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Abstract001

Spatial representations are fundamental to hu-002
man cognition, as understanding spatial rela-003
tionships between objects is essential in daily004
life. Language serves as an indispensable tool005
for communicating spatial information, creat-006
ing a close connection between spatial represen-007
tations and spatial language. Large language008
models (LLMs), theoretically, possess spatial009
cognition due to their proficiency in natural010
language processing. This study examines the011
spatial representations of LLMs by employing012
traditional spatial tasks used in human experi-013
ments and comparing the models’ performance014
to that of humans. The results indicate that015
LLMs resemble humans in selecting spatial016
prepositions to describe spatial relationships017
and exhibit a preference for vertically oriented018
spatial terms. However, the human tendency019
to better represent locations along specific axes020
is absent in the performance of LLMs. This021
finding suggests that, although spatial language022
is closely linked to spatial representations, the023
two are not entirely equivalent.024

1 Introduction025

The apparent proficiency of large language mod-026

els (LLMs) in understanding and generating natu-027

ral language suggests that they may exhibit cogni-028

tive abilities akin to those of humans, such as the-029

ory of mind and reasoning (Strachan et al., 2024;030

Rahimi Moghaddam and Honey, 2023; Lampinen031

et al., 2024; Webb et al., 2023; Gandhi et al.,032

2023). Consequently, the evaluation of these mod-033

els has garnered increasing attention, particularly034

given their expanding applications across domains035

like code generation and translation (Hong et al.,036

2023), where minimizing potential errors in their037

responses is critical. A promising direction for the038

LLM industry lies in advancing embodied intel-039

ligence, which necessitates a robust capacity for040

spatial understanding (Fan et al., 2024; Zhang et al.,041

2024). While spatial reasoning is more prominent042

in the multi-modal domain, where spatial phenom- 043

ena are often integrated with visual information, it 044

remains essential to investigate spatial representa- 045

tions grounded in natural language to further enable 046

LLMs to support and enhance various aspects of 047

social life. 048

Spatial relations, which describe the connections 049

between physical objects, are essential for spatial 050

understanding and play a critical role in spatial rea- 051

soning. Humans naturally use language to convey 052

spatial relations in everyday life. Trained on ex- 053

tensive natural language datasets, large language 054

models (LLMs) may encode not only spatial lin- 055

guistic structures but also develop implicit repre- 056

sentations of spatial relations, even without direct 057

sensory inputs. Understanding the interaction be- 058

tween spatial language and spatial representations 059

in LLMs can offer valuable insights into how these 060

models process and "comprehend" spatial concepts. 061

Recent studies suggest that LLMs have achieved 062

acceptable proficiency in representing simple cardi- 063

nal directions and planning navigation tasks (Cohn 064

and Blackwell, 2024; Zhou et al., 2024). How- 065

ever, their performance remains inconsistent and is 066

influenced by factors such as environmental com- 067

plexity. LLMs tend to excel in addressing basic 068

spatial questions but struggle with more advanced 069

and intricate spatial concepts (Hojati and Feick, 070

2024). Considering that spatial representations are 071

vital for achieving embodied intelligence and ad- 072

vancing toward artificial general intelligence (AGI), 073

the sensitivity of LLMs to spatial relations in 2D 074

space warrants more comprehensive exploration. 075

Building on the CogEval protocol recently pro- 076

posed for the general evaluation of LLMs’ cog- 077

nitive capacities (Momennejad et al., 2023), this 078

study aims to assess the spatial intelligence of 079

LLMs. Specifically, we examine the structure of 080

LLMs’ representations of spatial relations between 081

two objects within a 7*7 grid scene and evaluate 082

the similarity of these representations to those of 083
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humans using two spatial tasks: the spatial gen-084

