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ABSTRACT

Ensuring fairness in data-driven decision-making has become a central concern
across domains such as marketing, lending, and healthcare, but fairness constraints
often come at the cost of utility. We propose a statistical hypothesis testing frame-
work that jointly evaluates approximate fairness and utility, relaxing strict fairness
requirements while ensuring that overall utility remains above a specified thresh-
old. Our framework builds on the strong demographic parity (SDP) criterion and
incorporates a utility measure motivated by the potential outcomes framework.
The test statistic is constructed via Wasserstein projections, enabling auditors to
assess whether observed fairness—utility trade-offs are intrinsic to the algorithm
or attributable to randomness in the data. We show that the test is computation-
ally tractable, interpretable, broadly applicable across machine learning models,
and extendable to more general settings. We apply our approach to multiple real-
world datasets, offering new insights into the fairness—utility trade-off through the
perspective of statistical hypothesis testing.

1 INTRODUCTION

Over the past decade, ensuring fairness in data-driven decision-making has become a critical concern
across many domains, including personalized marketing, lending, and healthcare (Kallus & Zhou,
2021} Richards et al.| 2016} [Liu et al.l 2019; |[Kumar et al., [2022; |Ahmad et al., [2020; |Chen et al.,
2023} |Giovanola & Tiribelli, [2023; |Bertsimas et al., 20125 Manski et al., 2023} |Q1, [2017). A sub-
stantial body of research has sought to formalize fairness through constraints on predictive models
or algorithms (Gardner et al., 2019} |Alikhademi et al., [2022} |Pleiss et al., [2017; Jacobs & Wallachl,
20215 Taskesen et al., 2021; Navarro et al.,2021), aimed at safeguarding individuals or groups from
discriminatory treatment or policies (Chouldechova, |2017; Imai & Jiang} [2023} Kizilcec & Lee,
2022).

However, imposing fairness constraints often entails trade-offs with utility. For instance, Mehrotra
et al.| (2018)) documents a tension between supplier fairness and consumer satisfaction in recom-
mender systems for two-sided online platforms. Another example is the accuracy—fairness trade-off
in image classification and representation learning, examined by [Dehdashtian et al.| (2024), who
develop a method to numerically quantify this trade-off for specific prediction tasks and group fair-
ness criteria, thereby introducing a new evaluation framework for computer vision representations.
Several other studies have also shown that achieving absolute fairness while preserving utility is
impossible in many applications, as fairness constraints inevitably reduce the performance of the
targeted utility (Mitchell et al., 2021} |Cooper et al.| 2021} etc.). Moreover, many existing method-
ologies for evaluating fairness—utility trade-offs also tend to be overly task-specific (Sacharidis et al.}
2019; Dehdashtian et al.| 2024, etc.).

These observations motivate a more nuanced approach to algorithmic fairness with utility trade-off
— one that seeks to ensure approximately fair outcomes across protected groups while explicitly
preserving an adequate level of overall utility. Indeed, there has been growing interest in recent
years in pursuing algorithmic fairness through frameworks that explicitly account for trade-offs
with utility (Ge et al.l |2022; [Rodrigues & Casadevall, 2011}, [Plecko & Bareinboiml [2025; |Chester
et al., |2020). Testing whether an algorithm achieves approximate fairness (under relaxed fairness
constraints) while maintaining sufficient overall utility has become a question of central importance.
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Motivated by this challenge, our paper proposes a statistical test that jointly evaluates group fairness
and utility, which forms the main focus of our study.

1.1 OVERVIEW OF THE UTILITY-CONSTRAINED FAIRNESS TESTING FRAMEWORK

Our statistical hypothesis testing framework enables auditors to determine whether the utility-
constrained biases observed in an audit reflect inherent properties of the algorithm or simply arise
from randomness in the data. The framework is also designed to function as a black-box, requiring
no knowledge of the internal structure of the algorithm. The framework adopts a relaxed version
of the strong demographic parity (SDP) notion (Jiang et al.,[2020) to evaluate approximate fairness
(see Section[2.3)) and incorporates a utility function inspired by the potential outcome framework in
causal inference (Rubin, 2005) (see Section [2.1]).

We adopt the potential outcomes framework to define overall utility. Specifically, we consider a
two-level treatment W; € {0,1} and an outcome Y; € R, interpreted as utility. We assume se-
lection on observables (unconfoundedness): there exist potential outcomes {Y;(0), ¥;(1)} such that
Y; = Y;(W;) and {Y;(0),Y;(1)} i | X; (Imbens & Rubin, |2015). While this assumption is
standard, we have also verified this assumption in our empirical study to ensure the applicability of
our framework to these real-data settings in Appendix |E| Given a random non-sensitive covariate
X; and sensitive attribute .S;, the propensity score is defined as 7g,(X;) = P(W; = 1 | X;, S;).
To reflect the utility trade-off, the auditor needs to ensure that the overall expected utility E[Y;(W;)]
exceeds a specified threshold (see Section [3for details). While our analysis focuses on binary treat-
ments and binary sensitive attributes, the results naturally extend to multi-level or continuous treat-
ments and multiple sensitive attributes using similar proof techniques. For clarity and readability,
we confine our discussion to the binary case and discuss the extensions in Appendix [D.2]

For fairness evaluation, a commonly used criterion is statistical parity (SP) (Agarwal et al.,
2019)—also referred to as demographic parity (DP) (Dwork et al., 2012) or disparate impact (Feld-
man et al., 2015)—which requires statistical independence between classifier predictions and sensi-
tive attributes. However, as noted by Jiang et al.|(2020), SP/DP has important practical limitations:
it is highly sensitive to threshold choices, meaning that satisfying the criterion at one threshold does
not guarantee that it holds at others (see Section [2.3|for details). To address this issue, Jiang et al.
(2020) has proposed the fairness criterion of strong demographic parity (SDP), which requires that
decisions be independent of sensitive attributes across all thresholds. Building on this idea, we for-
malize a relaxed version of SDP within a utility-constrained testing framework (see Definition [3).
We evaluate whether the propensity score mg, (X;) aligns with the approximate SDP fairness crite-
rion in our framework. Beyond the specific fairness notion and utility definition considered here,
our hypothesis testing framework can be readily extended to other formulations of utility-constrained
fairness. Details are provided in Appendix

Our hypothesis testing framework addresses the statistical difficulties that stem from simultaneously
accounting for multiple criteria — fairness and utility trade-offs — through the use of Wasser-
stein projection techniques. In essence, the test statistic is obtained by optimally transporting the
empirical distribution onto the class of probability models that satisfy the specified group fairness
requirements. In this way, we evaluate whether the utility-constrained fairness criterion is plausi-
bly satisfied under the true data-generating process. The hypothesis is rejected if the computed test
statistic exceeds a critical value determined by the chosen significance level. This critical value is
obtained from the asymptotic behavior of the test statistic, which forms one of the main results of
this work.

We summarize our main contributions as follows. (1) We develop a statistical hypothesis test for
approximate fairness under utility trade-offs, where the absolute fairness constraint is relaxed to en-
sure that utility remains above a specified threshold, thereby capturing the fairness-utility trade-off.
(2) The proposed test is computationally tractable, interpretable, and broadly applicable to a wide
range of machine learning and Al algorithms used for estimating propensity scores and outcome
models. (3) Our framework is readily extendable beyond the specific fairness and utility criteria
considered here, opening avenues for future research. (4) We empirically illustrate the application
of our hypothesis test framework to real-world data.

' I means “is independent of””.
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1.2 RELATED WORK

The field of algorithmic fairness has expanded rapidly, yielding numerous definitions and ap-
proaches. Early work focused on demographic parity (also known as statistical parity or disparate
impact) (Calders et al.| 2013} |[Feldman et al., 2015 Zafar et al., |2017), requiring equal decision
probabilities across groups; equalized odds (Hardt et al., [2016)), requiring false positive and false
negative rates to be independent of group membership; and equal opportunity along with its prob-
abilistic variants (Hardt et al., |2016; |Pleiss et al., [2017), aimed at reducing disparities in favorable
outcomes. Yet no single definition has emerged as standard, and — beyond trivial cases — no al-
gorithm can satisfy multiple criteria simultaneously. For comprehensive surveys, see (Pessach &
Shmuelil, [2022; |Chen et al . [2024).

