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Abstract

In personalized medicine, the ability to predict and optimize treatment outcomes
across various time frames is essential. Additionally, the ability to select cost-
effective treatments within specific budget constraints is critical. Despite recent
advancements in estimating counterfactual trajectories, a direct link to optimal
treatment selection based on these estimates is missing. This paper introduces
a novel method integrating counterfactual estimation techniques and uncertainty
quantification to recommend personalized treatment plans adhering to predefined
cost constraints. Our approach is distinctive in its handling of continuous treat-
ment variables and its incorporation of uncertainty quantification to improve pre-
diction reliability. We validate our method using two simulated datasets, one fo-
cused on the cardiovascular system and the other on COVID-19. Our findings
indicate that our method has robust performance across different counterfactual
estimation baselines, showing that introducing uncertainty quantification in these
settings helps the current baselines in finding more reliable and accurate treat-
ment selection. The robustness of our method across various settings highlights
its potential for broad applicability in personalized healthcare solutions.

1 Introduction

In recent years, there has been a growing interest within medical research in forecasting patient
data across various time periods and predicting future treatment effects, a trend that aligns well
with the longitudinal nature of healthcare data [Allam et al., 2021, Liu et al., 2023, Feuerriegel
et al., 2024]. This is particularly important in personalized medicine, where the goal is usually to
develop treatment plans that are tailored to the predicted health development of individual patients
[Moodie et al., 2007, van Geloven et al., 2020]. A critical aspect of these plans is the reliability
of the predictions [Utomo et al., 2018, Hess et al., 2023], as practitioners often prefer more certain
outcomes over those that are merely optimistic or cost-effective [Kerr et al., 2008, West and West,
2002]. Additionally, the cost and potential side effects of treatments must be considered, particularly
for high-dose treatments [Weiting et al., 2022, Auger et al., 2005, Frei III and Canellos, 1980].

While several studies have explored counterfactual estimations and uncertainty quantification in
longitudinal data [Bica et al., 2020a, Hess et al., 2023, Li et al., 2021, Brouwer et al., 2022], there
remains a gap in applying these techniques to inform treatment assignment strategies. Notably, exist-
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ing strategies often overlook the continuous nature of many treatment decisions, such as chemother-
apy dosing [Kallus and Zhou, 2018, Kreif et al., 2015].

Contributions. This work introduces a model-agnostic framework for optimal treatment selection
that integrates uncertainty quantification of counterfactual predictions within predefined cost con-
straints. Our approach effectively accommodates continuous-valued treatments and is compatible
with various uncertainty quantification and counterfactual prediction methodologies, enhancing its
applicability across different settings.

2 Related Work

Treatment effect trajectories estimation. In the realm of longitudinal data, recent years have
seen various developments in estimating treatment effects, with a focus on the trajectories of in-
dividual patients. Bica et al. [2020a] introduced a counterfactual recurrent neural network (CRN)
that utilizes an encoder-decoder style long-short-term memory network. Following this, Melnychuk
et al. [2022] incorporated the transformer architecture to create the causal transformer (CT), and
Seedat et al. [2022] addressed irregularly sampled time series by employing neural controlled dif-
ferential equations (TE-CDE). Counterfactual ODE (CF-ODE) [Brouwer et al., 2022] and Bayesian
neural controlled differential equation BNCDE [Hess et al., 2023] later followed, including uncer-
tainty quantification into counterfactual trajectories estimation. Recent models for counterfactual
predictions based on g-computations were also introduced, like G-NET [Li et al., 2021]. However,
these studies primarily concentrate on scenarios involving treatments with discrete values, such as
fixed dosages per treatment type.

