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Abstract

Spatial representations are fundamental to hu-
man cognition, as understanding spatial rela-
tionships between objects is essential in daily
life. Language serves as an indispensable tool
for communicating spatial information, creat-
ing a close connection between spatial represen-
tations and spatial language. Large language
models (LLMs), theoretically, possess spatial
cognition due to their proficiency in natural
language processing. This study examines the
spatial representations of LLMs by employing
traditional spatial tasks used in human experi-
ments and comparing the models’ performance
to that of humans. The results indicate that
LLMs resemble humans in selecting spatial
prepositions to describe spatial relationships
and exhibit a preference for vertically oriented
spatial terms. However, the human tendency
to better represent locations along specific axes
is absent in the performance of LLMs. This
finding suggests that, although spatial language
is closely linked to spatial representations, the
two are not entirely equivalent.

1 Introduction

The apparent proficiency of large language mod-
els (LLMs) in understanding and generating natu-
ral language suggests that they may exhibit cogni-
tive abilities akin to those of humans, such as the-
ory of mind and reasoning (Strachan et al., 2024;
Rahimi Moghaddam and Honey, 2023; Lampinen
et al., 2024; Webb et al., 2023; Gandhi et al.,
2023). Consequently, the evaluation of these mod-
els has garnered increasing attention, particularly
given their expanding applications across domains
like code generation and translation (Hong et al.,
2023), where minimizing potential errors in their
responses is critical. A promising direction for the
LLM industry lies in advancing embodied intel-
ligence, which necessitates a robust capacity for
spatial understanding (Fan et al., 2024; Zhang et al.,
2024). While spatial reasoning is more prominent

in the multi-modal domain, where spatial phenom-
ena are often integrated with visual information, it
remains essential to investigate spatial representa-
tions grounded in natural language to further enable
LLMs to support and enhance various aspects of
social life.

Spatial relations, which describe the connections
between physical objects, are essential for spatial
understanding and play a critical role in spatial rea-
soning. Humans naturally use language to convey
spatial relations in everyday life. Trained on ex-
tensive natural language datasets, large language
models (LLMs) may encode not only spatial lin-
guistic structures but also develop implicit repre-
sentations of spatial relations, even without direct
sensory inputs. Understanding the interaction be-
tween spatial language and spatial representations
in LLMs can offer valuable insights into how these
models process and "comprehend" spatial concepts.
Recent studies suggest that LLMs have achieved
acceptable proficiency in representing simple cardi-
nal directions and planning navigation tasks (Cohn
and Blackwell, 2024; Zhou et al., 2024). How-
ever, their performance remains inconsistent and is
influenced by factors such as environmental com-
plexity. LLMs tend to excel in addressing basic
spatial questions but struggle with more advanced
and intricate spatial concepts (Hojati and Feick,
2024). Considering that spatial representations are
vital for achieving embodied intelligence and ad-
vancing toward artificial general intelligence (AGI),
the sensitivity of LLMs to spatial relations in 2D
space warrants more comprehensive exploration.

Building on the CogEval protocol recently pro-
posed for the general evaluation of LLMs’ cog-
nitive capacities (Momennejad et al., 2023), this
study aims to assess the spatial intelligence of
LLMs. Specifically, we examine the structure of
LLMs’ representations of spatial relations between
two objects within a 7*7 grid scene and evaluate
the similarity of these representations to those of



humans using two spatial tasks: the spatial gen-
eration task and the spatial rating task. The cen-
tral research question is whether LLMs can derive
visual-like representations from textual input and
coordinate descriptions in a 2D space, and to what
extent their representations align with those of hu-
mans. We evaluate the spatial sensitivity of five
LLMs, including state-of-the-art (SOTA) models
such as GPT-4, and compare their performance to
human behavior data obtained from a previous re-
lated study. The research hypothesis posits that
LLMs can partially capture 2D spatial represen-
tations and exhibit certain features embedded in
human spatial language.

The results reveal both similarities and differ-
ences between the spatial representations of LLMs
and humans. Similar to humans, LLMs more fre-
quently select vertically oriented spatial preposi-
tions to describe spatial relations, as opposed to hor-
izontally oriented terms. State-of-the-art (SOTA)
models, such as GPT-4, demonstrate significant
proficiency in judging spatial relations, with the
exception of accurately identifying the rightward
relationship. However, weaker models, such as
Llama3-8B, exhibit lower spatial intelligence. Fur-
thermore, the temperature parameter appears to
have minimal impact on the models’ performance,
suggesting that spatial representations may be fun-
damental to human cognition. Nonetheless, LLMs
show limitations in capturing certain subtle char-
acteristics of human spatial cognition, such as the
tendency for more precise representations along
specific axes.

In summary, the main contributions of this study
are as follows:

1) Adaptation of a standardized experimen-
tal paradigm: We transferred a well-established
experimental paradigm from cognitive psychology,
used to examine spatial representations in humans,
to the evaluation of LL.Ms. This approach reveals
the models’ spatial capacities in a 2D scene, which
serves as a foundational aspect of spatial intelli-
gence required in more complex environments.

2) Comparison of spatial representations: By
comparing the spatial representations of five main-
stream LLMs with human behavior based on previ-
ous studies, this research provides insights into the
spatial capabilities of LLMs while also contribut-
ing to an indirect understanding of human spatial
cognition.

