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Figure 1: Three different kinds of image edit methods. (a): Drag-based Edit. Users need to click
handle points (red) and target points (blue). (b): Text-based Edit. Only the edit prompt is needed to
perform the edit. (c): Text-Drag Edit. both drag points and edit prompts are required.

ABSTRACT

Precise and flexible image editing remains a fundamental challenge in computer
vision. Based on the modified areas, most editing methods can be divided into two
main types: global editing and local editing. In this paper, we discussed two rep-
resentative approaches of each type (i.e., text-based editing and drag-based edit-
ing. Specifically, we argue that both two directions have their inherent drawbacks:
Text-based methods often fail to describe the desired modifications precisely,
while drag-based methods suffer from ambiguity. To address these issues, we
proposed CLIPDrag, a novel image editing method that is the first try to combine
text and drag signals for precise and ambiguity-free manipulations on diffusion
models. To fully leverage these two signals, we treat text signals as global guid-
ance and drag points as local information. Then we introduce a novel global-local
motion supervision method to integrate text signals into existing drag-based meth-
ods (Shi et al., 2024b) by adapting a pre-trained language-vision model like CLIP
(Radford et al., 2021). Furthermore, we also address the problem of slow conver-
gence in CLIPDrag by presenting a fast point-tracking method that enforces drag
points moving toward correct directions. Extensive experiments demonstrate that
CLIPDrag outperforms existing single drag-based methods or text-based methods.

1 INTRODUCTION

Recently, notable breakthroughs in diffusion models (Ho et al., 2020; Song et al., 2020a;b), have led
to many impressive applications (Meng et al., 2021; Dong et al., 2023; Kumari et al., 2023). Among
them, image editing is recognized as a significant area of innovation and has gained enormous at-
tention (Kim et al., 2022; Nichol et al., 2021; Sheynin et al., 2024; Valevski et al., 2023). Generally,
the goal of this task is to edit realistic images based on various editing instructions. Mainstream
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methods for image editing can be coarsely categorized into two groups: 1) Global Editing, edits
given images by a text prompt (Li et al., 2023; Kawar et al., 2023) or an extra image (Zhang et al.,
2023a; Epstein et al., 2023) containing global information of the desired modification. Most of them
involve finetuning a pre-trained diffusion model. 2) Local Editing, mainly consists of drag-based
methods (Pan et al., 2023). This framework requires users to click several handle points (handles)
and target points (targets) on an image, then perform the semantic edit to move the content of han-
dles to corresponding targets. Typical methods (Mou et al., 2023; Shi et al., 2024b) usually contain
a motion supervision phase that progressively transfers the features of handles to targets by updating
the DDIM inversion latent, and a point tracking phase to track the position of handles by performing
a nearest search on neighbor candidate points.

Although the aforementioned methods have gained significant prominence, two drawbacks of them
cannot be overlooked. 1) Imprecise Description in Global Editing. Global editing such as text-
based image methods (Kawar et al., 2023) is unambiguous but is hard to provide detailed edit in-
structions. For example, in Figure 1(b), the prompt (i.e.“The sculpture is smiling”) tells the model
how to edit the image, but it is difficult to provide fine-grained editing information, like the ex-
tent of the smile. 2) Ambiguity Issues in Local Editing. Although local editing like drag-based
editing methods can perform precise pixel-level spatial control, they suffer from ambiguity because
the same handles and targets can correspond to multiple potential edited results. For example, in
Figure 1(a), there exist two edited results meeting the drag requirements: one enlarging the face,
the other making the woman smile. A natural approach to solving the ambiguity problem is to add
more point pairs, but it does not work in real practice. This is because the diffusion network is a
Markov chain and related errors accumulate as the update continues. Thus when adding more points,
it usually means more update iterations, which will result in the degradation in image fidelity. In
conclusion, local editing is precise but ambiguous while global editing is exactly the opposite.

