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Abstract

Deep neural networks, particularly neural operators, provide an efficient alternative
to costly simulations in surrogate modeling. However, their performance is often
constrained by the need for large-scale labeled datasets, which are costly and
challenging to acquire in many scientific domains. Semi-supervised learning
reduces label reliance by leveraging unlabeled data yet remains vulnerable to
noisy pseudo-labels that mislead training and undermine robustness. To address
these challenges, we propose a novel framework, Uncertainty-Informed Meta
Pseudo Labeling (UMPL). The core mechenism is to refine pseudo-label quality
through uncertainty-informed feedback signals. Specifically, the teacher model
generates pseudo labels via epistemic uncertainty, while the student model learns
from these labels and provides feedback based on aleatoric uncertainty. This
interplay forms a meta-learning loop where enhanced generalization and improved
pseudo-label quality reinforce each other, enabling the student model to achieve
more stable uncertainty estimation and leading to more robust training. Notably,
This framework is model-agnostic and can be seamlessly integrated into various
neural architectures, facilitating effective exploitation of unlabeled data to enhance
generalization in distribution shifts and out-of-distribution scenarios. Extensive
evaluations of four models across seven tasks covering steady state and transient
prediction problems demonstrate that UMPL consistently outperforms the best
existing semi-supervised regression methods. When using only 10% of the fully
supervised training data, UMPL achieves a 14.18% improvement, highlighting
its strong effectiveness under limited supervision. Our codes are available at
https://github.com/small-dumpling/UMPL.

1 Introduction

High-fidelity simulations are indispensable tools in scientific computing and engineering, enabling
precise modeling of complex physical systems governed by partial differential equations (PDEs).
They serve as foundational methodologies across diverse domains, including aerodynamics, chemical
processing, and energy systems [64, 56, 59, 62, 39]. However, as the underlying systems grow
increasingly nonlinear and coupled, the computational demands of high-fidelity simulations grow
prohibitively high, limiting their feasibility for real-time deployment and large-scale iterative work-
flows [5, 32]. Recent advances in deep learning, particularly neural operator-based approaches, offer
a promising alternative by introducing scalable, data-driven surrogate models capable of capturing
complex spatiotemporal dynamics and learning solution mappings between function spaces [29, 3].

Nevertheless, the effectiveness of data-driven approaches is still heavily dependent on the quality
and availability of training data. In cases where data are limited, these models tend to overfit
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Figure 1: Overview of the UMPL pipeline. UMPL leverages both labeled and unlabeled data to
enhance generalization under distribution shifts. The teacher generates pseudo labels via epistemic
uncertainty, while the student learns from predicted states and their corresponding aleatoric uncer-
tainties using heteroscedastic regression loss. The teacher is iteratively refined with feedback from
the student’s performance on labeled data, forming a closed-loop training process that progressively
improves pseudo-label quality. Both the teacher and student can be versatile forecasting models.

and generalize poorly, restricting their use in situations where obtaining accurate simulations is
expensive or unfeasible [13]. To mitigate these challenges, semi-supervised learning (SSL) has
emerged as a promising solution by leveraging structural similarities between limited labeled data
and abundant unlabeled data. Common SSL strategies often include pseudo-labeling [31, 19, 67],
self-training [69, 8, 68], and contrastive learning [11, 4]. While SSL has shown promise in computer
vision, its application to complex surrogate modeling remains underexplored [52]. The presence of
strict physical constraints in scientific systems makes them particularly sensitive to the noise and
inconsistencies introduced by conventional SSL methods [57], underscoring the urgent need for
physically consistent semi-supervised frameworks.

In this paper, we propose Uncertainty-informed Meta Pseudo Labeling (UMPL), a novel semi-
supervised learning framework explicitly designed for physical systems surrogate modeling. UMPL
extends the meta pseudo-labeling paradigm by incorporating a teacher-student architecture informed
by uncertainty, addressing key challenges such as limited labeled data and distributional shifts.
The teacher model generates both predictions and corresponding epistemic uncertainty to construct
uncertainty-aware pseudo labels. The student model is trained on these labels while estimating their
heteroscedastic aleatoric inherent uncertainty. Throughout the training, the pseudo-label quality
is assessed against a small labeled set, providing feedback that enables the teacher to refine its
outputs iteratively. As a result, the student model can produce accurate predictions along with the
relative uncertainty estimates. Extensive experiments across diverse physical-system datasets and
forecasting architectures demonstrate that UMPL consistently outperforms existing semi-supervised
learning baselines. An overview of the UMPL framework is presented in Figure 1. In summary, the
contribution of our paper can be summarized as follows:

• Problem Formulation. To the best of our knowledge, this is the first attempt to integrate
pseudo-labeling strategies with the modeling of high dimensional PDE systems on non-
uniform meshes, aiming to address challenges for out-of-distribution generalization and
distribution shifts arising from limited labeled data.

• Role-Aware Dual-Uncertainty for Robust Generalization. We design a teacher-student
framework that assigns distinct uncertainty modeling strategies to each role, inspired by
their functional differences and underlying physical data characteristics. The teacher models
epistemic uncertainty to gauge confidence under distribution shifts, while the student models
heteroscedastic aleatoric uncertainty to capture pseudo-label noise. This design improves
generalization and uncertainty estimation on unseen data. Furthermore, the framework is
flexible, allowing interchangeable predictive models and uncertainty estimators.
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• Uncertainty-Informed Feedback. Building upon the dual-uncertainty modeling, we intro-
duce an uncertainty-informed feedback mechanism: the student provides aleatoric uncer-
tainty as a signal to guide the teacher in refining uncertain regions. This targeted feedback
significantly improves the quality of pseudo labels across iterations, especially in high-
uncertainty or underrepresented regimes.

• Empirical Validation. Extensive experiments conducted under various settings demonstrate
the proposed UMPL framework’s superior performance and robustness compared to existing
semi-supervised learning methods.

2 Problem Setup

Consider the problem of learning solution operators for PDEs defined on a spatial domain Ω. The
objective is to learn a mapping G : A → S, where A and S denote the input and solution function
spaces over Ω. Each input x = (g, a, ς) consists of geometry g ∈ RN×Cg and associated physical
quantities a ∈ RN×Ca and physical parameters ς observed on g; the corresponding solution is
y ∈ RN×Cs , where N is the number of discretized spatial points. We approximate G using a neural
network Gθ, which comprises three components: (1) a state encoder E that maps input features to
latent embeddings z ∈ RN×dz , (2) a latent evolution module P that transforms z to predicted latent
states ẑ, and (3) a decoderD that maps ẑ to the output solution ŷ. For transient systems, the prediction
proceeds autoregressively over the time steps. Our goal is to closely approximate the underlying
mapping G with the parameterized neural network. For training and evaluation, the supervision and
evaluation loss is defined using the relative L2 error:

Ll(y, ŷ) =
∥ y − ŷ ∥2
∥ y + ϵ ∥2

, (1)

where y and ŷ denote the prediction and target data, respectively. ϵ is a small constant introduced
to ensure numerical stability. In practice, we consider the training data consists of a small labeled
set Dl = {(xi

l, y
i
l)}

nl
i=1 and a larger unlabeled set Du = {xi

u}
nu
i=1, with nu ≫ nl. This setup reflects

real-world constraints in scientific computing, where labeled data obtained from simulations is
expensive, while unlabeled inputs are more readily available. The learning objective is to approximate
the underlying solution operator G by utilizing labeled and unlabeled data.

3 Methodology

3.1 Asymmetric Uncertainty Estimation in Teacher and Student Models

To capture different sources of uncertainty, our framework adopts a dual-model design: the teacher
estimates epistemic uncertainty via Monte Carlo (MC) Dropout, while the student models aleatoric
uncertainty through direct variance prediction. While MC Dropout and ensemble methods approx-
imate Bayesian inference, they incur high computational costs [36, 53, 66, 2]. In contrast, direct
prediction methods are efficient but fail to capture model uncertainty, often yielding overconfident
predictions on out-of-distribution data [45]. To balance these trade-offs, we apply MC Dropout in
the teacher to quantify epistemic uncertainty, particularly relevant in simulation-based datasets with
reliable labels but sparse input coverage. At the same time, the student learns from the teacher’s
pseudo labels and estimates aleatoric uncertainty to refine its predictions. This mutual guidance
improves pseudo-label quality and promotes more robust learning.

EMC Dropout for Teacher Model. To further improve efficiency, we introduce Exponential
Moving Average-enhanced MC Dropout (EMC Dropout), which incorporates exponential moving
averages (EMA) into the estimation process. Inspired by Sequential MC Dropout [7], EMC Dropout
incrementally updates the predictive mean and variance using a temporal sliding window, thereby
preserving the Bayesian properties of dropout while avoiding repeated stochastic forward passes.

During the training progress, we set µ̂t as the mean value of prediction at time t, and variance σ̂2
t . At

the initial time (t = 0), we perform a complete MC estimation using M stochastic passes to obtain
the initial predictive mean µ̂0 and variance σ̂2

0 . When get the prediction ŷt at time t, we update the
mean value µ̂t+1 and variance σ̂2

t+1:
µ̂t+1 = αŷt + (1− α)µ̂t,

σ̂2
t+1 = α(ŷt − µ̂t+1)

2 + (1− α)σ̂2
t ,

(2)
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where α ∈ (0, 1) serves as a gating factor that controls the balance between the influence of the
most recent observation and the accumulated historical estimates. A higher value of α places more
emphasis on recent data, while a lower value favors historical stability.

From a Bayesian perspective, dropout-based methods estimate the posterior predictive distribution
by injecting stochasticity into the network’s parameters, typically requiring multiple forward passes
per input. EMC Dropout incorporates the EMA mechanism to reduce this computational overhead
and track the predictive mean and variance over time. Rather than repeatedly sampling the stochastic
model output, EMC Dropout incrementally updates running estimates during training. This strategy
preserves the epistemic uncertainty captured by dropout while offering a more efficient approximation
of Bayesian marginalization. Further analytical details are provided in Appendix B.1.

Theorem 3.1. Asymptotic consistency of EMC Dropout. Let ft(x) denote the prediction of a neu-
ral network with dropout applied at time step t, and µ̂t, σ̂2

t be the predictive mean and variance
maintained over time with the gating factor α. Suppose that ft(x) ∼ p(y|x,wt), where wt ∼ q(w)
represents a stochastic sample from the dropout-induced approximate posterior. Then, under station-
arity and ergodicity assumptions on the sequence {ft(x)}∞t=1, the EMC estimates satisfy:

µ̂t → Eq(w)[f(x;w)], σ̂2
t → Vq(w)[f(x;w)] as t→∞. (3)

Assume µ and σ are the expectation estimation and variance of MC Dropout, we have:

lim sup
t→∞

E[(µ̂t − µ)2] ≤ α

2− α
· Eq(w)

[
(ft(x;w)− µ)2

]
,

lim sup
t→∞

E
[
(σ̂2

t − σ2)2
]
≤ α

2− α
·Varq(w)[(ft(x;w)− µ)2].

(4)

The proof of Theorem 3.1 is provided in Appendix B.2. It establishes that, under a sufficiently mixing
sampling process, the EMA estimates of the predictive mean and variance converge almost surely to
the Monte Carlo estimates of the Bayesian predictive distribution induced by dropout.

Model-Based Uncertainty Estimation for Student Model. To account for the noise and uncertainty
inherent in pseudo labels provided by the teacher model, we train a student model to predict both the
target value and an input-dependent variance. Inspired by uncertainty quantification techniques in
PDEs forward problems[63], we introduce an additional uncertainty decoder to estimate this variance.
Given an input x, the model uses an auxiliary decoder Dσ to produce the corresponding predictive
uncertainty σ̃ ∈ RN×Cs from the latent state z̃σ. Then, we optimize the student model using a L2

relative error based heteroscedastic regression loss based on the pseudo labels:

Lu(y, [ŷ, σ̃]) =
1

Nu

Nu∑
i=1

(
∥yi − ŷi∥2

σ̃2
i · ∥yi + ϵ∥2

+ log σ̃2
i

)
, (5)

where ŷ denotes the prediction of the target label y. The loss function down-weights errors for samples
with higher predicted aleatoric uncertainty, reflecting their lower label reliability [25]. Its formal
derivation is based on maximum likelihood estimation under the assumption of heteroscedastic
observation errors [24], enabling more effective student optimization and providing informative
feedback for the teacher.