2 Related Works

2.1 Spatial representations and spatial
language

Fundamental to cognition in both humans and other
animals, spatial representations play a critical role
in encoding the geometric properties of objects and
the spatial relationships among them. These rep-
resentations often encompass cognitive models or
mental maps that individuals use to mentally visu-
alize and manipulate spatial information. Spatial
representations are typically derived from sensory
modalities such as vision, hearing, or touch, and
they provide crucial information to motor systems
and language processing (Landau and Jackendoff,
1993). As aresult, frequent translation occurs be-
tween spatial representations and spatial language,
which generally consists of spatial words or simple
phrases.

Spatial language specifically refers to linguistic
expressions used to describe spatial properties such
as location, orientation, direction, and distance.
These expressions are integral to how individuals
communicate their understanding of spatial envi-
ronments. Three basic elements underpin linguistic
descriptions of spatial locations: the figure object
(the object being located), the reference object, and
the spatial relationship between them. Spatial rela-
tionships are often encoded through prepositions
such as "above" and "below," while both the fig-
ure object and the reference object are typically
expressed as noun phrases denoting object names.
For example, in the sentence "The apple is on the
desk," "the apple" functions as the figure object,
"the desk" serves as the reference object, and the
preposition "on" reflects the spatial relationship
between them.

In cognitive psychology, spatial language and
spatial representations are intricately linked. Spa-
tial language serves as a key mechanism through
which humans convey and process information
about space, while spatial representations act as
mental constructs that help organize and navigate
spatial relationships. It has been proposed that spa-
tial language is grounded in the geometry of visual
scenes represented in spatial cognition (Mirzaee
et al., 2021). Furthermore, the articulation of spa-
tial concepts in language may influence how they
are mentally represented. Empirical evidence sug-
gests that limited exposure to spatial language im-
pairs individuals’ performance on non-linguistic
spatial tasks, with deaf children showing weaker



abilities to convey spatial relations (Gentner et al.,
2013). Cross-linguistic comparisons reveal that
similar spatial properties are encoded in both spa-
tial language and spatial representations, suggest-
ing parallels between these two systems (Munnich
etal., 2001). Consequently, spatial language can be
viewed as a window into the spatial representations
that underlie human cognition.

2.2 Spatial understanding of LLMs

Given that LLMs are trained on vast amounts of nat-
ural language data, which inherently contains rich
spatial language, it is reasonable to infer that these
models may acquire a certain degree of spatial un-
derstanding. This inference aligns with the estab-
lished link between spatial representations and spa-
tial language in human cognition. Although LLMs
lack access to visual or sensorimotor information,
studies suggest that they can partially derive spatial
representations from textual input. For instance,
LLMs have shown promise in reasoning about
simple cardinal directions (CDs), such as "north,"
"south," "east," and "west," though their perfor-
mance declines with more complex CDs, such as
"northeast”" (Cohn and Blackwell, 2024). Addition-
ally, LLMs demonstrate some ability to perform
spatial calculations and apply spatial prepositions
correctly (Bhandari et al., 2023). Prompting strate-
gies, including Chain-of-Thought (CoT), one-shot
or few-shot prompting, and advanced techniques
like Visualization-of-Thought (VoT), have been
shown to enhance LLMs’ spatial reasoning and
path-planning capabilities (Wu et al., 2024; Xu
et al., 2024). Breaking complex spatial reasoning
tasks into smaller, manageable subtasks also im-
proves performance (Peng and Powers, 2024).
However, challenges remain. LLMs’ represen-
tations of spatial relations can be distorted, often
influenced by the hierarchical structure of the en-
vironment (Fulman et al., 2024). In many cases,
models identify only the nearest cardinal direc-
tions, reflecting an associative learning mecha-
nism rather than a robust understanding of spa-
tial concepts. Furthermore, substantial variabil-
ity exists in their ability to recognize and rep-
resent geometric structures, such as squares or
hexagons, leaving significant room for improve-
ment (Yamada et al., 2024). The construction of
cognitive maps—representations of relational struc-
tures in tasks or environments—has also been ex-
plored. While cognitive maps are essential for hu-
man spatial planning and navigation, systematic

evaluations reveal that LLMs often fail in planning
tasks, and there is insufficient evidence to support
their competence in cognitive map construction
(Momennejad et al., 2023).

In summary, while LLMs have made measurable
progress in spatial understanding, further advance-
ments are necessary for practical applications in
real-world scenarios. Discrepancies and inconsis-
tent findings regarding their spatial representation
capacities may stem from the absence of standard-
ized experimental paradigms. To address this, it
is essential to compare LLMs’ spatial representa-
tions with those of humans, using well-established
testing paradigms from cognitive science. This
approach could provide critical insights into opti-
mizing LLMs’ spatial reasoning capabilities while
ensuring the scientific rigor and validity of experi-
mental evaluations.

3 Methods

3.1 Spatial representation tasks and datasets
generation

The spatial language capabilities of LLMs were
examined by requesting the models to describe spa-
tial relationships between given object pairs. Two
tasks, adapted from human psychological experi-
ments (Munnich et al., 2001; Hayward and Tarr,
1995), were employed to assess their spatial abili-
ties: (1) generating spatial terms to capture spatial
relationships and (2) rating the appropriateness of
given statements about object locations in a 2D
scene. The procedures for these tasks are as fol-
lows.