Since these two kinds of edit are complementary, it is natural to ask: can we combine these two
control signals to guide the image editing process? In this way, text signals can serve as global
information to reduce ambiguity. Meanwhile, drag signals can act as local control signals, pro-
viding more detailed control. However, combining these two signals presents two challenges: 1)
How to integrate two different kinds of signals efficiently? This is difficult because text-based
and drag-based methods have completely different training strategies. Specifically, most text-based
methods (Kim et al., 2022) require finetuning a pre-trained diffusion model to gradually inject the
prompt information. But drag-based methods (Shi et al., 2024b) typically involve freezing the diffu-
sion model and only optimizing the DDIM inversion latent of the given image. Besides, the update
in text-based editing often involves the whole denoising timesteps while drag-based approaches only
focus on a specific timestep. 2) How to solve the optimization problem and maintain the image
quality? Previous drag-based methods are very slow in some situations. Sometimes the handles
will stuck at one position for many iterations. In worse situations, they even move in the oppo-
site direction of targets. This phenomenon becomes more serious when adding text signals because
combining two different signals usually requires more optimization steps. Thus we need a better
approach to optimize the update process while maintaining fidelity as much as possible.

To address these problems, we propose CLIPDrag, the first method to combine text-based and drag-
based approaches to achieve precise and flexible image editing (For brevity, we denote this kind
of editing as text-drag edit). This approach was built based on the general drag-based diffusion
editing framework, which optimizes the DDIM inversion latent of the original image at one specific
timestep. Specifically, we propose two modules to solve the aforementioned problems after a typical
identity finetuning process. 1) Global-Local Motion Supervision (GLMS). The key of GLMS is to
utilize the gradient from text and drag signals together for ambiguity-elimination. Specifically, for
text information, we obtain the global gradient by backward of the global CLIP loss for the latent.
Similarly, for drag points, the local gradient is calculated using a similar paradigm in DragDif-
fuion (Shi et al., 2024b). Because CLIP guidance methods cannot operate at a single fixed step,
simply adding these two gradients is ineffective. Specifically, in GLMS, We disentangle the global
gradient into two components: Identity Component perpendicular to the local gradient to maintain
the image’s global structure information, and Edit Component parallel to the local gradient, which
will be combined with the local gradient from drag signals to edit the image. By comparing their
direction, we choose different gradient fusion strategies to either perform the edit or maintain the
image identity. 2) Fast Point Tracking (FPT). As we mentioned before, combining drag and text
signals will result in slow convergence in the latent optimization. Thus we propose a faster tracking
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method to accelerate the optimization process. FPT is introduced to update the position of handles
after each GLMS operation. Specifically, when performing the nearest neighbor search algorithm,
FPT masks all candidates that are far away from current targets. Consequently, handles will become
closer to targets after each update, and FPT also ensures that the moving trajectory of handles will
not be repetitive. It is observed that FPT significantly accelerates the image editing process and
improves the image quality to some extent.

Combining these good practices, CLIPDrag achieves high-quality results for text-drag editing. Ex-
tensive experiments demonstrate the effectiveness of CLIPDrag, outperforming the state-of-the-art
approaches both quantitatively and qualitatively. To summarize, our contributions are as follows:

• We have pointed out that previous drag-based and text-based image editing methods have the
problems of ambiguity and inaccuracy, respectively.

• We propose CLIPDrag, a solution that incorporates text signals into drag-based methods by using
text signals as global information.

• Extensive experiments demonstrate the superiority and stability of CLIPDrag in text-drag image
editing, marking a significant advancement in the field of flexible and precise image editing.

2 RELATED WORK

Diffusion Models. Diffusion models are a class of generative models that progressively degrade
data by adding noise and then learn the reverse denoising process to generate realistic data. The
Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) was the first to demonstrate
that diffusion models could achieve results comparable to state-of-the-art GANs (Goodfellow et al.,
2020) for unconditional image generation. Subsequent works, such as DDIM (Song et al., 2020a)
and ScoreSDE (Song et al., 2020b), refined the theoretical framework and improved performance.
Classifier-guided (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2022)
methods further explored the potential of diffusion models for conditional generation. Inspired by
the impact of large language models, the computer vision community has also trained diffusion
models on large datasets to achieve commercial-grade performance, leading to the development of
models such as GLIDE (Nichol et al., 2021), EMU (Sheynin et al., 2024), and Imagic (Kawar et al.,
2023). Among these, Stable Diffusion (SD) (Rombach et al., 2022) has become particularly popular
due to its efficiency. Unlike previous methods, SD projects images into a lower-dimensional latent
space before adding noise, significantly reducing memory and computational requirements. Build-
ing on SD, numerous downstream applications have been proposed, including personalization (Ruiz
et al., 2023), style transfer (Zhang et al., 2023b), and inpainting (Lugmayr et al., 2022).

