
000
001
002
003
004
005
006
007
008
009
010
011
012
013

THE EMERGENCE OF THE LEFT-RIGHT ASYMMETRY IN PREDICTING BRAIN ACTIVITY FROM LLMs' REPRE- SENTATIONS SPECIFICALLY CORRELATES WITH THEIR FORMAL LINGUISTIC COMPETENCE

008 **Anonymous authors**

009 Paper under double-blind review

ABSTRACT

014 When humans and large language models (LLMs) process the same text, activa-
015 tions in the LLMs correlate with brain activity measured, e.g., with functional
016 magnetic resonance imaging (fMRI). Moreover, as the training of an LLM pro-
017 gresses, the performance in predicting brain activity from its internal activations
018 improves more in the left hemisphere than in the right one. The aim of the present
019 work is to understand which kind of competence acquired by the LLMs under-
020 lies the emergence of this left-right asymmetry. Using the OLMo-2 7B language
021 model at various training checkpoints and fMRI data from English participants,
022 we compare the evolution of the left-right asymmetry in brain scores alongside
023 performance on several benchmarks. We observe that the asymmetry co-emerges
024 with the formal linguistic abilities of the LLM. These abilities are demonstrated in
025 two ways: by the model's capacity to assign a higher probability to an acceptable
026 sentence than to a grammatically unacceptable one within a minimal contrasting
027 pair, or its ability to produce well-formed text. On the opposite, the left-right
028 asymmetry does not correlate with the performance on arithmetic or Dyck lan-
029 guage tasks; nor with text-based tasks involving world knowledge and reasoning.
030 We generalize these results to another family of LLMs (Pythia) and another lan-
031 guage, namely French. Our observations indicate that the left-right asymmetry in
032 brain predictivity matches the progress in formal linguistic competence (knowl-
033 edge of linguistic patterns).

1 INTRODUCTION

034 The success of large language models (LLMs) in natural language processing tasks has generated a
035 lot of interest in understanding their internal representations and their alignment with human brain
036 activity. Brain activations, measured with functional magnetic resonance, magnetoencephalography,
037 or electrocorticography, in humans listening to or reading a text can be predicted from the internal
038 activity of LLMs fed with the same text (Jain & Huth, 2018; Toneva & Wehbe, 2019; Schrimpf
039 et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Pasquiou et al., 2023; Antonello
040 et al., 2024). In the encoding model approach, brain activations are regressed on the hidden neural
041 activations from an LLM and the resulting model is used to compute cross-validated correlations at
042 each voxel (brain scores).

043 Early studies (Huth et al., 2016; Jain & Huth, 2018; Caucheteux et al., 2021; Pasquiou et al., 2023)
044 reported brain score maps that were very symmetrical, with similar brain scores in the right and
045 in the left hemisphere, an odd finding given all the evidence for left hemispheric dominance for
046 language. For instance, in their seminal paper, Huth et al. (2016) noted that “One striking aspect of
047 our atlas is that the distribution of semantically selective areas is relatively symmetrical across the
048 two cerebral hemispheres. This finding is inconsistent with human lesion studies that support the
049 idea that semantic representation is lateralized to the left hemisphere.”

050 Recently, however, Bonnasse-Gahot & Pallier (2024) showed that these symmetrical results, ob-
051 served with word embeddings or small, first generation LLMs, disappear in larger and more per-
052 formant models. More precisely, brain score maps exhibited an increasing left-right hemispheric

054 asymmetry when LLMs increased in number of parameters and in performance on NLP tasks. Fur-
055 thermore, this left-right asymmetry also emerged for a given LLM alongside its training. The re-
056 lationship between amount of training and left-right asymmetry showed a phase transition profile
057 that is reminiscent of those that have been observed in LLMs' performance on several benchmarks
058 (Chen et al., 2023).

059 The present work aims at understanding what competence, acquired during training, drives the emer-
060 gence of the left-right asymmetry in brain score. We conduct a series of experiments designed to
061 track the evolution of linguistic and non-linguistic capabilities of LLMs as a function of training
062 progression, and we study their relationship to left-right asymmetry in brain score. In our initial
063 experiment, we systematically investigate how the performance of an LLM on a set of carefully
064 constructed benchmarks evolves with training. This set includes two linguistic benchmarks (BLiMP,
065 Warstadt et al., 2020 and Zorro, Huebner et al., 2021) and two non-linguistic benchmarks (specif-
066 ically, Arithmetic and Dyck language tasks), all designed as minimal pair tasks to isolate specific
067 competencies. Our analyses reveal a striking correlation: as training progresses, the emergence of
068 the left-right dominance in brain score maps closely mirrors the improvement in performance on the
069 linguistic benchmarks, but not on the non-linguistic benchmarks.

070 In a follow-up experiment, we focus on text-based tasks, contrasting between formal linguistic com-
071 petence (knowledge of linguistic rules and patterns) and functional linguistic competence (under-
072 standing and using language in the world), a distinction proposed by Mahowald et al. (2024). To
073 further assess the model's formal competence, we use it to generate texts at different checkpoints
074 during training, which we feed to another model fine-tuned to evaluate the linguistic acceptability of
075 sentences. To assess functional competence, we test the LLM on conceptual and reasoning bench-
076 marks, namely, ARC (Clark et al., 2018), and Hellaswag (Zellers et al., 2019). The results show
077 that the trajectory of linguistic acceptability correlates with the left-right transition in brain scores,
078 unlike the performance on functional benchmarks.

079 The results reported above are based on OLMo-2 7B model (OLMo et al., 2024), a recent model
080 for which training checkpoints are available. We show that these results generalize to other models,
081 namely the 2.8b and the 6.9b models from the Pythia family (Biderman et al., 2023). Finally, we
082 generalize to another language, French, and replicate the finding that the left-right asymmetry aligns
083 better with a formal test (grammar) than with a functional one (Hellaswag).