Our study also connects to the body of work on fairness—utility trade-offs (Corbett-Davies et al.,
2017). A central observation in this literature is that unconstrained predictors typically achieve
utility that is at least as high as, and often higher than, predictors subject to fairness constraints. Nu-
merous studies document utility losses when fairness constraints are imposed (Mitchell et al.,|2021)),
and propose strategies to manage this trade-off (Fish et al., 2016)). Still, the existence and magnitude
of such trade-offs remain divided. For example, [Rodolfa et al.| (2021)) reports that fairness—utility
trade-offs are minimal in practice, while others contend that such trade-offs may not exist (Maity
et al.,|2020; Dutta et al 2020). The impact ultimately depends on the specific fairness definition
under consideration, with studies downplaying trade-offs often focusing on criteria like equalized
odds (Hardt et al., [2016) or (multi-)calibration (Chouldechova, [2017), which differ from the fairness
notions examined in our work.

We ground our notion of utility in the potential outcomes framework from causal inference (Rubin,
20055 [Imbens & Rubin, [20135)), which naturally links our work to the causal fairness literature. Yet,
this literature has paid comparatively little attention to the trade-off between fairness and utility.
Notable exceptions include Nilforoshan et al.| (2022)), who demonstrate that for any policy satisfying
a causal fairness constraint, one can typically construct an alternative policy with strictly higher
utility and the same total variation (TV) distance; and [Plecko & Bareinboim| (2024)), who analyze
decision scores used in policy design and show how disparities in these scores may affect utility.
Recently, Plecko & Bareinboim| (2025) has introduced a systematic framework for analyzing the
fairness—accuracy trade-off from a causal fairness perspective, showing that such trade-offs almost
always arise.

Methodologically, our hypothesis testing framework connects to the literature on statistical inference
using projection-based criteria (Owen), 2001} Blanchet et al., 2019} |Cisneros-Velarde et al., [2020).
Our approach is also related to|Taskesen et al.|(2021) and|Si et al.|(2021)), who cast fairness questions
as hypothesis testing problems using the Robust Wasserstein Profile Inference method of |Blanchet
et al|(2019). Whereas [Taskesen et al.| (2021) and [Si et al.| (2021 examine specific fairness notions
imposed as hard or relaxed constraints — without parameters to capture utility trade-offs — our
framework is designed for settings in which such trade-offs are explicitly modeled.

Notations. Given a measurable set Z C R<, we use P(Z) to denote the set of probability distribu-
tions on Z that are square integrable. For a sequence {&,, },>1, we say &, = £ means &, converges

in probability to &. || - || denotes the Euclidean norm on R¢. For two random variables X, Y, X Ly
means X, Y follow the same distribution, and X 1 Y means X is independent of Y. We use P(-)
to denote the general probability measure (unless specified otherwise), E[-] as the expectation, and
1{-} as the indicator function. Unif]0, 1] denotes the uniform distribution over [0,1]. <= means
“if and only if”. Given a matrix or vector A, AT means the transpose of A. We use A'(u, X) as the
Gaussian distribution with mean g and covariance 3. Given a random variable X and a distribution
F, X ~ F means that X follows F. Given a subset Z C R¢, for any function f : Z — R, we use
Vf(-) or Df(-) to denote the gradient of f.

2 PROBLEM SETUP AND PRELIMINARIES

We consider random variables {(Y;, X;, S;, W;)}7_; that are drawn independently and identically
distributed (i.i.d.) from a fixed but unknown distribution. In this setup, X; represents the non-
sensitive covariates, and S; € {0,1} denotes a sensitive attribute such as gender or race. The
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outcome space is given by ) C R, the covariate space is given by X C R?, while the sensitive
attribute space is S = {0,1}. The observed outcome is Y; = Y;(W);), which corresponds to the
realized utility W; € {0, 1}, whereas the counterfactual outcome Y;(1 — W) is unobserved. We
refer to W; = 1 as individual 7 receiving the treatment, and W; = 0 as receiving the control. Denote
m(x,a) :=P(W; =1]| X; = z,5; = a) as the probability that individual 7 receives the treatment
given contexts (X;, S;) = (z,a), where 7 : X x & — [0, 1]. For notational convenience, we write
7o (x) := 7(x, a) and refer to 7, (x) as the propensity score for context (z, a) throughout the paper.
Thus, on observing each context (z;,s;) for individual ¢, the decision maker selects a treatment
level w; according to the propensity score 7, (x;), after which the corresponding utility y;(w;) is
observed. Although we focus on binary treatment levels and binary sensitive attributes, the results
readily extend to multi-level or continuous treatments and multiple sensitive attributes, with similar
proof techniques. For clarity and readability, we restrict attention to the binary case, and discuss the

extensions in Appendix

2.1 UTILITY

For any w € {0,1}, we denote m,,(x,a) := E[Y;(w)|X; = x,S; = a] as the expected utility of
treatment level w for the population with non-sensitive covariate  and sensitive attribute a. Denote
pa(x) :=P(S; = a|X; = z) for any a € {0, 1}. We impose the following assumption:
Assumption 1. Unconfoundedness: W; 1L {Y;(1),Y;(0)}|X;,S;. (ii) Boundedness: 0 <
Y;(1),Y;(0) < B for some bounded constant B > 0.

By definition, the expected utility is equal to
EY;(Wi)] =@ E[WiYi(1) + (1 = Wi)Yi(0)] =) E[E[Yi()Wi + (1 — W3)Yi(0)| X, Si]]

=(c) E[m1(Xi, Si)ms, (Xi) +mo(X, ;) (1 — ms, (X;))]

=@ Y E[{mi(Xi,a)ma(X) + mo(Xi,a)(1 — ma(X3))} pa(X3)] -
a€S
ey
where in (), (a) follows from the definition of the potential outcomes, (b) uses tower property, (c)
follows from (i) of Assumption|l} Although Assumption|l|is standard in the literature, it may not
always hold in practice — particularly the unconfoundedness condition. To address this in practice,
we verify in Appendix [E] that Assumption [T|holds in our empirical studies with real data.

2.2  OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Let P(X) denote the set of all probability distributions on X. According to (d) of , the ex-
pected utility can be expressed as the expectation of a function of X, with the expectation taken
with respect to the distribution of X;. We now introduce the notion of optimal transport costs via
Wasserstein distance:

Definition 1 (Optimal transport costs and Wasserstein Distance). Given a lower semiconinuous
function ¢ : X x X — [0, 00|, the type-2 Wasserstein optimal transport cost W.(Q1, Q) for any
Q1,Qq € P(X) is defined as

W.(Qq, = min E.lc(X, X")?],

@) = _min VET(X XV

where T'(Q1, Q2) is the set of all joint distributions of (X, X") such that the distribution of X is Qq
and the distribution of X' is Qs.

When c(-, -) is a metric on X', and W,(-, -) is the Wasserstein distance|Villani et al.|(2009). Note that
in the existing literature on testing fairness via Wasserstein projection, the focus is on computing
Wasserstein distances between distributions on X x S x ) (Taskesen et al.l 2021} |Si et al.| [2021)).
The ground metric is typically defined as

c((x,a,y), (¢, a",y)) = |l — 2’| + oofla — @[] + oolly — ¥/l

where || - || is a norm on R?. This formulation assumes absolute trust in the sensitive attribute
and outcome observed in the training data. Consequently, the transport cost depends only on the
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distribution of X;. Such an absolute-trust restriction is standard in the fair machine learning literature
(Xue et al., |2020; [Taskesen et al.l |2020). Hence, we follow same absolute-trust assumption and
restrict attention to optimal transport over distributions in P(X’).

Conceptually, the Wasserstein distance captures not only pointwise differences between distribu-
tions but also the cost of rearranging their probability mass. This makes the Wasserstein framework
a powerful tool for comparing complex distributions while preserving geometric information about
X. Such a perspective is particularly valuable in fairness applications, where aligning group dis-
tributions is often a key goal, and the optimal transport view provides a direct way to assess how
populations overlap or diverge in the covariate space X’

2.3  APPROXIMATE STRONG DEMOGRAPHIC PARITY

As noted in the introduction, achieving absolute fairness is nearly always impossible once utility
trade-offs are taken into account. Thus, rather than adopting fairness notions that impose strict
criteria, we propose a relaxed fairness definition inspired by the Strong Demographic Parity (SDP)
criterion introduced by Jiang et al.|(2020). Firstly, the notion of SDP is defined as:

Definition 2 (Strong Demographic Parity). We say that SDP is satisfied if mg,(X;) L S;.