Text-based Image Editing. Unlike text-to-image generation which involves creating an image from
scratch (Ho et al., 2022; Dhariwal & Nichol, 2021; Saharia et al., 2022; Gu et al., 2022), text-
based image editing is about altering certain areas of a given image. DiffCLIP (Kim et al., 2022)
leverages contrastive language-image pertaining(CLIP) (Radford et al., 2021) to fine-tune the dif-
fusion process, enhancing diffusion models for high-quality zero-shot image editing. SINE (Zhang
et al., 2023c) improves editing performance on single images by utilizing a large-scale pre-trained
text-to-image model. Paint by Example (Yang et al., 2023) is the first approach to employ self-
supervised training for more precise control through exemplar guidance. FlexiEdit (Koo et al.,
2024) enhances non-rigid editing by reducing the high-frequency components in the target areas.
Prompt-to-Prompt (Hertz et al., 2022) refines text-based editing by manipulating cross-attention
maps during diffusion, enabling more effective modifications. Similarly, MasaCtrl (Cao et al.,
2023) achieves complex non-rigid image editing by converting self-attention into mutual attention.
InstructPix2Pix (Brooks et al., 2023) integrates a pre-trained large language model with a text-to-
image model to generate training data for a conditional diffusion model, facilitating direct image
editing from textual prompts. Null-text inversion (Mokady et al., 2023), on the other hand, enhances
editing by optimizing default null-text embeddings to achieve desired transformations. While these
text-based methods empower users to edit images using natural language, they often lack the preci-
sion and explicit control offered by drag-based editing techniques.

Drag-based Image Editing. Recently, DragGAN (Pan et al., 2023) introduced a novel method
for achieving precise spatial control over specific regions of an image based on user-provided drag
instructions. Building on it, DragDiffusion (Shi et al., 2024b) applied the approach to diffusion mod-
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Figure 2: Illustration of our scheme for an intermediate single-step optimization. ztmeans the opti-
mized latent code at tth updation. The local gradient and global gradient are calculated by backward-
ing the motion supervision loss and CLIP guidance loss with respect to the latent code respectively.
Then the Global-Local Gradient Fusion method is introduced to combine these two information to
update the latent code. The new handles are inferred through our fast point tracking method.

els, achieving superior performance and establishing a benchmark for future work. FreeDrag (Ling
et al., 2023) reduces the burden of point tracking by introducing two key components: adaptive
updates of template features and a line search with backtracking mechanism. StableDrag (Cui
et al., 2024) proposes a discriminative point-tracking method to construct a stable drag-based edit-
ing framework. SDE-Drag (Meng et al., 2021) offers a straightforward yet powerful approach for
point-based content manipulation based on the stochastic differential equation (SDE) framework.
LightningDrag (Shi et al., 2024a) enables high-quality image editing by eliminating the need for
time-consuming latent optimization. Similarly, InstantDrag (Shin et al., 2024) achieves a fast edit-
ing framework by incorporating two optical flow generators. A concurrent work, RegionDrag (Lu
et al., 2024), addresses ambiguity issues by transforming the problem into region-based editing
through a gradient-free copy-paste operation. Unlike our method, RegionDrag employs a simpler
transfer mechanism for achieving edits. Another line of drag-based methods includes DragonDiffu-
sion (Mou et al., 2023) and DiffEditor (Mou et al., 2024), which reformulate the image editing task
into a gradient-based process by defining an energy function that aligns with the desired edit results.

3 APPROACH

Problem Formulation. Given an image I and two text prompts Po and Pe, where Po describes
the original image and Pe depicts the edited image. After choosing n handles {h1, h2, . . . , hn} and
corresponding targets {g1, g2, . . . , gn}, a qualified text-drag edit method has to satisfy the following
two requirements: 1) Move the feature of point hi to gi, while preserving the irrelevant content of
the original image. 2) The edited image must align with the edit prompt Pe.

General Framework: As shown in Figure 21, our method CLIPDrag, consists of three steps:

1While we use “SD” in the diagram, it may only refer to part of the diffusion model. For example, the
“DDIM Inv” only utilizes the VAE component.
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1) Identity-Preserving Finetuning (Sec 3.1): Given the input image I and its description Po
1, We first

finetune a pre-trained latent diffusion model ϵθ using the technique of low-rank adpation (LoRA (Hu
et al., 2021)). After the finetuning, we encode the image into the latent space and obtain the latent zt
at a specific timestep t through DDIM inversion. zt will be optimized for many iterations to achieve
the desired edit, and each iteration consists of two following phases.