084 Collectively, these results support the hypothesis that the emergence of the left-right asymmetry in
085 LLMs' brain predictivity is a direct reflection of their formal linguistic abilities.

087 2 MATERIALS AND METHODS

089 2.1 BRAIN IMAGING DATA

091 The experiments reported in this paper rely on functional magnetic resonance data provided by
092 the multilingual project *Le Petit Prince*, in which English, French and Mandarin Chinese speakers
093 were scanned while listening for a bit more than an hour and a half to an audiobook of The Little
094 Prince (Li et al., 2022). The presentation of the audiobook was split into 9 parts of approximately
095 equal duration, during which functional images of the full brain were acquired every 2 s. Following
096 the procedure of Bonnasse-Gahot & Pallier (2024), after spatially normalizing these images into a
097 common space and resampling them at $4 \times 4 \times 4$ mm, we average the time-series across participants
098 (high-pass filtered with a cut-off of 128 s and standardized in each voxel), to obtain an average
099 English subject (from 49 participants) and an average French subject (from 28 participants).

100 2.2 LANGUAGE MODELS

102 The main large language model used in this study is the 7B-parameter version of OLMo-2 (OLMo
103 et al., 2024), released by Allen AI¹. As far as we know, this is the best open-weight model under 10B
104 parameters that releases a sufficient number of training checkpoints that allow to study the evolution
105 of the performance of an LLM during training. The model has 32 layers and a hidden size of 4096.
106 We consider 10 checkpoints from the base model: the first checkpoint available, after training on
107

¹OLMo-2-1124-7B is available at <https://huggingface.co/allenai/OLMo-2-1124-7B>

108 1B tokens; the final checkpoint of their Stage 1 pretraining phase, which is the main part of their
109 pretraining, corresponding to 1 epoch on the OLMo-Mix-1124 dataset (approximately 4T tokens);
110 and 8 intermediate checkpoints log-spaced between these two extremes (using the closest available
111 checkpoint). The main experiments in this study are based on this model. To check that the results
112 are not specific to it, we also run some experiments on Pythia 2.8b and Pythia 6.9b (Biderman et al.,
113 2023).

114
115 **2.3 BRAIN SCORES**

116 For each voxel, we compute a brain score that quantifies how well we can predict the brain
117 activity from the activations of the large language model, using the pipeline made available
118 by Bonnasse-Gahot & Pallier (2024) at https://github.com/l-bg/llms_brain_lateralization. In brief, this pipeline follows a standard cross-validation approach where the
119 fMRI time series in a given voxel is fit with a linear model, regularized using ridge regression, on
120 the activations obtained at a given layer of the LLM. The brain score associated with a given voxel
121 is the maximum correlation associated with the best layer. Finally, left and right hemisphere brain
122 scores are obtained by averaging correlations from voxels located in the left and right hemispheres
123 respectively. The main figures of the paper display the left-right asymmetry in brain scores taking
124 into account the 25% most reliable voxels, associated with the highest inter-subject correlation. In
125 Appendix, we also provide supplementary figures based on brain scores including all voxels (whole
126 brain).)

127
128 **2.4 EXPERIMENTS**

129 **EXPERIMENT 1: MINIMAL PAIRS BENCHMARKS**

130 The linguistic minimal pairs benchmarks, BLiMP (Warstadt et al., 2020) and Zorro (Huebner et al.,
131 2021), provide minimal pairs of sentences in which the first sentence, but not the second, is deemed
132 acceptable by English native speakers.

133 A causal language model has learned to compute, given a string of words as the context, the probability
134 distribution of the next word, over the vocabulary of a language. The log probability of a
135 sentence is then computed as the sum of the log probabilities of each word of the sentence. For a
136 given minimal pair, the most acceptable sentence is the one associated with the highest probability
137 according to the model. For a given task, the overall accuracy is calculated as the proportion (re-
138 ported as a number between 0 and 1) of times the model correctly assigns a higher probability to the
139 correct or most acceptable sentence.

140 In order to evaluate the competence of the LLM on non-linguistic tasks, but using the same framework
141 as the BLiMP and Zorro benchmarks, we designed two other benchmarks that likewise involve
142 minimal pairs. An arithmetic benchmark evaluates the ability of a model to assign a higher
143 probability to a correct addition or multiplication, than to an incorrect version. Moreover, a Dyck
144 language benchmark evaluates the model’s ability to assign a higher probability to a sequence of
145 well-parenthesized list of parentheses, compared to a version that involves the same elements but
146 with some errors introduced by permuting some neighboring parentheses.

147 • **BLiMP** (Warstadt et al., 2020) provides 67,000 minimal pairs of English sentences, grouped into
148 67 paradigms of 1,000 pairs each, isolating specific phenomena in syntax, morphology, or semantics
149 (see Warstadt et al., 2020, Table 4, for examples of each of these phenomena). Here is an example
150 (the asterisk denotes the ungrammatical string), from the *left branch island simple question* dataset:
151

152 (1) a. Whose hat should Tonya wear?
153 b. * Whose should Tonya wear hat?

154 • **Zorro** (Huebner et al., 2021) is similar to BLiMP but uses a restricted vocabulary assumed to be
155 known by a 6-year-old English child. Data consist of 22 files containing 4,000 sentences each (*ie*
156 2,000 minimal pairs). Here is an example from the *agreement subject verb across relative clause*
157 paradigm:

158 (2) a. The book that I like is poor.