eration task and the spatial rating task. The cen-085

tral research question is whether LLMs can derive086

visual-like representations from textual input and087

coordinate descriptions in a 2D space, and to what088

extent their representations align with those of hu-089

mans. We evaluate the spatial sensitivity of five090

LLMs, including state-of-the-art (SOTA) models091

such as GPT-4, and compare their performance to092

human behavior data obtained from a previous re-093

lated study. The research hypothesis posits that094

LLMs can partially capture 2D spatial represen-095

tations and exhibit certain features embedded in096

human spatial language.097

The results reveal both similarities and differ-098

ences between the spatial representations of LLMs099

and humans. Similar to humans, LLMs more fre-100

quently select vertically oriented spatial preposi-101

tions to describe spatial relations, as opposed to hor-102

izontally oriented terms. State-of-the-art (SOTA)103

models, such as GPT-4, demonstrate significant104

proficiency in judging spatial relations, with the105

exception of accurately identifying the rightward106

relationship. However, weaker models, such as107

Llama3-8B, exhibit lower spatial intelligence. Fur-108

thermore, the temperature parameter appears to109

have minimal impact on the models’ performance,110

suggesting that spatial representations may be fun-111

damental to human cognition. Nonetheless, LLMs112

show limitations in capturing certain subtle char-113

acteristics of human spatial cognition, such as the114

tendency for more precise representations along115

specific axes.116

In summary, the main contributions of this study117

are as follows:118

1) Adaptation of a standardized experimen-119

tal paradigm: We transferred a well-established120

experimental paradigm from cognitive psychology,121

used to examine spatial representations in humans,122

to the evaluation of LLMs. This approach reveals123

the models’ spatial capacities in a 2D scene, which124

serves as a foundational aspect of spatial intelli-125

gence required in more complex environments.126

2) Comparison of spatial representations: By127

comparing the spatial representations of five main-128

stream LLMs with human behavior based on previ-129

ous studies, this research provides insights into the130

spatial capabilities of LLMs while also contribut-131

ing to an indirect understanding of human spatial132

cognition.133

2 Related Works 134

2.1 Spatial representations and spatial 135

language 136

Fundamental to cognition in both humans and other 137

animals, spatial representations play a critical role 138

in encoding the geometric properties of objects and 139

the spatial relationships among them. These rep- 140

resentations often encompass cognitive models or 141

mental maps that individuals use to mentally visu- 142

alize and manipulate spatial information. Spatial 143

representations are typically derived from sensory 144

modalities such as vision, hearing, or touch, and 145

they provide crucial information to motor systems 146

and language processing (Landau and Jackendoff, 147

1993). As a result, frequent translation occurs be- 148

tween spatial representations and spatial language, 149

which generally consists of spatial words or simple 150

phrases. 151

Spatial language specifically refers to linguistic 152

expressions used to describe spatial properties such 153

as location, orientation, direction, and distance. 154

These expressions are integral to how individuals 155

communicate their understanding of spatial envi- 156

ronments. Three basic elements underpin linguistic 157

descriptions of spatial locations: the figure object 158

(the object being located), the reference object, and 159

the spatial relationship between them. Spatial rela- 160

tionships are often encoded through prepositions 161

such as "above" and "below," while both the fig- 162

ure object and the reference object are typically 163

expressed as noun phrases denoting object names. 164

For example, in the sentence "The apple is on the 165

desk," "the apple" functions as the figure object, 166

"the desk" serves as the reference object, and the 167

preposition "on" reflects the spatial relationship 168

between them. 169

In cognitive psychology, spatial language and 170

spatial representations are intricately linked. Spa- 171

tial language serves as a key mechanism through 172

which humans convey and process information 173

about space, while spatial representations act as 174

mental constructs that help organize and navigate 175

spatial relationships. It has been proposed that spa- 176

tial language is grounded in the geometry of visual 177

scenes represented in spatial cognition (Mirzaee 178

et al., 2021). Furthermore, the articulation of spa- 179

tial concepts in language may influence how they 180

are mentally represented. Empirical evidence sug- 181

gests that limited exposure to spatial language im- 182

pairs individuals’ performance on non-linguistic 183

spatial tasks, with deaf children showing weaker 184
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abilities to convey spatial relations (Gentner et al.,185