3.2 Uncertainty-Informed Feedback for Teacher Model Update

We adopt an uncertainty-informed strategy that replaces standard meta-gradient computation to
enable efficient teacher updates without incurring the high cost of per-sample gradient tracing. While
the standard MPL [47] method relies on categorical pseudo labels and is limited to classification.
it does not generalize well to regression tasks with continuous outputs. Alternatives like Noisy TS
[57] use noisy teacher predictions and scalar feedback but require manually tuned noise and apply
uniform feedback across the input space, leading to spatial inconsistency and limited adaptability.
In contrast, our method introduces structured, point-wise feedback informed by model uncertainty,
enabling coherent and efficient teacher updates in high-dimensional regression settings. Details of the
feedback loss during training are illustrated in Figure 2. The feedback loss produced by our method
on unlabeled data more closely approximates the actual loss, indicating more reliable guidance
than Noisy TS [57], which is a current meta pseudo-labeling approach designed to improve model
performance in ODE-based dynamical system modeling.
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Figure 2: Figure 2. Comparison of feedback loss and true pseudo-label error during training for
UMPL and Noisy TS [57] using AeroGTO [38] as the base forecaster. The rightmost subplot
illustrates the Kendall-τ correlation between feedback loss and true pseudo-label error across 100
unlabeled cases, showing that UMPL’s aleatoric uncertainty-guided feedback more reliably reflects
pseudo-label error.

Uncertainty-Informed Pseudo Label Generation. We design the teacher model to integrate predic-
tive uncertainty into pseudo label generation, thereby enhancing the reliability and informativeness of
the supervisory signals. For simplicity, the following definitions and derivations are provided for a
single prediction step, without incorporating multi-step autoregression. Given the teacher’s variance
σ̂2
t at time t, we can get the pseudo labels:

ŷTκ
u = ŷTu (θT ) + ξ(g) · σ̂t, (6)

where ξ(g) denotes a random field obtained through Gaussian smoothing over the geometry g, which
encourages continuity in the generated pseudo labels. Specifically, the geometric mesh is composed
of points and edges, and the smoothing is performed based on the local connectivity defined by the
mesh structure:

ξ(gi) = sign

 ∑
j∈U(i)

exp

(
−∥gi − gj∥2

2l2

)
· ri

 , ri ∼ N (0, 1), (7)

where U(i) is the geometric neighborhood of the point i, defined by edge connectivity for meshes or
k-nearest neighbors for point clouds. gi, gj are spatial coordinates, l controls the smoothing scale,
and rj ∼ N (0, 1) is sampled noise. The sign εi ∈ {−1,+1} encodes smoothed perturbations with
spatial coherence.

Derivation of the Feedback Gradient.

To optimize the teacher model based on the student’s feedback, the objective is to minimize the
following loss:

minLl(θ
PL
S (θT )),

where θPL
S (θT ) = argmin

θS

Lu(θT , θS),
(8)

where Ll and Lu denote the losses on labeled data and pseudo-labeled data, respectively. The argmin
operation in the above equation poses a challenge for gradient-based optimization, as it requires the
parameter θS to attain its optimal value before the subsequent step can proceed. This inherently
breaks the end-to-end differentiability of the training pipeline. To overcome this issue, we employ a
one-step approximation that allows for tractable and efficient optimization.

θPL
S (θT ) ≈ θS − ηS · ∇θSLu(θT , θS), (9)

Here, the optimization goal becomes:

min
θT
Ll(θS − ηS · ∇θSLu(θT , θS)). (10)

In principle, if the gradient of the objective concerning θT is computable, end-to-end optimization
via gradient descent becomes feasible. Denoting Eq. 10 as LF , the gradient can be derived using the
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REINFORCE rule [60] as follows:

∂LF

∂θT
=

∂

∂θT
Ll

(
yl, S

(
xl;EŷTκ

u ∼T (xu;θT )

[
θS − ηS∇θSLu(ŷ

Tκ
u , S(xu; θS))

]))
=ηS ·

∂Ll(yl, S(xl; θ
′
S))

∂θS
·

(
∂Lu(ŷ

Tκ
u , S(xu; θS)

∂θS

∣∣∣∣
θS=θS

)⊤

· ∂ log p(ŷTκ
u |xu; θT )

∂θT

=ηS ·
(
∇θ′

S
Ll(yl, S(xl; θ

′
S))

⊤ · ∇θSLu(ŷ
Tκ
u , S(xu; θS))

)
· ∇θT p(ŷ

Tκ
u |xu; θT )

≈h · NLL(ŷTκ
u ; θT ),

(11)

where h = Ll(yl, S(xl; θS)) − Ll(yl, S(xl; θ
′
S)) denotes the change in student performance after

training on a pseudo label and NLL := − log p(y|x; θ) is a scaled negative log-likelihood (NLL)
loss. If h ≥ 0, minimizing LF increases the likelihood of similar pseudo labels in future updates.
otherwise, it suppresses them. More details about the feedback loss can be found in Appendices
B.3 and B.4. Combined with the supervised loss LT

l := Ll(yl, T (xl; θT )), the teacher’s update is
performed as follows:

θ′T = θT − ηT · ∇θT · (LT
l + LF ). (12)

Theorem 3.2. Generalization error bound of the student.

Let F denote the hypothesis class of neural surrogate models with fixed architecture and bounded
parameters. With the training set consisting of nl labeled and nu pseudo-labeled samples, for any
δ ∈ (0, 1), with probability at least 1 − δ, the following inequality holds for the student model
S(x′

u; θS) ∈ F where x′
u denotes an unseen input drawn from the underlying data distribution:

E(x,yu) [Ll(yu, S(xu; θS))] ≤ Lsemi(S(θS)) + 2L · R̂nl+nu
(F) + c ·

√
log(1/δ)

2(nl + nu)
+ λp · εrelpseudo,

(13)
where Lsemi denotes the empirical loss computed over both labeled and pseudo-labeled data.
R̂nl+nu

(F) is the empirical Rademacher complexity of the hypothesis class F ; L represents the Lip-
schitz constant of the loss function. and c is a universal constant. The coefficient λp ∈ [0, 1] controls
the relative contribution of the pseudo-labeled samples. εrelpseudo := Ex∼Du

[
Lu(ŷ

Tκ
u , S(xu; θS))

]
denotes the expected error between the pseudo-labels and the student’s predictions on unlabeled
inputs. The proof can be seen in Appendix B.2.

This bound implies that the student model can achieve improved generalization performance when
the reduction in model complexity exceeds the additional error introduced by the pseudo-labels.

3.3 Training Workflow of the UMPL Framework

We propose a unified training framework that optimizes teacher and student models through mutual
feedback. To improve robustness against noisy pseudo-labels, we incorporate Progressive Uncertainty
Filtering (PUF), which leverages EMC Dropout to estimate predictive uncertainty. Based on this, a
binary mask m ∈ {0, 1}N is constructed by selecting the top-k% most uncertain predictions. The
corresponding masked regions (mi = 1) are excluded from the student’s loss computation and the
feedback used to update the teacher. As training progresses and the reliability of pseudo labels
improves, the masking ratio is gradually decreased, enabling the student to learn from a broader range
of samples and provide more informative feedback to the teacher.

After initialization, the training process follows three main steps: (1) Pseudo-label generation:
The teacher model computes the prediction and variance with Eq.2, generating pseudo-labels
( Eq.6). (2) Student training on pseudo labels: Train the student with an unlabeled loss de-
fined on pseudo labels with Eq.5, and estimate the improvement h as the student feedback. (3)
Teacher and student’s update: The teacher is updated using both the supervised loss and the feed-
back loss (Eq. 12), while the student is updated exclusively on labeled data. This strategy, referred to
as Supervised Anchoring (SA), ensures the student remains grounded in reliable supervision, prevent-
ing error accumulation during self-training, especially under domain shifts where pseudo-labels may
be unreliable. The design of the algorithm ensures continued exploration of unseen data space and
mitigates the risk of model collapse. A detailed description of the algorithm is presented in Algorithm
1. More details about training can be found in Appendix C.
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Algorithm 1 UMPL Algorithm

Input: Labeled data: Dl = {(xi
l, y

i
l)}

nl
i=1, unlabelled data: Du = {xi

u}
nu
i=1, teacher and student

neural operator: T (·; θT ), S(·; θS), epoch Nepoch

Output: Trained student: S(·; θ∗S)
for t = 0, 1, 2, · · · , Nepoch − 1 do

1. Sample a batch of labeled data {(xt
l , y

t
l )} and an equal-sized batch of unlabeled data xt

u.
2. Generate pseudo rollouts from the teacher and record the old student’s performance on the

labeled data:
ŷTκ
u = ŷTu (θT ) + ξ(g) · σ̂t,

LSt

l = Ll(y
t
l , S(x

t
l , θ

t
S))

3. Update the student with pseudo loss and record the new student’s performance on the same
labeled data:

θt+1
S = θtS − ηS · ∇θt

S
Lu
S ,

LSt+1

l = Ll(y
t
l , S(x

t
l , θ

t+1
S ))

4. Calculate the feedback loss:

LF = (LSt

l − LSt+1

l ) · NLL(yTκ
u ; θtT )

5. Update the teacher with its labeled loss and the feedback loss and update the student with its
labeled loss:

θt+1
T = θtT − ηT · ∇θt

T
(LT

l + LF ),

θt+1
S = θt+1

S − ηS · ∇θt+1
S
LSt+1

l

end for
return S(·; θNepoch

S )

4 Experiment

4.1 Experimental Settings

Benchmarks. We study datasets from three domains, as summarized below. Partial Differential
Equations. We consider four PDE benchmarks: (i) Lid-driven cavity flow [16], where a constant
top boundary velocity induces circulation. We explore steady and transient settings, using Reynolds
number(Re) and lid velocity (v) as orthogonal parameters for out-of-distribution generalization and
distribution shifts evaluation. (ii) Darcy flow [9], a classical model describing fluid transport in
porous media. (iii) NSM2D [37], the 2D Navier-Stokes equations augmented with a magnetic field
component. (iv) Plasma ICP, where low-resolution simulations with incomplete chemical reaction
mechanisms are used for pretraining, followed by fine-tuning on limited high-resolution data to
assess robustness under distribution shifts. Real-world Data. We employ the Black Sea dataset
[10], which contains real-world ocean temperature measurements over time, to evaluate temporal
out-of-distribution generalization. Large-scale 3D Simulation. We use the Ahmed dataset [34],
where the input is the 3D geometry of a vehicle, and the output is its corresponding aerodynamic
drag coefficient. This benchmark evaluates the model’s ability to generalize aerodynamic predictions
across diverse vehicle shapes.

Baselines. We evaluate our method on four representative surrogate modeling architectures, in-
cluding two point-based models (DeepONet [41] and Transolver [61]) and two mesh-based models
(MeshGraphNet(MGN) [46] and AeroGTO [38]), to assess its performance across different data
representations. We compare UMPL against four baseline pseudo-labeling strategies (more details
see Appendix D): Supervision Only. The model is trained exclusively on labeled data. Pseudo Label
(PL) [31]. The teacher remains fixed, and the student is trained on both labeled data and pseudo
labels generated by the teacher. Mean Teacher [54]. A widely used and stable approach in which the
teacher is updated via EMA of the student’s parameters. Noisy TS [57]. A meta pseudo-labeling
method where the teacher receives feedback from the student and generates pseudo labels with added
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Table 1: We compare the performance of our method against four baselines across four different
models under a labeled data ratio of r = 10% for all tasks. Cyan , Yellow , and Green indicate
the best, second-best, and worst L2 loss values, respectively. \ indicates non-convergence.