162 b. * The books that I like is poor.
163

164 • The **Arithmetic** benchmark consists of an ‘addition’ subtask and a ‘multiplication’ subtask. Each
165 subtask involves 2048 pairs of statements, one correct and one incorrect. The ‘addition’ task consid-
166 ers statements of the form $x + y = z$, where x and y are randomly chosen between 0 and 1000. In
167 the correct statement, z is indeed the sum of x and y , whereas in the incorrect version, an error ran-
168 domly drawn from the set $[-10, -2, -1, 1, 2, 10]$ is added to the actual sum. In the ‘multiplication’
169 task, statements are of the the form $x \times y = z$, where x and y are randomly chosen between 0 and
170 100. In the correct one, z is the product of x and y , whereas in the incorrect one, as for the previous
171 ‘addition’ task, we add to the product an error randomly drawn from the set $[-10, -2, -1, 1, 2, 10]$.
172 The final accuracy is the mean accuracy over these two addition and multiplication tasks. Here is an
173 example of a minimal pair:
174

175 (3) a. $36 \times 41 = 1476$
176 b. * $36 \times 41 = 1486$
177

178 • The **Dyck** benchmark consists of three sub-benchmarks, based on the Dyck-1, Dyck-2, and Dyck-
179 3 languages, which are formal languages that describe the balanced nesting of opening and closing
180 parentheses (or other types of brackets). Here, Dyck-1 language involves the open and close paren-
181 theses ‘(’ and ‘)’, Dyck-2 uses parentheses and square brackets ‘(’, ‘[’, ‘]’ and ‘)’, and Dyck-3
182 parentheses, square brackets and curly brackets ‘(’, ‘[’, ‘{’, ‘]’, ‘)’ and ‘{’’. For each subtask, we ran-
183 domly generate 1024 minimal pairs of sentences of length 32. For a given pair, the correct version
184 is well-parenthesized, whereas we introduce errors in the incorrect version by randomly permuting
185 two neighboring elements in the second half of the sentence, so that the two sentences share the
186 same beginning and the same elements overall. Below is an example of such a minimal pair from
187 the Dyck-3 benchmark. The final accuracy is the average of the accuracy on these three subtasks.
188

189 (4) a. $((()[]))(){}[]{}{}{}{}(([])({{}}))[]$
190 b. * $((()[]))(){}[]{}{}{}{}(([])({{}}))[]$
191

EXPERIMENT 2: OTHER BENCHMARKS

193 Next, we further explore the relationship between brain score asymmetry and performance on lan-
194 guage tasks with three tests tapping formal aspects of language, namely the linguistic acceptability
195 of text generated by the model, and functional aspects, assessing world knowledge and reasoning
196 using existing evaluation benchmarks (Zellers et al., 2019; Clark et al., 2018).

197 • **Linguistic acceptability of text generations:** We assess the evolution during training of the
198 linguistic acceptability of the text generated by an LLM (base model). For each checkpoint during
199 training, the LLM is asked to generate a continuation, between 192 and 256 tokens, from one of
200 the following five prompts: ‘Why not’, ‘Are you’, ‘This is’, ‘Alice was’, ‘Bob went’. Texts are
201 generated five times for each prompt, each time with a different initial seed. All generated texts will
202 be available in a repository on the GitHub page of the project. Appendix C provides samples from
203 one trial of one prompt, for all 10 checkpoints. In order to automatically evaluate the acceptability of
204 the generated texts, we use another LLM that was fine-tuned to output the linguistic acceptability of
205 a sentence. This latter model² is a version of DeBERTa-v3-large (He et al., 2023) fine-tuned on the
206 CoLA dataset (Warstadt et al., 2019). The Corpus of Linguistic Acceptability (CoLA) is a widely
207 used benchmark dataset for evaluating the ability of natural language processing models to judge the
208 grammatical acceptability of English sentences. It consists of more than 10,000 English sentences
209 labeled as either grammatical or ungrammatical (see Warstadt et al., 2019, Table 3, for samples).
210 The generated text is first split into sentences (using the `sent_tokenize` function from `nltk`
211 Python package, Bird et al., 2009), then each sentence is fed into this fine-tuned LLM. The final
212 linguistic acceptability score of the text is the mean score over all sentences in the text.

213 • **Hellaswag** (Zellers et al., 2019) is a completion test that assesses commonsense natural language
214 inference. Given an event description, the language model must select the most likely followup

215 ²Found on the Hugging Face hub, available at <https://huggingface.co/yiino/deberta-v3-large-cola>

216 among four choices. The 10,000 sentences were created to be very easy for humans but difficult for
217 NLP systems (that existed around the publication date).

218 • **ARC** (Clark et al., 2018) provides a question set which contains 7,787 natural, grade-school sci-
219 ence questions (authored for human tests), assessing knowledge and reasoning according to the
220 authors. The ARC question set is partitioned into a **Challenge Set** and an **Easy Set**.

223 EXPERIMENT 3: REPLICATION WITH PYTHIA MODELS

224 In order to check that the results are not specific to OLMo-2-1124-7B, we replicate experiment
225 1, evaluating brain scores and performance on the four minimal-pair benchmarks (BLiMP, Zorro,
226 Arithmetics and Dyck) using two other models: Pythia-2.8B and Pythia-6.9B (Biderman et al.,
227 2023). We consider 10 checkpoints during training, equally log-spaced, from step 16 (about 30M
228 tokens) to step 143000 (about 300B tokens, the last step available of the pretraining phase).

231 EXPERIMENT 4: REPLICATION IN ANOTHER LANGUAGE (FRENCH)

232 In this experiment, we replicate experiment 1, computing the brain scores of the OLMo-2 model
233 using the French text and the average French fMRI subject. Given that OLMo-2 was mostly trained
234 on English content (OLMo et al., 2024), with occasional texts from other languages, we expect its
235 linguistic competence in French to lag that in English. We assess the formal linguistic competence
236 using the fr-grammar task and the functional competence using the French Hellaswag (both tasks
237 come from the **FrenchBench** benchmark; Faysse et al., 2025). We then compare the trajectories of
238 the performance on these tests during training to the left-right asymmetry in brain predictivity.