Jiang et al.| (2020) introduce the notion of Strong Demographic Parity (SDP) from the perspective
of a binary classifier. In their setting, W; is the binary label, X; and S; denote the non-sensitive
and sensitive features, and r; = P(W; = 1 | X,,5;) € [0, 1] represents the model’s predicted
probability that unit ¢ belongs to class 1. A class prediction W; € 0,1 is then obtained via a
threshold rule 7 € [0, 1], with W; = 1{r; > 7}. The standard demographic parity (DP) criterion
requires P(W; = 1|S; = 1) = P(W; = 1|S; = 0), but satisfying DP at one threshold does not
guarantee that it holds for others. To address this limitation, SDP requires g, (X;) L S;, ensuring
independence from the sensitive attribute across all thresholds. Moreover, SDP implies DP for every
possible threshold 7.

In our setting, let p., (x,) denotes the probability density function (pdf) of 7,(X;) for a € {0, 1}.
So SDP can also be defined as pr, (x,) = Pr,(x;)> Which holds if and only if

E; wunitjo,1] [|Q(m1(X;) > 7) — Q(mo(X3) > 7)[] =0, (2)
where Q is the distribution of X;. Indeed, let W; be the 1-Wasserstein distance (i.e. setting
c(z,2') = |z — 2’| in Definition [I), by Proposition [C.1} @) holds <= Wi (m(X;), m0(X;)) =
0 < Pr,(Xx:) = Pro(X;)- Now we define a relaxed fairness concept based upon SDP:

Definition 3 (e-Approximate SDP). We say that e-approximate SDP is satisfied if
E; ~unitjo,1) [|Q(m1(X:) > 7) = Q(mo(X3) > 7)|] < e

In practice, practitioners may tune the parameter € to meet application-specific needs. |Si et al.[(2021])
also adopts a related idea of fairness relaxation in their extended framework, but the fairness notion
they consider differs substantially from ours.

3 TESTING UTILITY-CONSTRAINED FAIRNESS VIA OPTIMAL TRANSPORT

Denote Z = X x {0,1} x S x ) as the space where the random vector (X;, W;, S;, Y;) is supported
on. Recall that P(Z) is the set of probability distributions on Z. Given € > 0, r € R, we define

EglYi(Wi)] = r

Gl {@ PO [@x(m(x) > 7) - Bxmox) > 7] <
B _ 3)
where Qx is the marginal distribution of X; (obtained by integrating Q with respect to the marginals
of (W;,S;,Y;)). Formally, G(r, €) is defined as the set of joint distributions of (X;, W;, S;,Y;) that
satisfy e-approximate SDP and guarantee an overall expected utility of at least r. Given N samples
{xi, i, 8i,Yi }icin) drawn iid. from a distribution P of (X;, W;, S;,Y;), we are interested in the
statistical test with the composite null hypothesis:

Ho : Pc G(r,e) v.s. Hy: P ¢ G(re). 4)
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Define
£ = loep) ;EQ {m1(X5, a)ma(X) + mo(Xi, a)(1 — 710 (X5))} pa(X5)] > 7
Er~unitjo,1] [|Q(m1(X5) > 7) — Q(mo(Xi) > 7)[] <e.

)

®)
Recall from (d) of (1) that Eg[Y;(W;)] > r is equivalent to
Eg, [{ma(Xi, a)ma(X) + mo(Xy, a)(1 = ma(Xi))} pa(Xi)] = 7, (6)
Z Qx
a€S
So given that X; ~ PP, testing () is equivalent to the following hypothesis test:
Ho:P e fr,e v.s. Hi: P ¢ fr,e- (7

In other words, testing the null hypothesis (4)) for the joint distribution of (X;, W;, S;,Y;) reduces
to testing the corresponding hypothesis for the marginal distribution of X, given that we have an
absolute trust in the training sample, and that unconfoundedness holds according to Assumption [T}

In order to propose a proper test statistic, we denote Py=N-"! Zf;l 0, as the empirical measure

of the samples obtained from a distribution P € P(X"). The projection distance of Py unto Fre s
defined as

Rr,e(PN) = Qérjl’-'f Wc(Qa]fDN)2
inf  W,(Q,Py)>
QeP(X)

= st Y Eglmu(X, a)ma(X) + mo(X, a)(1 — ma(X))}pa(X)] = 7
a€S

Er~unitfo,1] [|Q(m1(X) > 7) — Q(mo(X) > 7)[] < €

P)
When € = 0 and 7 = —oo0, (P) corresponds to testing the strict strong demographic parity without
considering any utility tradeoff. As r increases and e decreases, the constraints become more strin-
gent, and for some (¢, ) no probability measure may satisfy ([H) Similar trade-offs have been ob-
served empirically in prior work under alternative fairness metrics and related perspectives (Plecko
& Bareinboim), 2025; Maity et al., [2020; Dutta et al., 2020} etc.). The choice of (e, r) naturally de-
pends on the empirical context under study. For example, in a consumer lending setting, the decision
maker may require that expected repayment (or profit) remains above a threshold 7, while e controls
the tolerated disparity in loan approval rates between minority and majority groups across all classi-
fication thresholds. In contrast, in a healthcare intervention scenario, r could represent the minimum
expected improvement in patient outcomes (e.g., reduction in hospitalization rates), whereas € gov-
erns the allowable imbalance in treatment assignment probabilities across genders. These examples
illustrate how (e, ') jointly capture the trade-off between maintaining sufficient utility and ensuring
fairness across sensitive groups.

For a given significance level « and 7)1 _, as the (1 — «) quantile of some limiting distribution related
to the test statistic ¢, we reject the hypothesis H if 5 > 11_. For the remainder of the paper,
we set ¢(z,2') = ||z — || in Deﬁnition where || - || denotes the Euclidean norm on R¢.

3.1 STRONG DUALITY

We provide the following additional regularity assumptions:

Assumption 2. m1 (-, a), mo(+, a), 74 (+) are continuously differentiable with derivatives Dm (-, a),
Dmyg(-,a) and Dy (-) for a € {0,1}.

Assumption 3. There exists some x € X, such that m (z) = 7o(x) and

Y pal@)lmi(z, a)ma(x) +mo(z, a)(1 = ma(2))] = 7.

ac{0,1}
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Assumption [3] posits that the expected utility attains the reservation level r for some covariate. This
condition is essential; without it, no distribution of the covariate X could yield an overall expected
utility of r, rendering the framework incoherent.

We now present the first main result of the paper, a strong duality result for the projection distance
defined by (P):

Theorem 3.1 (Strong Duality). Under Assumptions[I}[2] 5] we have

RT,C(I@’N) = sup AT — e
(Ma)€ERy xR,
N

1 , )
+= ;gg{llw = Xill® + alm(z) — mo(z)] = AM(2)},

where M(z) = 3 e (0,13 (2, a)ma () + mo(2, a)(1 = ma(2)) }pa ().

3.2 ASYMPTOTICS FOR THE PROJECTION DISTANCE

We now study the limiting behavior of the projection distance Rm(l@’ ~ ). Define
Vi o= (DM(Xy)" [D(my — mo)(X:)], = [ D(m1 — mo) (X3)[[),
Vo= (DM(X,)"[D(my — m0)(X3)], | D(my — 70) (X)),

s (Lo )+ 5 (o i)

For ¢ € R? and given vector w € R, define f7(¢) := max{2E [S;ST1{¢TV, > O}]_1 w,0},
f7(¢) :== max {2]E [S_ST1{¢TV_ < 0}] - w, O}. We impose the following regularity condition:

Assumption 4. f*, f~ both have fixed points.

Note that we allow w € R? to be arbitrary, so Banach’s fixed-point theorem based on the contraction
condition does not directly apply for fixed-point results. To verify Assumption[d] we may adopt the
results from several extensions of the contraction principle that have been developed in the literature
(Boyd & Wong, [1969; |Caristil [1979; Bessagal [1959); see [Pata et al.| (2019) for a comprehensive
review.