Spatial Generation Task. In the spatial gener-
ation task, LLMs were required to produce spa-
tial terms that described the relationships between
two objects on a 2D 7*7 grid (Figure 1). The
two objects in each trial were the reference ob-
ject and the figure object. The reference object
was always positioned at the center of the grid,
while the figure object could appear in any of
the remaining 48 positions, centered in the cor-
responding cells. Five reference-figure object
pairs—"computer-ring", "apple-fish", "bird-tree",
"book-pen", and "desk-sofa"—were used to create
a diverse dataset. This design resulted in a total
of 240 trials (48 positions * 5 object pairs). For
each trial, a query prompt was generated using the
following template, where [reference], [figure], and
[x1, y1] were replaced with specific values for the
trial, and [relation] was to be completed by LLMs.
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Figure 1: The 7*7 grid plane in spatial representation
tasks. The cells noted as "Ref’ and "Fig’ represent the
reference object and the figure object respectively, the
former of which is always located at the center ([4,4])
while the latter might appear in all the other 48 cells
([2,3] for instance).

Spatial Rating Task. To address the limitation
that some LL.Ms provide only general and coarse
terms instead of detailed spatial prepositions in the
spatial generation task, a spatial rating task was
introduced to further examine their spatial cogni-
tion. Unlike the spatial generation task, which
required free-form responses, the spatial rating
task presented LLMs with predefined statements
about the locations of two objects. The models
were then required to rate the applicability of these
spatial statements on a scale from 1 to 7, where
1 indicated "least appropriate” and 7 indicated
"most appropriate.” Two reference-figure object
pairs—"computer-ring" and "apple-fish"—were se-
lected for this task, combined with four types of
spatial relationships: "above," "below," "left," and
"right." This design resulted in 384 trials (48 loca-
tions * 2 object pairs * 4 relationships). The query
prompt for this task followed a specific template,
where placeholders were replaced with appropriate
values for each trial. The complete set of prompts
is available in the supplementary material B.

3.2 LLMs evaluated

The LLMs evaluated in this study include both
open-source and closed-source models, incorporat-
ing several SOTA models: GPT-3.5-Turbo, GPT-4
(via Azure OpenAl API), Qwen-Turbo, ZhipuAl,
and Llama3-8B. To explore the effect of model out-
put variability, experiments were conducted across
three temperature settings (0, 0.5, 1) for each LLM.
Temperature is a key parameter that controls the
uncertainty in the generated content. A higher tem-

perature encourages more diverse and creative re-
sponses, but may also reduce reliability and pre-
cision. Since this study aims to assess both the
creativity and accuracy of LLMs in generating spa-
tial prepositions to describe spatial relationships,
varying the temperature allowed for a comprehen-
sive evaluation of the models’ ability to balance
creativity with precision. Consequently, the spa-
tial representation tasks were repeated across these
different temperature settings to account for vari-
ability in the models’ responses.

3.3 Baseline and evaluation metrics

According to previous studies, most spatial terms
used by humans to describe spatial relationships
can be categorized into two main types: hori-
zontally oriented and vertically oriented preposi-
tions (Munnich et al., 2001; Hayward and Tarr,
1995). Specifically, horizontally oriented preposi-
tions (e.g., "above" and "below") describe the po-
sition of the figure object relative to the reference
object in terms of horizontal relations, while verti-
cally oriented prepositions (e.g., "left" and "right")
capture vertical relationships between the two ob-
jects.

For the spatial generation task, the proportion of
horizontally and vertically oriented spatial preposi-
tions used in the LLMs’ responses was computed
for each cell in the 7*7 grid, with averages taken
across different scenarios. Since the concept of
“front’ or *behind’ does not apply on a 2D plane,
responses involving such prepositions were con-
sidered nonsensical or ineffective. Additionally, as
neither angles nor compass directions were allowed
in the prompts to LLMs, the models’ adherence to
the instructions was evaluated by examining the
proportion of invalid responses. Given that LLMs
often use both horizontal and vertical spatial terms
simultaneously when describing spatial relation-
ships, the first spatial preposition that appeared in
the models’ responses was taken as the primary
indicator of their axial preference.

In the spatial rating task, LLMs’ ratings of state-
ments regarding the spatial relationships between
the figure object and the reference object were av-
eraged across all scenarios for each location. To
better understand LLLMs’ basic spatial perception,
the 7*7 grid was divided into four 3*7 sub-grids
(up, down, left, and right relative to the centrally
positioned reference object at [4,4]). The ratings
for each sub-grid were then compared to those from
the other three sub-grids. This analysis aimed to



Temperature 0 0.5 1
GPT-4 91.25% | 94.17% | 88.75%
GPT-3.5-Turbo | 40.83% | 43.33% | 39.58%
Qwen-Turbo | 71.67% | 65.83% | 54.17%
ZhipuAl 95.42% | 94.17% | 93.33%
Llama3-8B 28.75% | 25.83% | 30.42%

Table 1: Validness of LLMs’ responses on the spatial
generation task.

reflect the models’ ability to recognize and distin-
guish primary axial relations.

In both spatial tasks, LLMs’ performance was
compared to that of humans based on a previous re-
lated study (Hayward and Tarr, 1995). Specifically,
the Euclidean distance between the rating matrices
of LLMs and humans was calculated and normal-
ized to quantify the difference in performance. The
relative difference, denoted as Dif fuorm, is for-
mulated as follows. A smaller value of Dif foorm
indicates a closer match between the performance
of the models and humans.

| | LLMpatrix — Humanmagrix | | F

Diffnorm =

(F means Frobenius norm; matrix denotes propor-
tion or mean rating.)