Model Method
BENCHMARKS

Darcy Flow Ahmed NSM2d Plasma ICP Stationary Lid Black Sea

w/o OOD w/ OOD In-T Out-T

DeepONet[41]

Supervision Only 7.98e-2 \ 3.07e-1 \ 6.07e-2 1.69e-1 1.45e-1 2.41e-1
Pseudo Label[31] 8.37e-2 \ 2.82e-1 \ 5.65e-2 1.73e-1 1.51e-1 2.35e-1
Mean Teacher[54] 8.36e-2 \ 2.77e-1 \ 5.57e-2 1.77e-1 1.46e-1 2.22e-1
Noisy TS[57] 7.83e-2 \ 2.57e-1 \ 5.38e-2 1.42e-1 1.24e-1 1.67e-1
UMPL(ours) 6.94e-2 \ 2.23e-1 \ 4.57e-2 1.08e-1 9.61e-2 1.43e-1
PROMOTION 11.36% \ 13.22% \ 15.05% 23.94% 22.50% 14.37%

MGN[46]

Supervision Only 8.06e-2 9.11e-2 5.62e-1 \ 3.82e-2 1.02e-1 9.84e-2 1.13e-1
Pseudo Label[31] 7.33e-2 8.76e-2 4.95e-1 \ 2.22e-2 1.13e-1 9.97e-2 1.08e-1
Mean Teacher[54] 7.33e-2 8.32e-2 4.41e-1 \ 1.97e-2 1.07e-1 9.83e-2 1.07e-1
Noisy TS[57] 6.49e-2 6.92e-2 3.85e-1 \ 2.20e-2 9.48e-2 8.51e-2 9.67e-2
UMPL(ours) 5.74e-2 6.34e-2 3.51e-1 \ 1.64e-2 7.91e-2 8.19e-2 8.99e-2
PROMOTION 11.55% 8.38% 8.83% \ 16.75% 16.56% 3.76% 7.03%

Transolver[61]

Supervision Only 6.14e-2 7.69e-2 2.71e-1 1.90e-1 3.69e-2 9.55e-2 9.34e-2 1.12e-1
Pseudo Label[31] 5.24e-2 7.30e-2 2.35e-1 1.85e-1 1.79e-2 1.08e-1 9.16e-2 9.79e-2
Mean Teacher[54] 5.34e-2 7.21e-2 2.21e-1 1.72e-1 2.19e-2 1.31e-1 9.26e-2 9.68e-2
Noisy TS[57] 4.66e-2 5.89e-2 1.79e-1 1.56e-1 1.64e-2 9.53e-2 8.81e-2 9.17e-2
UMPL(ours) 4.37e-2 5.17e-2 1.51e-1 1.41e-1 1.24e-2 7.32e-2 7.74e-2 8.53e-2
PROMOTION 6.22% 12.22% 15.64% 9.61% 24.39% 23.18% 12.14% 6.97%

AeroGTO[38]

Supervision Only 3.82e-2 6.88e-2 1.72e-1 9.30e-2 3.51e-2 9.44e-2 8.95e-2 1.10e-1
Pseudo Label[31] 3.17e-2 5.85e-2 1.51e-1 7.20e-2 8.75e-3 1.17e-1 8.24e-2 1.03e-1
Mean Teacher[54] 3.03e-2 5.86e-2 1.45e-1 6.97e-2 2.17e-2 1.24e-1 9.07e-2 1.02e-1
Noisy TS[57] 2.85e-2 4.71e-2 1.39e-1 6.24e-2 1.09e-2 7.98e-2 7.42e-2 9.38e-2
UMPL(ours) 2.56e-2 3.63e-2 1.21e-1 5.25e-2 6.91e-3 6.33e-2 6.66e-2 8.12e-2
PROMOTION 10.17% 22.92% 12.94% 15.86% 21.02% 20.67% 10.78% 13.43%

random noise. As data augmentation and noise injection may harm model accuracy [23, 57], we do
not employ any augmentation techniques during training.

Tasks. We evaluate UMPL under three regimes with a unified protocol. Limited-label setting. On
Ahmed, Darcy Flow, and NSM2D, we vary the labeled ratio r∈{10%, 20%, 30%}. For each r, a
stratified labeled subset is fixed and the remaining training samples are treated as unlabeled. The
test split is held fixed across r to ensure comparability. Out-of-distribution generalization. On the
stationary Lid dataset, training and test sets are drawn from disjoint parameter regions to probe out-of-
distribution parameter space. On the Black Sea dataset, models are trained on earlier, contiguous time
windows and evaluated on non-overlapping future windows to probe out-of-distribution temporal
space. Distribution shifts. We evaluate domain adaptation on the time-dependent lid dataset via cross-
Reynolds-number transfer (Re = 500←→ 5000) and on the Plasma ICP dataset by adapting from
low-fidelity simulations to high-fidelity measurements. Results are averaged over five independent
runs with different random seeds. Details regarding the datasets, models, and experimental settings
can be found in Appendix E.

Table 2: Evaluation on four models across datasets under label ratios
r = 10%, 20%, 30%.

Model Black Sea Time-dependent Lid2d
10% 20% 30% 10% 20% 30%

DeepONet 1.93e-1 1.16e-1 9.95e-2 3.34e-1 2.39e-1 2.16e-1
DeepONet+UMPL 1.19e-1 8.33e-2 8.09e-2 1.90e-1 1.59e-1 1.38e-1

MGN 1.05e-1 9.28e-2 7.12e-2 3.00e-1 1.64e-1 8.97e-2
MGN+UMPL 8.99e-2 8.05e-2 5.56e-2 2.65e-1 9.60e-2 4.65e-2

Transolver 1.02e-1 7.78e-2 6.28e-2 2.15e-1 9.53e-2 6.27e-2
Transolver+MPL 8.94e-2 6.54e-2 5.06e-2 2.04e-1 7.85e-2 5.17e-2

AeroGTO 1.00e-1 7.27e-2 5.98e-2 7.24e-2 3.54e-2 1.93e-2
AeroGTO+MPL 7.69e-2 5.88e-2 4.57e-2 4.63e-2 1.85e-2 1.06e-2

Table 3: Ablation results of dif-
ferent combinations of SA, PUF,
and Feedback modules.

SA PUF Feedback L2 Error

× × × 1.06e-1
✓ × × 8.70e-1
× × ✓ 8.46e-2
✓ × ✓ 6.72e-2
× ✓ ✓ 8.18e-2
✓ ✓ ✓ 5.93e-2
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Figure 3: (a) Correlation between predicted drag coefficient Cd and uncertainty from UMPL and the
fully supervised model, compared to ground truth on the Ahmed test set (51 unseen geometries). (b)
L2 loss over the whole parameter domain on the Stationary Lid dataset. •, ∗, and ·, denote labeled,
unlabeled, and test points, respectively. The red dashed boundary marks the in-distribution region.
outside areas represent the out-of-distribution region. (c-e) Visualization results are presented across
different datasets, with transient cases shown at the final time step.

4.2 Main Results

Performance Comparison. Table 1 presents the performance of UMPL across three representative
tasks under limited-label conditions. On steady-state datasets (Darcy Flow, Ahmed Body) and
the transient dataset (NSM2d), UMPL consistently outperforms all baselines, yielding an average
improvement of 12.13% over the second-best approach. In out-of-distribution scenarios (Stationary
Lid, Black Sea), UMPL achieves the lowest L2 errors both within and beyond the training distribution,
surpassing the second-best method by 20.19% and 11.37%, respectively. Likewise, distribution shift
benchmarks (Time-dependent Lid2d and Plasma ICP) demonstrate superior performance. As shown
in Table 2, UMPL consistently improves accuracy across varying label ratios, with particularly notable
gains under the most challenging label distribution setting. These results collectively highlight the
method’s strong generalization capability and data efficiency.

Temporal and Spatial Generalization. UMPL consistently outperforms all baselines across diverse
tasks, demonstrating strong generalization capabilities in both temporal and parametric domains.
To further illustrate this, we present detailed visualizations of the Stationary Lid dataset. As shown
in Figure 3(b), UMPL achieves lower L2 errors than the previous best-performing method, Noisy
TS, particularly in out-of-distribution regions. Moreover, UMPL maintains lower testing loss and
better training stability compared to the PL method, which exhibits early-stage overfitting. The
corresponding learning curves and detailed comparisons are provided in Appendix F.

Visualization and Analysis. Figure 3(a) illustrates the performance gains of UMPL over the
Supervised Only baseline on the Ahmed Body dataset. Our method not only achieves more accurate
predictions, but also produces better-calibrated uncertainty estimates. In contrast, the Supervised
Only model yields overconfident and homogeneous uncertainty, failing to reflect the true variability
and uncertainty in the data. Figure 3(b) presents the error distribution on the test set, showing that
UMPL produces tighter and more favorable error profiles compared to existing methods. Figure 3(c-e)
further compares UMPL with baselines across additional datasets, consistently demonstrating its
advantage in both prediction accuracy and uncertainty calibration. Figure 4(a) shows performance on
the Black Sea dataset, where UMPL achieves lower prediction error and provides well-structured
uncertainty estimates. Figure 4(b) presents a temporal rollout on the NSM2d dataset, highlighting
UMPL’s ability to capture complex system dynamics with lower error and more robust uncertainty
estimation compared to baseline approaches. Together, these results demonstrate that UMPL offers
stronger generalization under both distribution shifts and out-of-distribution scenarios. Moreover, the
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Figure 4: Visualization results across multiple methods and models are presented, where all temporal
predictions are visualized at the final time step. The results show that the UMPL framework
significantly reduces prediction error and provides more reliable uncertainty estimates.

student model trained under our uncertainty-informed meta pseudo-labeling framework consistently
provides reliable and interpretable uncertainty estimates across diverse tasks.

4.3 Abation Studies

We perform ablation studies on the Stationary Lid dataset to investigate the impact of each component
within the UMPL framework. The experiments reveal that removing either the uncertainty-based
pseudo-label filtering (PUF) or the supervised alignment (SA) module leads to a clear degradation in
model performance, while eliminating both results in the most significant decline. Notably, using only
the supervised component reduces the method to conventional pseudo-labeling and fails to match the
performance of the full framework. These observations underscore the complementary roles of PUF
and SA, demonstrating that both are essential for achieving robust and accurate predictions. Further
analysis on hyperparameter sensitivity is included in Appendix F.5.

5 Discussion and limitations

Limitations. While the proposed method consistently improves performance, it still exhibits several
limitations. It assumes that training and testing data are identically distributed (i.i.d.), causing
performance to degrade under significant distribution shifts, and it struggles to adapt to highly
dynamic and complex environments. Furthermore, the approach introduces computational and
storage overhead due to the required EMC Dropout in the teacher model. Its loss function also
necessitates aligned output shapes, which restricts its applicability to scenarios involving non-uniform
or adaptive meshes. Future work should focus on improving computational efficiency and better
leveraging meta pseudo-labels for more complex applications, like adaptive 3D flow field modeling.

Conclusion. This paper tackles the challenge of the surrogate model under out-of-distribution
generation and distribution shift scenarios with limited labeled data. We propose UMPL, a semi-
supervised framework that leverages uncertainty to refine pseudo-labeling: the teacher estimates
epistemic uncertainty while the student captures aleatoric uncertainty. These signals guide learning
from confident pseudo labels and enable feedback via labeled data, allowing the teacher to reinforce
reliable predictions and suppress errors. Experiments show that UMPL reduces error in uncertain
regions and enhances generalization. Future work includes extending UMPL to tasks like 3D flow
prediction.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made clear claims about contributions and scopes in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have the seperated limitation section in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide detailed theoretical proofs in the main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of our model and training strategy in the paper for
reproduction.

Guidelines:

17



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We offer the implementation code to reproduce our work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we have introduced experiment settings and details, and even add more details
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report specific error bars for the following reasons: (a) In fluid
dynamics modeling, using a fixed random seed shows consistent performance, and the
performance difference with different seeds is small.
(b) Related work in this field does not report error bars.
(c) To ensure fairness, we fix all random seeds and conduct experiments on the same
machine.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have discussed the information about computer resources.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The UMPL method not only makes significant contributions to academic
research but also shows broad potential in practical applications. It helps address distribution
changes in complex PDEs systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or model that has high risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package and dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation with our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Table 4: Table of notations.
Notation Meaning

Problem Formulation
Ω spatial domain for PDEs
G the mapping between input space and solution space
A the input function space
S the solution function space
x = (g, a, ς) the input function for neural networks
g ∈ RN×Cg the input geometry spatial coordinates
a ∈ RN×Ca the physical quantities on the input geometry
ς the coefficients, such as viscosity
y ∈ RN×Cs the corresponding solution
E ,P,D the encoder, preocessor and decoder for neural operators
z ∈ RN×dz the latent states
ŷ, ẑ predicted latent states and corresponding output solution
Dl = {(xi

l, y
i
l)}

nl
i=1 Labelled data

Du = {xi
u}

nu
i=1 unlabelled data

Ui the geometric neighborhood of the point i

Notations in UMPL Training
Ll(y, ŷ) the relative L2 error for labelled data
Lu(y, [ŷ, σ̃]) the heteroscedastic regression loss for pseudo labels
LF the feedback loss for the teacher
µ̂t, σ̂t the EMC estimation at time t
µt, σt the expectation estimation and variance of MC Dropout at time t
σ̃ the uncertainty estimation from the model
ξ(g) a random field obtained through Gaussian smoothing over g
ft(x) the prediction of the model at time t
wt ∼ q(w) a sample from the dropout-induced posterior at time t
θS , θT the parameters for the teacher and student
− log p(y|x; θ) the scaled negative log-likelihood (NLL) loss
h improvement for student from pseudo-label training
α the gating factor of forgetting in EMC Dropout
ri sampled Gaussian noise at point i
l the smoothing scale factor
m the binary mask for the progressive uncertainty filtering
k the masking ratio

Notations in Theoretical Analysis

R̂nl+nu
(F) the empirical Rademacher complexity of the hypothesis class F

λp the weight of the pseudo-labeled component
λd the weight decay coefficient
τ expected model precision
p dropout rate
εrelpseudo the expected relative error of the pseudo-labels

Methodology
PL pseudo labels
UMPL uncertainty-informed meta pseudo labels
PUF progressive uncertainty filtering
SA supervised anchoring
EMA Exponential Moving Average
EMC MC Dropout with EMA
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In this appendix, we complement the main paper with additional theory, implementation details, and
extended experiments. Appendix A surveys related work and situates our contributions. Appendix
B provides supplementary theory, including a Bayesian interpretation of MC Dropout, proofs of
Theorems 3.1 and 3.2, gradient derivations for the teacher update, and an analysis of feedback-
gradient bottlenecks under a deterministic teacher. Appendix C reports training configurations
and optimization details, while Appendix D describes the compared approaches. Appendix E
details datasets, model architectures, and experimental settings. Appendix F presents extended
evaluations—additional comparisons, computational cost analysis, robustness assessments, and
ablations—along with sensitivity studies on uncertainty perturbations, PUF thresholds, feedback
strength, and other hyperparameters to elucidate model behavior. Finally, Appendix G discusses
broader impact.