2013). Cross-linguistic comparisons reveal that186

similar spatial properties are encoded in both spa-187

tial language and spatial representations, suggest-188

ing parallels between these two systems (Munnich189

et al., 2001). Consequently, spatial language can be190

viewed as a window into the spatial representations191

that underlie human cognition.192

2.2 Spatial understanding of LLMs193

Given that LLMs are trained on vast amounts of nat-194

ural language data, which inherently contains rich195

spatial language, it is reasonable to infer that these196

models may acquire a certain degree of spatial un-197

derstanding. This inference aligns with the estab-198

lished link between spatial representations and spa-199

tial language in human cognition. Although LLMs200

lack access to visual or sensorimotor information,201

studies suggest that they can partially derive spatial202

representations from textual input. For instance,203

LLMs have shown promise in reasoning about204

simple cardinal directions (CDs), such as "north,"205

"south," "east," and "west," though their perfor-206

mance declines with more complex CDs, such as207

"northeast" (Cohn and Blackwell, 2024). Addition-208

ally, LLMs demonstrate some ability to perform209

spatial calculations and apply spatial prepositions210

correctly (Bhandari et al., 2023). Prompting strate-211

gies, including Chain-of-Thought (CoT), one-shot212

or few-shot prompting, and advanced techniques213

like Visualization-of-Thought (VoT), have been214

shown to enhance LLMs’ spatial reasoning and215

path-planning capabilities (Wu et al., 2024; Xu216

et al., 2024). Breaking complex spatial reasoning217

tasks into smaller, manageable subtasks also im-218

proves performance (Peng and Powers, 2024).219

However, challenges remain. LLMs’ represen-220

tations of spatial relations can be distorted, often221

influenced by the hierarchical structure of the en-222

vironment (Fulman et al., 2024). In many cases,223

models identify only the nearest cardinal direc-224

tions, reflecting an associative learning mecha-225

nism rather than a robust understanding of spa-226

tial concepts. Furthermore, substantial variabil-227

ity exists in their ability to recognize and rep-228

resent geometric structures, such as squares or229

hexagons, leaving significant room for improve-230

ment (Yamada et al., 2024). The construction of231

cognitive maps—representations of relational struc-232

tures in tasks or environments—has also been ex-233

plored. While cognitive maps are essential for hu-234

man spatial planning and navigation, systematic235

evaluations reveal that LLMs often fail in planning 236

tasks, and there is insufficient evidence to support 237

their competence in cognitive map construction 238

(Momennejad et al., 2023). 239

In summary, while LLMs have made measurable 240

progress in spatial understanding, further advance- 241

ments are necessary for practical applications in 242

real-world scenarios. Discrepancies and inconsis- 243

tent findings regarding their spatial representation 244

capacities may stem from the absence of standard- 245

ized experimental paradigms. To address this, it 246

is essential to compare LLMs’ spatial representa- 247

tions with those of humans, using well-established 248

testing paradigms from cognitive science. This 249

approach could provide critical insights into opti- 250

mizing LLMs’ spatial reasoning capabilities while 251

ensuring the scientific rigor and validity of experi- 252

mental evaluations. 253

3 Methods 254

3.1 Spatial representation tasks and datasets 255

generation 256

The spatial language capabilities of LLMs were 257

examined by requesting the models to describe spa- 258

tial relationships between given object pairs. Two 259

tasks, adapted from human psychological experi- 260

ments (Munnich et al., 2001; Hayward and Tarr, 261

1995), were employed to assess their spatial abili- 262

ties: (1) generating spatial terms to capture spatial 263

relationships and (2) rating the appropriateness of 264

given statements about object locations in a 2D 265

scene. The procedures for these tasks are as fol- 266

lows. 267

Spatial Generation Task. In the spatial gener- 268

ation task, LLMs were required to produce spa- 269

tial terms that described the relationships between 270

two objects on a 2D 7*7 grid (Figure 1). The 271

two objects in each trial were the reference ob- 272

ject and the figure object. The reference object 273

was always positioned at the center of the grid, 274

while the figure object could appear in any of 275

the remaining 48 positions, centered in the cor- 276

responding cells. Five reference-figure object 277

pairs—"computer-ring", "apple-fish", "bird-tree", 278

"book-pen", and "desk-sofa"—were used to create 279

a diverse dataset. This design resulted in a total 280

of 240 trials (48 positions * 5 object pairs). For 281

each trial, a query prompt was generated using the 282

following template, where [reference], [figure], and 283

[x1, y1] were replaced with specific values for the 284

trial, and [relation] was to be completed by LLMs. 285
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Figure 1: The 7*7 grid plane in spatial representation
tasks. The cells noted as ’Ref’ and ’Fig’ represent the
reference object and the figure object respectively, the
former of which is always located at the center ([4,4])
while the latter might appear in all the other 48 cells
([2,3] for instance).