4 Results

4.1 Spatial representations of LLLMs are
directionally imbalanced and vertically
more efficient

The spatial prepositions selected by LLMs to de-
scribe the spatial relationships between the figure
object and the reference object exhibit consider-
able diversity, particularly in more advanced mod-
els. Horizontally oriented spatial terms include
"left", "right", "beside", and "next to", while verti-
cally oriented terms encompass "above", "below",
"up", "low(er)", "ahead", and "beyond". In addi-
tion to these axial prepositions, LLMs’ responses
also contain some non-axial spatial terms, such
as "diagonal", "southwest", "behind", and "near".
These non-axial terms, though less frequent, are
considered inappropriate as they do not adhere to
the instructions specifying axial relationships in a
2D grid. Responses incorporating these terms were
therefore coded as invalid.

The proportions of invalid responses from the
five LLMs under three different temperature set-
tings are presented in Table 1. This data reveals
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Figure 2: Proportions of different types spatial prepo-
sitions shown in models’ responses at first. GPT-4 and
ZhipuAl show better validness. Most LLMs except
Qwen-Turbo tend to prefer vertically oriented spatial
terms relative to horizontally oriented spatial terms.

that SOTA models such as GPT-4 and ZhipuAl
consistently provide more accurate and effective
spatial representations, more closely aligning with
human-like spatial reasoning. These models also
demonstrate a preference for describing spatial re-
lationships along axial directions. Moreover, ver-
tically oriented prepositions are more frequently
chosen as the primary descriptors, a trend also ob-
served in human spatial language. The proportions
of three types of spatial prepositions (horizontal,
vertical, and others) in LLMs’ responses across
varying temperature levels are shown in Fig. 2.
The results suggest that temperature settings only
have a subtle effect on the models’ performance in
the spatial generation task. Notably, most models,
with the exception of Qwen-Turbo, tend to use ver-
tically oriented spatial prepositions as their primary
means of describing spatial relationships between
objects on a 2D plane.

4.2 Resemblance of LLLMs to humans in
preference of vertical spatial terms

The proportions of horizontally and vertically ori-
ented spatial prepositions that appeared first in the
models’ responses at each location are compared
with human performance, as derived from the previ-
ous study (Hayward and Tarr, 1995). As shown in
Fig. 3(a), humans exhibit a clear axial preference
when describing spatial relationships. Specifically,
horizontally or vertically oriented spatial preposi-
tions are more likely to be chosen as the primary
descriptors when the figure object is positioned
near the corresponding axis. However, the patterns
in the LLMs’ responses to spatial term generation
exhibit notable differences (Fig. 3(b)). All models
accurately generate horizontal spatial prepositions
along the x-axis centered on the reference object,
except for Qwen-Turbo. The horizontal preposi-
tions produced by Qwen-Turbo are scattered and
lack a clear, consistent pattern.
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(b) Performance of five LLMs on spatial preposition preference
at all cells except the center.
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(c) Distribution of horizontal and vertical spatial prepositions
appeared in LLMs’ responses in the spatial generation task.

Figure 3: Primacy of horizontal and vertical spatial
prepositions in LLMs’ responses at each location on the
7*7 grids. Considering the subtle influence of tempera-
ture on LLMs’ generation performance, the temperature
underlying results displayed here is 0, whereas results
of the other two situations (i.e. 0.5 and 1) are available
in Appendix Fig.S1 and S2.

On the other hand, both GPT-4 and ZhipuAl
appear to overemphasize encoding spatial relation-
ships in the vertical direction, as they generate a
notably higher proportion of vertical spatial prepo-
sitions compared to other models. GPT-3.5-Turbo,
on the other hand, tends to produce more vertical
prepositions when the figure object is located above
the reference object. In contrast, Qwen-Turbo still
exhibits no discernible pattern in the distribution of
vertical spatial prepositions. Llama3-8B, however,
demonstrates a clear axial effect, with consistent
performance in both vertical and horizontal direc-
tions.

When considering the frequency of horizon-
tal and vertical spatial terms combined in the
models’ responses—without focusing on their pri-
macy—results show that GPT-4 and ZhipuAlI en-
code both horizontal and vertical relationships com-
prehensively (Fig. 3(c)). These models provide
a dense representation, employing spatial terms
in both directions across nearly every position.
Llama3-8B’s performance mirrors the findings in

Temperature 0 0.5 1
GPT-4 0.787 | 0.785 | 0.711
GPT-3.5-Turbo | 0.686 | 0.722 | 0.713
Qwen-Turbo | 0.579 | 0.547 | 0.570
ZhipuAl 0.770 | 0.776 | 0.763
Llama3-8B 0.775 1 0.766

Table 2: Horizontal difference between the performance
of LLMs and humans.

Temperature 0 0.5 1
GPT-4 0.331 | 0.378 | 0.311
GPT-3.5-Turbo | 0.662 | 0.632 | 0.695
Qwen-Turbo | 0.689 | 0.754 | 0.843
ZhipuAl 0.360 | 0.346 | 0.352
Llama3-8B 0.778 | 0.774 | 0.764

Table 3: Vertical difference between the performance of
LLMs and humans.

the primacy analysis discussed earlier. In contrast,
no clear pattern emerges in the responses of GPT-
3.5-Turbo and Qwen-Turbo.

The disparity between the performance of LLMs
and humans in the spatial generation task is further
computed and presented in Table 2 (for horizon-
tal directions) and Table 3 (for vertical directions).
In terms of human-like performance, the spatial
representations of both GPT-4 and ZhipuAl are
generally more similar to humans in the vertical
direction, as their normalized difference (Di f fuorm
index) is lower than 0.5, outperforming all other
models. However, in the horizontal direction, the
normalized difference between all models and hu-
mans exceeds 0.5, regardless of the temperature
setting. Therefore, only SOTA models like GPT-4
resemble humans in choosing vertically oriented
spatial prepositions to characterize spatial relation-
ships.

