SAMPO: Scale-wise Autoregression with Motion PrOmpt for Generative World Models

Sen Wang 1 Jingyi Tian 1 Le Wang $^{1,\boxtimes}$ Zhimin Liao 1 Jiayi Li 1 Huaiyi Dong 1 Kun Xia 1 Sanping Zhou 1 Wei Tang 2 Hua Gang 3

¹National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University ²University of Illinois at Chicago ³Amazon.com, Inc.

Abstract

World models allow agents to simulate the consequences of actions in imagined environments for planning, control, and long-horizon decision-making. However, existing autoregressive world models struggle with visually coherent predictions due to disrupted spatial structure, inefficient decoding, and inadequate motion modeling. In response, we propose Scale-wise Autoregression with Motion PrOmpt (SAMPO), a hybrid framework that combines visual autoregressive modeling for intra-frame generation with causal modeling for next-frame generation. Specifically, SAMPO integrates temporal causal decoding with bidirectional spatial attention, which preserves spatial locality and supports parallel decoding within each scale. This design significantly enhances both temporal consistency and rollout efficiency. To further improve dynamic scene understanding, we devise an asymmetric multi-scale tokenizer that preserves spatial details in observed frames and extracts compact dynamic representations for future frames, optimizing both memory usage and model performance. Additionally, we introduce a trajectory-aware motion prompt module that injects spatiotemporal cues about object and robot trajectories, focusing attention on dynamic regions and improving temporal consistency and physical realism. Extensive experiments show that SAMPO achieves competitive performance in action-conditioned video prediction and model-based control, improving generation quality with 4.4× faster inference. We also evaluate SAMPO's zero-shot generalization and scaling behavior, demonstrating its ability to generalize to unseen tasks and benefit from larger model sizes.

1 Introduction

Building a world model that can simulate the physical environment and respond to the actions of agents is a central challenge on the path to artificial general intelligence (AGI) [2, 11, 77, 33, 52, 72, 73]. Recently, video generation has been integrated into world models, enabling models to generate future frames based on agent actions, simulating dynamic environments and making it possible for agents to anticipate outcomes and make informed decisions [24, 7, 50, 4]. Despite growing progress, designing a world model that is simultaneously high-fidelity, temporally consistent, and efficiently scalable remains an open problem.

Prior works have advanced video-based world models by formulating future prediction as an action-conditioned generation problem. These approaches can be categorized into three major families based on their generative paradigms: masked modeling, diffusion-based models and autoregressive models.

[™]Corresponding author.

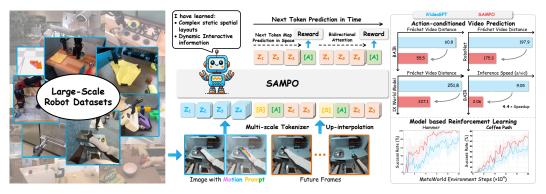


Figure 1: **SAMPO Overview.** SAMPO is a scale-wise autoregressive world model for video prediction and robotic control. It models temporal dynamics through frame-wise causal generation, while capturing spatial structure via multi-scale tokenization and coarse-to-fine prediction. A trajectory-aware motion prompt further enhances spatiotemporal grounding. SAMPO supports high-fidelity, action-conditioned rollouts for visual planning and model-based reinforcement learning.

Masked modeling [75, 8, 19, 68, 51] achieves efficient pretraining by reconstructing missing patches, yet often sacrifices temporal consistency and causality due to its localized objective. Diffusion-based models [56, 7, 26, 65] produce high-fidelity video via iterative denoising, but suffer from slow inference and limited interactivity. In contrast, autoregressive models [38, 77, 60, 62] generate tokens sequentially, preserving causal structure and supporting in-context prediction [10], making them better aligned with the requirements of world models, where accurate, interactive and temporally consistent forecasting is essential.

Despite their success in building world models [60], current autoregressive approaches still face the following limitations: 1) Structural degradation due to raster-scan flattening [45, 54, 32]. Flattening disrupts the spatial locality of video frames, hindering the model's ability to capture long-range dependencies across space, leading to physically implausible generation, such as object disappearances or blurred manipulators (Fig. 4). 2) Slow and error-prone next-token prediction leads to inefficiency and the accumulation of errors during generation [5, 41]. 3) Insufficient modeling of salient motion and interactions, which diminishes the physical realism and smoothness of dynamic scenes [74].

To address these challenges, we propose **SAMPO**, a scale-wise autoregressive framework that combines bidirectional spatial attention within frames and causal temporal modeling across time. SAMPO introduces a new autoregressive formulation tailored for world models, combining next-scale spatial prediction [45] with temporal causal generation, thereby unifying spatial coherence and temporal consistency under a scalable architecture. Specifically, the model autoregresses over time while generating each frame's token maps in a coarse-to-fine manner, progressively from low to high resolution with parallel token generation within each scale. Compared to raster-scan flattening, which disrupts spatial continuity and object boundaries [62, 32], our hierarchical token generation effectively preserves spatial locality and structural coherence within each frame and supports scalable and efficient generation across resolutions.