A Related works

Neural Operator for surrogate modeling. Neural operator-based methods, such as Deep Operator
Networks (DeepONet) [41], Fourier Neural Operators (FNO) [33], and MeshGraphNet (MGN) [46],
have shown promise in learning mappings between infinite-dimensional function spaces, providing
end-to-end frameworks for modeling parametric partial differential equations (PDEs). Transformer-
based architectures, including Graph Neural Operator Transformers (GNOT) [17], Transolver [61],
and AeroGTO [38], further push the boundaries of dynamic modeling by effectively handling large-
scale datasets and capturing complex spatiotemporal dependencies. These models have demonstrated
strong generalization capabilities and offer a scalable, data-driven approach to surrogate modeling
[27].

Semi-supervised learning for Regression. While SSL has seen significant success in image-
related tasks, such as classification and segmentation[51, 67, 58], its use in regression problems
remains relatively underexplored [28]. Methods like SSDKL [22] utilize pseudo-labeling along with
uncertainty minimization. Additionally, ensemble-based consistency strategies have been proposed
to improve regression performance [12]. Other efforts have focused on self-supervised learning
methods to learn helpful information from heterogeneous sources [44, 50] or integrating pseudo
labels to enhance the accuracy of physics-informed neural networks (PINNs) when solving ordinary
differential equations (ODEs) [18, 43]. Noteworthy examples include MPLR [26] and Noisy TS [57],
which extend the meta pseudo label framework [47] to handle tabular data and ODE-based regression.
However, these approaches often face challenges in generalizing to high-dimensional PDE systems
due to the increased complexity of solutions [42]. This indicates an urgent need for more scalable
SSL frameworks designed explicitly for PDE-driven problems.

Uncertainty Estimation. Uncertainty estimation is critical in deep learning tasks that demand
reliable generalization and safety-aware decision [1, 15]. Uncertainty can be broadly categorized
into epistemic uncertainty, arising from limited data or model capacity, and aleatoric uncertainty,
caused by inherent noise in observations [21]. Bayesian neural networks (BNNs) [6] provide a
principled way to model both types [25], but exact inference is often intractable due to computational
challenges. Practical approximations like the Monte Carlo (MC) Dropout enable efficient estimation
of epistemic uncertainty by sampling stochastic subnetworks at test time [14]. At the same time,
ensemble methods aggregate predictions from multiple models to improve robustness and calibration
[30, 49, 12]. Recent studies propose latent-space methods that evolve compact representations of
system states and their associated uncertainties [63], thereby improving uncertainty quantification
through more expressive and structured representation learning.

B Supplementary Theoretical Analysis

B.1 Bayesian Interpretation of MC Dropout

Given a training dataset Dl, the goal of Bayesian inference is to compute the posterior distribution
over neural network weights p(w | Dl), which captures epistemic uncertainty about the model
parameters. For an evaluation input xe ∈ De, the predictive distribution of the model output ŷe is
given by marginalizing over this posterior:

p(ŷe | xe,De) =

∫
p(ŷe | xe, w) · p(w | De) dw (14)
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where p(ŷe | xe, w) denotes the model output (likelihood) under fixed weights w, and p(w | De) is
the posterior distribution over weights. Since this integral is analytically intractable in deep neural
networks, MC Dropout is employed as an efficient approximation method. MC Dropout interprets
dropout applied during both training and inference as a variational approximation. It defines a
variational distribution q(w) over the weights by randomly zeroing out units with a Bernoulli mask.
Formally, for each weight matrix Wi, we define:

Wi = Pi · diag(zi), zi,j ∼ Bernoulli(pi) (15)

where Pi are the learned variational parameters and zi are dropout masks. This results in a mixture
distribution over sub-networks, where each sample corresponds to a different realization of the active
units. Under this approximation, the predictive distribution is computed as:

p(ŷe | xe) ≈
∫

p(ŷe | xe, w) · q(w) dw ≈
1

T

T∑
t=1

p(ŷe | xe, wt), wt ∼ q(w) (16)

To quantify predictive uncertainty, we estimate the predictive variance by computing the sample
variance of the model outputs across T stochastic forward passes, along with the contribution from
the assumed model noise. Let ŷ(t)e denote the model output at the t-th sample. Then the predictive
variance is estimated as:

Var(ŷe | xe) ≈ τ−1I +
1

T

T∑
t=1

ŷ(t)e ŷ(t)⊤e −

(
1

T

T∑
t=1

ŷ(t)e

)(
1

T

T∑
t=1

ŷ(t)e

)⊤

(17)

where the first term τ−1I accounts for the uncertainty under a Gaussian likelihood assumption
with model precision τ , and the second term corresponds to the epistemic uncertainty due to model
parameters. The overall predictive variance thus combines both sources of uncertainty. The model
precision τ can be derived from the variational framework as a function of weight decay λd, dropout
rate p, prior length-scale l, and dataset size N , as follows:

τ =
pl2

2Nλd
(18)

This provides a principled way to interpret standard dropout training as approximate Bayesian
inference, enabling deep models to produce not only predictions but also reliable uncertainty estimates
with minimal computational overhead.

B.2 Proof of Theorem 3.1 and Theorem 3.2

Theorem3.1. Assume {ft}∞t=1 satisfies ft = f(x;ωt), where ωt ∼ q(ω) is i.i.d. and:

ft ∈ [a, b]⇒|ft| ≤M

µ :=E[ft]
(19)

We define the exponential moving average estimate as:

µt+1 = αft + (1− α)µt, µ1 = f1 (20)

Then for any time t, the EMA estimation satisfies the following mean square error bounds:

E[(µt − µ)2] ≤ α

2− α
· Var(f) (21)

Proof: For et = µt − µ, we have:

et+1 = (1− α)et + α(ft − µ) (22)

Square and find the expectation:

E[e2t+1] = (1− α)2E[e2t ] + α2E[(ft − µ)2] (23)
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and E[(ft − µ)2] = Var(f) we have:

E[e2t+1] ≤ (1− α)2E[e2t ] + α2Var(f) (24)

This is a non-homogeneous linear recurrence relation with constant term.

We set xt = E[e2t ], a = (1− α)2, b = α2 · Var(f), then we have:

xt+1 ≤ axt + b (25)

Expand the first few items:

x1 = Var(f)
x2 ≤ ax1 + b

x3 ≤ ax2 + b ≤ a(ax1 + b) + b = a2x1 + ab+ b

x4 ≤ a3x1 + a2b+ ab+ b

...

xt ≤ at−1x1 + b(1 + a+ a2 + · · ·+ at−2)

= at−1x1 + b · 1− at−1

1− a

(26)

When t→∞, a = (1− α)2 < 1 we have:

lim
t→∞

xt ≤
b

1− a
=

α2 · Var(f)
1− (1− α)2

(27)

Therefore we have:

lim
t→∞

E[e2t ] ≤
α2

2α− α2
· Var(f) =

α

2− α
· Var(f) (28)

The upper bound of its solution can be proved by recurrence inequality as follows:

lim sup
t→∞

E[e2t ] ≤
α

2− α
· Var(f) (29)

which we complete the proof.

Beyond the convergence of the predictive mean, we further analyze the consistency of the variance
estimator in EMC Dropout. We consider the variance estimate σ̂2

t updated recursively via the EMA
formula:

σ̂2
t+1 = α(ft − µ̂t+1)

2 + (1− α)σ̂2
t (30)

where ft denotes the stochastic prediction at time t with dropout, and µ̂t+1 is the EMA mean
estimator. Let µ = E[ft] and σ2 = V[ft] denote the true predictive mean and variance under the
dropout-induced approximate posterior q(w), and define the squared deviation vt = (ft − µ)2. The
goal is to quantify the asymptotic error of σ̂2

t with respect to σ2. We analyze the mean squared error
E[(σ̂2

t − σ2)2] under the assumption that ft is stationary and ergodic. Following a second-order error
decomposition and bounding cross-terms involving the EMA mean error ϵt = µ̂t − µ, we derive the
following bound:

lim sup
t→∞

E
[
(σ̂2

t − σ2)2
]
≤ α

2− α
·Var[(ft − µ)2] (31)

This result mirrors the convergence behavior of the EMA mean estimator and confirms that the
variance estimate σ̂2

t is asymptotically consistent. The bound depends on the variance of the squared
deviation, which reflects the kurtosis of the predictive distribution. As in the case of µ̂t, the smoothing
factor α ∈ (0, 1) governs the bias-variance trade-off: smaller values yield more stable estimates with
slower adaptation, while larger values allow faster response at the cost of higher variance. Equation 31
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thus establishes a theoretical guarantee for the reliability of EMC Dropout in approximating the
uncertainty captured by standard Monte Carlo dropout, without incurring the cost of repeated forward
passes.

Theorem 3.2. Generalization Bound under Relative L2 Loss in Semi-Supervised Regression

LetF be a hypothesis class of neural surrogate models with fixed architecture and bounded parameters.
Given a training set consisting of nl labeled samples and nu pseudo-labeled samples, then for any
δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds for any f(θ) ∈ F , including
S(·; θS):

E(x,yu) [Ll(yu, f(xu; θ))] ≤ Lsemi(f(θ))+2L ·R̂nl+nu(F)+c ·

√
log(1/δ)

2(nl + nu)
+λp ·εrelpseudo (32)

where yu ∈ Du is the unlabeled data. Lsemi(f(θ)) is the empirical loss on both labeled and pseudo-
labeled data for student model. R̂nl+nu

(F) is the empirical Rademacher complexity of F . L = 2M
y2
min

is the Lipschitz constant of the loss function. c is a universal constant. λp ∈ [0, 1] is the weight of the
pseudo-labeled component. εrelpseudo := Ex∼Du

[Ll(yu, f(xu; θ))] is the expected relative error of the
pseudo-labels.

Proof: LetL(f(θ)) := E(x,yu) [Ll(yu, f(xu; θ))] denote the expected loss under the data distribution.

and let L̂(f(θ)) := 1
nl+nu

(∑nl

i=1 Ll(yi, f(xi; θ)) +
∑nu

j=1 Lu(ŷu, f(xj , θ))
)

denote the empirical
loss over the nl labeled and nu pseudo-labeled examples. Then we assume the loss function Ll = is
L-Lipschitz with respect to f(x; θ), where L = 2M

y2
min

for |f(x)− y| ≤M .

From the standard Rademacher generalization bound, we have that with probability at least 1− δ:

L(f(θ)) ≤ L̂(f(θ)) + 2L · R̂nl+nu
(F) + c ·

√
log(1/δ)

2(nl + nu)
(33)

Now, the pseudo-labeled loss in L̂(f(θ)) is computed based on ỹj rather than true labels. To account
for the potential error introduced by the pseudo-labels, we introduce an additional term, which
quantifies the expected relative error between pseudo-labels and the ground truth.

Thus, we obtain Eq.32.

B.3 Details about gradient for the teacher’s update

The traditional optimization process using pseudo tags can be described as follows:

θPL
S = argmin

θS

Exu
[L(T (xu; θT ), S(xu; θS))]︸ ︷︷ ︸

:=Lu(θT ,θS)

(34)

Here, T and S denote the teacher and student models, respectively; θ represents the model parameters;
L denotes the unlabeled loss function; and θPL

S refers to the optimal parameters of the student model
obtained via the pseudo-labeling strategy. This process is performed on unlabeled data, as traditional
semi-supervised learning frameworks typically combine the supervised loss on labeled data with a
consistency loss on unlabeled data.

To update the teacher model, we leverage the student model’s performance on labeled data, which can
be mathematically quantified as the loss function evaluated on the labeled samples. This relationship
can be expressed as follows:

Exl,sl

[
L
(
yl, S

(
xl; θ

PL
S

))]
:= Ll

(
θPL
S

)
(35)

This can be interpreted as a functional form where θT serves as the input variable and θS as the
optimization parameter. Accordingly, the optimal student parameters can be denoted as θPL

S (θT ).
The loss in Eq.35 above can be defined as Ll(θ

PL
S (θT )).
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In this manner, the meta-modeling process is accomplished: the parameters of one model are regarded
as inputs to a functional expression, whereas the parameters of another model act as optimization
variables. By minimizing a loss function defined over these variables, the optimal solution can be
effectively derived.