Spatial Rating Task. To address the limitation286

that some LLMs provide only general and coarse287

terms instead of detailed spatial prepositions in the288

spatial generation task, a spatial rating task was289

introduced to further examine their spatial cogni-290

tion. Unlike the spatial generation task, which291

required free-form responses, the spatial rating292

task presented LLMs with predefined statements293

about the locations of two objects. The models294

were then required to rate the applicability of these295

spatial statements on a scale from 1 to 7, where296

1 indicated "least appropriate" and 7 indicated297

"most appropriate." Two reference-figure object298

pairs—"computer-ring" and "apple-fish"—were se-299

lected for this task, combined with four types of300

spatial relationships: "above," "below," "left," and301

"right." This design resulted in 384 trials (48 loca-302

tions * 2 object pairs * 4 relationships). The query303

prompt for this task followed a specific template,304

where placeholders were replaced with appropriate305

values for each trial. The complete set of prompts306

is available in the supplementary material B.307

3.2 LLMs evaluated308

The LLMs evaluated in this study include both309

open-source and closed-source models, incorporat-310

ing several SOTA models: GPT-3.5-Turbo, GPT-4311

(via Azure OpenAI API), Qwen-Turbo, ZhipuAI,312

and Llama3-8B. To explore the effect of model out-313

put variability, experiments were conducted across314

three temperature settings (0, 0.5, 1) for each LLM.315

Temperature is a key parameter that controls the316

uncertainty in the generated content. A higher tem-317

perature encourages more diverse and creative re- 318

sponses, but may also reduce reliability and pre- 319

cision. Since this study aims to assess both the 320

creativity and accuracy of LLMs in generating spa- 321

tial prepositions to describe spatial relationships, 322

varying the temperature allowed for a comprehen- 323

sive evaluation of the models’ ability to balance 324

creativity with precision. Consequently, the spa- 325

tial representation tasks were repeated across these 326

different temperature settings to account for vari- 327

ability in the models’ responses. 328

3.3 Baseline and evaluation metrics 329

According to previous studies, most spatial terms 330

used by humans to describe spatial relationships 331

can be categorized into two main types: hori- 332

zontally oriented and vertically oriented preposi- 333

tions (Munnich et al., 2001; Hayward and Tarr, 334

1995). Specifically, horizontally oriented preposi- 335

tions (e.g., "above" and "below") describe the po- 336

sition of the figure object relative to the reference 337

object in terms of horizontal relations, while verti- 338

cally oriented prepositions (e.g., "left" and "right") 339

capture vertical relationships between the two ob- 340

jects. 341

For the spatial generation task, the proportion of 342

horizontally and vertically oriented spatial preposi- 343

tions used in the LLMs’ responses was computed 344

for each cell in the 7*7 grid, with averages taken 345

across different scenarios. Since the concept of 346

’front’ or ’behind’ does not apply on a 2D plane, 347

responses involving such prepositions were con- 348

sidered nonsensical or ineffective. Additionally, as 349

neither angles nor compass directions were allowed 350

in the prompts to LLMs, the models’ adherence to 351

the instructions was evaluated by examining the 352

proportion of invalid responses. Given that LLMs 353

often use both horizontal and vertical spatial terms 354

simultaneously when describing spatial relation- 355

ships, the first spatial preposition that appeared in 356

the models’ responses was taken as the primary 357

indicator of their axial preference. 358

In the spatial rating task, LLMs’ ratings of state- 359

ments regarding the spatial relationships between 360

the figure object and the reference object were av- 361

eraged across all scenarios for each location. To 362

better understand LLMs’ basic spatial perception, 363

the 7*7 grid was divided into four 3*7 sub-grids 364

(up, down, left, and right relative to the centrally 365

positioned reference object at [4,4]). The ratings 366

for each sub-grid were then compared to those from 367

the other three sub-grids. This analysis aimed to 368
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Temperature 0 0.5 1
GPT-4 91.25% 94.17% 88.75%

GPT-3.5-Turbo 40.83% 43.33% 39.58%
Qwen-Turbo 71.67% 65.83% 54.17%

ZhipuAI 95.42% 94.17% 93.33%
Llama3-8B 28.75% 25.83% 30.42%

Table 1: Validness of LLMs’ responses on the spatial
generation task.