Balancing representations. Prior works have concentrated on estimating counterfactual trajecto-
ries with temporal confounding, where past covariates influence both the outcome and the treatment.
To counteract treatment selection bias in time series models, Bica et al. [2020a], Seedat et al. [2022]
and Melnychuk et al. [2022] have explored the development of a treatment-invariant representa-
tion through domain adversarial losses. Liu et al. [2023] implemented propensity score matching
in mini-batches as a strategy to mitigate temporal confounding. These methods typically assume
treatments with discrete values. However, the efficacy of balancing representations in addressing
these issues has recently received attention. Such approaches might only be beneficial in certain
conditions, such as with small sample sizes, as suggested by Alaa and Schaar [2018], or involving
numerous noisy covariates, as noted by Johansson et al. [2022]. Hess et al. [2023] have highlighted
that balancing representations might not effectively reduce bias in scenarios with time-varying con-
founders due to identifiability challenges. Similarly, our supplementary experiments do not support
balancing representations as means to address temporal confounding, see Appendix B. Additionally,
even in static contexts, these representations face complications due to the invertibility assumption
imposed on the learned representations [Shalit et al., 2017]. For a more comprehensive analysis, we
refer the reader to Melnychuk et al. [2023] and Curth and van der Schaar [2021].

Uncertainty quantification in treatment effect estimation. Various studies have incorporated
uncertainty quantification in treatment effect estimations over time. TE-CDE [Seedat et al., 2022] and
G-NET [Li et al., 2021] use Monte Carlo (MC) dropout [Gal and Ghahramani, 2016] to approximate
the posterior distributions of counterfactual outcomes. However, Hess et al. [2023] note that MC
dropout provides poor approximation of a posterior, proposing instead a Bayesian deep learning
approach in BNCDE that operates in continuous time. Their findings suggest that deferring treatments
with high uncertainty can significantly lower the error in outcome prediction. However, this method
only accounts for uncertainty quantification of predictions of single time steps (instead of multiple
time steps) and, like previous approaches, is limited to discrete treatments. CF-ODE puts further
attention on uncertainty quantification, as it helps in detecting a lack of overlap between treated and
non-treated distributions and confounding issues [Brouwer et al., 2022].

Optimal treatment selection. Optimal treatment strategy for healthcare, with the goal of max-
imising clinical outcomes, has been extensively studied [Caye et al., 2019, Dienstmann et al., 2015,
Zhang et al., 2012, Murphy, 2003, Robins et al., 2004, Moodie et al., 2007]. Different approaches
have been studied, including variable selection [Lu et al., 2013, Song et al., 2015], multicriteria
decision-making methods with conflicting outcomes [Bellos, 2023], optimal treatments selection
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based on predictive factors [Polley and van der Laan, 2009], multiple treatments assignment [Lou
et al., 2018]. To the best of our knowledge, previous optimal treatments selection frameworks have
not, however, been linked with uncertainty-aware counterfactual estimation in longitudinal data.

3 Model and Problem Setting

Problem setting. We consider longitudinal datasets, each consisting of n multidimensional patient
trajectories. Each trajectory includes: the outcomes (Yt ∈ Rdy ), the treatments (At ∈ Rda ), the
observed covariates (Xt ∈ Rdx ). We denote the history of all observed covariates up to time t for
patient i ∈ {1, . . . , n} as H̄i

t = {X̄i
t, Ā

i
t, Ȳ

i
t}, with X̄i

t := Xi
[0,t]. In the following, we omit the i

for better readability. This notation follows from [Melnychuk et al., 2022, Bica et al., 2020a].

We use the potential outcomes frameworks [Rubin, 2005], extended to accommodate time-varying
treatments [Robins et al., 2004]. Our observational period spans [0, t], and we consider future pro-
jections over a time horizon τ ≥ 0, within the interval [t, t + τ ]. Given a continuous-valued inter-
vention on the treatment at:t+τ = a[t,t+τ ], we are interested in the values of Yt:t+τ [at:t+τ ], which
represents the potential outcome Y over the interval [t, t+ τ ] following an intervention on At:t+τ .
Generally, works like Bica et al. [2020a] are interested in the point estimate E[Yt:t+τ [at:t+τ ] | h̄t],
corresponding to the future counterfactual outcomes Yt:t+τ following an intervention at:t+τ , on a
patient with history h̄t. We make the standard assumptions needed for the identification of potential
outcomes from observational data: consistency, sequential ignorability, and sequential overlap [Lim,
2018, Robins et al., 2004].

Similarly to Hess et al. [2023], Brouwer et al. [2022], our goal is to estimate uncertainty-aware
counterfactual trajectories to aid in selecting reliable treatment strategies. Given a desired outcome
trajectory y∗

t:t+τ , we would like to select the optimal treatment trajectory a∗t:t+τ such that

min
at:t+τ∈S(At:t+τ )

{∥E[Yt:t+τ [at:t+τ ] | h̄t]− y∗
t:t+τ∥2 + λVar[Yt:t+τ [at:t+τ ] | h̄t]]} ,

where λ is the uncertainty weight. Here, S(At:t+τ ) ⊆ A with At:t+τ ∈ A represents the outcome
trajectories satisfying a defined constraint.