Accordingly, updating the teacher model within this framework entails minimizing the loss function
specified in Eq.35.

minLl(θ
PL
S (θT )),

where θPL
S (θT ) = argmin

θS

Lu(θT , θS)
(36)

The argmin operation above is not amenable to gradient-based optimization, as it requires waiting
until θS converges to its optimum before proceeding to the next step. This dependency clearly disrupts
end-to-end training. To address this issue, this paper proposes a one-step approximation:

θPL
S (θT ) ≈ θS − ηS · ∇θSLu(θT , θS) (37)

Here, the goal becomes:

min
θT
Ll(θS − ηS · ∇θSL(θT , θS)) (38)

Therefore, if the gradient of θT can be computed for this expression, it becomes feasible to apply
gradient descent for end-to-end optimization. Let the above equation be denoted as LF ; the detailed
solution process is as follows:

∂LF

∂θT
=

∂

∂θT
Ll

(
yl, S

(
xl;EŷTκ

u ∼T (xu;θT )

[
θS − ηS∇θSLu(ŷ

Tκ
u , S(xu; θS))

]))
(39)

For convenience, we denote the updated parameters of the student model as θ̄′S :

θ̄′S = EŷTκ
u ∼T (xu;θT )

[
θS − ηS∇θSLu

(
ŷTκ
u , S(xu; θS)

)]
(40)

Then Eq.39 can thus be rewritten as:

∂LF

∂θT︸ ︷︷ ︸
1×|T |

=
∂

∂θS
Ll (yl, S(xl; θS))

∣∣∣∣
θS=θ̄′

S︸ ︷︷ ︸
1×|S|

· ∂θ̄′S
∂θT︸︷︷︸

|S|×|T |

(41)

Here, we denote the shape of θT as |T | × 1 and the shape of θS as |S| × 1, respectively. The left-hand
side of the above equation can be efficiently addressed using gradient descent, as the gradient can be
approximated by computing the difference between the student model parameters before and after
updating on the labeled dataset.

θ∗S = θS − ηS∇θSLl(yl, S(xl; θS)) (42)

Therefore, the gradient can be readily approximated by computing the difference between the model
parameters θ before and after the update.

ηS∇θSLl(yl, S(xl; θS)) = θS − θ∗S (43)

So now we focus on the right side of the equation:
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∂θ̄′S
∂θT︸︷︷︸

|S|×|T |

=
∂

∂θT
EŷTκ

u ∼T (xu;θT )

[
θS − ηS∇θSLu(ŷ

Tκ
u , S(xu; θS))

]

=
∂

∂θT
EŷTκ

u ∼T (xu;θT )

θS − ηS ·

(
∂Lu(ŷ

Tκ
u , S(xu; θS))

∂θS

∣∣∣∣
θS=θS

)⊤


(44)

we denote gS′(ŷTκ
u ) :=

∂Lu(ŷ
Tκ
u ,S(xu;θS))
∂θS

∣∣∣
θS=θS

and gT :=
∂θ̄′

S

∂θT
. gS′ is easily computable via

gradient descent, and the equation above becomes:

∂θ̄′S
∂θT

= −ηS ·
∂

∂θT
EŷTκ

u ∼T (xu;θT )

[
gS′(ŷTκ

u )
]

(45)

It is important to note that gS itself does not depend on θT ; rather, the dependency arises from the
fact that ŷu is generated through a pseudo-labeling mechanism that is parameterized by the teacher
model. This process involves the application of the Leibniz integral rule:

∂

∂θT
EŷTκ

u ∼T (xu;θT )

[
gS′(ŷTκ

u )
]
=

∂

∂θT

∑
ŷu

p(ŷu | xu; θT )gS′(ŷTκ
u )

=
∑
ŷu

∂

∂θT
p(ŷu | xu; θT )gS′(ŷTκ

u )

=
∑
ŷu

p(ŷu | xu; θT )
∂

∂θT
log p(ŷu | xu; θT )gS′(ŷTκ

u )

= EŷTκ
u ∼T (xu;θT )

[
gS′(ŷTκ

u )
∂

∂θT
log p(ŷTκ

u | xu; θT )

]
(46)

At this point, the partial gradient can be computed using the NLL loss term. For clarity, we now
organize the expressions on the left- and right-hand sides of the equation as follows:

∂LF

∂θT
=

∂Ll

(
yl, S

(
xl; θ̄

′
S

))
∂θS

∣∣∣∣∣
θS=θ̄′

S︸ ︷︷ ︸
1×|S|

· ∂θ̄′S
∂θT︸︷︷︸

|S|×|T |

= ηS ·
∂Ll

(
yl, S

(
xl; θ̄

′
S

))
∂θS

∣∣∣∣∣
θS=θ̄′

S︸ ︷︷ ︸
1×|S|

·EŷTκ
u ∼T (xu;θT )

gS′(ŷTκ
u )︸ ︷︷ ︸

|S|×1

· ∂

∂θT
log p(ŷTκ

u | xu; θT )︸ ︷︷ ︸
1×|T |


(47)

The expectation term in the above equation can only be approximated through sampling, which is
typically performed over mini-batches. Taking a single sample from the batch as an example, its
corresponding gradient is given by:
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∂LF

∂θT
=ηS ·

∂Ll(yl, S(xl; θ
′
S))

∂θS
·

(
∂Lu(ŷ

Tκ
u , S(xu; θS)

∂θS

∣∣∣∣
θS=θS

)⊤

· ∂ log p(ŷTκ
u |xu; θT )

∂θT

= ηS ·
(
∇θ′

S
Ll(yl, S(xl; θ

′
S))

⊤ · ∇θSLu(ŷ
Tκ
u , S(xu; θS))

)︸ ︷︷ ︸
A scalar:=h

·∇θT p(ŷ
Tκ
u |xu; θT )

≈h · NLL(ŷTκ
u ; θT )

(48)

which we complete the proof.

Then we show the Taylor estimation for h:

As we know θ′S = θS − η. Let η = ηS∇θSLu(ŷ
Tκ
u , S(xu; θS)), according to the Taylor’s equation

we get:

L(θ′S) = L(θS − η) ≈ L(θS)− ηS∇θSL(θS)

= L(θS)− ηS∇θSLu(ŷ
Tκ
u , S(xu; θS))∇θSL(θS)

= L(θS)− ηS∇θSLu(ŷ
Tκ
u , S(xu; θS))∇θSLl(sl, S(xl))

= L(θS)− h

(49)

Therefore, we get the estimation of h:

h = L(θS)− L(θ′S) (50)

B.4 Computational Bottlenecks in Feedback Gradient Computation with a Deterministic
Teacher

In the absence of the proposed teacher, the gradient of the feedback loss can be computed directly.
However, this leads to substantial computational overhead and proves inefficient under the widely
adopted reverse-mode automatic differentiation framework.

Specifically, based on the problem formulation provided in Section 3.2, we derive the explicit
expression for directly optimizing the feedback loss:

∂LF

∂θT︸ ︷︷ ︸
1×|T |

=
∂

∂θS
Ll (yl, S(xl; θS))

∣∣∣∣
θS=θ̄′

S︸ ︷︷ ︸
1×|S|

· ∂θ̄′S
∂θT︸︷︷︸

|S|×|T |

= −ηS ·
∂Ll

∂θ′S︸︷︷︸
1×|S|

· ∂

∂θT

[
∂Lu

∂θS

]⊤
︸ ︷︷ ︸

|S|×|T |

(51)

We can further expand the unlabeled loss in Eq.51. For brevity, the subscript u is omitted throughout
the following derivation:

Lu(ŷ
Tκ , [ŷS , σ̂S ]) =

1

Nij

∑
i

∑
j

(
∥ŝTκ

ij − ŷSij∥2
(σ̂S

ij)
2 · ∥yTκ

ij + κ∥2
+ log(σ̂S

ij)
2

)
∂Lu

∂θS
=

1

Nij

∑
i

∑
j

[
∂S(xij ; θS)

∂θS

] (52)

Combine Eq.51 and 52, we can get:
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∂LF

∂θT︸ ︷︷ ︸
1×|T |

= −ηS ·
∂Ll

∂θ′S︸︷︷︸
1×|S|

·
∑
i

∑
j

[
∂S(xij ; θS)

∂θS

]⊤
︸ ︷︷ ︸

|S|×1

· ∂T (xij ; θT )

∂θT︸ ︷︷ ︸
1×|T |

(53)

The direct computation of Eq.53 requires evaluating gradients at each element in the rollout, leading
to prohibitive computational and memory costs. Given a batch of size B, with T time steps, N
points, state dimensionality C, and parameter dimensionality S, the memory complexity scales as
O(B×T ×N×C×S×T ), due to the need to preserve the entire computational graph. To overcome
these limitations, Section 3.2 introduces UMPL to get interpretable approximation to the feedback
gradient. In particular, we adopt the REINFORCE rule [60] to estimate the feedback gradient, which
removes the backpropagation path from the student to the teacher and substantially reduces memory
and computation, at the expense of longer runtime from repeated forward and backward passes.

C Training Details

Prior to the formal UMPL training process, we perform a pretraining stage without dropout, yielding
an initial model with parameters denoted as θ0. The teacher is initialized from the warm-up weights
(θT = θwarm), whereas the student is randomly initialized (θS = θrand) for the UMPL stage. To
enhance training stability and robustness, we construct a memory bank for the unlabeled data Du,
storing the mean {µi

0}
nu
i=1 and variance {σi

0}
nu
i=1 obtained from the teacher’s initial stochastic forward

passes. This memory bank enables principled estimation of epistemic uncertainty in the teacher
network by leveraging the EMC framework, thereby facilitating a more robust distinction between
intrinsic model uncertainty and stochastic noise arising during training.

Furthermore, we adopt a Progressive Uncertainty Filtering (PUF) strategy to suppress unreliable
pseudo labels. Specifically, at each training step, we compute a binary mask m ∈ {0, 1}N based on
the predictive variance estimated via EMC Dropout. The top-k% most uncertain predictions (mi = 1)
are excluded from both the student’s loss computation and the feedback used to update the teacher.
As training progresses and pseudo-label quality improves, the masking ratio gradually decreases,
allowing the student to incorporate a broader range of samples and provide more informative feedback
to guide the teacher’s update.

The unified training process consists of the following steps:

1. Get predictions from the teacher:

ŷuT (θT ) = T (xu; θT ) (54)

2. Update predicted uncertainty with Eqn. 30, and get uncertainty σ2
t .

3. Generate pseudo labels:

ŷTκ
u = ŷTu (θT ) + ξ(g) · σ̂t, (55)

4. Calculate the error of the student model on Dl and Train the student with unlabeled loss (Lu
S):

LS
l = Ll(yl, S(xl, θS))

LS
u = Lu(m · ŷTκ

u ,m · S(xu, θS))

θ′S = θS − ηS · ∇θSLS
u

(56)

5. Calculate the error of the updated student model on Dl and feedback loss with :

LS′

l =L2(yl, S
′(xl, θS′))

Ll
F :=Ll

S − Ll
S′

(57)
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6. Train the teacher with both labeled loss Ll
T and the feed back loss Ll

F :

Ll
T =Ll(yl, T (xl, θT ))

θ′T =θT − ηT · ∇θT · (Ll
T + Ll

F )
(58)

To ensure stability throughout training, we apply a Supervised Anchoring (SA) strategy where the
student is consistently trained on labeled data after the last step, regardless of pseudo-label reliability.
This mitigates error propagation during self-training and is especially crucial under distribution shifts
where pseudo-labels may be misleading. Beyond SA, our algorithm minimizes model-collapse risk by
coupling divergent teacher-student initialization and independently sampled labeled anchors with an
uncertainty-guided feedback loop (student’s aleatoric signals) and uncertainty-aware pseudo-labeling
(teacher’s epistemic perturbation with progressive uncertainty filtering), curbing error reinforcement
and stabilizing convergence.

D Details of Compared Approaches

Pseudo Labeling(PL)[31]. In this baseline, the teacher model is fixed throughout training and is
used to generate pseudo labels for the unlabeled data. The student model is then trained jointly
on the labeled data and the pseudo-labeled unlabeled data with a supervised loss. While this
method leverages additional information from the unlabeled set, our experiments reveal that it can
underperform compared to fully supervised training. This performance degradation is primarily
attributed to the teacher’s inaccurate or noisy predictions on the unlabeled samples, which may
introduce erroneous learning signals and ultimately misguide the student model.