2) Global-Local Motion Supervision (Sec 3.2): We denote the latent at t-th step and handle point pi
during the k-th iteration as zkt and pki respectively. At k-th iteration, we can calculate global and
local gradient vectors for zkt . These two gradients will be combined by our Global-Local Gradient
Fusion method, and the final result is used to update zkt to zk+1

t .

3) Fast Point Tracking (Sec 3.3): After GLMS, we can update the position of handles with the
nearest neighbor search. To accelerate the editing speed while preserving the image fidelity, we
propose FPT to ensure that new handles are closer to their corresponding targets by filtering all
candidates that are far away from the targets.

3.1 IDENTITY-PRESERVING FINETUING

As analyzed in previous work (Shi et al., 2024b), directly optimizing the latent zt in diffusion-based
methods will cause the problem of image fidelity. So finetuning on a pre-trained diffusion model
is necessary to encode the features of the image into the U-Net. Specifically, the image and its
description prompt Po are used to finetune the diffusion model ϵθ through the LoRA method:

Lft(z,∆θ) = Eϵ,t[∥ϵ− ϵθ+∆θ(αtz + σtϵ)∥22] (1)

where z is the latent space feature map concerning image I . θ and ∆θ represent the U-Net (Ron-
neberger et al., 2015) and LoRA parameters, αt and σt are constants pre-defined in the diffusion
schedule, ϵ is random noise sampled from distribution N (0, I). After the finetuning, we choose a
specific timestep t and obtain the DDIM inversion latent (Song et al., 2020a) as follows:

zt+1 =
√
αt+1(

zt −
√
1− αt · ϵθ(zt)√

αt
) +

√
1− αt+1 · ϵθ(zt) (2)

the latent will be optimized in the subsequent process while keeping all other parameters frozen.

3.2 GLOBAL-LOCAL MOTION SUPERVISION

This step aims to combine text and drag signals, as shown in Figure 3. We will introduce how to
process each control information, and then show how to combine them.

Figure 3: (a) Gg is consistent with Gl. (b) Gg contra-
dicts with Gl. (c) Fast Point Tracking.

CLIP-guidance Gradient. We extract knowl-
edge from text signal using a local direction
CLIP loss (Kim et al., 2022), which aligns the
direction between the source image I and gen-
erates image Î with the direction between orig-
inal prompt Po and edit prompt Pe:

Ldirection(I, Î, Po, Pe) := 1− < ∆I,∆T >

∥∆I∥∥∆T∥
(3)

where ∆I = EI(Î(z
k
t )) − EI(I), ∆T =

ET (Pe) − ET (Po). Here ET , EI represents
text and image encoder from a pre-trained CLIP
model. However, the identity component of Pe

is canceled out during the calculation of ∆T ,
making it difficult to maintain the image iden-
tity. Besides, sometimes it is impossible to cal-
culate the direction loss because Po is not pro-

1For convenience, users can opt not to provide a description, in which case a captioning model, such as
GPT-4V will automatically generate a prompt.
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vided (Zhang et al., 2024). Consequently, we choose the global target loss to extract more informa-
tion from edit prompt Pe as follows:

Lglobal(Î , Pe) := 1− < EI(Î(z
k
t )), ET (Pe) >

∥EI(Î(zkt )∥∥ET (Pe)∥
(4)

Then we can obtain the global gradient (Gg) from the text signal: Gg = ∂Lglobal/∂z
k
t . Later we

will explain how to use Gg to maintain the image identity and guide the edit.

Drag-guidance Gradient. We denote the U-Net output feature maps obtained by k-th updated
latent zkt as F (zkt ).And the gradient from drag signals is obtained by the motion supervision loss
Lms, which is the difference between the features of corresponding targets and handles:

Lms(z
k
t ) =

n∑
i=1

∑
q∈Ω(pi,r1)

∥Fq+di
(zkt )− sg(Fq(z

0
t ))∥1 + ∥(zkt − sg(z0t ))⊙ (1−M)∥1 (5)

Where Ω(pi, r1) = {(x, y) : ∥x − xi∥ ≤ r1, ∥y − yi∥ ≤ r1}, M is an optional mask, and r1
represents the patch radius. sg(·) represents the stop gradient operation (van, 2017), di = (gi −
hk
i )/∥gi − hk

i ∥, is an unit vector from hk
i to gi. Thus the local gradient (Gl) can be calculated by:

Gl = ∂Lms/∂z
k
t .