We now present the second main result of this section for the asymptotic behavior of the projec-
tion distance. For a sequence of random events Ay, we write Ay <, B if, for every bounded,
continuous, and nondecreasing function g, limsup E[g(Axn)] < E[g(B)].

N—oc0

Theorem 3.2 (Stochastic Upper Bound). Suppose Assumptions|[I} 2] hold. Then under the null
hypothesis H,

NR,.(Pn) 5p maX{ g;ﬁ Eig%ﬁgg“i i gﬂjg’ } 1{W >0}, (8)

where W = (ﬁ) M ~ N(0, cov[M(X,)]), T ~ N(0, cov[|m (X;) — mo(X,)|]), and
¢t = max {2E (S, ST1{CTV, > 0}] " Wo} : 9)
¢t = max {2E [S_ST1{¢TV. < 0}] " W,0}. (10)

Theorem implies that we can use ty(e,7) = NR,.(Py) as a test statistic, leveraging the
stochastic upper bound established in Theorem Given a significance level «, let n;_, be the
(1 — ) quantile of the right hand side of . Following the hypothesis testing framework proposed
according to and @]), we reject Ho if tn(e,7) > 11—q, Which results in a conservative test and
the type I error is less than or equal to o asymptotically.



Under review as a conference paper at ICLR 2026

3.3 COMPUTATIONS

To compute the test statistic NR,. (P ), recall that R, .(Py) is defined by ([PI):

N
S v Jsup M —ae+ % il v\ )
RT’G(HDN) o {s.t. A>0,a>0 (n

and v; (A, @) == mingex{||z—X;||*+a|m (x)—mo ()| =AM (z)}. Note that ||z — X; ||*+a|m (z)—
mo(x)| — AM (z) is concave in a, A for any x € X, and that the minimum of a family of concave
function is still concave, so ~;(\, @) is concave Vi € [n]. If minimizing ||z — X;||? + a|mi(z) —
mo(x)| — AM (z) over z € X can be solved easily for any A > 0, > 0, then the computation is
straightforward. For example, we may require M (-) to be concave and 71 (z) — 7o () to be affine in
x, so that the objective ||z — X ||>+a|m (x) —7o(z)| =AM (z) is convex in z. For general algorithms
addressing non-convex optimization problems, we refer to the methods developed in |Allen-Zhu &
Hazan| (2016); Jain et al.| (2017); Danilova et al.| (2022);|Chen et al.| (2018)); [Dauphin et al.| (2014).

We proceed as follows to compute the quantile of the stochastic upper bound given on the right-hand
side of equation [8} (i) compute (7, ¢* defined by (9) and via iterative methods. (ii) Compute

the inverse matrices E [S; ST 1{CtTV, > 0}] “land E [S_ST1{¢*TV_ > 0}] ~! by approximat-
ing B[S ST1{¢;TV, > 0}] and E [S_ST1{¢*T'V_ > 0}] via sample average approximations or
weighted sample average. (iii) Draw samples of W defined as in Theorem and compute the
quantile via standard bootstrap method.

4 NUMERICAL EXPERIMENTS

We first implement our hypothesis test framework in a case study of a synthetic pricing problem be-
tween elder and young buyers (Kahneman & Tverskyl [2013)), then conduct experiments on three real
datasets with sensitive attributes and show the fairness-accuracy trade-off of Tikhonov-regularized
logistic classifiers and SVM classifiers. The detailed discussion of the datasets and the verification
of Assumption [T for the empirical studies are included in Appendix [E]

Simulated Data: Pricing Policies. In this problem, we consider non-sensitive click-rate informa-
tion denoted by x € [0, 1], which follows uniform distributions. Meanwhile, the sensitive attribute—
customer age—is represented by a binary variable a € {0, 1}, distinguishing between different de-
mographic groups. Additionally, the treatment variable w € {0,1} indicates the treatment level
applied to each individual. The a = 0 category represents elder buyers with stable preferences,
favoring predictable treatments w = 0, and the a = 1 category corresponds to young buyers, who
are more risk-taking and price-sensitive, favoring volatile treatments w = 1. The propensity score
is defined as m,(x) = 6,2 where 0 < 6, < 1 and a € {0,1}. The conditional expected utility

function is my,(z,a) = ﬁéa) + ﬁ@w + ﬂéa)x, where ( SO), §0), 50)) = (0.8,0.5,0.7) for elder
buyers (a = 0) and (ﬁél), 551)7 51)) = (0.5,1.0,0.5) for young buyers (a = 1). We implement the
hypothesis test for the policies parametrized by 6; € (0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9) and
0o = 1 — 61. By definition, Assumption I] follows directly.

Figure [2] illustrates the trade-off between utility and fairness for » = 1.2,1.6,2.0,2.4, and 2.8
with fixed e = 0.01. As the utility requirement becomes more stringent (larger r), the test
statistic (blue curve) increases substantially, while the stochastic upper bound at significance
level &« = 0.05 decreases. Furthermore, Figure |3| demonstrates the impact of varying e values
(e = 0.01,0.02,0.03,0.04, 0.05) for approximate fairness criteria defined via e-approximate SDP.
The results indicate that as the fairness criterion is relaxed (i.e., as € increases), the policy is deemed
fairer, and the level-0.05 test is rejected at larger values of 6;. Due to page limitations, we include
both Figures in Appendix

Empirical Study In this experiment, we evaluate the fairness of binary classifiers under varying
regularization weights. We use three typical datasets with sensitive attribute information: COMPAS
(Dua et al.,[2017), Arrhythmia (Angwin et al., 2016)) and Drug (Fehrman et al.|[2017). The details of
the datasets, along with the verification of Assumption [I]are provided in Appendix [E} The policies
of COMPAS and Arrhythmia datasets are modeled via Tikhonov-regularized logistic regression and
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the policies of Drug dataset are modeled via naive SVM classifiers parametrized by the ridge reg-
ularization. The conditional expected utility m,,(z, a) corresponds to the loss contribution of each
sample, while M (z) is estimated using a Gaussian kernel-based method. Figure [1| presents the test
statistics, fairness rejection threshold, and classifier accuracy of the three datasets. Our observations
indicate that stronger regularization leads to an increase in the 0.95 quantile of the stochastic upper
bound and a lower likelihood of rejecting the null hypothesis—i.e., concluding that the policy is
unfair. Consequently, a clear trade-off emerges between model accuracy and approximate fairness
metrics as the regularization factor is adjusted.

Model Faimess vs Accuracy by Regularization Strength (compas) Model Faimess vs Accuracy by Regularization Strength (arrhythmia) Model Faimess vs Accuracy by Regularization Strength (drug)

5.0 ~— Avg Test Statistic o Avg Accuracy 5.0 ~— Avg Test Statistic o Avg Accuracy 4.5{ ~— Avg Test Statistic o Avg Accuracy 0815
=== Avg 95% Cl Upper Round T 0.680 == Avg 95% Cl Upper Bound NV 0.656 -~ Avg 95% Cl Upper Bound a

as b ~ A as . et ” a0 . a 0.810

. FAw 0678 S

AN 0.654

0.676 4.0 - 0.805

e 0652 N
35 o 0674 \ . / 0.800
s 0650 5 \ . 5
0672 §

0.795
FaN . 0670 . 0648 20

¥ . 25 o . 0.79

e - 0.668 . 0.646 15 .
20 / R .
Z B 0.666 20 ., 0.785
. .. o 0644 10 W
15 . . L=
0.664 15 0.780
200 0 800 1000 20 4 0 0 100 25 50 75 100 125 150 175 200
A (Regularization Strength) A (Regularization Strength) A (Regularization Strength)
Null Hypothesis Rejection Rate by Regularization Strength (compas) . Null Hypothesis Rejection Rate by Regularization Strength (drug)
06 Null Hypothesis Rejection Rate by Regularization Strength (arrhythmia)

°

Rejection Rate
Rejection Rate

°

Rejection Rate

200 400 600 800 1000

40 60 80
i 25 50 75 100 125 150 175 200
A (Regularization Strength) A (Regularization Strength)

X (Regularization Strength)

(a) COMPAS (b) Arrhythmia (c) Drug

Figure 1: Empirical results. Top row: fairness—utility tradeoff. Bottom row: rejection rates.