240 3 RESULTS

243 3.1 EXPERIMENT 1: MINIMAL PAIRS BENCHMARKS

244 Fig. 1 shows the evolution during training of the left-right asymmetry in brain scores, computed here
245 with OLMo-2 7B, and the performance of this model on the minimal pairs benchmarks (BLiMP,
246 Zorro, Arithmetic and Dyck). First, we observe a phase transition, that is an abrupt change, for
247 the left-right asymmetry in brain predictivity (blue curve). The brain score in the left hemisphere
248 becomes stronger than in the right as the model is trained on more tokens, reproducing in more
249 details the behavior reported by Bonnasse-Gahot & Pallier (2024) (in their Fig. B10). As for the
250 performance on the four minimal pairs tests, the BLiMP and Zorro benchmarks (left panels) show
251 a phase transition in the same interval as the left-right asymmetry, while the scores on the non-
252 linguistics tests, Arithmetic and Dyck (right panels), do not follow the same pattern. The amount of
253 training where formal linguistic abilities emerge is around 10B tokens, consistent with what Tigges
254 et al. (2024) found with the Pythia family (see also our own results with Pythia below, section 3.4).

255 We further focus on the sub-tasks of BLiMP labeled “morphology”, “syntax”, “syntax_semantics”,
256 and “semantics” by the authors of this benchmark. The evolution of performance split across these
257 four categories is displayed on Supplementary Fig. B.2. The emergence of left-right asymmetry
258 aligns slightly more closely with the performance on syntactic tests than with those pertaining to
259 morphology or semantics. This suggests a particular salience of syntactic processing in driving the
260 observed brain-LLM alignment.

262 3.2 EXPERIMENT 2: OTHER BENCHMARKS

264 Fig. 2 shows the results of additional tests which are not based on minimal pairs (ARC, Hellaswag,
265 and Linguistic acceptability). On the one hand, ARC and Hellaswag, the high-level comprehen-
266 sion benchmarks, are not aligned with the left-right brain score asymmetry. On the other hand, the
267 linguistic acceptability of texts generated by the model at various checkpoints exhibits a transition
268 between 5B and 13B tokens that closely matches the left-right asymmetry. Examples of texts gen-
269 erated by the model at successive checkpoints, presented in Appendix C, confirm that it is in this
range that the model starts to produce well-formed prose.

Figure 3: **Quantitative comparison of the evolution of the left-right hemispheric brain scores and the various performance trajectories.** (Left) After fitting a sigmoid to the evolution of a given quantity, we plot the results on a (x_0, β) plane, where x_0 is the location of the transition along the log(number of tokens) axis, and β the slope of the change (Right) Euclidean distance between the location on the (x_0, β) plane of each benchmark and left-right asymmetry.

3.3 QUANTITATIVE ANALYSIS OF THE ALIGNMENT BETWEEN TRAJECTORIES.

The performance on the various benchmarks increases with the amount of tokens seen during training, as does the left-right asymmetry. On a x -log scale, this results in sigmoid shaped curves. To provide a quantitative comparison between all the different trajectories, for each curve displayed on Fig. 1 and 2, we fit a sigmoid in order to locate the phase transition x_0 on the x -axis (log of the number of tokens) and its slope β . The fit is obtained by minimizing the mean square error between the target relevant curve and the following sigmoidal function: $y = y_{\min} + (y_{\max} - y_{\min})/(1 + \exp(-\beta(x - x_0)))$, where x is the logarithm of the number of tokens seen during training. Supplementary Fig. B.3 provides a full visualization of these fits.

The location x_0 of the transition and its slope β can then be used to quantitatively compare all the different transitions. Panel (a) of Fig. 3 shows the location of each benchmark in the (x_0, β) space; Panel (b) shows the distance of each benchmark to the parameters of the brain asymmetry transition. This quantitatively confirms that the left-right asymmetry aligns well with the acquisition of formal linguistic competence, but not with high-level language comprehension or other competences such as arithmetic ability.

3.4 EXPERIMENT 3: REPLICATIONS WITH PYTHIA MODELS.

To check that the results are not specific to the OLMo-2 7B model, we replicate Experiment 1 with two models from the Pythia family, which also provides checkpoints during training. Fig. 4 shows the results for these models. Again, the left-right asymmetry aligns remarkably well with the acquisition of the formal competence of the model, but not with the functional ones.

3.5 EXPERIMENT 4: REPLICATION IN ANOTHER LANGUAGE (FRENCH).

In this last experiment, we check if the previous results are replicable in another language. To this end, we use French data from Le Petit Prince (French text, French fMRI average subject) and evaluate the main model, OLMo-2 7B, on French benchmarks. The results are displayed on Fig. 5.

As expected given that that OLMo-2 7B was primarily trained on English, its development of formal French competence is delayed and progresses more slowly compared to English, and so does the left-right hemispheric asymmetry in brain scores. However, like in English, the evolution of grammatical competence follows more closely the left-right asymmetry than does the performance on French Hellaswag, assessing knowledge and reasoning. Supplementary Fig. B.5 comparing the parameters of fitted sigmoids of all the relevant quantities, confirms this.

Figure 4: **Generalization to other language models.** Results from minimal pairs benchmarks on OLMo-2-1124-7B extend to Pythia-2.8b & 6.9b models. Panel (a) reproduces data shown in Fig. 1 but with all curves superimposed. Panels (b) and (c) show the results for the Pythia models (figures split by tasks are provided in supplementary Fig. B.4).

Figure 5: **The evolution of the left-right asymmetry in brain predictivity in French subjects follows the acquisition of formal competence in this language by the LLM.** The model is OLMo-2-1124-7B again. The blue line represents the evolution of the left-right asymmetry computed with on a French average subject. For comparison purposes, the dotted blue line reproduces the left-right asymmetry previously observed in English and displayed in Fig. 1. In the left panel, the red curve tracks performance on the fr-grammar benchmark which measures French formal linguistic competence; in the right panel, the red curve shows the performance on French Hellaswag which assesses functional competence. (Note: both tests are part of the FrenchBench evaluation benchmark (Faysse et al., 2025)). See supplementary Fig. B.6 for results on the whole brain volume.