Global-Local Gradient Fusion. Now we explain how to incorporate the two gradients in detail.
The key motivation of this method is to decompose the process of text-based editing process into two
parts: the edit component and the identity component. Specifically, as shown in Figure 3, when the
direction of the edit component from Gg is consistent with Gl (Figure 3(a)), it means both signals
agree with how to update the latent. Thus we use Gl to guide the edit while preserving the structure
of the image by the identity component of Gg . When the two edit directions are contradictory (Figure
3(b)), we choose to correct the drag direction using the editing component, inspired by (Zhu et al.,
2023). This approach can be formalized as follows:

Gfinal =

{
Gl + λ sin⟨Gg, Gl⟩ ·Gg, cos⟨Gg, Gl⟩ > 0,

Gl − λ cos⟨Gg, Gl⟩ ·Gg, cos⟨Gg, Gl⟩ < 0,
(6)

where Gfinal means the final gradient to update the latent code and λ is a hyper-parameter.

3.3 FAST POINT TRACKING

Although CLIP guidance can relieve the ambiguity problem, it makes the optimization of GLMS
more difficult. In drag-based methods, a similar optimization issue arises when more point pairs
are added. In the previous point tracking strategy, handles sometimes get stuck in one position or
move far away from their corresponding targets. This significantly slows down the editing process.
To remedy this issue, we add a simple constraint on the point tracking process: when updating the
handles through the nearest neighbor search algorithm, only consider the candidate points that are
closer to the targets, as shown in Figure 3(c). Our FPT method can be formulated as follows:

hk+1
i = argmin

a∈Ω(hk
i ,r2) & dis(a,gi)<dis(hk

i ,gi)

∥Fq(z
k+1
t )− Fhk

i
(z0t )∥ (7)

where dis(a, gi) represents the distance between point a and target gi, r2 is the search radius.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We used Stable Diffusion 1.5 (Rombach et al., 2022) and CLIP-ViT-B/16 (Dosovitskiy et al., 2020)
as the base model. For the LoRA finetuning stage, we set the training steps as 80, and the rank as 16
with a small learning rate of 0.0005. In the DDIM inversion, we set the inversion strength to 0.7 and
the total denoising steps to 50. In the Motion supervision, we had a large maximum optimization
step of 2000, ensuring handles could reach the targets. The features were extracted from the last
layer of the U-Net. The radius for motion supervision (r1) and point tracking (r2) were set to 4 and
12, respectively. The weight λ in the Global-Local Gradient Fusion process was 0.7.
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Figure 4: Comparisons with Drag-based methods (DragDiff, FreeDrag) and Text-based methods
(DiffCLIP). Pe is the edited prompts, which are required by CLIPDrag and DiffCLIP.

4.2 TEXT-DRAG EDITING RESULTS

Settings. To show the performance of CLIPDrag we compared both drag-based methods (DragDif-
fusion, FreeDrag, RegionDrag, StableDrag, InstantDrag, LightningDrag), and text-based method
(DiffCLIP) on text-drag image editing tasks. Specifically, drag-based methods require drag points
as edit instructions while text-based methods need an edit prompt to perform the modification. For
CLIPDrag, both editing prompts and drag points are required to perform the edit. All input images
are from the DRAGBENCH datasets (Shi et al., 2024b).

Results. As illustrated in Figure 4, our method shows better performance over the two different
editing frameworks. Due to the limited space, the results of RegionDrag, StableDrag, InstantDrag,
LightningDrag are shown in Appendix A. Compared with text-based methods (DiffCLIP), CLIP-
Drag can perform more precise editing control on the pixel level. Compared with drag-based meth-
ods (DragDiffusion, FreeDrag), CLIPDrag successfully alleviates the ambiguity problem, as shown
in Figure 4(b)(d)(e). This is because former drag-based methods intend to perform structural editing
like moving or reshaping, instead of semantic editing such as emotional expression modification. It
is reasonable because moving an object is much easier than changing its morphological characteris-
tics. Consequently, these models prefer to choose the shortcut to realize feature alignment in motion
supervision, resulting in the ambiguity problem. Our proposed method effectively solves the issue,
by introducing CLIP guidance as the global information to point out a correct optimization path.