Beyond the structured-data applications examined in the main text, our framework also extends
to unstructured domains such as NLP, computer vision, and recommender systems. Given their
complexity and the primarily theoretical focus of our work, we provide only a high-level discussion
in Appendix [F leaving detailed empirical studies for future work.

5 DISCUSSION

We propose a hypothesis testing theoretical framework for approximate fairness under utility trade-
offs. The approximate fairness criterion extends the strong demographic parity, while expected
utility is defined within the potential outcome framework commonly used in causal inference. Our
test statistic is based on a Wasserstein projection distance and is conservative, relying on a stochastic
upper bound. The framework further assumes unconfoundedness. Refinements of the upper bound
and relaxations of these assumptions are left for future work. We also outline extensions of the
framework to more general fairness criteria and complex empirical settings (e.g., multi-level and
continuous treatments, multiple sensitive attributes) in Appendix [D.I} For future work, it would
be interesting to explore Pareto-optimal frontiers of thresholds (e, ), which may require alternative
concepts or definitions of the fairness—utility trade-off.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We occasionally used an LLM to refine the writing in the Introduction and some of the main context,
but the main ideas and structure were entirely developed by the authors; the LLM served only as a
tool to improve language flow.

B ADDITIONAL PLOTS FOR EMPIRICAL STUDIES

(a)r=1.2 (b)yr =1.6 (c)r=2.0 dr=24 (e)r =28

Figure 2: Numerical results for different values of r. The values of the test statistics (along y-axis)
increase in the utility threshold r.

(a) e = 0.01 (b) e = 0.02 () e = 0.03 (d) e = 0.04 (e) e = 0.05

Figure 3: Numerical results for different values of e. The level-0.05 test is rejected at larger values
of 0 1-

C PROOFS

C.1 PROOF OF STRONG DUALITY

In this section, we provide the proof for the first main result of the paper — Theorem [3.1]

Proof of Theorem 3.1} The Lagrangian function can be written as

L\ a;v)
=M —ae+E, {c(X,X")}

=AY paBufmi (X, a)ma(X) + mo(X, a)(1 - 7 (X))]} (12)
a€{0,1}
+a ) By [1{m(X) > 7} — {mo(X) > 7}] |dr

where A € R, a € R, and v belongs to the feasible set that

r(ﬁ»N):{yeP(XxX);yX, :PN}.

14
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Note that X' is compact, so P(X) is tight, so I'(Pyy) is also tight. Note that L(), a; v) is convex in
v and linear in (A, ). Thus L(A, a;v) is a concave-cone mapping, where L(-;v) is concave and
L(\, «; -) is convex.

We want to prove the following two statements:
1) The suprema of inf 1.5 ) L(A, o; v) with respect to (A, ) are bounded on Ry x R

2) L(\, ;) is lower bounded for some (A, ) in the relative interior of some bounded subset
of Ry x Ry.

To prove the first statement, let Qy be a measure in P(X’) such that Qy concentrates on some z € X
(i.e. Qo(X = x) = 1), where m1(z) = mo(z) = € € (0,1) and

Z pa()[m1(z, a)me(z) + mo(x,a)(1 — ma(x))] > r.
a€{0,1}

Then by taking vg = Qg X Py € I‘(I@’N), we have

sup inf LA\ o;v) < sup L(A a;1vp),
(M a)eR xRy vel'(Py) (N a)eRL xRy
where
SUP(),a)eRy xRy L\, a;10)
=E, [c(X,X")] — ae
FMr =2 aeqo,1y Pa(@)[ma (2, a)ma () + mo(z, a)(1 — ma(z))]}
= Ey, [e(X, X)),
where A* = * = 0in (13). Since X' is compact and c is continuous, thus E, [¢(X, X')] is bounded.
Hence

(13)

sup inf L\ a;v) < 0.
(A\@)eR; xRy vel'(PN)

Assume that the suprema of inf , er(®y) L(\, a; v) with respect to A, a goes to infinity in

sup inf L\ o),
(M a)ER xRy veT(Py)

since for any v € I'(Py),
L(\ o;v)
=E,[c(X, X))+ M+« {/0 |E,[1{m(X) > 7} — 1{mo(X) > 7}]| — e}

A Y B [{mai (X, a)ma(X) + mo(X, a)(1 = ma(X)) }pa(X)]
a€{0,1}

(14)

and we already know that

sup inf L\ a;v) < oo,
(A @)eR; xRy vel(PN)

thus given any o JeR .
jr @) € IR X R4,

such that either A; — oo or o;; — oo holds as j — oo, let
{vi}ren CT(Py)
be a sequence of probability measures such that

lim;j o0 limy o0 L()‘jv Qy; Vljc)
= hm]ﬁoo infuer(@N) L()\ja 78 l/)
= SUP () ery xk, I, eppy) LY s v) < oo

15
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Thus there must exist some J, such that for any 7 > J and for any k£ € N, we have
1
/ |IEV£ [1{m (X)) > 7} —1{mo(X) > 7}]| —e <0.
0

r= Y B [{mi(X,a)m(X) + mo(X,a)(1 = ma(X))}pa(X)] 0.
a€{0,1}

Suppose there exists subsequences {j, } C N where j,, > J there are infinitely many & such that at
least one of the following two strict inequalities hold:

1
| B 1m0 > 7} = 1ma(X) = 7H| - e <0,

e S Bl (X, ) (X) 4 mo(X, a) (1 - m(X))] < 0.
ac{0,1}
Note that \;, , cj, — oo, then we have a subsequence {A;, } C {A;}, {¢;, } C {a;}, such that
-0 = limjn_,oo infyel—\(pr) L()\jn70£jn;l/)
= SUP() a)eR, xR, infyeF(ﬂa,N) L\ a;v)

> L(0,0;v) > —o0,

which leads to contradiction. Hence for any j, we can only have finitely many & for where one of
the following strict inequality holds:

[ gm0 = 7 = 1m() = 7)) e <.

r— Z E,; {mi1(X,a)me(X) + mo(X,a)(1 —m(X))}pa(X)] <O0.
a€{0,1}

This implies that for any j, except for at most finitely many %k, we have
1
/ B, [1{mi(X) = 7} = 1{mo(X) = 7}]| e =0,
0

r— > Eyl{mi(X, a)ma(X) +mo(X,a)(1 — ma(X))}pa(X)] = 0.
a€{0,1}
This implies that we can take A C Ry, S C Ry, where A = [0,B],S = [0,B], and B is a
sufficiently large but bounded constant, we have

sup inf LA\, aq;v)= sup inf L\ a;v). (15)
(A, @)ER4 xRy veT' (Pn) (M a)EAXS vel (Pn)

Thus we have proved the first statement.

To prove the second statement, it is sufficient to prove that given some A\ > 0, > 0, L(\, ;) is

lower bounded for any v € F(]f” ~ ). This follows immediately by , the compactness of X and
the continuity of ¢, my, m, m1 (-, 1), mg(+, 0). Thus by Lemmal|C.2] we have

supo\,a)e]&xR‘+ infuel“(]li’N) LA\ a;v)
= SUD(x,0)cAxS inf, cpy) L\ o;v) (16)
= mfuer(I@N) SUP(\,a)eAxS L\, o;v).

For the last step, we want to show that for B large enough, with A = [0, B],S = [0, B], we have

inf, e ) SUP(xayeaxs LA, a3 v)

. 17
=inf, cr ) SUP(\ a)er, xR, L\ a;v). an

First note that when o« — oo or A — o0, by taking vy = Qg X P ~, where Qg is defined in the same
way as before, we will have
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(i) inf lim LA\ apv) < lim L\ a;1pp) = —o0.

vel(Py) A—00,a—00 A—00,0— 00

@) inf lim L\ a;v) < lim L(A o;v9) = —oo fixing any o > 0
,,ep(]}”mN) A—o0 A— o0

@) inf lim L(A\, a;v) < lim L(A, ;1) = —oc fixing any A > 0.