Uncertainty quantification and treatment selection. We select as counterfactual trajectories es-
timation methods the baselines: CF-ODE, BNCDE, G-NET, CRN, CT. We will refer to these counterfac-
tual estimation neural network-based models Gϕt

: Rda+dx+dv → Rdy , estimating E[Yt′ [at:t+τ ] |
h̄t] from at:t+τ and h̄t with t′ ∈ [t, t + τ ]. More details on the uncertainty estimation and imple-
mentation of models can be found in Appendix A.

To assess the uncertainty of counterfactual predictions, we employ three model-agnostic techniques:
Monte-Carlo (MC) dropout, ensembling, and geometric ensembling, as discussed by Garipov et al.
[2018]. For MC-dropout, we perform eight forward passes, calculating the average µ̂t:t+τ (at, h̄t)
and variance σ̂t:t+τ (at, h̄t) of the predicted counterfactual outcomes ŷt:t+τ = Gϕt(at:t+τ , h̄t:t+τ ).
Similarly, in the ensembling approach, we utilize a group of eight models to compute these statistics.
Geometric ensembling, chosen for its training and computation efficiency, also involves sampling
eight neural networks to determine the average and variance of predictions. MC-dropout, due to
its superior speed, is our primary method for most treatment selection experiments. Additionally,
for models incorporating neural stochastic differential equations (BNCDE and CF-ODE), we conduct
eight forward passes to compute both the average and variance of the counterfactual outcome pre-
dictions, ensuring consistency in our experimental approach. We perform treatment selection with
the following objective

min
āt:t+τ∈S(At:t+τ )

{1
τ

τ∑
i=1

(µ̂t+i(at+i, h̄t+i)− yt+i)
2 + λ

1

τ

τ∑
i=1

σ̂t+i(at+i, h̄t+i)
2} .

More information on the choice of the treatment constraint S(At:t+τ ) can be found in Ap-
pendix D.1.We utilize gradients available through auto-differentiation to perform gradient descent
on the loss function using the AdamW optimizer [Loshchilov and Hutter, 2019].

Evaluation. To evaluate how reliably the selected treatments achieve the desired outcomes, we
leverage the ground truth dynamics from which the data is simulated. We simulate the counterfactual
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trajectory Yt:t+τ (a
∗
t:t+τ ) for the selected treatment a∗t:t+τ and compare it with the counterfactual

estimation Gϕt(a
∗
t:t+τ , h̄t). We evaluate the reliability of the treatment selection as the root mean

squared error between the counterfactual outcome and the desired outcome Yt:t+τ (a
∗
t:t+τ )

RMSEselection =

√√√√1

τ

τ∑
i=1

(µ̂t+i(a∗t+i, h̄t+i)− Ȳt+i(a∗t+i))
2 .

4 Experiments

We evaluate our model using different counterfactual estimation baselines, uncertainty quantification
methods and treatment constraints on two simulated datasets. More details on the parameters used
can be found in Appendix D.2.

4.1 Data

We utilize two simulated medical datasets focused on the COVID-19 and cardiovascular system to
evaluate our model. The use of simulated data is essential as it provides access to true counterfactual
trajectories, which are crucial for assessing our method’s performance. For all datasets, we simulate
40 time steps of observations in the interval [0, 30] (t = 30) and consider a prediction window of
[30, 40], with τ = 10. We generate H̄t+τ for each patient from randomly sampled initial conditions.
We use 1024, 128, and 128 patients as training, validation and test set, respectively.

COVID-19 dataset. We use the synthetic dataset by [Qian et al., 2021], which is an extension of
the one proposed in Dai et al. [2021] following

Ż1(t) = kdpZ1(t)− kdiZ1(t)Z3(t)− kdrZ1(t)Z2(t) ,

Ż2(t) = kidZ1(t)− kioZ2(t) + kifZ1(t)Z2(t) +
kepZ

hp

2

k
hp
cp + Z

hp

2

− kdZ3(t)Z2(t) ,

Ż3(t) = kimZ2(t) ,

Ż4(t) = kkelC(t)− kkelZ3(t) ,

where Żi(t) = dZi(t)
dt and Z1(t), Z2(t), Z3(t) , Z4(t) model the disease progression, immune

reaction, immunity, and dose, respectively.