432 4 DISCUSSION

433

434 In order to understand the origin of the emergence of the left-right asymmetry in brain scores with
435 training, we ran a number of benchmarks on LLMs (OLMo-2 7B, Pythia 2.8b and Pythia 6.9b) at
436 different training checkpoints. First, we reproduce and extend Bonnasse-Gahot & Pallier (2024)
437 finding that the left-right asymmetry emerges with training, to new models and with a more fine-
438 grained resolution of training steps. Second, we show that the left-right asymmetry emergence
439 co-occurs with the emergence of formal linguistic abilities in LLMs, attested either by their ability
440 to assign a higher probability to an acceptable sentence than to a grammatically unacceptable one
441 within a minimal contrasting pair (BLiMP and Zorro benchmarks on Fig. 1), or their capacity to
442 produce well-formed text (Fig. 2). Furthermore, the trajectory of the left-right asymmetry with
443 training did not correlate with arithmetic or formal language (Dyck) tasks (Fig. 1), nor with tasks
444 involving world knowledge and reasoning (ARC and Hellaswag; see Fig. 2).

445 In a recent study, AlKhamissi et al. (2025) compared the developmental trajectories of brain scores,
446 formal linguistic competence and functional competence (Mahowald et al., 2024) and showed three
447 successive phase transitions: brain scores raise first, followed by formal competence, and only later
448 by functional competence. Here, we also find that functional competence is acquired later during
449 training compared to formal competence, but we find that the left-right asymmetry strikingly aligns
450 with the trajectory of formal performance (see Figs. 1, 2, 4, and 5), contrary to the absolute brain
451 score which start to increase before formal competence (see AlKhamissi et al., 2025, Fig. 4).

452 Among all our tasks, one was especially easy to acquire: the Dyck languages based on nested
453 parentheses. One possibility is that this is due to in-context learning: Olsson et al. (2022) proposed
454 that some attention heads (“induction heads”) enable a model to recognize and complete patterns
455 based on previous occurrences in a prompt. They reported that transformer language models undergo
456 a “phase change” early in training, during which induction heads form and simultaneously in-context
457 learning improves dramatically. This mechanism could be at play for the Dyck languages in our
458 experiment. Another possibility could be due to low-level reasons such as bigrams violations in
459 the ungrammatical sequences of parentheses (e.g. {) in Dyck-3). In any case, the underlying
460 phenomena is acquired early by the LLM, well before the left-right transition.

461 One point of caution is in order. One should not jump to the conclusion that brains scores are only
462 driven by syntactic knowledge. Kauf et al. (2024), manipulating sentences by altering word order,
463 removing words, or changing semantic content, observed that brain scores were more affected by
464 changing semantic content. This led them to claim that “lexical-semantic content of the sentence
465 (largely carried by content words) rather than the sentence’s syntactic form (conveyed via word order
466 or function words) is primarily responsible for the ANN-to-brain similarity”. It would be interesting
467 to check how these manipulations impact the left-right asymmetry.

468 Although we focused in this paper on a global property, the left-right hemispheric asymmetry, the
469 relationship between brain scores and the linguistic performance of models at different training
470 stages should eventually be evaluated more finely at the level of brain regions. This type of approach
471 has been applied very recently to visual processing by Raugel et al. (2025), who observed that brain
472 scores in various regions have different trajectories as a function of the amount of training. More
473 precisely, they reported that the model they study, Dino v3, first aligns with the early representations
474 of the sensory cortices, and needs more training data to align with higher-level regions. It would
475 be worth investigating whether similar links between the brain and LLMs at different training steps
476 exist for language.

477 Finally, although we show that the left-right asymmetry in brain predictivity displays a strong change
478 during training, the functional competence of the LLM keeps improving after this transition (see
479 scores on ARC and Hellaswag benchmarks on Fig. 2). Whether, how, and where this translates into
480 better brain scores is a question for future research.

481 REPRODUCIBILITY STATEMENT

482 fMRI data come from the publicly available fMRI corpus *Le Petit Prince*. All pretrained language
483 models were downloaded from Hugging Face through the *transformers* interface. To assess the per-
484 formance of OLMo-2 7B on Hellaswag, ARC, and FrenchBench, we relied on EleutherAI’s eval-
485 uation tools. More detailed information is available in Appendix A. The full code to reproduce the

486 analyses presented in this paper will be available on GitHub upon acceptance and is now available
487 as a downloadable supplementary material.
488

489 **REFERENCES**
490

491 Badr AlKhamissi, Greta Tuckute, Yingtian Tang, Taha Binhuraib, Antoine Bosselut, and Martin
492 Schrimpf. From language to cognition: How LLMs outgrow the human language network. *arXiv*
493 *preprint arXiv:2503.01830*, 2025.

494 Richard Antonello, Aditya Vaidya, and Alexander Huth. Scaling laws for language encoding models
495 in fMRI. *Advances in Neural Information Processing Systems*, 36, 2024.

496

497 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
498 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
499 Pythia: A suite for analyzing large language models across training and scaling. In *International
500 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

501 Steven Bird, Ewan Klein, and Edward Loper. *Natural Language Processing with Python: analyzing
502 text with the Natural Language Toolkit*. "O'Reilly Media, Inc.", 2009.

503

504 Laurent Bonnasse-Gahot and Christophe Pallier. fMRI predictors based on language models of
505 increasing complexity recover brain left lateralization. In A. Globerson, L. Mackey, D. Belgrave,
506 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing
507 Systems*, volume 37, pp. 125231–125263. Curran Associates, Inc., 2024.

508 Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural
509 language processing. *Communications biology*, 5(1):1–10, 2022.