VEF(]IA”N)O“)C’O a—00

And note that
i'anGF(I@N) SUP(x,a)eAxS L(>‘7 a, l/)
> }nfueF(]f»N) L(0,0, V) / (18)
=inf, crpy) E,[e(X, X')] > —o0.

Suppose does not hold for any B > 0. Then for any B > 0, for any (\,«) € [0, B] x [0, B],
there always exists some A\; > B or a; > B, such that at least one the three statements holds:

(a) inf sup LA\ o;v) < inf  L(Ar,a1;v);
vel(Pn) (N\,a)EAXS vel'(Py)

(b) inf sup LA\ o;v) < inf  L(A1,o;v) fixing any o > 0;
vel(Pn) (A\,a)EAXS vel'(Py)

(¢) inf sup L\ a;v) < inf L(A ag;v) fixing any A > 0;

vel(Pn) (A, a)EAXS vel(Py)

By letting M — oo and inequality (T8), we can see that statement (a) violates statement (i), (b)
violates (ii) and (c) violates (iii). Hence holds for some B > 0 sufficiently large. Then together
with (T6), we have

sup inf L\ a;v)= inf sup LA a;v).
(N, a)ER; xRy veT(PN) vel(Pn) (A\,a)ER; xR

As aresult we have
RT,E(EDN)
= sup inf E,[e(X,X")]+ \r
(M a)eR xRy vel(PN)
1
+a {/ |E,[1{m1(X) > 7} — I{mo(X) > 7}]|dT — e}
0

—A Y E{mi(X, a)ma(X) + mo(X, a)(1 = ma (X)) }pa(X)]}
a€{0,1}

=(a)  Sup inf B, [e(X, X")] + ofEy [|m (X) — m0(X)]] — €}
(}\,Q)ER+XR+ VEF(PN)

+A T — Z E, [{m1 (X, a)mo(X) + mo(X, a)(1 — 74(X)) }pa(X)]
a€{0,1}

N
1
=0 sup AT — e+ — min x—Xi2+a7T1(x — ()| — AM ()}

© (A o)ERY xRy N ;xex{” I | ) )l (z)}

where (a) follows from Lemma|[C.3] and in (b)

M) = > pal@)[mi(z, a)ma(x) +mo(z,a)(1 = ma(@))].
ac{0,1}
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C.2 USEFUL LEMMAS

Lemma C.1 (Proposition 1 of Jiang et al.|(2020)). Let

J = {J :10,1] — [0, 1]‘ / Py (x5) (W) dy :/ Pro(x:)(@)dx, ¥ measurable B C [0, 1]} .
B J-1(B)

The following two quantities are equal:

() Wi(Pry(X:) Pro(X0)) = i /ze[o,u |z — J(2)[ps,, (x:) (7)dz.

(ii) Erunitjo,1)|P(m1(X;) > 7) — P(mo(X3) > 7).

The proof of Lemma [C.1|follows directly from Proposition 1 of Jiang et al] (2020).

Lemma C.2 (Theorem 1 of [Vianney & Vigeral (2015)). Let Z, and Z5 be two nonempty convex
sets and f 1 Z1 X Z5 — R be a concave-convex mapping, i.e. f(-,z2) is concave and f(z1,-) is
convex for every z1 € Zy and zo € Z5. Assume that

e 21 is finite-dimensional.
e Z5 is bounded.
* f(z1,") is lower bounded for some z in the relative interior of Z;.

Then
sup inf f(z1,20) = inf su 21, 22)-
ze’gl 22€22 f( ! 2) 22€2Z> zlegl f( ! 2)
Lemma C.3. Under Assumptionslzl foranyv € I‘(I@D N ), we have

; [v(m1(X) > 7) — v(me(X) > 7)|dr = E,[|m1(X) — mo(X)]]-

Proof of Lemma[C.3] For X ~ Q, let 4 be the distribution of 71 (X') and v be the distribution of
mo(X). Then

Vo / Q1 (X) > 7) = Q(mo(X) > 7)ldr = Wi (w1, 1)

0
= if  E.Z- 7|,
well(vy,v0)

19)

where 11, v € P([0, 1]), and W is the 1-Wasserstein distance. Denote

S = {(a,8)l(a, 8) € C([0,1]) x C([0,1]) : al=) + B(=) < |z — =},
where C([0,1]) is the collection of continuous functions on [0,1]. The dual formulation to the
Kantorovich’s problem of (I9) can be written as

D = sup E,[o(Z)]+Ey,[3(Z)]
(a,8)€S
=@ sup Egla(mi (X)) + B(mo(X))]
(a,B)€S
=2) Eq[|m (X) — mo(X)[},
where (1) follows because
Ev, [a(2)] = Egla(mi (X)),  Eu, [B(Z)] = Eg[B(mo(X))],
and (2) follows since the optimal «(-), 5(+) satisfy
a’(z) + B7(2) = [z = 7|
for almost surely (z,z") € [0,1] x [0, 1]. By strong duality Villani et al.| (2009), we have V = D,
where V is defined in (T9). So

; Q1 (X) > 7) = Q(mo(X) > 7)[d7 = Eg[|mi (X) — mo(X)]]. (20)
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Note that for any v € I‘(]‘P’N) with vy, = Py, we have
1
/ |v(m1(X) > 7) — v(me(X) > 7)|dr
0

1
:/0 lvx (m1(X) > 7) — vx (mo(X) > 7)|dT,

and

E,[[m(X) = mo(X)[] = B [|m (X) = mo(X)]].
Note that holds for arbitrary Q € P(X), thus the result follows. O
C.3 PROOF OF THEOREM[3.2]

Recall from Theorem 3.1 that

RT’G(I@DN) = sup Ar — ae
(N,a)ERp xRy

N
1 . 9
+ 2;%1;1{\\96 = Xil” + alm(z) — mo(x)| — AM ()},

where M (2) = 3, c (0.1} Pa(®)[m1 (2, a)7ma(x) + mo (2, a)(1 = ma(2))] and e(z, y) = [z — y|.
Change variables as A = z — X, by fundamental theorem of calculus and Assumption 2] we have
mi(z) —m(X;) = /01 Dmi(X; + uA)Adu,
mo(z) —mo(X;) = /01 Dmo(X; + ulA)Adu,
thus

1
|71 () — mo(z)| = /0 [D71(X; + ulA) — Dro(X; + uA)]Adu + (71 (X;) — 70(X5))|-

Additionally,
1
M(X; +A) = M(X,) = / DM(X, +ul)Adu.
0
So
Rr,e(EADN)
_ 1 X
= sup AT — Q€ — N — M(X;)
(N &)ERL xRy N ;
1 Y 1
+— Zmln{HAH + @ / [D(?Tl — 7T0)(Xi + uA)]Adu + (7T1(Xi) — Fo(Xi))‘
N ~ A o

1
—;\/ DM(Xi—i—uA)Adu}
0

N
= sup A % Z{(r — M(X;)) = E[r — M(X;)]} — ae + AE[r — M(X;)]
(Na)eER L xRy i—1

A [D(Tl'l - W(])(Xi + UA)]Ad’LL + (7T1(XZ) — W()(Xi))‘

N
1 . )
+N§m&n{A|| +a
1
_x/ DM(XZ-—HLA)Adu}.
0

Then redefining A = A/N'/2, X = /NX, a = v/Na, we have

NRr,e(ﬁDN) = SUP(x,a)eR, xR AMN (r) + En(a, A)

+A\VNE[r — M(X;)] — avV/'Ne, @b
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where
En(a, M)
ZmA {HAH —A/ DM(X; + N™"*Au)Adu o)
+a\/0 [D(m1 — 70)(Xi + N2 Au)|Adu + VN (m1(X3) —7ro(Xi))|},
and
1 N
=2l —E[r — M(X3)]}.
i=1
Denote

R(a, ) = AMn(r) + En(a, N) + \WNE[r — M(X;)] — av/Ne.
Note that the right hand side of (ZI)) is non-negative, because

sup R(a,\) > R(0,0) > 0.
(M a)€Ry xRy

By (15) in the proof of Theorem [3.1} For A = [0, B],S = [0, B] where B is a sufficiently large
constant we have

sup inf L\ a;v)= sup inf L\ a;v). (23)
(M a)ER; xRy v (PN) (M a)EAxS veT (Pn)

So we can constrain the optimization with respect of (A, a) € Ry x R, within A x S.