Besides, former drag-based approaches cannot guarantee edited image quality when multiple drag
point pairs exist. So we also give some examples with multiple point pairs to compare the stability
of these methods. As shown in Figure 4(a)(c), these results validate the effectiveness of the two
techniques in our method: identity component’s guidance to preserve the image quality, and fast
point tracking to achieve better drag performance.

More results of CLIPDrag are shown in Figure 5. The leftmost three examples verify the effective-
ness of our method: by combining the information of drag points and edit prompts (Pe), CLIPDrag
achieves an edit with high image fidelity and no ambiguity. The middle three examples show the
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Figure 5: Some examples of CLIPDrag. For each input, both an edit prompt and drag points are
required. Pe and Po represent the edit prompts and original prompts respectively.

Figure 6: (a): Examples of CLIPDrag and DragDiff on drag-based edit. Since no text information is
needed in the editing process of DragDiff, we use the finetuning prompt (Po) as the editing prompt
(Pe) in CLIPDrag for fairness. (b): The quantitative experiment on the DRAGBENCH dataset.

situations when users do not want to consider the ambiguity or find it difficult to describe the desired
edit. And we found CLIP also works well when the edit prompt is replaced with the original prompt
(Po). The rightmost three examples show the results when adding a mask.

4.3 DRAG-BASED EDITING RESULTS

Settings. Since our method is based on general drag-based frameworks, we also explored the perfor-
mance of CLIPDrag in pure drag-based editing tasks. Specifically, we replaced the editing prompt
(Pe) with the corresponding original prompt (Po). This ensures that no extra text information will
be introduced. We compared our CLIPDrag with DragDiffusion, FastDrag and StableDrag on the
DRAGBENCH benchmark with five different max iteration step settings. To evaluate the image
fidelity, we reported the average 1-LIPIS score (IF). Besides, Mean distance (MD) was calculated
to show the distance between the final handles and targets (Lower MD represents better drag per-
formance). Due to the limited space, the visual results of StableDrag and FastDrag are included in
Appendix E.
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Figure 7: (a): Ablation study on different gradient fusion strategies. “Gradient Adding” represents
simply adding the global and local gradient, and “ProGrad” is the method proposed in (Zhu et al.,
2023). The difference between ProGrad and ours is that we utilize the identity component to main-
tain image fidelity. (b): Ablation on text signals. for the same drag instruction (e.g.(ii)), different
results are obtained with different edit prompts ((ii) & (iii)).

Figure 8: Ablation study on two kinds of point tracking strategies: original point tracking in
DragDiff (PT) and our fast point tracking (FPT). for the same drag instruction (a), (b)(c) are the
results of PT and FPT, respectively. (d)(e) are the corresponding trajectories of the handle point.

Results. Quantitative results are shown in Figure 6(b). In this figure, the x-axis represents the
max iteration steps and the y-axis represents the IF and MD metrics respectively. As can be seen,
CLIPDrag has better performance than DragDiff, FastDrag and StableDrag. Specifically, on most
max iteration steps settings, CLIPDrag has higher IF and lower MD. This means handle points are
closer to the targets in CLIPDrag, in the meanwhile, the edited image quality is preserved or even
improved (Figure 6(a)).

4.4 ABLATION STUDY

Ablation on Text Signals. We performed ablation studies to clarify the effect of text signals in
CLIPDrag by using different edit prompts and keeping the drag points unchanged.

Results. As illustrated in Figure 7(b), the ambiguity can be alleviated in CLIPDrag. For example, the
drag instruction (i) corresponds to at least two different edit directions: one moving up the sculpture
(ii), the other raising his head (iii). By giving different text signals we can choose different edit
paths. We also observed that when no extra text information is given, CLIPDrag tends to align
handle and target features by simple position translation (ii), instead of semantic edit (iii).

Ablation on the Global-Local Gradient Fusion. We studied the effect of different methods to
combine text and drag signals. We ran this ablation experiment with three different strategies global-
local gradient fusion: adding two gradients together, ProGrad, and our method.

Results. As shown in Figure 7(a), adding two gradients cannot alleviate the ambiguity problem
because the CLIP guidance does not take effect on the single effect, as illustrated in DiffCLIP. The
ProGrad method can relieve the ambiguity problem but performs badly in maintaining the quality
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(a) Input (b) 10-th Step (c) 20-th Step (d) 30-th Step (e) 40-th Step

Figure 9: Further analysis on Point Tracking strategies. For the same input, intermediate edit results
are visualized at multiple optimization steps.

of edited images. This is because it ignores the identity component in text signals, which contains
information about the image’s structure. By contrast, our proposed method can effectively fuse the
two signals, not only relieving the ambiguity but also maintaining the image fidelity to some degree.