reflect the models’ ability to recognize and distin-369

guish primary axial relations.370

In both spatial tasks, LLMs’ performance was371

compared to that of humans based on a previous re-372

lated study (Hayward and Tarr, 1995). Specifically,373

the Euclidean distance between the rating matrices374

of LLMs and humans was calculated and normal-375

ized to quantify the difference in performance. The376

relative difference, denoted as Diffnorm, is for-377

mulated as follows. A smaller value of Diffnorm378

indicates a closer match between the performance379

of the models and humans.380

Diffnorm =
∥LLMmatrix − Humanmatrix∥F

max (∥LLMmatrix∥F , ∥Humanmatrix∥F )
381

(F means Frobenius norm; matrix denotes propor-382

tion or mean rating.)383

4 Results384

4.1 Spatial representations of LLMs are385

directionally imbalanced and vertically386

more efficient387

The spatial prepositions selected by LLMs to de-388

scribe the spatial relationships between the figure389

object and the reference object exhibit consider-390

able diversity, particularly in more advanced mod-391

els. Horizontally oriented spatial terms include392

"left", "right", "beside", and "next to", while verti-393

cally oriented terms encompass "above", "below",394

"up", "low(er)", "ahead", and "beyond". In addi-395

tion to these axial prepositions, LLMs’ responses396

also contain some non-axial spatial terms, such397

as "diagonal", "southwest", "behind", and "near".398

These non-axial terms, though less frequent, are399

considered inappropriate as they do not adhere to400

the instructions specifying axial relationships in a401

2D grid. Responses incorporating these terms were402

therefore coded as invalid.403

The proportions of invalid responses from the404

five LLMs under three different temperature set-405

tings are presented in Table 1. This data reveals406

Figure 2: Proportions of different types spatial prepo-
sitions shown in models’ responses at first. GPT-4 and
ZhipuAI show better validness. Most LLMs except
Qwen-Turbo tend to prefer vertically oriented spatial
terms relative to horizontally oriented spatial terms.

that SOTA models such as GPT-4 and ZhipuAI 407

consistently provide more accurate and effective 408

spatial representations, more closely aligning with 409

human-like spatial reasoning. These models also 410

demonstrate a preference for describing spatial re- 411

lationships along axial directions. Moreover, ver- 412

tically oriented prepositions are more frequently 413

chosen as the primary descriptors, a trend also ob- 414

served in human spatial language. The proportions 415

of three types of spatial prepositions (horizontal, 416

vertical, and others) in LLMs’ responses across 417

varying temperature levels are shown in Fig. 2. 418

The results suggest that temperature settings only 419

have a subtle effect on the models’ performance in 420

the spatial generation task. Notably, most models, 421

with the exception of Qwen-Turbo, tend to use ver- 422

tically oriented spatial prepositions as their primary 423

means of describing spatial relationships between 424

objects on a 2D plane. 425

4.2 Resemblance of LLMs to humans in 426

preference of vertical spatial terms 427

The proportions of horizontally and vertically ori- 428

ented spatial prepositions that appeared first in the 429

models’ responses at each location are compared 430

with human performance, as derived from the previ- 431

ous study (Hayward and Tarr, 1995). As shown in 432

Fig. 3(a), humans exhibit a clear axial preference 433

when describing spatial relationships. Specifically, 434

horizontally or vertically oriented spatial preposi- 435

tions are more likely to be chosen as the primary 436

descriptors when the figure object is positioned 437

near the corresponding axis. However, the patterns 438

in the LLMs’ responses to spatial term generation 439

exhibit notable differences (Fig. 3(b)). All models 440

accurately generate horizontal spatial prepositions 441

along the x-axis centered on the reference object, 442

except for Qwen-Turbo. The horizontal preposi- 443

tions produced by Qwen-Turbo are scattered and 444

lack a clear, consistent pattern. 445
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(a) Humans’ choice of each type of spatial terms.

(b) Performance of five LLMs on spatial preposition preference
at all cells except the center.

(c) Distribution of horizontal and vertical spatial prepositions
appeared in LLMs’ responses in the spatial generation task.

Figure 3: Primacy of horizontal and vertical spatial
prepositions in LLMs’ responses at each location on the
7*7 grids. Considering the subtle influence of tempera-
ture on LLMs’ generation performance, the temperature
underlying results displayed here is 0, whereas results
of the other two situations (i.e. 0.5 and 1) are available
in Appendix Fig.S1 and S2.

On the other hand, both GPT-4 and ZhipuAI446

appear to overemphasize encoding spatial relation-447

ships in the vertical direction, as they generate a448

notably higher proportion of vertical spatial prepo-449

sitions compared to other models. GPT-3.5-Turbo,450

on the other hand, tends to produce more vertical451

prepositions when the figure object is located above452

the reference object. In contrast, Qwen-Turbo still453

exhibits no discernible pattern in the distribution of454

vertical spatial prepositions. Llama3-8B, however,455

demonstrates a clear axial effect, with consistent456

performance in both vertical and horizontal direc-457

tions.458

When considering the frequency of horizon-459

tal and vertical spatial terms combined in the460

models’ responses—without focusing on their pri-461

macy—results show that GPT-4 and ZhipuAI en-462

code both horizontal and vertical relationships com-463

prehensively (Fig. 3(c)). These models provide464

a dense representation, employing spatial terms465

in both directions across nearly every position.466

Llama3-8B’s performance mirrors the findings in467

Temperature 0 0.5 1
GPT-4 0.787 0.785 0.711

GPT-3.5-Turbo 0.686 0.722 0.713
Qwen-Turbo 0.579 0.547 0.570

ZhipuAI 0.770 0.776 0.763
Llama3-8B 0.775 1 0.766

Table 2: Horizontal difference between the performance
of LLMs and humans.