For the summands in (22)), we have

[l 3) o s 30
N () - (o)

min {HAH2 +a
A

—)\/ DM(X; + N~ 1/2Au)Adu}
= min {|A | + / (Dm (X + N~V2Au) — Dy (X0 Adu

/ (Do (Xi + N~ Y2 Au) — Do(X,)]Adu
0
FVN(m(X;) = 70(X0)) + [D(m = m0) (X:)]A|

1
—)\/ [DM(X; + N~Y2Au) — DM(X;)|Adu
0

—/\DM(Xi)A}
=(w) min {||A||2 + a|[D(m1 — ) (X3)]A + VN(m(Xi) — m0(Xi))| = ADM(X;)A + R;
(24)
where )
R, = Oz‘ / [D?Tl(Xi + N_l/QAu) — D?Tl(Xl)]Adu’
0
1
+a / [Dro(X; + N™Y2Au) — Dro(X;)| Adu
0
1
+A / [DM(X; + N~Y2Au) — DM(X;)]Adu| .
0
By Assumption[2]and the continuity of Dy (-), Do (-), DM(-), we have
1 N
N > Ri=0 (25)
i=1
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uniformly over A in a compact set, A € [0, B] and @ € [0, B], as n — oo. Thus by (1)),
NRT,&(]IADN)

= sup AMn (1) + W N{r — E[M(X;)]} — aV/Ne

(N,a)ER L xRy

+y Lmin {1 + allDm ~ mo) (1A + VR m(X) = mo(X0)
~ADM(X;)A + R;

< e AMp (r) + ally (€) + AN {r — E[M (X)]} + aV/N{E[|m(

Xi) — mo(Xi)|] — €}
+N ;mAin {|\A||2 — ADM(X:)A + R;
+a - sgn ([D(m — mo)(X3)]A) [D(m — WO)(Xi)]A}

(26)
where

Z|7T1 ) — mo(Xi)| — Efjmi(X;) — mo(X5)|]-
Note that if [D(m; — 7o) (X )]A 2 0, then

[A[? + a - sgn ([D(m1 — m0)(X3)]A) [D(my —
= [|A]]? + [a{D(m1 — mo)(X;)} = ADM (X;)]A.
If [D(ﬂ'l — Wo)(XZ)]A < 0, then

IA[? + o - sgn ([D(my — m0)(X;)]A) [D(m1 — mo) (X;)]A — ADM (X;)A
= [|Al* = [e{D(m1 = m0)(X)} + ADM(X;)]A

0)(Xi)]A = ADM(X;)A

Note that
argAmin A2 + [ef{D(m1 — 70)(X;)} — ADM(X;)]A
_ )\DM(Xl) — OéD[Tl’l (Xl) — WQ(XZ)]
2 )
arg min A = [a{D(m1 — mo) (X:)} + ADM (X;)]A
_ ADM(Xz) —|— OéD[?Tl (Xz) — WQ(Xz)]
2
So we have
min { A
+a - sgn ([D(my — o) (Xi)]A) [D(m — mo) (X3)]A
—/\DM(Xi)A}

< min{ —L/4IADM(X;) — o D(m —m0)(X,)][*1e. , }
- —1/4|ADM(X;) + a[D(m1 — mo) (X3)][|"Le-
where £t and £~ denote the events

g+7 )\DM( ) 7T177T0 Xl
- > al|D(m — mo)(

_ ADM(X;)' [D 7T1—7T)
¢ _{ < —al|D(m = mo)( Xz)||02

So by (26)), we have
NRT‘,E(EDN)
< e AMy(r) +ally(e) + AVN{r —EM (X))}
+aV/N{E[|m (X;) — m0(X,)[] — €}

1 N
N ; min { <—4||/\DM(X¢) — a[D(m — 7o) (X)) |? + R,») 1e,,
(_iH)‘DM(Xi) + a[D(my — o) (X)]|I* + Ri> 1o }
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So let r* = E[M(X;)], € = E[|m1(X;) — mo(X5)]], according to we have

max  AMpy(r) + ally + VN{A(r — %) + a(e* —€)}
(A a)EAXS

1. 1 )
N ;mm{ <4”ADM<Xi> —alD(m —mo) (X)]|I* + Ri> le..

(—iHADM(Xi) +a[D(m — 7o) (X:)]|I” + Rz‘) 15—}

= sup AM + oIl + E[Z(A, )],
(N, @) ERL XRyp:A(r—r*)+a(e*—e)=0

where
M ~ N(0,cov[M(X;)]), T~ N(0,cov[lm (X;) — mo(Xi)]]),
and
5 _ [ —1/AIADM(X;) — a[D(m — m0)(X3)][*1e, ,
20, =min . ZARDNE) Y ol - m Gl )
Hence by (26) we have

NR, (Pn) o - -
<p sup AM + oIl + E[Z (A, o))
(N, ) ERL XRp:A(r—r*)+a(e*—e)=0

By Fatou’s Lemma, letting ¢ = (), @),

se= (Com Tlon) - 5= (om i)

then we have

E[Z(A, )] < min {~1¢TE[S,ST1¢+]¢, ~1¢TE[S_ST1e-]C)

Let W = (g) , then we have

NRye(B) Sp sup ¢V Jmin {CTELS ST1e G (RIS ST 0), @)
where -
SUP¢>o0 ¢'w - i minﬁ{CTE[SJrSIlS”Q CTE[SLSTlE*]C}
— nax { supco ¢ W = 3 (R[S ST 164 ]C, } (28)
SUP¢>o CTW - iCTE[stTlsf]C .
Denote
Vi = (DM(X,)'[D(m1 = mo) (X)), = [ D(m1 — m0)(Xi) %),
Vo = (DM(X,)'[D(m1 — mo)(Xi)], [ D(m1 — m0) (X)),
then

1er = 1{¢"V, >0},
1. =1{¢"V_ <0}
Let ¢} satisfy to (29)

¢; = max {2E [$, STL{¢TV, = 0}] ' W, 0} (29)
and let ¢* satisfy (30)
¢t = max {2E [$_STL{CTV. < 0}] W, 0} (30)

Thus L
Sup¢>o CTW - %CT]E[S+54T—1$+]C
= max {(TW — 1CTE[S, ST1¢+]¢;, 0} (31)
— W B[S, ST1{¢:TV, >0} W1{W > 0},
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and -
SUP¢>o0 CTE/ - iCTE[S—STLE*]C
= max {¢'W — 1 C*TE[S_ST1¢-|¢*, 0} (32)
— W' E[S_ST1{¢TV. > 0}] " W1{W > 0}.
Hence by and (28), we have
. L T T 197
NRy (By) <pmax] VL ESHSIHEVE 201" WLy s
' W E[S_ST1{¢*TV_ >0} W

where
Vi = (DM(X;)'[D(m1 — m0)(Xy)], = || D(m1 — 70) (X4)[|?),
V_ = (DM(X,)'[D(m1 — 70)(Xi)), [|D(m1 — m0)(X:)|1%),
and (7, * are defined as in , .

D EXTENSIONS

D.1 MORE GENERAL APPROXIMATE FAIRNESS PROJECTION DISTANCE

The proposed utility-constrained approximate fairness projection distance can be extended to more
generalized formulations via wasserstein projection for group fairness. Let Pe P(X) be areference
probability measure, F'(-) be a convex functional defined on P(X), R(-,a) be the utility function
for sensitivity group a. The projection distance is defined as follows:

) infgepxy We(Q,P)2
D) = { sit. F(Q) < e (33)
Eg[> ues Pa(X)(X, a)] > 1.

Suppose Q1 < (X), Qo < (X), X ~ Q. Our previously proposed fairness evaluation frame-
work corresponds to the case where F/(Q) = Egl|7m1(X) — mo(X)]] according to Lemma We
provide more examples of convex functional F'(-) related to the fairness constraints F'(Q) < e.

Example 1 (KL-divergence fairness criterion). Consider the KL-divergence fairness constraint
Dk (Q1]|Qo) < € where D (Q1]|Qo) := fX m1(x) log(my(x) /7o (x))Q(dx), which is linear
in Q, so Di(Q1]|Qo) is convex in Q.

