷︷︸
0

+

{ j−1∑
k=1
σk

}
−
{K−1∑
k=j

σk

}
+ | j − K | σK︸︷︷︸

1

=

j−1∑
k=1
σ(b̄k − u) +

K−1∑
k=j

{1 − σ(b̄k − u)},

(35)

for every j ∈ [K]. Simple calculations show that σ(b̄k − u) ≤ 0.5 for k = 1, . . . , y − 1 and {1 − σ(b̄k − u)} ≤ 0.5
for k = y, . . . ,K − 1, from b̄1 ≤ · · · ≤ b̄y−1 ≤ u ≤ b̄y ≤ · · · ≤ b̄K−1 and the assumption on the shape of σ. One
would see that objective function (35) is minimized at j = y because some summands are replaced by ones
of 0.5 or more if j deviates from y, which concludes the proof. □

The following is an auxiliary lemma for the above-described proof of Theorem 2.
Lemma 1. Suppose that σ is non-decreasing and satisfies σ(−∞) = 0 and σ(+∞) = 1. Define P(u; a, b) B
σ(b − u) − σ(a − u) for a < b. Then, one has that
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(i) P (u; a, b) with fixed a and b is symmetric in u around u = a+b
2 , if σ(−·) = 1 − σ(·), or if σ is

differentiable and σ′ is even.

(ii) P(u; a, b) with fixed a and b is maximized with respect to u at u = a+b
2 , non-decreasing in u for u < a+b

2 ,
and non-increasing in u for u > a+b

2 , if σ is differentiable and σ′(u) is even and non-increasing in
u if u > 0.

(iii) P(u; a, b) with fixed u and a+b
2 is increasing with respect to (b − a).

Proof of Lemma 1. Proof of (i). The assumptions that σ(−∞) = 0, σ(+∞) = 1, and σ′ is even imply that
σ(−·) = 1 − σ(·). On the basis of this result, one then has that

P
(
u +

a + b
2

; a, b
)
= σ

(
b −

{
u +

a + b
2

})
− σ

(
a −

{
u +

a + b
2

})
= σ

(
b − a

2
− u

)
− σ

(
−b − a

2
− u

)
= σ

(
b − a

2
− u

)
− 1 + σ

(
b − a

2
+ u

)
,

(36)

which implies that

P
(
u +

a + b
2

; a, b
)
= P

(
−u +

a + b
2

; a, b
)
. (37)

Proof of (ii). The above equation (36) shows that

∂

∂u
P
(
u +

a + b
2

; a, b
)
= σ′

(
b − a

2
+ u

)
− σ′

(
b − a

2
− u

)
= 0, at u = 0. (38)

Also, one can show that

∂

∂u
P
(
u +

a + b
2

; a, b
)
= σ′

(
b − a

2
+ u

)
− σ′

(
b − a

2
− u

)
=


σ′

(
| b−a2 + u|

)
− σ′

(
b−a

2 − u
)
≥ 0, for u < 0,

σ′
(
b−a

2 + u
)
− σ′

(
| b−a2 − u|

)
≤ 0, for u > 0.

(39)

Here, for u < 0, we used the fact that σ′ is even, which implies that σ′( b−a2 + u) = σ′(| b−a2 + u|), and σ′(v) is
non-increasing in v for v > 0 and b−a

2 − u > | b−a2 + u| > 0; for u > 0, we used the fact that σ′ is even, which
implies that σ′( b−a2 −u) = σ′(| b−a2 −u|), and σ′(v) is non-increasing in v for v > 0 and b−a

2 +u > | b−a2 −u| > 0.

Proof of (iii). With change of variables t = b−a
2 , v =

a+b
2 , we introduce a function

Q(t; u, v) = P(u; v − t, v + t) = σ(v − u + t) − σ(v − u − t). (40)

For this function, one has that

∂

∂t
Q(t; u, v) = σ′(v − u + t) + σ′(v − u − t) ≥ 0, (41)

since σ is non-decreasing (i.e., σ′(u) ≥ 0 for any u). □

Next, we give a proof of Corollary 1.
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Proof of Corollary 1. If k < l, the convexity shows that

ℓ(k, j) ≤ {k − j} − {k − ( j + 1)}
{l − j} − {k − ( j + 1)} ℓ(k, j + 1) + {l − j} − {k − j}

{l − j} − {k − ( j + 1)} ℓ(l, j)

=
1

l − k + 1
ℓ(k, j + 1) + l − k

l − k + 1
ℓ(l, j),

(42)

and that

ℓ(l, j + 1) ≤ {l − ( j + 1)} − {k − ( j + 1)}
{l − j} − {k − ( j + 1)} ℓ(k, j + 1) + {l − j} − {l − ( j + 1)}

{l − j} − {k − ( j + 1)} ℓ(l, j)

=
l − k

l − k + 1
ℓ(k, j + 1) + 1

l − k + 1
ℓ(l, j).

(43)

These inequalities imply that ℓk ,l is non-positive:

ℓk ,l( j)
= {ℓ(k, j) + ℓ(l, j + 1)} − {ℓ(k, j + 1) + ℓ(l, j)}

= {ℓ(k, j) + ℓ(l, j + 1)} −
[{

1
l − k + 1

ℓ(k, j + 1) + l − k
l − k + 1

ℓ(l, j)
}
+

{
l − k

l − k + 1
ℓ(k, j + 1) + 1

l − k + 1
ℓ(l, j)

}]
=

[
ℓ(k, j) −

{
1

l − k + 1
ℓ(k, j + 1) + l − k

l − k + 1
ℓ(l, j)

}]
+

[
ℓ(l, j + 1) −

{
l − k

l − k + 1
ℓ(k, j + 1) + 1

l − k + 1
ℓ(l, j)

}]
≤ 0.