Mean Teacher[54]. The Mean Teacher framework improves upon standard pseudo-labeling by
dynamically updating the teacher model as an exponential moving average (EMA) of the student’s
parameters during training. At each iteration, the teacher generates pseudo labels for the unlabeled
data. At the same time, the student is trained to minimize both the supervised loss of labeled data
and the consistency loss concerning the teacher’s predictions. Despite its stability advantages, Mean
Teacher has a similar drawback to standard pseudo-labeling. If the teacher’s predictions on unlabeled
data are inaccurate, they can propagate noise and mislead the student. In our experiments, we set the
EMA decay coefficient to 0.99, which balances temporal smoothness and adaptation.

Noisy Teacher-Student (TS)[57]. This method extends the standard teacher-student framework
by introducing stochastic perturbations to the teacher model and incorporating feedback from the
student to guide the generation of pseudo labels. Specifically, the teacher produces rollouts under
added Gaussian noise, which are then used to train the student model. The student’s performance on
labeled data provides a feedback signal to update the teacher, helping to mitigate the accumulation of
errors caused by inaccurate or noisy pseudo labels. This feedback mechanism improves the student’s
stability and prediction accuracy, particularly in low-label regimes. In our implementation, the noise
magnitude applied to the teacher’s outputs is fixed at 0.05, following the original formulation.

E Detailed description of datasets, models, and experimental settings

E.1 Datasets

Table 5: Basic information of datasets. Note that No. train includes both labeled and unlabeled data.
Dataset Domain # Nodes(avg.) Timesteps Operator Mapping # Phys. # No. train/test

Darcy Flow 2D 2290 / a(x) 7→ u(x) u = [U ] 1000/200
Stationary Lid 2D 1475 / BC.+Param 7→ u(x) u = [U, V, P ] 861/100

Time-dependent Lid2d 2D+time 930 101 IC.+Param 7→ u(x, T ) u = [U, V, P ] 900/100
NSM2d 2D+time 2630 201 IC.+Param 7→ u(x, T ) u = [U, V, P ] 900/100

Black Sea 2D+time 5000 15 IC.+Param 7→ u(x, T ) u = [T ] 1615/238
Plasma ICP 2D+time 3424 81 IC.+Param 7→ u(x, T ) u = [ne, ϕ, T ] 500/150

Ahmed 3D 110k / Geo.+Param 7→ Cd / 500/51
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As shown in Table 5, we employ seven datasets spanning diverse domains, such as fluid dynamics,
plasma ,and large-scale 3D geometry simulations. A summary of the datasets, their underlying
operator learning tasks, and data generation sources is provided below.

Darcy Flow. We adopt the Irregular Darcy dataset [9], which is based on the Darcy flow equation
over a 2D irregular domain with a thin rectangular notch. The governing equation is−∇· (a∇u) = f ,
where the source term is fixed to f = 1. The input diffusion field a(x) is generated by a Gaussian
random field µ ∼ N (0, (−∆+ 25I)−2), followed by a piecewise transformation t(µ) to produce
binary-valued coefficients: t(µ) = 12 if µ ≥ 0, and 4 otherwise. The computational mesh contains
2290 nodes with Dirichlet boundary conditions. The dataset provides 1200 labeled samples, of which
1000 are used for training and 200 for testing.

Stationary Lid & Time-dependent Lid2d. The Lid2d dataset is based on the lid-driven cavity
problem, a canonical benchmark in computational fluid dynamics that characterizes recirculating
flow induced by a moving top boundary (the "lid") within a square domain. A constant horizontal
velocity is applied at the lid, while the remaining three walls follow no-slip boundary conditions.
We construct two versions of this problem: a stationary (steady-state) version and a time-dependent
(transient) version, each governed by different formulations of the incompressible Navier-Stokes
equations.

Stationary Lid2d: In the stationary case, the flow is assumed to have fully developed and no longer
changes over time. Therefore, the governing equation reduces to the steady-state Navier-Stokes form:−u · ∇u+

1

Re
∆u−∇p = 0,

∇ · u = 0,
(59)

where u = (u(x, y), v(x, y)) is the velocity field, p(x, y) is the pressure, and Re is the Reynolds
number. The spatial domain is discretized using a non-uniform triangular mesh with 1475 nodes.
The steady-state dataset is generated over a uniform grid of Re ∈ [100, 10000] and lid velocity
v ∈ [0.1, 1.0], forming a 2D parameter grid of 31× 31 samples. Among them, 81 samples centered
in the grid are selected for training, 100 are randomly chosen for testing, and the remaining 780 are
used as unlabeled data.

Figure 5: Visualization of the Lid2d dataset. (a) Velocity profiles along x = 0.5 and y = 0.5 in the
stationary Lid dataset. The hollow circles represent reference values from the literature [16], showing
excellent agreement with our simulation results. (b)-(c) Mesh structure and velocity magnitude
v =

√
v2x + v2y visualization for the stationary and time-dependent Lid2d datasets, respectively. For

the time-dependent case, the final time step is visualized.

Time-dependent Lid2d. In contrast, the time-dependent case follows the full unsteady Navier-Stokes
system: 

∂u

∂t
= −u · ∇u+

1

Re
∆u−∇p,

∇ · u = 0.
(60)
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subject to the initial condition (u, v, p) = 0 and the same boundary conditions as in the stationary
case. Simulations are conducted over a non-uniform triangular mesh with 730 nodes, spanning
a total simulation time of 10 seconds with 101 time steps. We consider two Reynolds numbers
(Re = 500, Re = 5000) and uniformly sample lid velocities v ∈ [0.1, 1.0]. For each Re, 1000
transient trajectories are generated. Among these, 100 samples are fixed for testing, while the
remaining 900 are treated as unlabeled data for semi-supervised learning. Visualization about this
dataset is shown in Figure5.

NSM2d. The NSM2d dataset is derived from the 2D incompressible Navier-Stokes equations with
an additional magnetic force term. The simulation follows the same physical setting as the original
reference [37], including the time-invariant magnetic intensity, inflow velocity profile, and boundary
conditions. The domain is [0, 4]× [0, 1], with a jet inflow imposed at x = 0, centered at a vertical
position y0 ∈ [0.4, 0.6], and Reynolds numbers ranging from 100 to 1500. While preserving the
original PDE formulation, we discretize the spatial domain using a non-uniform triangular mesh with
2630 nodes. One thousand simulations are generated using COMSOL, each consisting of 201 time
steps over a 10-second interval. A visualization of the dataset is shown in Figure6.

Figure 6: Visualization of the NSM2d dataset. (a) Mesh of the NSM2d dataset. (b) Visualization of
the velocity magnitude v =

√
v2x + v2y at the final time step.

Black Sea. The Black Sea dataset comprises daily real-world measurements of ocean currents and
temperatures [35]. We use data from 01/01/2017 to 01/01/2022. The raw data is provided on a
regular grid with a spatial resolution of 1/27◦ × 1/36◦, but due to the irregular geometry of the sea,
fewer than 50% of grid points lie within the valid ocean region. We apply Delaunay triangulation to
the valid region to construct a mesh, resulting in a spatial discretization with 5001 nodes consistent
across all models. Following [20], we use the water temperature at a fixed depth of 12.54 meters as
the predictive variable.

For model evaluation, we adopt a temporal extrapolation and interpolation split. Specifically, we
designate the final three months of the dataset as the extrapolation test set. In comparison, three
additional non-consecutive months are randomly selected from the earlier portion of the dataset as
the interpolation test set. The remaining data is used for training under a semi-supervised setting.
During training, the model takes the temperature field of a single day as input and is trained to predict
the temperature evolution over the next 5 consecutive days. For testing, the model is evaluated on its
ability to forecast the next 14 days, given only the temperature from a single input day. The dataset is
available to download from the Copernicus Institute3. The geometry of this problem and the solution
field are shown in the following Figure 7.

Figure 7: Visualization of the Black Sea dataset with mesh and the solution field T .

3Available at https://data.marine.copernicus.eu/product/BLKSEA_MULTIYEAR_PHY_007_004/description
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Plasma ICP. This dataset models an argon/oxygen inductively coupled plasma reactor, incorporating
multiphysics phenomena such as magnetic fields, plasma dynamics, laminar flow, and heat transfer.
The model is derived from the COMSOL Application Library4, with partial chemical reaction
mechanisms adopted from [48]. To construct a multi-fidelity learning scenario, we generate two
levels of simulation fidelity:

• Low-fidelity simulations are conducted on a sparser mesh with approximately 10,000
elements and exclude specific physical and chemical processes.

• High-fidelity simulations use a denser mesh with around 25,000 elements and preserve the
complete physical mechanisms, providing more accurate but computationally expensive
results (about 1 hour per sample for computing).

Varying reactor conditions, including chamber pressure, inlet flow rate, argon/oxygen ratio, and chuck
temperature, generate 650 high-fidelity simulations. Among them, 500 samples are used as labeled or
unlabeled data during training, while the remaining 150 samples are reserved exclusively for testing
under distribution shifts. The training protocol follows a standard multi-fidelity learning pipeline:
models are first pretrained on the low-fidelity dataset, which provides a broader but less detailed
approximation of the physical system. This is followed by fine-tuning and evaluating the high-fidelity
dataset, enabling the assessment of model generalization across fidelity gaps under limited supervision.
Each simulation spans a total physical time of 1 second, discretized using 81 non-uniform time steps.
The time stepping follows a logarithmic scale, specifically t = 10linspace(−8, 0.1, 0), better to capture
both early fast transients and slower dynamics. A visual comparison between low- and high-fidelity
solutions is presented in Figure 8, highlighting differences in mesh resolution and solution fields.

Figure 8: A visual comparison between low- and high-fidelity mesh and solutions. (a) shows the
low-fidelity data, and (b) the high-fidelity data. From left to right, each panel presents the mesh,
electron density (ne), electric potential (ϕ), and gas temperature (T ), highlighting the differences in
both mesh resolution and solution fields across fidelities.

Ahmed. The Ahmed Body dataset is constructed from parametric variations of a simplified vehicle
geometry, characterized by six shape parameters—length, width, height, ground clearance, slant
angle, and fillet radius—along with the inlet velocity to account for changes in Reynolds number. 551
design configurations are generated using Latin Hypercube Sampling, with 500 for training and 51
for testing. Aerodynamic simulations are performed using OpenFOAM with the SST k-ω turbulence
model. The resulting surface pressure distributions are used to compute the drag coefficient Cd based
on the following standard integral:

Cd =
2

v2A

∫
S

p(x) (n(x) · i) dx, (61)

where v is the inlet velocity, A is the frontal area, p(x) is the surface pressure, n(x) is the surface
normal, and i is the streamwise direction. Details of the geometry and pressure computation follow

4Available at https://www.comsol.com/model/model-of-an-argon-oxygen-inductively-coupled-plasma-
reactor-109191
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standard aerodynamic practices and can be found at Modulus Datasets5. This dataset defines a
mapping from vehicle geometry and flow conditions to aerodynamic drag, using the surface mesh
(about 110k nodes) as model input. A visualization of the mesh and pressure is shown in Figure 9.

Figure 9: Visualization of the mesh (a) and surface pressure (b) for the Ahmed dataset.

E.2 Models

This section presents the models employed in our experiments, including two point-cloud-based
architectures (DeepONet[41] and Transolver[61]) and two mesh-based architectures (MeshGraphNet
(MGN)[46]. Aerogto[38]). To ensure a fair comparison, we retain the original network structures
for all approaches without modification. All models are trained and evaluated autoregressively for
temporal prediction tasks, where future states are recursively predicted based on previous outputs.
In addition to the primary output, we estimate data-dependent uncertainty by attaching an auxiliary
decoder to each model, following the model-based method[63]. This auxiliary decoder learns
to predict the predictive variance conditioned on the input data, allowing the models to provide
uncertainty estimates alongside pointwise predictions.

DeepONet[41]. DeepONet is a neural operator architecture composed of a branch network that
encodes the input function and a trunk network that encodes spatial coordinates. In our experiments,
both networks consist of three fully connected layers with GELU activations and 128 hidden units.
The outputs of the two networks are combined via element-wise addition and passed through a two-
layer output network to produce the final prediction. We train the model using the Adam optimizer,
with a cosine annealing learning rate schedule that decays from 1e−3 to 1e−5 over the course of
training epochs.

Transolver[61]. Transolver is a transformer-based architecture tailored for learning physical dy-
namics on irregular spatial meshes. It represents mesh nodes as unordered sequences and employs
a specialized slice-token attention mechanism to capture both local and global interactions. In our
implementation, Transolver consists of 8 transformer layers with 8 attention heads, a hidden dimen-
sion of 128, and a slice-token mechanism with 64 slices. The input combines node coordinates and
physical state variables, optionally augmented with time embeddings for temporal predictions. All
features are first processed through an MLP and added to a learnable positional placeholder before
passing through the transformer blocks. The model is trained with the AdamW optimizer, with an
initial learning rate of 5e−4 and a weight decay of 1e−5.