To model a clinical setting, we consider multiple treatment cycles, at the beginning of which a
clinician can adjust the dose θ based on intermediate outcomes (5 cycles). Specifically, we consider
that the treatment Z4(t) is increased by 10% every time the outcome Z1(t) increases from the
previous time step, otherwise it is decreased by 10%.

Cardiovascular dataset. We use the cardiovascular system (CVS) model proposed in Zenker et al.
[2007], modelling the heart, the venous and arterial subsystems and the nervous system control
of blood pressure in response to fluid intake. Specifically, we use the same underlying model as
Brouwer et al. [2022], Linial et al. [2021]—a simplification of the one in Zenker et al. [2007]

˙SV (t) = Iexternal ,

Ṗa(t) = C−1
a

(Pa(t)− Pv(t)

RTPR(S)
− SV · fHR(S)

)
,

Ṗv(t) = C−1
v (−CaṖa(t) + Iexternal) ,

Ṡ(t) = τ−1
Baro

(
1− 1

1 + exp(−kwidth(Pa(t)− Paset)
− S

)
,

with

RTPR = S(t)(RTPRmax
−RTPRmin

) +RTPRmin
+RTPRmod

,

fHR(S) = S(t)(fHRmax
− fHRmin

) + fHRmin
,

Iexternal = θ · e− 5−t
5 .
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Figure 1: Performance of the baselines CRN, CT, CF-ODE, G-NET, BNCDE when selecting treatments
for patients from the cardiovascular (left) and COVID-19 (right) datasets. For most baselines, the
RMSEselection for the potential outcome compared to the desired outcome decreases, the higher the
uncertainty weight in the optimization.
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Figure 2: Comparison of clamping constraints for treatment selection, using the CRN as a counterfac-
tual estimator under a range of uncertainty weights. On the left we show results on the cardiovascular
dataset and on the right on the COVID-19 dataset. The performance of treatment selection is robust
to different treatment constraints choices, with an overall improvement of the performance in treat-
ment selection for higher uncertainty weights.

Here, SV , Pa, Pv , S represent the cardiac stroke volume, arterial blood pressure, venous blood
pressure, and autonomic baroreflex tone, respectively, and θ represents the dosage. We consider the
setting of a fluid challenge, in which fluid is administered to treat hypotension. In this setting, the
outcome is the venous blood pressure Pv and the treatment is a continuous-valued treatment process
Iexternal( Brouwer et al. [2022]). We consider cycles of treatment, sampling a new continuous valued
dose at the beginning of each cycle (5 cycles). More details on the parameters, and sampling the
initial conditions as well as θ can be found in Appendix C.

4.2 Results

We evaluate the performance of our method using the cardiovascular and COVID-19 datasets, us-
ing different counterfactual estimators. Figure 1 shows how incorporating uncertainty quantifica-
tion into the optimization objective overall increases the reliability of treatment selection for both
datasets. However, in the cardiovascular dataset, certain baselines exhibit a local minimum within
the tested range of uncertainty penalties. This phenomenon can be attributed to the dominance of the
uncertainty penalty in the treatment selection objective. As the weights of uncertainty in the regular-
ization term increase, the selected treatments deviate from achieving the desired outcomes, resulting
in less accurate predictions and an increase in the root mean square error (RMSE). Differently, in
the COVID-19 dataset, all the methods show increased performance among all selected uncertainty
weights. In Figures 2 and 3, the performance of the method is shown to be robust among different
treatment constraints and uncertainty metrics respectively using the CRN counterfactual estimation.
More details on the clamping approaches can be found in Appendix D.1.
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CRN on the COVID-19 dataset
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Figure 3: Comparison of the model-agnostic uncertainty quantification methods: MC dropout, en-
semble and geometric ensemble methods applied to the CRN on the cardiovascular dataset (upper)
and COVID-19 dataset (lower). Performance of treatment selection when varying the uncertainty es-
timate of the selected samples (left) and varying the uncertainty weight on the whole dataset (right).
Selecting the least uncertain samples yields more reliable predictions of the outcome. On the left,
we evaluate the models on an increasing percentage of the least uncertain samples (solid line) and
compare this to a random subset of the validation data (dashed line). In all uncertainty-quantification
methods, treatment selection yields more reliable treatments by increasing the weight on the uncer-
tainty objective.