(44)

Similarly, one can show that ℓk ,l is non-negative if k > l. □

McCullagh (1980, Section 6.1) has proposed the heteroscedastic extension of (6),

P̂r2(y |x; g,b, s) B σ
(

by − g(x)
s(x)

)
− σ

(
by−1 − g(x)

s(x)

)
(45)

with the scale model s : Rd → (0,∞), and statistical OR studies (Thompson Jr, 1977; Fienberg & Mason,
1979) and (Agresti, 2010, Section 4.2) have also considered another model

P̂r3(y |x; g,b) B σ(by − g(x))
y−1∏
k=1

{1 − σ(bk−1 − g(x))}. (46)

We obtain the following theorem that is similar to Theorem 2 and suggests the efficiency of the IOT labeling
for these other models:

Theorem 4. Suppose that σ is non-decreasing and satisfies σ(−∞) = 0 and σ(+∞) = 1 and that ḡ : Rd → R,
b̄1 ≤ · · · ≤ b̄K−1, and s̄ : Rd → (0,∞).

(i) arg min j∈[K]
∑K

k=1 P̂r2(k |x; ḡ, b̄, s̄)ℓ( j, k) = hthr(ḡ(x); b̄) if ℓ = ℓad and σ(0) = 0.5.

(ii) arg min j∈[K]
∑K

k=1 P̂r3(k |x; ḡ, b̄)ℓ( j, k) = hthr(ḡ(x); t) for some t ∈ RK−1 if ℓ = ℓad.

Proof of Theorem 4. Proof of (i). The statement (i) of Theorem 4 is trivial from the statement (iii) of
Theorem 2.
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Proof of (ii). Regarding the LB labeling for the likelihood model (46), one has that, with the abbreviations
Ûσk B 1 − σ(b̄k − ḡ(x)) for k = 1, . . . ,K,

Lj(ḡ(x)) B
K∑
k=1

P̂r3(k |x; ḡ, b̄)ℓad( j, k)

=

K∑
k=1

(
(1 − Ûσk)

k−1∏
l=1

Ûσl−1

)
| j − k |,

= | j − 1|(1 − Ûσ1) + | j − 2| Ûσ1(1 − Ûσ2) + · · · + Ûσ1 · · · Ûσj−2(1 − Ûσj−1)
+ Ûσ1 · · · Ûσj(1 − Ûσj+1) + · · · + | j − K + 1| Ûσ1 · · · ÛσK−2(1 − ÛσK−1) + | j − K | Ûσ1 · · · ÛσK−1

= ( j − 1) −
( j−1∑
k=1

k∏
l=1

{1 − σ(b̄l − ḡ(x))}
)
+

(K−1∑
k=j

k∏
l=1

{1 − σ(b̄l − ḡ(x))}
)
,

(47)

for every j ∈ [K]. One has that

Lj+1(ḡ(x)) − Lj(ḡ(x)) = 1 − 2
j∏

l=1
{1 − σ(b̄l − ḡ(x))}, (48)

is non-decreasing in j with fixed ḡ(x). Therefore, arg min j∈[K]
∑K

k=1 P̂r3(k |x; ḡ, b̄)ℓad( j, k) is the first in-
dex l such that Ll+1(ḡ(x)) − Ll(ḡ(x)) ≤ 0, or K if Ll+1(ḡ(x)) − Ll(ḡ(x)) > 0 for all l = 1, . . . ,K − 1.
Also, Ll+1(ḡ(x)) − Ll(ḡ(x)) is non-increasing in ḡ(x), for each l = 1, . . . ,K − 1. These facts show that
arg min j∈[K]

∑K
k=1 P̂r3(k |x; ḡ, b̄)ℓad( j, k) = hthr(ḡ(x); t) with the threshold parameters tk , k = 1, . . . ,K − 1

satisfying Lk+1(tk) − Lk(tk) = 0. □

C Proof of Optimality of Independently Optimized Threshold Labeling

We here provide a proof of Theorem 3.

Proof of Theorem 3. In this proof, we use the notations g′i , y
′
i , Rk ,i, and t̄ in Algorithm 1. According to the

equations (15) and (17), one has that

1
n

K−1∑
k=1

Rk ,ik =

K−1∑
k=1

Rk(tk ; ℓ, ḡ,Dn) −
K−1∑
k=1

Rk(−∞; ℓ, ḡ,Dn)

= R(t; ℓ, ḡ,Dn) +
K−1∑
k=2

Rk(+∞; ℓ, ḡ,Dn) −
K−1∑
k=1

Rk(−∞; ℓ, ḡ,Dn)
(49)

for the threshold parameters t whose elements tk , k = 1, . . . ,K−1 are tk = cik (ḡ,Dn) with the indices i1, . . . , iK−1
such that 1 ≤ i1 ≤ · · · ≤ iK−1 ≤ n + 1. Here, the first term of the right-hand side of (49) is the empirical task
risk for the threshold labeling with the threshold parameters t1, . . . , tK−1, each of which is a midpoint between
g′ik−1 and g′ik , and the second and third terms are constant with respect to the indices i1, . . . , iK−1. Thus,
minimization of

∑K−1
k=1 Rk ,ik regarding i1, . . . , iK−1 amounts to minimization of the empirical task risk for the

threshold labeling regarding i1, . . . , iK−1 as far as the solutions of the former problem keeps the ascending
order. The former minimization can be performed with Algorithm 1 (independent minimizations of Rk ,ik

regarding ik for k = 1, . . . ,K −1). Thus, it can be found that, under the assumption of this theorem, the IOT
labeling by Algorithm 1 minimizes the empirical task risk among the class of threshold labelings. □
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