MeshGraphNet(MGN)[46]. MGN is a graph neural network designed to learn physical dynamics
over unstructured meshes. It models each simulation domain as a graph, where nodes represent mesh
points and edges encode spatial relationships. The architecture consists of an encoder that embeds
node and edge features, a processor composed of 12 message-passing steps to propagate information
across the mesh, and a decoder that maps the final node embeddings to predicted physical states.
All MLPs in the model use 2 hidden layers, 128-dimensional embeddings, ReLU activations, layer
normalization, and dropout for regularization. In our experiments, MGN is trained with the Adam
optimizer with a learning rate that decays from 1e−3 to 1e−5.

AeroGTO[38]. AeroGTO is a hybrid graph-transformer architecture designed for learning aerody-
namic responses over unstructured 3D meshes. It combines local message passing via a graph neural
network (GNN) with global correlation modeling through a projection-based attention mechanism

5Available at https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/resources/modulus_datasets-
ahmed_body_test
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(GTO-Atten). The model encodes node and edge features using MLPs with Fourier-based positional
encodings. It processes them through a sequence of 4 Mixer blocks, each composed of a GNN and
a transformer-style attention layer with 128 learnable tokens and 4 attention heads. With a hidden
dimension 128, AeroGTO captures fine-grained geometric structures and long-range dependencies
across the mesh. The final predictions are produced through a residual decoder with a learnable
scaling factor. The model is trained using the AdamW optimizer, with a learning rate that decays
from 1e−4 to 1e−6.

E.3 Experimental Details

This section outlines the experimental settings, including training schedules, data splits, and task-
specific configurations.

Training Schedule. We establish a fully supervised baseline ("Supervised Only") for each task
type, with training epochs determined by task complexity. Specifically, stationary tasks are trained
for 500 epochs, transient tasks for 1000 epochs, and the Ahmed dataset is trained for 300 epochs.
In the case of distribution shift experiments, models are first pretrained on source-domain data for
1000 epochs, followed by fine-tuning on a small, shifted-domain subset for an additional 300 epochs.
Semi-supervised methods, including Pseudo Labeling (PL), Mean Teacher, Moisy Teacher-Student,
and UMPL, follow the same total training schedule as their corresponding supervised baselines.
Semi-supervised training begins from the supervised initialization and continues for the same number
of epochs.

Labeled-Unlabeled Split. For semi-supervised learning, we randomly select a fixed proportion
r ∈ [10%, 30%] of the training data to serve as labeled samples, while the remaining data is treated
as unlabeled. The Stationary Lid dataset is an exception, where 81 samples are consistently selected
as the labeled subset, and all other samples are used as unlabeled data.

Distribution Shifts Setup. We adopt a two-stage training strategy to evaluate model robustness under
distribution shifts involving pretraining and fine-tuning across distinct data distributions. Specifically,
in the Time-dependent Lid2d dataset, we perform cross-Reynolds transfer, where models pretrained
on Re = 500 are fine-tuned on data from Re = 5000, and vice versa, simulating a distribution shift
in flow regimes. In the Plasma ICP dataset, we evaluate fidelity transfer, where models are pretrained
on low-fidelity simulations and then fine-tuned on high-fidelity data to assess generalization across
simulation accuracies. In both cases, pretraining is conducted for 1000 epochs on the source domain,
followed by fine-tuning for 300 epochs on a small, labeled subset (r ∈ [10%, 30%]) of the target
domain.

UMPL Settings. For all datasets, UMPL training is conducted with a fixed dropout rate of 0.1,
α = 0.2, and an initial top-k rate of 0.5. The dropout rate refers to the probability used in MC
estimation of the teacher model, controlling the stochasticity during inference. The parameter α
governs the EMA update of the teacher model, balancing current student feedback with past teacher
parameters. The initial top-k rate determines the mask ratio used for pseudo-label selection: at the
beginning of training, only the top-k percent of predictions with the highest confidence are selected
for student learning and feedback, while the rest are masked out to mitigate the impact of noisy
supervision.

F More Experiment Results

This section presents additional experimental results, including extended comparison studies and
detailed ablation analyses.

F.1 Computational Cost Analysis

All experiments were conducted on a single NVIDIA RTX 4090 GPU. We evaluate the computational
efficiency of the proposed method using the AeroGTO model across three representative tasks-2D
steady-state, 2D transient, and 3D simulation. The computation time and memory consumption for
each case are summarized in 6 to provide a fair comparison of the overall computational cost.

Here, Supervised+uq refers to the student model used in UMPL. As shown, UMPL introduces almost
no additional memory overhead, thanks to the REINFORCE-style update [60] that avoids the costly
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Table 6: Computation time and memory usage across datasets.

Method
Darcy (bs=4) NSM2d (bs=4) Ahmed (bs=1)

Memory (M) Training Time (h) Memory (M) Training Time (h) Memory (M) Training Time (h)

Supervised 2297 0.45 9727 3.75 9375 3.53
Pseudo Label 3843 1.08 16567 9.04 15947 8.73
Mean Teacher 3843 1.21 16567 10.17 15947 9.57
Noisy TS 2304 1.77 9813 13.21 9477 12.48
Supervised+UQ 3243 0.96 13578 7.69 12986 7.36
UMPL 3257 2.21 13792 16.48 13290 15.56

Table 7: Comparison of the NSM2d and Time-dependent Lid2d dataset across different methods
and models. Cyan , Yellow , and Green indicate the best, second-best, and worst L2 loss values,
respectively.

Model Method
BENCHMARKS

NSM2d Time-dependent Lid2d (Re = 500) Time-dependent Lid2d(Re = 5000)

10% 20% 30% 10% 20% 30% 10% 20% 30%

DeepONet

Supervision Only 3.07e-1 2.54e-1 2.24e-1 1.81e-1 1.43e-1 1.27e-1 4.88e-1 3.34e-1 3.06e-1
Pseudo Label 2.82e-1 2.43e-1 2.09e-1 2.19e-1 1.40e-1 1.27e-1 5.02e-1 3.15e-1 2.63e-1
Mean Teacher 2.77e-1 2.39e-1 2.02e-1 2.03e-1 1.33e-1 1.12e-1 4.91e-1 3.08e-1 2.55e-1
Noisy TS 2.57e-1 2.24e-1 1.73e-1 1.46e-1 1.22e-1 1.02e-1 2.79e-1 2.43e-1 2.04e-1
UMPL(ours) 2.23e-1 1.91e-1 1.52e-1 1.29e-1 1.06e-1 8.93e-2 2.51e-1 2.12e-1 1.87e-1
PROMOTION 13.22% 14.73% 12.13% 11.64% 13.11% 10.49% 10.03% 12.75% 8.33%

MGN

Supervision Only 5.62e-1 3.46e-1 1.76e-1 2.79e-1 1.37e-1 9.78e-2 3.21e-1 1.90e-1 8.17e-2
Pseudo Label 4.95e-1 2.94e-1 1.54e-1 2.72e-1 1.26e-1 7.76e-2 3.14e-1 1.71e-1 6.47e-2
Mean Teacher 4.41e-1 2.79e-1 1.33e-1 2.71e-1 1.15e-1 5.58e-2 3.10e-1 1.61e-1 6.09e-2
Noisy TS 3.85e-1 1.99e-1 1.07e-1 2.55e-1 9.60e-2 4.45e-2 3.04e-1 1.33e-1 4.74e-2
UMPL(ours) 3.51e-1 1.61e-1 8.03e-2 2.36e-1 8.02e-2 2.82e-2 2.93e-1 1.12e-1 4.48e-2
PROMOTION 8.83% 19.09% 24.95% 7.59% 16.30% 36.60% 11.37% 16.38% 5.48%

Transolver

Supervision Only 2.71e-1 1.29e-1 5.41e-2 2.15e-1 7.15e-2 3.65e-2 2.76e-1 1.17e-1 8.89e-2
Pseudo Label 2.35e-1 1.17e-1 5.04e-2 2.12e-1 6.86e-2 3.23e-2 2.70e-1 1.12e-1 8.53e-2
Mean Teacher 2.21e-1 1.15e-1 4.99e-2 2.10e-1 6.58e-2 3.11e-2 2.57e-1 1.10e-1 8.18e-2
Noisy TS 1.79e-1 8.85e-2 4.00e-2 2.09e-1 6.38e-2 2.96e-2 2.54e-1 1.09e-1 8.04e-2
UMPL(ours) 1.51e-1 7.50e-2 3.83e-2 2.04e-1 5.89e-2 2.53e-2 2.40e-1 1.05e-1 7.80e-2
PROMOTION 15.64% 15.25% 4.25% 2.39% 7.68% 14.52% 5.51% 3.66% 2.98%

AeroGTO

Supervision Only 1.72e-1 9.35e-2 5.13e-2 5.02e-2 2.23e-2 1.21e-2 9.46e-2 4.84e-2 2.66e-2
Pseudo Label 1.51e-1 9.04e-2 4.54e-2 5.37e-2 1.91e-2 1.03e-2 7.66e-2 4.20e-2 2.26e-2
Mean Teacher 1.45e-1 8.71e-2 4.29e-2 4.59e-2 1.41e-2 9.30e-3 7.05e-2 3.55e-2 1.90e-2
Noisy TS 1.39e-1 8.22e-2 3.96e-2 4.24e-2 1.20e-2 6.89e-3 6.34e-2 3.06e-2 1.75e-2
UMPL 1.27e-1 7.54e-2 3.69e-2 3.51e-2 1.22e-2 5.18e-3 5.74e-2 2.57e-2 1.61e-2
PROMOTION 8.63% 8.27% 6.81% 17.20% 7.04% 24.71% 9.39% 15.69% 7.83%

backpropagation chain from the student to the teacher. This significantly reduces computational and
memory complexity, at the cost of increased training time.

F.2 Extended Comparison Results

We conduct further comparisons across different models and various proportions of labeled data.
Table 7 reports the performance of different methods and models on the NSM2d and Time-dependent
Lid2d datasets under varying amounts of labeled data. Table 8 summarizes results on the Black Sea
dataset, comparing methods both in temporal interpolation (In-T) and extrapolation (Out-T) scenarios.
Table 9 presents a similar comparison of the Plasma ICP dataset. Across all these tasks, UMPL
consistently outperforms baseline methods, demonstrating its effectiveness under limited supervision.

Figure 10(a) shows raincloud plots of prediction versus ground truth on the Ahmed dataset, revealing
that UMPL yields significantly better generalization on out-of-distribution(OOD) test samples than
baseline approaches. Figure 10(b) illustrates the training curves on the Stationary Lid dataset. While
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Table 8: Comparison of the Black Sea dataset across different methods and models. Cyan , Yellow ,

and Green indicate the best, second-best, and worst L2 loss values, respectively.

Model Method
Black Sea

10% 20% 30%

In-T Out-T In-T Out-T In-T Out-T

DeepONet

Supervision Only 1.45e-1 2.41e-1 1.10e-1 1.23e-1 1.06e-1 9.26e-2
Pseudo Label 1.51e-1 2.35e-1 1.02e-1 1.14e-1 1.02e-1 9.07e-2
Mean Teacher 1.45e-1 2.22e-1 9.61e-2 1.07e-1 9.98e-2 8.89e-2
Noisy TS 1.24e-1 1.67e-1 8.61e-2 9.63e-2 9.81e-2 8.06e-2
UMPL(ours) 9.61e-2 1.43e-1 7.97e-2 8.70e-2 9.09e-2 7.09e-2
PROMOTION 22.50% 14.37% 7.43% 9.65% 7.33% 12.03%

MGN

Supervision Only 9.84e-2 1.13e-1 8.72e-2 9.83e-2 7.31e-2 6.92e-2
Pseudo Label 9.97e-2 1.08e-1 8.19e-2 9.11e-2 6.57e-2 6.876e-2
Mean Teacher 9.83e-2 1.08e-1 7.91e-2 9.05e-2 6.41e-2 6.73e-2
Noisy TS 8.51e-2 9.67e-2 7.13e-2 8.29e-2 5.77e-2 6.24e-2
UMPL(ours) 8.39e-2 9.59e-2 6.52e-2 7.61e-2 5.29e-2 5.83e-2
PROMOTION 1.41% 0.83% 8.55% 8.20% 8.31% 6.52%

Transolver

Supervision Only 9.34e-2 1.11e-1 7.56e-2 7.99e-2 5.49e-2 7.07e-2
Pseudo Label 9.16e-2 9.79e-2 7.29e-2 7.65e-2 4.70e-2 6.75e-2
Mean Teacher 9.26e-2 9.68e-2 7.19e-2 7.48e-2 5.69e-2 6.76e-2
Noisy TS 8.81e-2 9.17e-2 6.78e-2 6.94e-2 5.01e-2 6.12e-2
UMPL(ours) 8.74e-2 9.13e-2 6.26e-2 6.82e-2 4.47e-2 5.65e-2
PROMOTION 1.35% 0.43% 7.66% 1.73% 10.77% 7.68%

AeroGTO

Supervision Only 8.95e-2 1.10e-1 7.08e-2 7.46e-2 5.11e-2 6.85e-2
Pseudo Label 8.24e-2 1.03e-1 6.98e-2 7.43e-2 4.81e-2 6.19e-2
Mean Teacher 9.07e-1 1.02e-1 6.79e-2 7.17e-2 4.92e-2 6.15e-2
Noisy TS 7.42e-2 9.38e-2 6.09e-2 7.04e-2 4.53e-2 5.67e-2
UMPL 6.66e-2 8.72e-2 5.48e-2 6.28e-2 4.13e-2 5.02e-2
PROMOTION 10.29% 7.05% 9.92% 10.78% 8.76% 11.55%

Table 9: Comparison of the Plasma ICP dataset across different methods and models. Cyan ,

Yellow , and Green indicate the best, second-best, and worst L2 loss values, respectively.