5 Conclusion

In this work, we propose a method to predict clinical outcomes and optimize treatment effects over
time, leveraging uncertainty quantification techniques. Our approach improves on current counter-
factual estimation techniques by handling continuous-valued treatment variables – dosages – which
are common in real-world medical applications. The results from testing on two synthetic datasets
show that the proposed method could be applied alongside counterfactual estimation techniques to
improve the treatment selection process.

Our method’s ability to prioritize treatments that yield highly certain outcomes within a controlled
treatment cost framework could be beneficial for personalized medicine: it ensures that the selected
treatments are not only cost-effective but also minimize the potential risks associated with high-dose
treatments. The added uncertainty component in the treatment selection process enhances decision-
making, leading to more reliable patient care outcomes. The strength of our method lies in its
robust performance across a range of uncertainty quantification models, counterfactual estimation
techniques, and treatment parameters. Put together, its cost-effectiveness, reliability and robustness
makes our proposed method well-suited to a variety of medical contexts, offering practitioners the
flexibility to identify the optimal treatment approach. Future works could extent the method with
additional uncertainty quantification methods and treatment constraints.
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Appendix

A Counterfactual Estimation Baselines

We consider different counterfactual estimation methods in our models and compare their perfor-
mance. In our implementations, we modify all methods to handle continuous-valued treatments.

• BNCDE [Hess et al., 2023]: The BNCDE method combines neural stochastic differential equa-
tions for Bayesian uncertainty quantification with neural controlled differential equations for
continuous-time treatment effect estimation. Neural stochastic differential equations enable
tractable variational Bayesian inference, allowing for the parameterization of posterior distribu-
tions of network weights. We build on the implementation by Hess et al. [2023], extending the
method to continuous treatments. At inference time, we allow multi-step prediction by predicting
outcomes from latents at several time steps, instead of the final time step.

• G-NET [Li et al., 2021]: G-Net is a sequential deep learning framework for counterfactual pre-
diction based on g-computation. It leverages recurrent neural networks (RNNs) to model time-
varying covariates and treatments in complex longitudinal data settings. G-Net estimates the ef-
fects of dynamic treatment strategies by simulating patient trajectories under alternative treat-
ments. By employing RNNs, G-Net captures both temporal dependencies and non-linearities in
the data, providing more accurate predictions compared to classical models, particularly for coun-
terfactual predictions in clinical and simulated environments like cardiovascular simulations and
tumor growth datasets. Our implementation of the G-NET uses GRU-RNNs and a common head
for predicting outcomes and covariates.

• CT: The Causal Transformer (CT) is designed to estimate counterfactual outcomes over time by
capturing long-range dependencies in time-series data, such as patient trajectories. The model
incorporates three parallel transformer subnetworks that process different input sequences: time-
varying covariates, past treatments, and past outcomes. These are fused using cross-attention to
create a balanced representation. Additionally, CT uses Counterfactual Domain Confusion (CDC)
loss to minimize confounding bias and produce reliable counterfactual predictions. We replace the
CDC loss with the HSIC as a balancing criterion that is suitable for continuous-valued treatments
(see Section . . . for more details).

• CRN: The Counterfactual Recurrent Network (CRN) is a sequence-to-sequence model designed
for estimating treatment effects over time. It employs an encoder-decoder architecture where the
encoder processes patient history, including time-varying covariates and past treatments, to gener-
ate a treatment-invariant representation. This representation is refined through adversarial training
to minimize the influence of confounding variables. The decoder uses this balanced representation
to predict outcomes under alternative treatment plans, allowing for reliable counterfactual estima-
tions and treatment recommendations over time. We use HSIC for balancing representation loss
for the considered continuous treatment setting (see Section . . . for more details) and GRU RNNs.