4.3 SOTA LLMs demonstrate a deficiency in
representing rightward spatial
relationships

To gain a more nuanced understanding of LLMs’
spatial representation, models were tasked with rat-
ing the applicability of statements describing four
types of spatial relations between the reference ob-
ject and the figure objects. A comparison was made
between the average ratings of spatial statements
describing relations where the figure objects are
located in the corresponding subgrid area (e.g., the
"above" relation used for figure objects in the upper
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Figure 4: LLMs’ ratings on the applicability of spa-
tial relations in both congruent and incongruent cases.
SOTA models, namely GPT-4 and ZhipuAl, signifi-
cantly provided higher ratings for spatial descriptions
that were congruent with the ground truth, whereas the
performance of the other three models was compara-
tively weaker, likely due to their insensitivity to spatial
relations. The error bars represent the standard error of
the mean (SEM). The temperature setting underlying
the results presented here is 0, with the other two cases
(i.e. 0.5 and 1) detailed in the Appendix Fig.S3.

3*7 subgrid) and those in the other three subgrids.
As shown in Fig. 4, GPT-4 and ZhipuAlI exhibit
strong performance in rating the applicability of
spatial descriptions, as they can effectively distin-
guish between descriptions that are congruent or
incongruent with the actual spatial relationships. In
contrast, the other three models—GPT-3.5-Turbo,
Qwen-Turbo, and Llama3-8B—show significant
insensitivity to spatial relations.

The results reveal that GPT-4 performs re-
markably well on three types of spatial rela-
tions—namely "above", "below", and "left". How-
ever, this performance does not extend to the
"right" relation, where its accuracy drops 5. Simi-
larly, ZhipuAl also provides relatively accurate rat-
ings for the "above" and "below" relations. Qwen-
Turbo shows partial success, particularly when the
"above" relation is used to describe spatial relation-
ships between a figure object situated in the upper
locations and the reference object. Other models,
including GPT-3.5-Turbo and Llama3B, exhibit sig-
nificant weaknesses in representing almost all spa-
tial relations. Interestingly, even models that per-
form well in recognizing basic spatial relations still
show some overlap in representing adjacent spatial
relations, often spreading their ratings around the
vertex of the 7*7 grid. Specifically, GPT-4’s ratings
for the appropriateness of "below" descriptions are
higher in the bottom-left area rather than exclu-
sively in the bottom area, and a similar pattern is
observed in ZhipuAl’s performance.

LLMs’ performance in rating the four types

gpt4-above gpt4-below

[
I

gpté-left pt4-right
I

mmmmmmmmmmmmmmmm

gpt35-above gpt35-left
7

c;mmo uw
R oo
4
2
3
3 :
5
6
7
o [e— ] [— ] [— [— ]
o o
o o
Snwsoo~
4
2
3
3
5
6
7
[— ] o [— ] [— ] CCo
S

~aoswon 0 Tcqeswos 0 cae <o

2l
il
|
- |

qwen-left

—NOTOON

zhipu-left

°
o - N~
—SNWANDN

—NOTOON

llama3-above llama3-left

) o
SNWBNON

o ~
RN

7
§
3
2 3
2
0 T

Figure 5: Performance of five LLMs on the spatial rat-
ing task. Four types of spatial relations are involved in
the rating process, namely "above", "below", "left", and
"right". The intensity of color bars represents models’
evaluation of the appropriateness of the spatial state-
ments given to them. Ratings range from 1 to 7, where
higher scores indicate better applicability. Temperature
underlying the results shown here is 0, leaving the other
two cases (i.e. 0.5 and 1) available in the Appendix
Fig.S4.
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of spatial relations ("above", "below", "left", and
"right") is averaged across horizontal and vertical
directions. Specifically, the "above" and "below"
relations are combined as representing the verti-
cal axis, while the "left" and "right" relations are
categorized under the horizontal axis. The result-
ing rating matrix is then compared with human
ratings from a previous study (Hayward and Tarr,
1995). Human ratings exhibit a clear axial pattern,
with ratings highest when the figure object and the
reference object are aligned on the same axis, grad-
ually decreasing as the figure object moves away
from the central axis (Fig.6(a)). However, this ax-
ial pattern is not observed in any of the LLMs’
performance (Fig.6(b)).

5 Discussion

LLMs’ spatial representation abilities are evalu-
ated through two tasks adapted from cognitive psy-
chology: the spatial generation task and the spa-
tial rating task, which test the models’ capacity to
describe and judge spatial relationships on a 2D
scene. The observed directional imbalance in the
spatial generation task mirrors human tendencies
(Munnich et al., 2001; Hayward and Tarr, 1995),
where vertical prepositions like "above" and "be-
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(a) Humans’ ratings.

(b) Five LLMs’ ratings with the temperature set as 0, leaving
the other two cases (0.5 and 1) available in the Appendix Fig.S5.

Figure 6: Rating performance of Humans and LLMs
on each location where the figure object is situated at
around the reference object, averaged across horizontal
and vertical directions respectively.

low" are used more often than horizontal ones. The
lower frequency of horizontal terms suggests that
LLMs’ spatial depictions along the horizontal axis
are coarser. This pattern is likely rooted in the ef-
fect of gravity on human daily life (Stahn et al.,
2020; Lacquaniti et al., 2015; Levinson, 1996),
where vertical terms tend to be more prevalent than
their horizontal counterparts. Consequently, LLMs
are indirectly shaped by this bias through human-
oriented language.