Model Percentage
Method

w/o Fine-tuning Supervision Only Pseudo Label Mean Teacher Noisy TS UMPL PROMOTION

Transolver
10% 2.49e-1 1.90e-1 1.85e-1 1.72e-1 1.56e-1 1.41e-1 10.16%
30% 2.49e-1 1.54e-1 1.44e-1 1.43e-1 1.21e-1 1.05e-1 13.22%

AeroGTO
10% 1.77e-1 9.30e-2 7.20e-2 6.97e-2 6.24e-2 5.25e-2 15.19%
30% 1.77e-1 7.64e-2 6.46e-2 5.91e-2 4.74e-2 4.13e-2 12.47%

the PL method exhibits clear overfitting in the early training stages, UMPL avoids this issue, indicating
superior generalization in the presence of distribution shifts.

Furthermore, Figure 11, Figure 12, Figure 13 and Figure 14 visualize performance comparisons and
corresponding uncertainty estimations between UMPL and baseline methods on the Darcy Flow,
NSM2d, Black Sea, and Plasma ICP datasets, respectively. These results demonstrate that UMPL not
only achieves lower generalization errors but also provides reliable uncertainty estimates.

Notably, we also compare UMPL with heteroscedastic regression models trained solely on labeled
data, using AeroGTO as the base surrogate model. As shown in Figure 15 (Black Sea dataset) and
Figure 16 (NSM2d dataset), UMPL delivers more accurate and calibrated uncertainty estimates on
unseen test data. In contrast, supervised-only models tend to produce overconfident but erroneous
predictions.

F.3 Quantitative Validation of Uncertainty-Error Correlation

To quantitatively validate that the predicted uncertainty reliably correlates with the actual error
magnitude, we conduct comparative experiments on the AeroGTO framework using the Darcy
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Figure 10: (a) Raincloud plot for Cd prediction in Ahmed dataset. (b) Training and testing loss curve
on the Stationary Lid dataset.

Figure 11: Comparison of our method against baseline methods on the Darcy Flow dataset and
uncertainty estimation of our method.

Figure 12: Comparison of our method against baseline methods on the NSM2d dataset and uncertainty
estimation of our method.
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Figure 13: Comparison of our method against baseline methods on the Black Sea dataset.

Figure 14: Comparison of our method against baseline methods on the Plasma ICP dataset.

Figure 15: Prediction errors and uncertainty estimates of our method compared to the Supervision
Only method on the Black Sea test dataset.
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Figure 16: Prediction errors and uncertainty estimates of our method compared to the Supervision
Only method on the NSM2d test dataset.

Flow and NSM2d datasets. The evaluation considers both accuracy and computational efficiency,
employing miscalibration area (MA) and root mean squared calibration error (RMSCE) as calibration
metrics, and L2 error as the prediction accuracy metric.

Table 10 summarizes the comparison among different uncertainty estimation approaches, including
Monte Carlo Dropout, SVGD [40], feature-WGD [65], and ensemble-based variants. Our proposed
UMPL achieves the lowest MA and RMSCE with competitive training efficiency, demonstrating its
ability to generate well-calibrated and reliable uncertainty estimates.

Table 10: Comparison of uncertainty estimation methods on the Darcy Flow dataset using AeroGTO
as the base forecaster.

Method MA RMSCE L2 Training Time (h) Memory (M)

EMC Dropout (Teacher) 0.2123 0.2492 0.0388 0.52 2302
MC Dropout 0.1781 0.2333 0.0376 3.31 16249
SVGD [40] 0.1736 0.1954 0.0390 9.98 2253
feature-WGD [65] 0.1654 0.1880 0.0322 3.50 2567
Latent-UQ (Student) 0.1561 0.1778 0.0382 0.96 3243
Ensemble [30] 0.1847 0.2044 0.0319 9.68 2395
Ensemble Latent-UQ [63] 0.1297 0.1455 0.0294 13.39 3887
UMPL 0.0891 0.1011 0.0256 2.21 3257

As shown in Table 11, UMPL consistently achieves superior calibration and predictive accuracy com-
pared with MC Dropout and Latent-UQ, indicating its robustness across different flow configurations.

These results highlight UMPL’s strong capability to maintain a favorable balance between accuracy
and efficiency while achieving reliable uncertainty calibration. Moreover, both the teacher and
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Table 11: Comparison of uncertainty estimation methods on the NSM2d dataset.
Method MA RMSCE L2

Latent-UQ (Student) 0.1959 0.2404 0.1728
MC Dropout 0.2841 0.3183 0.1734
UMPL 0.1127 0.1393 0.1213

student components in UMPL can be replaced by more advanced architectures to further enhance
performance, albeit at the cost of higher computational complexity.

In addition, we replaced UMPL’s uncertainty components with more advanced estimators, as shown
in Table 12. While these alternatives achieved better calibration, they brought only marginal improve-
ments in predictive accuracy and incurred significantly higher computational cost.

Table 12: Calibration and efficiency comparison with separate Teacher (T) and Student (S) compo-
nents.

Teacher (T) Student (S) MA RMSCE L2 Training Time (h) Memory (M)

EMC Dropout Latent-UQ 0.0891 0.1011 0.0256 2.21 3257
SVGD Latent-UQ 0.0873 0.0983 0.0248 20.42 3677
feature-WGD Latent-UQ 0.0842 0.0951 0.0243 6.53 5597
feature-WGD Ensemble Latent-UQ 0.0773 0.0877 0.0239 28.43 6273

F.4 Performance of UMPL under Non-Gaussian Uncertainty

To investigate how UMPL handles physical systems characterized by asymmetric or heavy-tailed
uncertainty, we designed a one-dimensional Burgers-type PDE with a small diffusion coefficient as a
testbed and adopted DeepONet as the backbone model. This setting introduces shocks and discon-
tinuities, resulting in a highly non-Gaussian regime where models assuming Gaussian uncertainty
often degrade. The governing equation is given by:


∂u

∂t
− µ

∂2u

∂x2
+ u

∂u

∂x
+ ϵu3 = 0,

u(x, 0) = ax3 − (a+ 1)x, x ∈ [−1, 1],

− n · ∂u
∂x

∣∣
x=±1

= 0.

(62)

Table 13 reports the quantitative comparison. The baseline UMPL, which assumes Gaussian uncer-
tainty, exhibits degraded calibration performance under this non-Gaussian condition. To mitigate
this issue, we replaced the teacher’s epistemic uncertainty model with feature-WGD [65], which
better captures heavy-tailed priors, and substituted the student’s aleatoric uncertainty model with a
Mixture Density Network (MDN) [55], capable of modeling multimodal and skewed distributions.
This enhanced version substantially improves both calibration and predictive accuracy at the cost of
increased computation.

Table 13: Results on a one-dimensional Burgers equation under non-Gaussian uncertainty using
DeepONet as the backbone. “/” indicates no uncertainty estimate.

Method MA RMSCE L2 Training Time (h) Memory (M)

Supervised / / 0.0499 1.42 1261
UMPL 0.3004 0.3448 0.0528 1.62 1439
Improved UMPL
(feature-WGD + MDN) 0.1408 0.1590 0.0432 2.61 1789

These results indicate that assuming Gaussian uncertainty limits model calibration and predictive
fidelity in non-Gaussian regimes. By integrating a more expressive epistemic uncertainty model
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(feature-WGD) and a heavy-tailed noise model (MDN), UMPL achieves substantially better robust-
ness and accuracy with moderate computational overhead. Overall, the framework demonstrates a
flexible, modular design that enables an effective trade-off between efficiency and predictive reliability
across diverse uncertainty structures.

F.5 Extended Ablation Analysis

F.5.1 Sensitivity and Robustness Analysis

We evaluate the sensitivity and robustness of UMPL on the out-of-distribution Stationary Lid-Driven
Cavity dataset using AeroGTO as the backbone. We first probe robustness to aleatoric perturbations
by injecting Gaussian noise of varying magnitude into the student’s predicted uncertainty during
training. As summarized in Table 14, uncertainty calibration (MA, RMSCE) degrades steadily with
increasing noise, whereas predictive accuracy (L2) remains stable under small perturbations but drops
sharply with large noise. Overall, UMPL is robust to moderate noise yet sensitive to severe distortion.

Table 14: Sensitivity to injected Gaussian noise in the student’s predicted uncertainty on the OOD
Stationary Lid dataset.

Noise Magnitude (σ) MA RMSCE L2

0.05 0.0703 0.0828 0.0634
0.10 0.0717 0.0879 0.0634
0.20 0.0779 0.0942 0.0636
0.50 0.0908 0.1053 0.0663
1.00 0.2156 0.2655 0.1499

We then study two design hyperparameters under the same setting: the PUF threshold (which filters
pseudo-labels) and the feedback strength (which weights uncertainty-guided correction). Results in
Tables 15–16 show that a lower PUF threshold can better filter noisy labels on harder datasets, though
its effect is mild here. For feedback strength, too small values suppress pseudo-label correction
(reducing UMPL toward plain pseudo-labeling), while overly large values inject noise and degrade
label quality and student learning.

Table 15: Sensitivity to the PUF threshold on the OOD Stationary Lid dataset.
PUF Threshold MA RMSCE L2

100% 0.0679 0.0802 0.0633
95% 0.0661 0.0783 0.0632
90% 0.0707 0.0809 0.0638

Table 16: Sensitivity to feedback strength on the OOD Stationary Lid dataset.
Uncertainty Strength MA RMSCE L2

×0.1 0.0711 0.0838 0.0752
×1 0.0679 0.0802 0.0633
×5 0.0825 0.0974 0.0882
×10 0.1273 0.1503 0.1367

Beyond these factors, we further investigate three UMPL hyperparameters on the same dataset: (i) the
EMC update coefficient α in the teacher, (ii) the dropout rate used for Monte Carlo estimation, and (iii)
the initial top-k selection ratio for pseudo-label masking. In each experiment, one parameter is varied
while others are held at their respective optima. The results in Figure 17 indicate non-monotonic
trends for each parameter, highlighting UMPL’s sensitivity to these choices and the importance of
careful tuning. Exploring adaptive or data-driven strategies for hyperparameter selection is left for
future work.
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Figure 17: Ablation results for key UMPL hyperparameters on the Stationary Lid dataset: EMC
update coefficient α, MC-dropout rate p, and initial top-k ratio for pseudo-label masking. Each curve
varies one parameter while fixing others at their optimal values.

F.5.2 Noise Robustness Analysis

While our main benchmarks do not explicitly include noisy observations and the current teacher
primarily captures epistemic uncertainty, we further study noise robustness on Darcy Flow (AeroGTO
backbone) by injecting input-dependent noise at varying levels. Results in Table 17 show performance
degradation as noise increases. To improve robustness under noisy observations, we augment the
teacher to incorporate both epistemic and aleatoric uncertainty, following [25], and introduce an
ensemble student, which enhances predictive performance in the noisy regime.

Table 17: Darcy Flow with input-dependent noise: calibration (MA, RMSCE) and accuracy (L2).
Noise Level MA RMSCE L2

5% 0.0996 0.1117 0.0257
10% 0.1076 0.1207 0.0264
20% 0.1286 0.1443 0.0302
40% 0.1755 0.1975 0.0386
40%, Improved UMPL 0.1335 0.1498 0.0348

G Borader Impact

The UMPL framework significantly enhances surrogate modeling performance, particularly under
out-of-distribution and distribution shift scenarios. This improved generalization is valuable for tasks
such as fluid dynamics modeling, climate prediction, and molecular simulations, where models often
face data distributions that differ from training conditions. By enabling uncertainty-aware learning
with limited supervision, UMPL reduces reliance on large labeled datasets and improves model
robustness. In future work, we plan to extend UMPL to real-world scenarios and more complex
applications, bridging the gap between research and deployment in science and engineering domains.
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