510

511 Charlotte Caucheteux, Alexandre Gramfort, and Jean-Remi King. Disentangling syntax and se-
512 mantics in the brain with deep networks. In *International conference on machine learning*, pp.
513 1336–1348. PMLR, 2021.

514 Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sud-
515 den drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs. *arXiv
516 preprint arXiv:2309.07311*, 2023.

517

518 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
519 Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
520 lenge. *arXiv preprint arXiv:1803.05457*, 2018.

521

522 Nilearn contributors. nilearn. URL <https://github.com/nilearn/nilearn>.

523

524 Manuel Faysse, Patrick Fernandes, Nuno M Guerreiro, António Loison, Duarte Miguel Alves, Caio
525 Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro Henrique Martins, Antoni Bigata Casade-
526 munt, François Yvon, Andre Martins, Gautier Viaud, Céline Hudelot, and Pierre Colombo. Crois-
527 santLLM: A truly bilingual French-English language model. *Transactions on Machine Learning
Research*, 2025. ISSN 2835-8856.

528

529 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
530 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
531 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
532 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
533 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

534

535 Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A
536 Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for
537 language processing in humans and deep language models. *Nature neuroscience*, 25(3):369–380,
2022.

538

539 Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In *The Eleventh
International Conference on Learning Representations*, 2023.

540 Philip A Huebner, Elior Sulem, Fisher Cynthia, and Dan Roth. BabyBERTa: Learning more grammar with small-scale child-directed language. In *Proceedings of the 25th conference on computational natural language learning*, pp. 624–646, 2021.

541

542

543

544 J. D. Hunter. Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

545

546 Alexander G Huth, Wendy A De Heer, Thomas L Griffiths, Frédéric E Theunissen, and Jack L Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex. *Nature*, 532(7600):453–458, 2016.

547

548

549

550 Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fmri. *Advances in neural information processing systems*, 31, 2018.

551

552 Carina Kauf, Greta Tuckute, Roger Levy, Jacob Andreas, and Evelina Fedorenko. Lexical-Semantic Content, Not Syntactic Structure, is the Main Contributor to ANN-Brain Similarity of fMRI Responses in the Language Network. *Neurobiology of Language*, 5(1):7–42, April 2024.

553

554

555

556 Jixing Li, Shohini Bhattachari, Shulin Zhang, Berta Franzluebbers, Wen-Ming Luh, R Nathan Spreng, Jonathan R Brennan, Yiming Yang, Christophe Pallier, and John Hale. Le petit prince multilingual naturalistic fmri corpus. *Scientific data*, 9(1):530, 2022.

557

558

559 Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. Dissociating language and thought in large language models. *Trends in Cognitive Sciences*, 2024.

560

561

562 Wes McKinney et al. Data structures for statistical computing in python. In *Proceedings of the 9th Python in Science Conference*, volume 445, pp. 51–56. Austin, TX, 2010.

563

564

565 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2 Furious, 2024.

566

567

568

569

570

571

572

573 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.

574

575

576

577 Alexandre Pasquier, Yair Lakretz, Bertrand Thirion, and Christophe Pallier. Information-Restricted Neural Language Models Reveal Different Brain Regions’ Sensitivity to Semantics, Syntax, and Context. *Neurobiology of Language*, 4(4):611–636, 2023.

578

579

580 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

581

582

583

584 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12(Oct):2825–2830, 2011.

585

586

587 Joséphine Raugel, Marc Szafraniec, Huy V Vo, Camille Couprie, Patrick Labatut, Piotr Bojanowski, Valentin Wyart, and Jean-Rémi King. Disentangling the factors of convergence between brains and computer vision models. *arXiv preprint arXiv:2508.18226*, 2025.

588

589

590 Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative modeling converges on predictive processing. *Proceedings of the National Academy of Sciences*, 118(45), 2021.

591

592

593

594 Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. Llm circuit analyses are consistent
595 across training and scale. *Advances in Neural Information Processing Systems*, 37:40699–40731,
596 2024.

597 Mariya Toneva and Leila Wehbe. Interpreting and improving natural-language processing (in ma-
598 chines) with natural language-processing (in the brain). *Advances in neural information process-
599 ing systems*, 32, 2019.

600 Stefan Van Der Walt, S Chris Colbert, and Gaël Varoquaux. The numpy array: a structure for
601 efficient numerical computation. *Computing in Science & Engineering*, 13(2):22, 2011.

602 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
603 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
604 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
605 son, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
606 Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
607 Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
608 and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
609 Python. *Nature Methods*, 17:261–272, 2020. doi: <https://doi.org/10.1038/s41592-019-0686-2>.

610 Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
611 *Transactions of the Association for Computational Linguistics*, 7:625–641, 2019.

612 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
613 Samuel R Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. *Transactions
614 of the Association for Computational Linguistics*, 8:377–392, 2020.

615 Michael L. Waskom. Seaborn: statistical data visualization. *Journal of Open Source Software*, 6
616 (60):3021, 2021. doi: 10.21105/joss.03021.

617 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
618 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
619 natural language processing. In *Proceedings of the 2020 conference on empirical methods in
620 natural language processing: system demonstrations*, pp. 38–45, 2020.

621 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
622 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A COMPUTER CODE

649

650 All fMRI data come from the publicly available fMRI corpus *Le Petit Prince* (Li et al., 2022)³. The
651 Python 3.10 code written for the present project relies on the following libraries: `transformers`
652 v4.56.0 (Wolf et al., 2020), `scikit_learn` v1.6.1 (Pedregosa et al., 2011), `nilearn`
653 v0.11.1 (contributors), `Pytorch` v2.7.1 (Paszke et al., 2019), `nltk` v3.9.1 (Bird et al.,
654 2009), `matplotlib` v3.10.3 (Hunter, 2007), `seaborn` v0.13.2 (Waskom, 2021), `numpy`
655 v2.0.2 (Van Der Walt et al., 2011), `pandas` v2.2.3 (McKinney et al., 2010), `scipy`
656 v1.15.2 (Virtanen et al., 2020). All pretrained models were downloaded from Hugging Face
657 through the `transformers` interface. To assess the performance of OLMo-2 7B on Hellaswag,
658 ARC, and FrenchBench, we rely on EleutherAI’s evaluation tools `lm_eval` v0.4.9 (Gao et al.,
659 2024)⁴. The code will be available on GitHub upon acceptance and is available as a downloadable
660 supplementary material.