Temperature 0 0.5 1
GPT-4 0.331 0.378 0.311

GPT-3.5-Turbo 0.662 0.632 0.695
Qwen-Turbo 0.689 0.754 0.843

ZhipuAI 0.360 0.346 0.352
Llama3-8B 0.778 0.774 0.764

Table 3: Vertical difference between the performance of
LLMs and humans.

the primacy analysis discussed earlier. In contrast, 468

no clear pattern emerges in the responses of GPT- 469

3.5-Turbo and Qwen-Turbo. 470

The disparity between the performance of LLMs 471

and humans in the spatial generation task is further 472

computed and presented in Table 2 (for horizon- 473

tal directions) and Table 3 (for vertical directions). 474

In terms of human-like performance, the spatial 475

representations of both GPT-4 and ZhipuAI are 476

generally more similar to humans in the vertical 477

direction, as their normalized difference (Diffnorm 478

index) is lower than 0.5, outperforming all other 479

models. However, in the horizontal direction, the 480

normalized difference between all models and hu- 481

mans exceeds 0.5, regardless of the temperature 482

setting. Therefore, only SOTA models like GPT-4 483

resemble humans in choosing vertically oriented 484

spatial prepositions to characterize spatial relation- 485

ships. 486

4.3 SOTA LLMs demonstrate a deficiency in 487

representing rightward spatial 488

relationships 489

To gain a more nuanced understanding of LLMs’ 490

spatial representation, models were tasked with rat- 491

ing the applicability of statements describing four 492

types of spatial relations between the reference ob- 493

ject and the figure objects. A comparison was made 494

between the average ratings of spatial statements 495

describing relations where the figure objects are 496

located in the corresponding subgrid area (e.g., the 497

"above" relation used for figure objects in the upper 498
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Figure 4: LLMs’ ratings on the applicability of spa-
tial relations in both congruent and incongruent cases.
SOTA models, namely GPT-4 and ZhipuAI, signifi-
cantly provided higher ratings for spatial descriptions
that were congruent with the ground truth, whereas the
performance of the other three models was compara-
tively weaker, likely due to their insensitivity to spatial
relations. The error bars represent the standard error of
the mean (SEM). The temperature setting underlying
the results presented here is 0, with the other two cases
(i.e. 0.5 and 1) detailed in the Appendix Fig.S3.

3*7 subgrid) and those in the other three subgrids.499

As shown in Fig. 4, GPT-4 and ZhipuAI exhibit500

strong performance in rating the applicability of501

spatial descriptions, as they can effectively distin-502

guish between descriptions that are congruent or503

incongruent with the actual spatial relationships. In504

contrast, the other three models—GPT-3.5-Turbo,505

Qwen-Turbo, and Llama3-8B—show significant506

insensitivity to spatial relations.507

The results reveal that GPT-4 performs re-508

markably well on three types of spatial rela-509

tions—namely "above", "below", and "left". How-510

ever, this performance does not extend to the511

"right" relation, where its accuracy drops 5. Simi-512

larly, ZhipuAI also provides relatively accurate rat-513

ings for the "above" and "below" relations. Qwen-514

Turbo shows partial success, particularly when the515

"above" relation is used to describe spatial relation-516

ships between a figure object situated in the upper517

locations and the reference object. Other models,518

including GPT-3.5-Turbo and Llama3B, exhibit sig-519

nificant weaknesses in representing almost all spa-520

tial relations. Interestingly, even models that per-521

form well in recognizing basic spatial relations still522

show some overlap in representing adjacent spatial523

relations, often spreading their ratings around the524

vertex of the 7*7 grid. Specifically, GPT-4’s ratings525

for the appropriateness of "below" descriptions are526

higher in the bottom-left area rather than exclu-527

sively in the bottom area, and a similar pattern is528

observed in ZhipuAI’s performance.529

LLMs’ performance in rating the four types530

Figure 5: Performance of five LLMs on the spatial rat-
ing task. Four types of spatial relations are involved in
the rating process, namely "above", "below", "left", and
"right". The intensity of color bars represents models’
evaluation of the appropriateness of the spatial state-
ments given to them. Ratings range from 1 to 7, where
higher scores indicate better applicability. Temperature
underlying the results shown here is 0, leaving the other
two cases (i.e. 0.5 and 1) available in the Appendix
Fig.S4.