In terms of heterogeneity in LLMs’ behavior,
more advanced models appear to be significantly
more proficient in spatial representations. Specif-
ically, SOTA models such as GPT-4 demonstrate
greater accuracy in judging spatial relationships
between objects and exhibit higher geometric rich-
ness in their choice of spatial prepositions when
generating spatial descriptions compared to GPT-
3.5-Turbo and Llama3-8B. This finding suggests
that spatial representations can indeed be derived
from spatial language, and LLMs with superior
overall performance are more likely to possess en-
hanced spatial abilities. However, even the best-
performing LLMs still fall short of perfection, in-
dicating the need for further precision in practical
applications. Additional pretraining with automat-
ically generated spatial datasets could potentially
improve LLMs’ spatial reasoning (Mirzaee et al.,
2021).

The influence of temperature on LLMs’ perfor-
mance in both spatial tasks appears minimal, as

no significant differences are observed in models’
choice of spatial terms or their judgment of spatial
relationships under different temperature levels (0,
0.5, and 1). Since temperature controls the ran-
domness of model responses (Zhu et al., 2024),
the insensitivity to temperature variations in spatial
tasks may suggest the fundamental constancy of
spatial cognition in human life. This finding aligns
with studies indicating that changes in temperature
have little effect on LLMs’ problem-solving per-
formance (Renze and Guven, 2024). Interestingly,
all LLMs, including SOTA models like GPT-4 and
ZhipuAl, fail to accurately represent rightward spa-
tial relationships, highlighting a bias in the mod-
els’ training datasets, where leftward relationships
seem to be more prevalent in natural language. This
phenomenon, to our knowledge, is being reported
for the first time and warrants further investigation.
One possible explanation is that, given most people
are right-handed, leftward spatial relationships may
be more intuitive and commonly used in practice.

It is also worth noting that LL.Ms fail to cap-
ture certain subtle characteristics of human spatial
representations, such as axial salience. Cognitive
psychology research has shown that humans tend
to exhibit more accurate spatial representations in
regions near the central axis (Hayward and Tarr,
1995), with accuracy decreasing as the distance
from the axis increases. However, this tendency
is absent in LLMs’ performance, highlighting the
limitations of models that excel at detecting regu-
larities and generating words linearly, yet struggle
with visualizing situations in a 2D space. This
suggests that spatial language does not equate to
spatial representation, and there may be an upper
limit to the spatial representation capabilities of
linguistic models.

6 Conclusion

Both similarity and difference exist between spatial
representations of LLMs and humans. On one hand,
LLMs resemble humans in the choice of spatial
prepositions while describing spatial relationships
between two objects on a 2D scene. Vertically ori-
ented spatial terms are preferred by LLMs relative
to horizontal terms, which is consistent to humans’
performance and probably the reflection of gravity.
On the other hand, finer representations along axis
in humans do not appear in LLMs’ spatial cogni-
tion, indicating that LLMs actually fail to capture
some subtle facets in human language.



Limitations

One limitation of this study is the simplification
of the spatial tasks, which may not fully capture
the intricate and multifaceted nature of human spa-
tial cognition. While the tasks provide valuable
insights into LLMs’ spatial reasoning, they may
not account for the complex, dynamic, and context-
dependent factors that influence human spatial pro-
cessing. Additionally, the evaluation of LLMs’ spa-
tial representations is based on textual input, which
inherently may not capture the full range of spa-
tial nuances that could be conveyed through visual
input. Visual representations are known to play a
crucial role in human spatial reasoning, and relying
solely on text may limit the models’ ability to de-
velop a truly rich spatial understanding. Moreover,
this study does not consider the potential impact
of other hyperparameters—such as model architec-
ture, training data, and optimization strategies—on
LLMs’ spatial performance. The tuning of these
hyperparameters could influence the models’ abil-
ity to generalize across different spatial tasks and
scenarios.

Future research should aim to investigate LLMs’
spatial representations in more complex, real-world
scenarios that more closely mirror human cogni-
tion, and use a broader set of evaluation metrics
that encompass both quantitative and qualitative
measures. This will enable a more nuanced under-
standing of the models’ spatial reasoning abilities.
Furthermore, it would be valuable to explore tech-
niques to enhance LLLMs’ spatial representations,
such as the use of effective prompting strategies,
incorporating multimodal inputs (e.g., images or
videos), or leveraging multi-agent collaboration.
These approaches could potentially mitigate cur-
rent limitations and enable LLMs to achieve more
sophisticated, human-like spatial reasoning.

References

Prabin Bhandari, Antonios Anastasopoulos, and Dieter
Pfoser. 2023. Are Large Language Models Geospa-
tially Knowledgeable? In Proceedings of the 31st
ACM International Conference on Advances in Geo-
graphic Information Systems, pages 1-4.

Anthony G. Cohn and Robert E. Blackwell. 2024. Eval-
uating the Ability of Large Language Models to Rea-
son about Cardinal Directions. In The 16th Confer-
ence on Spatial Information Theory. arXiv.

Haolin Fan, Xuan Liu, Jerry Ying Hsi Fuh, Wen Feng
Lu, and Bingbing Li. 2024. Embodied intelligence

in manufacturing: Leveraging large language mod-
els for autonomous industrial robotics. Journal of
Intelligent Manufacturing, pages 1-17.

Nir Fulman, Abdulkadir Memduhoglu, and Alexan-
der Zipf. 2024. Distortions in Judged Spatial
Relations in Large Language Models. Preprint,
arXiv:2401.04218.

Kanishk Gandhi, Jan-Philipp Fraenken, Tobias Gersten-
berg, and Noah Goodman. 2023. Understanding So-
cial Reasoning in Language Models with Language
Models. Advances in Neural Information Processing
Systems, 36:13518-13529.