661

662 B SUPPLEMENTARY FIGURES

663

684 Figure B.1: **Phase transition during training: “minimal pairs” benchmarks.** Same as Fig. 1, but
685 for the whole brain volume.
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700

³<https://openneuro.org/datasets/ds003643/versions/2.0.5>

⁴<https://github.com/EleutherAI/lm-evaluation-harness>

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure B.2: **Results split by BLiMP subtasks.** BLiMP labels minimal pairs in 4 different fields (“syntax”, “syntax_semantic”, “morphology”, “semantic”). For each field, a panel displays the evolution of performance during training, along with the left-right brain predictivity asymmetry (as in Fig. 1).

Figure B.3: **Fitting sigmoid to the evolution of various quantities during the training of the OLMo-2 7B language model.** The colored line corresponds to the true values, while the gray line is the resulting fitted sigmoidal curve. See Fig. 3 for a quantitative comparison between the dynamics of the left-right asymmetry in brain predictivity and the performance of the LLM on the various evaluations.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure B.4: **Generalization to other language models.** Same as Fig. 1 but for the Pythia-2.8b (top panel) and Pythia-6.9b (bottom panel) models. In each case, the trajectory of left-right brain asymmetry aligns well with the evolution of the performance on linguistic minimal pairs benchmarks, but not on the non-linguistic ones.

Figure B.5: **Quantitative comparison of the evolution of the left-right hemispheric brain scores in French participants and the various performance trajectories.** Similar analysis as in Fig. 3 but for the French data. Left-right asymmetry in English participants is also provided as a comparison. The right panel shows the Euclidean distance between the location on the (x_0, β) plane of each point on the left panel and the left-right asymmetry in French participants. See Fig. B.3, bottom row, for a full visualization of the sigmoid fits.

Figure B.6: **The evolution of the left-right asymmetry in brain predictivity in French subjects follows the acquisition of formal competence in this language by the LLM.** Same as Fig. 5, but for the whole brain volume.

918 C EXAMPLES OF TEXTS GENERATED BY OLMO-2 7B FOR DIFFERENT
919 TRAINING CHECKPOINTS
920

922 This section provides examples of texts generated by the OLMO-2 7B model for the 10 different
923 training checkpoints selected for analysis in the present study. These are samples from one trial
924 (one random seed for the generation) of one prompt (namely, 'Bob went'). All generated texts will
925 be available in a repository on the GitHub page of the project. Each sample starts with a number
926 (1B, 3B, 5B, etc) indicating the number of tokens (in billions) seen by the corresponding checkpoint.
927

928 ----- 1B -----
929 Bob went: . , the other for the't the the new one was ". When are's it post. The was
930 in the said. 2. The was the 7 of 2.8, this as " and it is the (had a " that the two) was
931 17. It is that did the this is some, in a. (1. and the same of all of some't your with the
932 people in the as. The1 is that is at the end, the their. times of in the time. 3's all in
933 the's their of that will was an this is a does , and the in in the 2, 3.1. And it is in the
934 the other (. (around the was just the two. (7 and the the are the was in the two. The
one was not a "2 by this at 00 in the last the same , and the other " : 3. "201 line with 3
are

935 " in the " was in ?
936

937 For the the9, and the the following, and the, is that are the 7, more,, he
938 ----- 3B -----
939

940 Bob went team. , i do what, and what the reason I did was a pretty stupid job, not the
941 most romantic. So we didn't think there is an interesting set-up that was called a real
942 white-ice-ironist-very- and we may use a "pre-essential." We've been trying to make a bit of
943 that and have a strong and unrelent-ly-in-plead, that's not true- and we have some people who
944 may find. But we all know that we have to be the best of this because we are too big. So we
945 have no particular idea how we should really be able to make it. We have a way to take in any
form of thought or do we just to go to a post by the other people. We think that's just a big
deal, because it's not a good movie.
946

We've got to be a huge fan of "Lay: The New Yorker" for a series of decades, and we have been
"in the East," for the movie for three years, where we're going to be in the "good" area in
this and we'll look forward to it."
947

948 We're still on the page for us, so we'd like to see how you can get it
949 ----- 5B -----
950

951 Bob went' they were the other.
952

Gosh was the one I knew was "the Man" who was the most talked-about about the man who was
in the first grade. But that was the point, of course, because it was all about "The Ram"
which was really about "The Great Dane", that was his point. It was that "The Man" was going
to change. But as you can see, that was all of those things. Not every thing that happened
before. That's all for now. But I can't tell you this because I knew it was just an awful
dream, because I was talking about that.
953

954 Gosh was talking about the 9/1 in the second grade. I think I did just say it was a good
book with some serious reading and I didn't think the author was an actual writer and I didn't
think it was anything but a good one, that I still think it was a good book, that I didn't
want to, and that I needed to be a writer for the world to find it, and then to be a good
publisher for a lot of people in this book. I guess the author is a wonderful writer, too,
and we just need to find the great ones.
955

956 Gosh, I knew
957 ----- 13B -----
958

959 Bob went down the bank of a small town in the state of California. But after he was done,
it was so far to the west of the town in which he had set off that he called a meeting of the
city police officers and said, "Take it out with a boat and float it." Another officer said,
"Take it with the boat and float it." And again after a while a policeman came by and took
the boat and started it and started again till it was gone. So this is all that is said about
this event. Now when this was done this is described as being on this date in February, 1961.
960