of spatial relations ("above", "below", "left", and 531

"right") is averaged across horizontal and vertical 532

directions. Specifically, the "above" and "below" 533

relations are combined as representing the verti- 534

cal axis, while the "left" and "right" relations are 535

categorized under the horizontal axis. The result- 536

ing rating matrix is then compared with human 537

ratings from a previous study (Hayward and Tarr, 538

1995). Human ratings exhibit a clear axial pattern, 539

with ratings highest when the figure object and the 540

reference object are aligned on the same axis, grad- 541

ually decreasing as the figure object moves away 542

from the central axis (Fig.6(a)). However, this ax- 543

ial pattern is not observed in any of the LLMs’ 544

performance (Fig.6(b)). 545

5 Discussion 546

LLMs’ spatial representation abilities are evalu- 547

ated through two tasks adapted from cognitive psy- 548

chology: the spatial generation task and the spa- 549

tial rating task, which test the models’ capacity to 550

describe and judge spatial relationships on a 2D 551

scene. The observed directional imbalance in the 552

spatial generation task mirrors human tendencies 553

(Munnich et al., 2001; Hayward and Tarr, 1995), 554

where vertical prepositions like "above" and "be- 555

7



(a) Humans’ ratings.

(b) Five LLMs’ ratings with the temperature set as 0, leaving
the other two cases (0.5 and 1) available in the Appendix Fig.S5.

Figure 6: Rating performance of Humans and LLMs
on each location where the figure object is situated at
around the reference object, averaged across horizontal
and vertical directions respectively.