Dedre Gentner, Asli Ozyiirek, Ozge Giircanli, and Susan
Goldin-Meadow. 2013. Spatial language facilitates
spatial cognition: Evidence from children who lack
language input. Cognition, 127(3):318-330.

William G. Hayward and Michael J. Tarr. 1995. Spa-
tial language and spatial representation. Cognition,
55(1):39-84.

Majid Hojati and Rob Feick. 2024. Large Language
Models: Testing Their Capabilities to Understand
and Explain Spatial Concepts (Short Paper). LIPIcs,
Volume 315, COSIT 2024, 315:31:1-31:9.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2023. MetaGPT: Meta Pro-
gramming for A Multi-Agent Collaborative Frame-
work. Preprint, arXiv:2308.00352.

Francesco Lacquaniti, Gianfranco Bosco, Silvio Gra-
vano, lole Indovina, Barbara La Scaleia, Vincenzo
Maffei, and Myrka Zago. 2015. Gravity in the Brain
as a Reference for Space and Time Perception. Mul-
tisensory Research, 28(5-6):397-426.

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y
Chan, Hannah R Sheahan, Antonia Creswell, Dhar-
shan Kumaran, James L McClelland, and Felix
Hill. 2024. Language models, like humans, show
content effects on reasoning tasks. PNAS Nexus,
3(7):pgae233.

Barbara Landau and Ray Jackendoff. 1993. What and
where in spatial language and spatial cognition? Be-
havioral and Brain Sciences, 16(2):255-265.

Stephen C. Levinson. 1996. Language and space. An-
nual Review of Anthropology, 25(1):353-382.

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang
Ning, and Parisa Kordjamshidi. 2021. SPARTQA: A
Textual Question Answering Benchmark for Spatial
Reasoning. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4582-4598, Online. Association for
Computational Linguistics.


https://doi.org/10.1145/3589132.3625625
https://doi.org/10.1145/3589132.3625625
https://doi.org/10.1145/3589132.3625625
https://doi.org/10.48550/arXiv.2406.16528
https://doi.org/10.48550/arXiv.2406.16528
https://doi.org/10.48550/arXiv.2406.16528
https://doi.org/10.48550/arXiv.2406.16528
https://doi.org/10.48550/arXiv.2406.16528
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.48550/arXiv.2401.04218
https://doi.org/10.48550/arXiv.2401.04218
https://doi.org/10.48550/arXiv.2401.04218
https://doi.org/10.1016/j.cognition.2013.01.003
https://doi.org/10.1016/j.cognition.2013.01.003
https://doi.org/10.1016/j.cognition.2013.01.003
https://doi.org/10.1016/j.cognition.2013.01.003
https://doi.org/10.1016/j.cognition.2013.01.003
https://doi.org/10.1016/0010-0277(94)00643-Y
https://doi.org/10.1016/0010-0277(94)00643-Y
https://doi.org/10.1016/0010-0277(94)00643-Y
https://doi.org/10.4230/LIPICS.COSIT.2024.31
https://doi.org/10.4230/LIPICS.COSIT.2024.31
https://doi.org/10.4230/LIPICS.COSIT.2024.31
https://doi.org/10.4230/LIPICS.COSIT.2024.31
https://doi.org/10.4230/LIPICS.COSIT.2024.31
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.1163/22134808-00002471
https://doi.org/10.1163/22134808-00002471
https://doi.org/10.1163/22134808-00002471
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1017/S0140525X00029927
https://doi.org/10.1017/S0140525X00029927
https://doi.org/10.1017/S0140525X00029927
https://doi.org/10.1146/annurev.anthro.25.1.353
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Fru-
jeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,
Robert Ness, and Jonathan Larson. 2023. Evaluat-
ing Cognitive Maps and Planning in Large Language
Models with CogEval. Advances in Neural Informa-
tion Processing Systems, 36:69736-69751.

Edward Munnich, Barbara Landau, and Barbara Anne
Dosher. 2001. Spatial language and spatial repre-
sentation: A cross-linguistic comparison. Cognition,
81(3):171-208.

William Peng and Sam Powers. 2024. LLMs and Spa-
tial Reasoning: Assessing Roadblocks and Providing
Pathways for Improvement. Journal of Student Re-
search, 13(2).

Shima Rahimi Moghaddam and Christopher Honey.
2023. Boosting Theory-of-Mind Performance in
Large Language Models via Prompting. Preprint.

Matthew Renze and Erhan Guven. 2024. The Effect of
Sampling Temperature on Problem Solving in Large
Language Models. Preprint, arXiv:2402.05201.

Alexander Christoph Stahn, Martin Riemer, Thomas
Wolbers, Anika Werner, Katharina Brauns, Stephane
Besnard, Pierre Denise, Simone Kiihn, and Hanns-
Christian Gunga. 2020. Spatial Updating Depends
on Gravity. Frontiers in Neural Circuits, 14:20.

James W. A. Strachan, Dalila Albergo, Giulia Borghini,
Oriana Pansardi, Eugenio Scaliti, Saurabh Gupta,
Krati Saxena, Alessandro Rufo, Stefano Panzeri,
Guido Manzi, Michael S. A. Graziano, and Cristina
Becchio. 2024. Testing theory of mind in large
language models and humans. Nature Human Be-
haviour, 8:1285-1295.