961 GREG: So what does 1961 have anything to do with this, or is it just another story?
962

963 SHER: No, this happened in 1961. It was already an eventful and fun-filled day in Sacramento,
964 CA. The city of Santa Barbara had decided to get away from Sacramento and go for a vacation
965 of some sort, and that was all arranged. But when the police officers arrived at the scene
966 of this particular case, they told everybody to keep looking. Because they said it was a very
967 cold case, and the temperatures had been very cold, they had decided to make a little boat.
968 And so they
969

974 Bob went down the hallway and left for the elevator.

"Bob is in my office! He just went out!" screamed Lucy as she rushed into the elevator with a sullen look on her face and her arms crossed. "What's going on?" asked Bob from his desk as he sat behind his computer, "What? I have to go to class, it's after hour and no students will be in here until after the end of the hour!" Bob stated with a sarcastic grin, Lucy looked at her boss with a puzzled look. "That means that you have class in two minutes!" Bob stated as he got up to grab his robe and slacks. Lucy walked out of the office and Bob followed her out and told her to keep an eye out for Bob, then when they got to their destination, Lucy went into Bob's office, which was at the back of his office complex. "Bob, I need your help, the elevator isn't working," she started to explain, but Bob started walking back into his office and opened up his desk. "I have just gotten my license, how are you supposed to do things without

978 Bob went down the hallway and opened the door. He was standing on the other side of it, not noticing. The door was closed and the light from the outside hallway went in as he pushed it open. There was a black cat laying in the middle of the floor, and a white cat was sniffing at him. Both of them looked like they knew him.

"Did you get any?" He said to Bob, but Bob didn't answer. "Well? Did you?"

Bob looked at the floor. "Yes."

"And?" said the black cat, stepping out of the doorframe.

"Bob is a cat!" Bob thought, in his head. He had never thought to tell a black cat that he was a cat, and it was just a big mess, because he wouldn't tell the black cat anything.

The black cat was not angry or surprised by this at all. It looked at Bob, and then Bob looked at it. "What did you get?" it said, then laughed.

Bob looked at the floor and then at the black cat. It was the first time he had ever said anything like that, so he didn't know what it was supposed to mean,

Bob went down the hallway and opened the back door of the storage room. "No one's here." he said. "Go in the front."

She opened the door and looked around. The place was empty. "But the back door is locked!" she said, and pointed to the door that she had just locked.

Bob looked and didn't notice anything out of place. He had been a private investigator for years and nothing ever surprised him. She closed the door and walked to the front door. "I'll get the phone," Bob said.

She walked into the kitchen. It was empty. "Where are everyone?" she asked. There were several people in the house. She was sure she saw someone in the living room watching television.

She walked to the living room. Someone was watching television but it was in black and white. The set looked old.

He stood and asked her why she was there. "Someone was watching the television and it looked old," she said.

"Your friend, the one you brought in," he said.

She looked at him strangely and told him that the friend was gone and the television had always been in color. Then the television switched to color. He knew

Bob went down the hallway and opened the back door of the storage room. "No one's here." He was right. The room was empty. "How is that?" said a voice just above Bob's head. Bob turned and looked up. A ghostly white figure stood a few feet away. "I...I didn't hear you." "I've been walking around a lot." Bob swallowed hard and took a step toward the figure. The figure smiled. "Have you seen the young woman?" said Bob. "She is on this side. You must walk with her." Bob blinked. He had no idea what the figure meant by that. "But where is she?" The figure pointed toward the wall and raised a hand. Bob looked at it and saw a crack in the wall leading to a dark hallway. "The tunnel?" said Bob. The figure nodded. "But, how...?" "You must go through the tunnel." "But the others—" The figure's smile widened and Bob could feel its emptiness. "You must go through the tunnel, Bob." Bob looked at the figure again. Then, he nodded

Bob went down the hallway of a small, cramped flat which was bare of any other furniture other than the bed and a lamp. In the bedroom the man said, "Now we're going to play a little game. I am going to blindfold you and we are going to play 'guess who it is.' You have to guess. It's that simple." After tying Bob's eyes and sitting on the bed next to him Bob said, "What

1026 do you call this game?" "The game goes like this," he said. "I am going to caress your body
1027 with my hands, you have to identify where I touch you. If you guess right, I'll caress you a
1028 little longer. If you guess wrong I'll just stop. It's like you said, simple. Ready?" "Wait
1029 just a minute. I said not if I didn't want to." "You've already lost," he said.

1030 He stood and stripped to his underwear, revealing the same hairy chest, and his cock was
1031 obviously hardening. He stood next to the bed, pulled off his shorts and stood in front
1032 of Bob, his hard penis in front of Bob's face. "Let the game begin." He started on Bob's
shoulder, running his finger down Bob's arm,

1033 ----- 3896B -----
1034 Bob went down the hallway and opened the back door of the restaurant. Then he walked out
1035 to his car and saw there was no parking available in the front lot. "How is that?" he
1036 said to himself. "They didn't have as many cars when I was there." Bob pulled into the
1037 front lot and parked near the edge of the parking lot. He walked into the building and a
1038 woman at the front door said to him, "Good morning." "Good morning," Bob said. Bob
1039 went past the front desk and to the restaurant. As Bob passed the desk, the hostess pointed
1040 out a booth. "I've got a table," Bob thought. He walked to the booth and sat down. He
1041 ordered his meal and sat back and relaxed. He had a good book to read and was reading an
article about an upcoming movie based on the book by the famous author. A waiter took Bob's
1042 order and asked him if he wanted another drink. "No, thanks. I've got a coke here," Bob
1043 replied. The waiter took his glass and poured in some ice and then put in some coke from
1044 a glass bottle. Bob took a sip and said, "I don't think it needs any more coke." "Sorry,
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079