Example 2 (Total-variation fairness criterion). For the total-variation fairness constraint

TV(Q1,Q0) = sup |Q(m(X) € S)—Q(m(X) €S)[<e.
SeP([0,1])

Note that

Q(m (X) € 8) = Qmo(X) € §)| = [Eq[1{m (X) € S} — I{mo(X) € S},
which is convex in Q. Since the supremum of a family of convex function is still convex, the total-
variation fairness constraint is convex in Q.

Example 3 (Integral Probability Metrics fairness criterion). For a set of real valued functions F on
R, the Integral Probability Metrics (IPM) is defined as

IPM(u, V):sup/ fd,u—/ fdv.
fer Jrd R4

One example is F = {f : ||fllg < 1} where H is a reproducing kernel hilbert space (RKHS),
which gives the Maximum Mean Discrepancy (MMD). So

IPM(m1(X), m0(X)) = sup / [f(m1(2)) = f(mo(2))]Q(dx)
feF JRA
= sup Eq[f(m (X)) — f(mo(X))],
feFr
which is the supremum of a family of linear functions in Q, thus IPM (w1 (X), mo(X)) is convex in

Q.

Following this evaluation framework, we can extend the approach outlined above to derive strong
duality results, deriving the limiting behavior of test statistics, and implement hypothesis tests for
utility-constrained approximate fairness criteria.
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D.2 MULTIPLE SENSITIVE ATTRIBUTES AND MULTI-LEVEL OR CONTINUOUS TREATMENTS

To extend our setting to T-level treatments with multiple sensitive attributes S, with W; € T =
{0,1,2,...,T — 1}, under confoundedness assumption — {Y;(0),...,Y;(T — 1)} L W;|X,, the
expected utility constraint with threshold r is equal to

>N Ema(Xi, a)ma e (Xi)pa(Xi)] > 1, (34)

aeSteT
where 7, (z) = P(W; = t|X; = z, S; = a), and the e-approximate SDP is defined as
Ercunif,1] |Q(7a,t(Xi) > 7) — Q(mar 1 (Xi) > 7)| <€, Va,a' €S, t € T. (35)
We replace the constraints of (P) with (34) and (35).

To extend our setting to continuous treatments 7 C R, we study infinitesimal intervensions on
the treatment level motivated by the work of [Powell et al.|(1989)), and the expected utility of such
intervention is defined as
d
[dE [YV;(W; + vI(X3,S))] )
v v=0
where I : X x § € {0,1} is a binary function representing the treatment policy according to the
given contexts. Let m(w, x,a) = E[Y;(w)|X; = z,S; = a]. Under unconfoundedness assumption
{Yi(w) }wer L W;|X;, S; and that {Y;(w) }e7 are uniformly bounded by a constant, we have

E[Y;(W; +vI(X;, S:))] :E{/weT

—E| [ m(w+vI(X,,8)), X0, S)m(wlx, &)dw]
weT

=> E [m(w + vI(X;,a)), Xs, a)m(w|X;, a)pa (X;)] dw.
acs Y weT

E [Yz(w =+ Z/I()(i7 Si))|Xi, SJ 7T(U)|Xi, Sz)dw}

where the integral and the expectations are exchangeable above by using Fubini Theorem as a result
of the uniform boundedness of the potential outcomes. Then under some additional regularity con-
ditions, we can exchange the derivative (with respect to v) with the integrals and the expectations,
so that
d
E]E D/L(WL + VI(X'L'a Si))]l/:()
= Z/ E [Vom(w, X;, a)I(X;, a)m(w|X;, a)pe(X;)] dw,
acs JWET

where V,,m is the gradient of m taken with respect to w. The utility constraint is defined as

/ E [Vom(w, X;,a)I(X;, a)m(w|X;, a)pa (X;)] dw > 7. (36)
acs JwET

Define

I(X;,a) := I(Xi,a)/ m(w|X;, a)dw,
weT

the e-approximate SDP is defined as
ETNUnif[O,l] |Q(H(X“ a) > 7') — Q(H(Xl,(l/) > T)‘ <, Va,a’ €S, teT. 37

where II(X;, a) captures the interaction between the average pre-intervention treatment level and
the binary intervention. Then we replace the constraints of (P) with (36) and (37) under the setting
with continuous treatment and multiple sensitive attributes.

In both extended cases, the expectations of the constraints are taken with respect to the distribution
of X;. Thus, the formality of the hypothesis testing framework and the Wasserstein projection dis-
tance remain unchanged, and the proof techniques for the setting with binary treatments and binary
sensitive attributes apply directly once the necessary additional regularity conditions are imposed.
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E DATASET DESCRIPTIONS AND THE VERIFICATION OF ASSUMPTIONS

COMPAS dataset. The COMPAS (Correctional Offender Management Profiling for Alternative
Sanctions) dataset a widely adopted commercial tool that assists judges and parole officers in algo-
rithmically predicting a defendant’s recidivism risk. The dataset comprises criminal records from
a two-year follow-up period post-sentencing. For our fairness analysis, sex serves as the sensitive
attribute.

Arrhythmia dataset. Arrhythmia is from UCI repository, where the aim of this data set is to distin-
guish between the presence and absence of cardiac arrhythmia and classify it in one of the 16 groups.
The dataset consists of 452 samples and we use the first 12 features among which the gender is the
sensitive feature. For our purpose, we construct binary labels between ‘class 01’ (‘normal’) and all
other classes (different classes of arrhythmia and unclassified ones).

Drug dataset. The Drug dataset contains answers of 1885 participants on their use of 17 legal and
illegal drugs. We concern the cannabis usage as a binary problem, where the label is ‘Never used’
VS ‘Others’ (‘used’). There are 12 features including age, gender, education, country, ethnicity,
NEO-FFI-R measurements, impulsiveness measured by BIS-11 and sensation seeking measured by
ImpSS. Among those, we choose ethnicity (black vs others) as the sensitive attribute.

we next verify if Assumption [Iholds for these three datasets:

Unconfoundedness: In our experimental framework, all treatments are derived from Tikhonov-
regularized Logistic Regression and SVM classifiers. Since these models’ predictions depend solely
on the input features (z, a), the potential outcomes Y (w) are conditionally independent of treatment
assignment given the observed features. This satisfies the unconfoundedness assumption by design.

Boundedness: The potential outcome Y;(W;) represents binary classification correctness, thus nat-
urally satisfying 0 < Y;(W;) < 1 for all observations.

F ON EXTENDING EMPIRICAL STUDIES TO UNSTRUCTURED DATA

Beyond the structured-data applications examined in the main text, our framework naturally extends
to unstructured domains such as natural language processing (NLP), computer vision, and recom-
mender systems. Given the complexity of these tasks and the primarily theoretical focus of our work,
we provide only a high-level discussion of how our hypothesis test could be applied, leaving detailed
empirical investigations to future research. These extensions illustrate how the choice of (e, r) adapts
to different empirical contexts—accuracy in NLP, diagnostic benefit in imaging, and engagement in
recommendations—while our test offers a unified approach to evaluating fairness—utility trade-offs.

NLP data (Resume Screening). In text-based classification tasks such as resume screening,
datasets like Bias in Bios link occupation labels with gender. Here, utility r can be defined as main-
taining predictive accuracy above a threshold, while fairness tolerance e limits group disparities in
predicted selection rates across thresholds. Fine-tuning a language model (e.g., BERT) and applying
our test allows one to assess whether observed gender gaps are systematic or due to randomness.

Medical Imaging (Skin Cancer Detection). Datasets such as Fitzpatrick17k with skin-tone an-
notations can be paired with melanoma classification data. Utility r corresponds to minimum di-
agnostic accuracy (e.g., sensitivity), while e controls disparities in screening probabilities across
skin tones. Training a CNN and applying our procedure provides a test of whether differences in
outcomes reflect structural bias or noise.

Recommender Systems (MovieLens). In recommendation platforms, datasets like MovieLens
enable analysis of exposure disparities across gender or age groups. Here, r reflects minimum
engagement or rating accuracy, and € bounds disparities in recommendation probabilities. Applying
our test to collaborative filtering models helps determine whether unequal exposure is intrinsic to
the system or explained by sampling variation.
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