• CF-ODE: The Counterfactual ODE (CF-ODE) method models treatment effects over time and
their epistemic uncertainty using an NSDE. The model encodes the observed time series into
a latent space via a GRU RNN, and then integrates the hidden state forward in time using a
treatment-specific processes within a NSDE. We extend this model to continuous-valued treat-
ments by replacing the binary treatment-specific processes with an encoding of continuous-valued
treatments. Specifically, we add the final hidden state of a GRU RNN processing the treatments
to the hidden state to be integrated.

In our experiments, we apply Reversible Instance Normalization (RevIN) [Kim et al., 2021] to all
settings, leading the input to be normalized at the start and denormalized at the output, ensuring
consistency in data distributions and reducing the impact of distribution shifts between training and
test sets.

B Temporal Confounding and Balancing Representation

When considering counterfactual estimation, time-varying confounding might lead to a bias in the
treatment assignment A0:t in the observational distribution. This is usually referred to as confound-
ing bias. Bica et al. [2020a], Melnychuk et al. [2022] use an adversarial objective to produce a
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Table 1: Parameters for Cardiovascular Simulation
Parameter Description Value
fhrmax Maximum heart rate scaling factor 3.0
fhrmin Minimum heart rate scaling factor 0.6666
rtprmax Maximum total peripheral resistance 2.134
rtprmin Minimum total peripheral resistance 0.5335
rtprmod Modifier for total peripheral resistance 0.0
svmod Stroke volume modification due to intervention (matches θ) 0.001
ca Arterial compliance 4.0
cv Venous compliance 111.0
kwidth Width parameter for sigmoid function 0.1838
paset Setpoint arterial pressure 70
τ Time constant for autonomic response 20
p0lv Left ventricular preload pressure 2.03
rvalve Valve resistance 0.0025
kelv Left ventricular elastance coefficient 0.066
ved0 Initial end-diastolic volume 7.14
Tsys Systole duration 0.2666
cprswmax Maximum pressure-volume relation (cprsw) 103.8
cprswmin Minimum pressure-volume relation (cprsw) 25.9

Table 2: Parameters for COVID-19 Dataset Simulation
Parameter Description Value
hillcure Hill coefficient for cure response 2.0
hp Hill coefficient for pathogen response 2.0
kcp Half-maximal effective concentration for pathogen 1.0
kep Maximum effect of pathogen response 1.0
kd Drug effect rate (pathogen-related) 1.0
kdp Disease progression rate 1.0
kdr Immunity-driven disease removal rate 1.0
kdi Immune reaction to disease 1.0
kid Disease-induced immune response activation rate 1.0
kif Immune feedback rate 1.0
kio Immune response decay rate 1.0
kim Immunity buildup rate 1.0
kkel Drug elimination rate 1.0

sequence of balanced representations, which are simultaneously predictive of the outcome but non-
predictive of the current treatment assignment, resulting in a treatment-invariant representation of
the patient history Φ(h̄i

t), breaking the association between the treatment history and the treatment
assignment. Bica et al. [2020a], Melnychuk et al. [2022] show that these representations can re-
move the bias from time-varying confounders. More specifically, they learn a representation such
that P (Φ(h̄t) | At = a(k)) is equal for all k = 1, 2, . . . ,K treatments. The current adversarial-
learning based methods of Bica et al. [2020a], Melnychuk et al. [2022] are built for discrete treatment
variables. We extend this balancing objective to to learn a treatment invariant representation Φ(H̄t)
to continuous-valued treatments. Instead of an adversarial loss with an auxiliary treatment classifier
head, we encourage treatment invariant representations by minimizing the Hilbert-Schmidt indepen-
dence criterion between past treatments and a representation of the trajectory HSIC(At,Φ(H̄t)). In
contrast to adversarial losses, the HSIC is non-parametric and robust to class imbalance in treat-
ments.

We assess the performance of balancing representations on continuous-valued treatments. To model
different levels of confounding, at the beginning of each treatment cycle i we sample doses θ from
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Figure 4: Encouraging a balancing representations with increasing weight on the HSIC objective
has a negligible effect on reliable counterfactual estimation compared to the uncertainty objective

a beta distribution parameterized as following Bica et al. [2020b]

θi+1 ∼ Beta(α, β), where β =
α− 1

di+1
w

+ 2− α .

For both data simulations, we set d0w = A0.