Ablation on Different Point Tracking Strategies. Finally, We showed the effect of different point
tracking strategies. We based this experiment on our CLIPDrag method while replacing the fast
point tracking with the normal one in DragDiff (Shi et al., 2024b). Besides, to make the result more
convincing, we tried to make edited images from these two methods similar by adjusting the random
seed and learning rate, while keeping other parameters like patch radius unchanged.

Results. As shown in Figure 8, when achieving similar editing results, FPT effectively reduces the
optimization iterations consumed. From the moving trajectory in Figure 8(d), we found that handles
could get stuck at one point or move in circles in previous methods. Instead, handles move closer and
closer to the targets in our FPT strategy, thus speeding up the editing process. Figure 8(c) shows that
the FPT method does not harm the image quality. To further show the effect of FPT, we give another
example and their intermediate results, shown in Figure 9(c). At 20-th iteration, FPT strategy began
to perform semantic editing, while PT method was still in the stage of identity-preserving.

5 CONCLUSION

In this work, we tackled the ongoing challenge of achieving precise and flexible image editing within
the field of computer vision. We observed that existing text-based methods often lack the precision
for specific modifications, while drag-based techniques are prone to ambiguity. To overcome these
challenges, we introduced CLIPDrag, a pioneering method that uniquely integrates text and drag sig-
nals to enable accurate and unambiguous manipulations. We enhanced existing drag-based methods
by treating text features as global guidance and drag points as local cues. Our novel global-local gra-
dient fusion method further optimized the editing process during motion supervision. Additionally,
to address the issue of slow convergence in CLIPDrag, we developed a FPT method that efficiently
guides handle points toward their target positions. Eextensive experiments clearly demonstrated that
CLIPDrag significantly outperforms existing methods that rely solely on drag or text-based inputs.
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APPENDIX

The appendix is organized as follows:

1. In Sec. A, we show comparisons with more drag-based methods on text-drag edit.

2. In Sec. B, we show four more examples in the Figure 1.

3. In Sec. C, we show results when we apply text and drag guidance sequentially

4. In Sec. D, we show examples when text and drag signals conflict.

5. In Sec. E, we show examples of StableDrag, FreeDrag on drag-based edit.

6. In Sec. F, we show the inference time comparisons.
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Figure 10: Results of four drag-based methods, including InstantDrag, LightningDrag, RegionDrag,
StableDrag.

A MORE RESULTS OF TEXT-DRAG EDIT.

To better show the superiority of CLIPDrag compared to traditional drag-based methods, we show
the results of four other drag-based methods(StableDrag, LightningDrag, RegionDrag, InstantDrag),
as shown in Figure 10.

Compared with these methods, CLIPDrag successfully alleviates the ambiguity problem and better
maintains the identity , as shown in Figure 10. This is because former drag-based methods intend to
perform structural editing like moving or reshaping, instead of semantic editing such as emotional
expression modification. It is reasonable because moving an object is much easier than changing its
morphological characteristics. Consequently, these models prefer to choose the shortcut to realize
feature alignment in motion supervision, resulting in the ambiguity problem. Our proposed method
effectively solves the issue, by introducing CLIP guidance as the global information to point out a
correct optimization path.

B EXPLAINATION OF MOTIVATION

To demonstrate our motivation more clearly, we added four results for the second example in Figure
1. Specifically, we provide examples with and without drag edit the following examples. “The
sculpture is smiling and not showing his teeth.” and “The sculpture is smiling and not raising his
head”, as shown in Figure 11.

C APPLY GUIDANCE SEQUENTIALLY

As shown in Figure 12, we demonstrate why applying the two types of guidance sequentially is
not considered in our paper. Actually, if we were to apply drag-based editing first, the optimization
direction of the latent could be incorrect, meaning that the ambiguity problem would occur before the
text guidance is applied. Additionally, if text-based editing were applied after the drag operation,
the position of the target points would be altered. As a result, after the text-based edit, the final
positions of the handles would no longer align with the targets, which contradicts the core principle
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Figure 11: Results of two text prompts with and without drag edit.