low" are used more often than horizontal ones. The556

lower frequency of horizontal terms suggests that557

LLMs’ spatial depictions along the horizontal axis558

are coarser. This pattern is likely rooted in the ef-559

fect of gravity on human daily life (Stahn et al.,560

2020; Lacquaniti et al., 2015; Levinson, 1996),561

where vertical terms tend to be more prevalent than562

their horizontal counterparts. Consequently, LLMs563

are indirectly shaped by this bias through human-564

oriented language.565

In terms of heterogeneity in LLMs’ behavior,566

more advanced models appear to be significantly567

more proficient in spatial representations. Specif-568

ically, SOTA models such as GPT-4 demonstrate569

greater accuracy in judging spatial relationships570

between objects and exhibit higher geometric rich-571

ness in their choice of spatial prepositions when572

generating spatial descriptions compared to GPT-573

3.5-Turbo and Llama3-8B. This finding suggests574

that spatial representations can indeed be derived575

from spatial language, and LLMs with superior576

overall performance are more likely to possess en-577

hanced spatial abilities. However, even the best-578

performing LLMs still fall short of perfection, in-579

dicating the need for further precision in practical580

applications. Additional pretraining with automat-581

ically generated spatial datasets could potentially582

improve LLMs’ spatial reasoning (Mirzaee et al.,583

2021).584

The influence of temperature on LLMs’ perfor-585

mance in both spatial tasks appears minimal, as586

no significant differences are observed in models’ 587

choice of spatial terms or their judgment of spatial 588

relationships under different temperature levels (0, 589

0.5, and 1). Since temperature controls the ran- 590

domness of model responses (Zhu et al., 2024), 591

the insensitivity to temperature variations in spatial 592

tasks may suggest the fundamental constancy of 593

spatial cognition in human life. This finding aligns 594

with studies indicating that changes in temperature 595

have little effect on LLMs’ problem-solving per- 596

formance (Renze and Guven, 2024). Interestingly, 597

all LLMs, including SOTA models like GPT-4 and 598

ZhipuAI, fail to accurately represent rightward spa- 599

tial relationships, highlighting a bias in the mod- 600

els’ training datasets, where leftward relationships 601

seem to be more prevalent in natural language. This 602

phenomenon, to our knowledge, is being reported 603

for the first time and warrants further investigation. 604

One possible explanation is that, given most people 605

are right-handed, leftward spatial relationships may 606

be more intuitive and commonly used in practice. 607

It is also worth noting that LLMs fail to cap- 608

ture certain subtle characteristics of human spatial 609

representations, such as axial salience. Cognitive 610

psychology research has shown that humans tend 611

to exhibit more accurate spatial representations in 612

regions near the central axis (Hayward and Tarr, 613

1995), with accuracy decreasing as the distance 614

from the axis increases. However, this tendency 615

is absent in LLMs’ performance, highlighting the 616

limitations of models that excel at detecting regu- 617

larities and generating words linearly, yet struggle 618

with visualizing situations in a 2D space. This 619

suggests that spatial language does not equate to 620

spatial representation, and there may be an upper 621

limit to the spatial representation capabilities of 622

linguistic models. 623

6 Conclusion 624

Both similarity and difference exist between spatial 625

representations of LLMs and humans. On one hand, 626

LLMs resemble humans in the choice of spatial 627

prepositions while describing spatial relationships 628

between two objects on a 2D scene. Vertically ori- 629

ented spatial terms are preferred by LLMs relative 630

to horizontal terms, which is consistent to humans’ 631

performance and probably the reflection of gravity. 632

On the other hand, finer representations along axis 633

in humans do not appear in LLMs’ spatial cogni- 634

tion, indicating that LLMs actually fail to capture 635

some subtle facets in human language. 636

8



Limitations637

One limitation of this study is the simplification638

of the spatial tasks, which may not fully capture639

the intricate and multifaceted nature of human spa-640

tial cognition. While the tasks provide valuable641

insights into LLMs’ spatial reasoning, they may642

not account for the complex, dynamic, and context-643

dependent factors that influence human spatial pro-644

cessing. Additionally, the evaluation of LLMs’ spa-645

tial representations is based on textual input, which646

inherently may not capture the full range of spa-647

tial nuances that could be conveyed through visual648

input. Visual representations are known to play a649

crucial role in human spatial reasoning, and relying650

solely on text may limit the models’ ability to de-651

velop a truly rich spatial understanding. Moreover,652

this study does not consider the potential impact653

of other hyperparameters—such as model architec-654

ture, training data, and optimization strategies—on655

LLMs’ spatial performance. The tuning of these656

hyperparameters could influence the models’ abil-657

ity to generalize across different spatial tasks and658

scenarios.659

Future research should aim to investigate LLMs’660

spatial representations in more complex, real-world661

scenarios that more closely mirror human cogni-662

tion, and use a broader set of evaluation metrics663

that encompass both quantitative and qualitative664

measures. This will enable a more nuanced under-665

standing of the models’ spatial reasoning abilities.666

Furthermore, it would be valuable to explore tech-667

niques to enhance LLMs’ spatial representations,668

such as the use of effective prompting strategies,669

incorporating multimodal inputs (e.g., images or670

videos), or leveraging multi-agent collaboration.671

These approaches could potentially mitigate cur-672

rent limitations and enable LLMs to achieve more673

sophisticated, human-like spatial reasoning.674
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A Supplementary Results807

(a) temperature = 0.5

(b) temperature = 1

Figure S1: Performance of five LLMs (i.e. GPT-4, GPT-
3.5-Turbo, Qwen-Turbo, ZhipuAI, and Llama3-8B) on
spatial preposition preference at all cells except the cen-
ter ([4,4]).

(a) temperature = 0.5

(b) temperature = 1

Figure S2: Distribution of horizontal and vertical spatial
prepositions appeared in LLMs’ responses in the spatial
generation task.

B Prompts for Spatial Representation808

Tasks809

Prompt templates for the spatial generation task810

and the spatial rating task are provided below.811

1) Spatial Generation Task: "On a 7*7 grid,812

the bottom left corner is [1,1], while the top right813

corner is [7,7]. The [figure] is at [x1, y1], while the814

[reference] is at [4,4]. So, the [figure] is [relation]815

the [reference]. Please give appropriate spatial816

prepositions to replace the [relation]. Avoid using817

compass directions, a clock face, or the degree of818

angle."819

(a) temperature = 0.5

(b) temperature = 1

Figure S3: Performance of five LLMs on the spatial
rating task. LLMs’ ratings are compared between the
congruent and incongruent conditions where the descrip-
tions of spatial relations between the figure object and
the reference object either correspond to the truth or not.

2) Spatial Rating Task: "On a 7*7 grid, the 820

bottom left corner is [1,1], while the top right cor- 821

ner is [7,7]. The [figure] is at [x1, y1], while the 822

[reference] is at [4,4]. Please rate the appropri- 823

ateness of the following statement on a scale of 1 824

to 7, where 1 is the least appropriate and 7 is the 825

most appropriate. The Statement is: The [figure] is 826

[relation] the [reference]." 827

The specific prompt with placeholders replaced 828

by actual items is available on this anonymous web- 829

site Spatial Representations of LLMs). 830
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(a) temperature = 0.5

(b) temperature = 1

Figure S4: Performance of five LLMs on the spatial
rating task.

(a) temperature = 0.5

(b) temperature = 1

Figure S5: LLMs’ ratings on each location where the
figure object is situated at around the reference object.
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