Taylor Webb, Keith J. Holyoak, and Hongjing Lu. 2023.
Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7(9):1526-1541.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia,
Li Dong, Lei Cui, and Furu Wei. 2024. Mind’s Eye
of LLMs: Visualization-of-Thought Elicits Spatial
Reasoning in Large Language Models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Liuchang Xu, Shuo Zhao, Qingming Lin, Luyao Chen,
Qiangian Luo, Sensen Wu, Xinyue Ye, Hailin Feng,
and Zhenhong Du. 2024. Evaluating Large Language
Models on Spatial Tasks: A Multi-Task Benchmark-
ing Study. Preprint, arXiv:2408.14438.

Yutaro Yamada, Yihan Bao, Andrew K. Lampinen,
Jungo Kasai, and Ilker Yildirim. 2024. Evaluating
Spatial Understanding of Large Language Models.
Preprint, arXiv:2310.14540.

Hangtao Zhang, Chenyu Zhu, Xianlong Wang, Ziqi
Zhou, Changgan Yin, Minghui Li, Lulu Xue, Yichen
Wang, Shengshan Hu, Aishan Liu, Peijin Guo, and
Leo Yu Zhang. 2024. BadRobot: Manipulating
Embodied LLMs in the Physical World. Preprint,
arXiv:2407.20242.

10

Gengze Zhou, Yicong Hong, and Qi Wu. 2024.
NavGPT: Explicit Reasoning in Vision-and-
Language Navigation with Large Language Models.
Proceedings of the AAAI Conference on Artificial
Intelligence, 38(7):7641-7649.

Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Jia Li, Zhi Jin,
and Hong Mei. 2024. Hot or Cold? Adaptive Tem-
perature Sampling for Code Generation with Large
Language Models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(1):437-445.


https://doi.org/10.1016/S0010-0277(01)00127-5
https://doi.org/10.1016/S0010-0277(01)00127-5
https://doi.org/10.1016/S0010-0277(01)00127-5
https://doi.org/10.47611/jsrhs.v13i2.6812
https://doi.org/10.47611/jsrhs.v13i2.6812
https://doi.org/10.47611/jsrhs.v13i2.6812
https://doi.org/10.47611/jsrhs.v13i2.6812
https://doi.org/10.47611/jsrhs.v13i2.6812
https://doi.org/10.48550/arXiv.2304.11490
https://doi.org/10.48550/arXiv.2304.11490
https://doi.org/10.48550/arXiv.2304.11490
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.3389/fncir.2020.00020
https://doi.org/10.3389/fncir.2020.00020
https://doi.org/10.3389/fncir.2020.00020
https://doi.org/10.1038/s41562-024-01882-z
https://doi.org/10.1038/s41562-024-01882-z
https://doi.org/10.1038/s41562-024-01882-z
https://doi.org/10.1038/s41562-023-01659-w
https://doi.org/10.1038/s41562-023-01659-w
https://doi.org/10.1038/s41562-023-01659-w
https://arxiv.org/abs/2408.14438
https://arxiv.org/abs/2408.14438
https://arxiv.org/abs/2408.14438
https://arxiv.org/abs/2408.14438
https://arxiv.org/abs/2408.14438
https://doi.org/10.48550/arXiv.2310.14540
https://doi.org/10.48550/arXiv.2310.14540
https://doi.org/10.48550/arXiv.2310.14540
https://doi.org/10.48550/arXiv.2407.20242
https://doi.org/10.48550/arXiv.2407.20242
https://doi.org/10.48550/arXiv.2407.20242
https://doi.org/10.1609/aaai.v38i7.28597
https://doi.org/10.1609/aaai.v38i7.28597
https://doi.org/10.1609/aaai.v38i7.28597
https://doi.org/10.1609/aaai.v38i1.27798
https://doi.org/10.1609/aaai.v38i1.27798
https://doi.org/10.1609/aaai.v38i1.27798
https://doi.org/10.1609/aaai.v38i1.27798
https://doi.org/10.1609/aaai.v38i1.27798

A Supplementary Results
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Figure S1: Performance of five LLMs (i.e. GPT-4, GPT-
3.5-Turbo, Qwen-Turbo, ZhipuAl, and Llama3-8B) on

spatial preposition preference at all cells except the cen-
ter ([4,4]).
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Figure S2: Distribution of horizontal and vertical spatial
prepositions appeared in LLMSs’ responses in the spatial
generation task.

B Prompts for Spatial Representation
Tasks

Prompt templates for the spatial generation task
and the spatial rating task are provided below.

1) Spatial Generation Task: "On a 7*7 grid,
the bottom left corner is [1,1], while the top right
corneris [7,7]. The [figure] is at [x1, yl ], while the
[reference] is at [4,4]. So, the [figure] is [relation]
the [reference]. Please give appropriate spatial
prepositions to replace the [relation]. Avoid using
compass directions, a clock face, or the degree of
angle.”
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Figure S3: Performance of five LLMs on the spatial
rating task. LLMSs’ ratings are compared between the
congruent and incongruent conditions where the descrip-
tions of spatial relations between the figure object and
the reference object either correspond to the truth or not.

2) Spatial Rating Task: "On a 7*7 grid, the
bottom left corner is [1,1], while the top right cor-
neris [7,7]. The [figure] is at [x1, yl], while the
[reference] is at [4,4]. Please rate the appropri-
ateness of the following statement on a scale of 1
to 7, where 1 is the least appropriate and 7 is the
most appropriate. The Statement is: The [figure] is
[relation] the [reference].”

The specific prompt with placeholders replaced
by actual items is available on this anonymous web-
site Spatial Representations of LLMs).


https://anonymous.4open.science/r/LLM_SpatialRepresenation-1B10/
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