Figure 12: Results when the text guidance and drag guidance are applied sequentially.

of drag-based methods. Instead, when text-based editing is applied first, the position of the handle
points is altered. This alteration can mislead the subsequent drag operation.

D CONFLICTING INSTRUCTIONS

While our primary motivation is to use the text prompt to complement the local drag edit—ensuring
that these two signals are consistent in most cases—we also explored scenarios where these guidance
signals conflict. Based on our experiments shown in Figure 13, we observed two types of potential
editing outcomes:
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Figure 13: Results when the text signals contradict with drag points. λ is a hyper-parameter in
Equation (6) to control the strength of text guidance.

Ambiguity or Neutralization at Moderate Text Strength (λ ≤ 10). When the strength of the text
signal is moderate, ambiguity can arise if the text guidance fails to provide accurate information. In
other cases, the text signal may counteract the drag operation, effectively neutralizing its effect. For
instance, the drag instruction combined with the prompt “Make the heel of the shoes higher” might
yield a result akin to “Make the heel not so high.”

Implausible Results at High Text Strength(λ = 100). When the text guidance is excessively
strong, it overwhelms the denoising process, making it difficult to handle the perturbation. This can
result in implausible or unrealistic edits.

E MORE RESULTS OF DRAG-BASED EDIT.

Settings. Since our method is based on general drag-based frameworks, we explored the perfor-
mance of CLIPDrag in pure drag-based editing tasks. Specifically, we replaced the editing prompt
(Pe) with the corresponding original prompt (Po). This ensures that no extra text information will
be introduced. We compared our CLIPDrag with DragDifusion, FastDrag and StableDrag on the
DRAGBENCH benchmark with five different max iteration step settings. To evaluate the image
fidelity, we reported the average 1-LIPIS score (IF). Besides, Mean distance (MD) was calculated
to show the distance between the final handles and targets (Lower MD represents better drag perfor-
mance).

Results. As can be seen in Table (1)(2), CLIPDrag has better performance than DragDiff, FastDrag
and StableDrag(the number(10,20,40,80,160) means the maximum iterations). Specifically, on most
max iteration steps settings, CLIPDrag has higher IF and lower MD. This means handle points are
closer to the targets in CLIPDrag, in the meanwhile, the edited image quality is preserved or even
improved, as shown in Figure 14.

Method 10 20 40 80 160
Ours 49.5 45.1 39.2 35.8 32.3

DragDiff 51.3 50.6 42.9 38.8 35.1
StableDrag 50.8 48.8 42.3 39.0 34.8
FastDrag 52.1 51.1 44.4 41.9 36.9

Table 1: Mean Distance results.

Method 10 20 40 80 160
Ours 0.95 0.94 0.93 0.90 0.88

DragDiff 0.95 0.93 0.90 0.87 0.85
StableDrag 0.95 0.90 0.88 0.84 0.81
FastDrag 0.95 0.93 0.93 0.89 0.83

Table 2: Image Fedlity results.

F INFERENCE TIME COMPARISONS

Method DragDiff FreeDrag FastDrag SDE-Drag StableDrag CLIPDrag(Ours)
Time 80.3s 69.4s 75.5s 70.0s 72.3s 47.8s

Table 3: Comparisons of inference time.
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Figure 14: Results of Stable and FastDrag on pure drag-based edit.

In this section, we report the average inference time of CLIPDrag, DragDiff, SDE-Drag and Free-
Drag(the result is calculated on a single 3090 GPU by averaging over 100 examples sampled from
the DragBench. As shown in the Table 3, our method is significantly faster than previous works.
This is because the inference time is directly correlated with the number of optimization iterations.
In CLIPDrag, the text guidance helps to indicate the correct optimization direction, while our FPT
strategy prevents handles from moving in the wrong direction or forming loops. Both of these fac-
tors reduce the number of iterations required to move the handle points to their target positions,
resulting in faster editing speeds.

17


	Introduction
	Related Work
	Approach
	Identity-Preserving Finetuing
	Global-Local Motion Supervision
	Fast Point Tracking

	Experiments
	Implementation details
	Text-Drag Editing Results
	Drag-based Editing Results
	Ablation Study

	Conclusion
	More Results of text-drag edit.
	explaination of motivation
	Apply Guidance Sequentially
	Conflicting instructions
	More results of drag-based edit.
	Inference time comparisons