For the COVID-19 data simulation, we specify di+1
w as

di+1
w =

{
diw × 1.1 if yi+1

0 ≥ yi0 ,

diw × 0.9 if yi+1
t ≤ yi0 .

(1)

For the cardiovascular data simulation, we do not specify di+1
w , but instead set di+1

w = diw = . . . =
d1w = A0. When α = 1, the distribution becomes uniform, and so θ is independent of previous
outcomes, treatments and covariates—preventing confounding entirely. Increasing α yields stronger
confounding.

To check if balancing representations help in our settings, we set α = 2 and up-weigh the balancing
objective in our loss, in factors of λ. In line with the literature Alaa and Schaar [2018], we find no
benefit for λ ≥ 0 in Figure 4.

C Dataset Simulation

We sample the initial conditions of the cardiovascular dataset from the following distributions:

SV ∼ Unif(0.9, 1.0) ,
Pa ∼ Unif(0.75, 0.85) ,
Pv ∼ Unif(0.3, 0.7) ,
s ∼ Unif(0.15, 0.25) .

and for the COVID-19 dataset:

Zi ∼ Exp(0.01) for i ∈ {1, 2, 3, 4} .

A more detailed overview of the parameters for the cardiovascular and COVID-19 datasets simula-
tion can be found in Table 1 and Table 2 respectively.
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Table 3: Parameters for Treatment Selection
Parameter Value

Uncertainty Weights 0, 10−5, 10−4, 10−3, 10−2, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16
MSE Weight 0.02
Constraints Soft clamp, β = 4, α = 0.01
Optimizer AdamW [Loshchilov and Hutter, 2019]
Optimization Steps 50
Learning Rate 0.1
Replicates 6

D Experiments

D.1 Constraints on Treatment Trajectories

To ensure optimal treatment administration within a clinically acceptable framework, we use dif-
ferent constraints on the dosage trajectory At:t+τ such that S(At:t+τ ) ⊆ A. This is achieved by
applying a mapping v : Rτ×da → S(At:t+τ ), where v(At:t+τ ) ∈ S(At:t+τ ).

• Range Clamping: Each dosage is adjusted to remain within a specified range, mitigating
the risk of excessively high or low doses. This is implemented by centering and clamping
the dosage values within the interval [a, b]

vrange(At:t+τ ) = min(max(At:t+τ − Mean(At:t+τ ), a), b) .

• Soft Clamping: To discourage extreme dosages while improving optimization, a soft
clamping approach is applied, which pulls values towards a central range defined by β

vsoft(At:t+τ ) =


αAt:t+τ if At:t+τ > β ,

At:t+τ if − β ≤ At:t+τ ≤ β ,

αAt:t+τ if At:t+τ < −β .

• tanh Clamping: To limit dosages within a range (−β, β) while providing a continuous
function, we apply the tanh clamping method

vtanh(At:t+τ ) = β · tanh(At:t+τ ) .

These constraints allow flexibility within defined clinical parameters for determining dosage admin-
istration constraints. These seemed the most realistic and interesting settings, however changes to
these constraints can be made based on specific clinical needs or treatment goals.

D.2 Experiment Details

We present the parameters used for treatment selection in Table 3.

D.3 Additional Experiments

We also show more results with the different counterfactual estimation baselines in Figure 5 and
we assess the performance of the method with different uncertainty quantification methods with an
additional model – the G-NET – in Figure 6.
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Figure 5: Performance comparison of the baseline models CRN, CT, CF-ODE, G-NET, BNCDE in treat-
ments selection for cardiovascular (left) and COVID-19 (right) datasets. This comparison includes
varying percentages of the most uncertain samples alongside a random subset of the validation data.
The trends observed across different baselines are relatively stable, showing overall improved per-
formance with increased certainty in the sample selection.
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Figure 6: Comparison of the model-agnostic uncertainty quantification MC dropout, ensemble and
geometric ensemble methods applied to the G-NET on the cardiovascular dataset (up) and COVID-19
dataset (low). Performance of treatment selection by varying the certainty of the selected samples
(left) and by varying uncertainty weight on the whole dataset (right). Selecting the least uncertain
samples yields more reliable predictions of the outcome. We evaluate the models on an increasing
percentage of the least uncertain samples together with a random subset of the validation data.
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