To further balance spatial detail and dynamic modeling [58, 60], we devise an asymmetric multi-scale tokenizer based on vector quantization [14, 48]. Observed frames are densely tokenized to preserve static background and contextual information, while future frames use sparse tokenization to emphasize dynamic changes and reduce redundancy [18]. As shown in Fig. 1, this design improves inference speed while maintaining visual fidelity. Notably, this formulation supports token-level integration of visual inputs and agent actions. With autoregressive scalability, SAMPO can be pretrained on large-scale robot datasets [37], enabling generalizable and control-centric world models across diverse tasks and settings.

While improving visual fidelity is a desirable goal, the core objective of an interactive world model is to accurately predict future states in response to agent actions [46, 33]. Existing approaches often struggle to model meaningful dynamic interactions [60, 58, 62], particularly in environments dominated by static or quasi-static frames [13, 9], resulting in blurred or inconsistent object interactions. To address this limitation, we introduce a trajectory-aware motion prompt module that provides spatiotemporal cues about object and robot trajectories within the observed frames [31, 30]. These motion prompts serve as dynamic priors, guiding the model's attention toward interaction-relevant

regions, such as robotic arms and manipulated objects. By explicitly conditioning on motion trajectories, SAMPO improves its capability to model object-agent interactions, maintain temporal consistency and capture underlying physical dependencies.

In summary, the main contributions of this study can be summarized as follows:

- 1. We propose SAMPO, a scale-wise autoregressive framework that combines temporal causal modeling with coarse-to-fine visual autoregression and an asymmetric multi-scale VQ tokenizer, preserving spatial locality while significantly improving generation efficiency.
- 2. We introduce a trajectory-aware motion prompt module that provides explicit spatiotemporal priors over robot and object trajectories, enhancing the model's ability to capture dynamic interactions and physical dependencies in complex manipulation tasks.
- 3. Extensive experiments demonstrate that SAMPO outperforms existing state-of-the-art methods in terms of video quality, motion modeling accuracy, and robot control performance, offering a new insight for scalable and structurally coherent world model design.

2 Related Work

2.1 Generative Models for World Modeling

World Modeling as an Embodied Simulator. World models have emerged as a fundamental paradigm for enabling agents to reason about and interact with complex environments. Broadly, world models serve two complementary purposes: constructing internal representations that abstract the external world and predicting its future evolution to guide decision-making [20, 33, 11]. Early works emphasized building compact, latent models that capture essential environmental dynamics, supporting tasks such as planning and policy learning in model-based reinforcement learning [21, 28]. Recent advances in video generation and large multimodal models have shifted attention toward direct pixel-level predictions of future world states [77, 7, 8, 26], providing richer supervision and expanding the applicability of world models to diverse tasks, from robotic manipulation to embodied social simulation. Beyond pixel prediction, a critical evolution in world models lies in supporting interactivity and control [60]. An effective world model should not only generate visually plausible futures but also simulate the consequences of agent actions and respond with feedback. This capability enables agents to interact with imagined environments in a closed-loop manner — testing actions, observing outcomes, and refining strategies accordingly [6, 11]. Such interactive modeling is essential for decision-making tasks that require dynamic adaptation, from robot manipulation to embodied reasoning. In this work, we focus on advancing interactive world models toward efficient, structurally coherent visual dynamics prediction, integrating spatial structure priors with scalable autoregressive architectures.

Visual Autoregressive Modeling. VAR introduces a new generation paradigm that redefines autoregressive learning as next-scale prediction, enabling transformers to better capture visual distributions [45]. By replacing raster-scan ordering with multi-scale token map prediction, VAR preserves spatial locality, reduces sequential dependency, and enables efficient parallel decoding within each scale. Inspired by these insights, coarse-to-fine multi-scale generation has begun to influence a broad range of fields, including high-resolution image synthesis[23], 3D generation [70], multimodal LLM [78, 79] and robotic manipulation [17]. However, these methods have yet to explore integrating VAR into intra-frame generation and still rely on suboptimal raster-scan ordering in image generation.

2.2 Motion Prompt for Visual Dynamics Modeling

Visual prompt have emerged as a lightweight alternative to architectural changes for guiding multimodal models [43, 64, 63, 67, 61]. Early efforts introduce coarse overlays or fine-grained masks to input images, steering large vision–language models toward target regions [43, 64, 67, 53]. While effective for object localization [63, 61], these prompts encode only static spatial cues and fail to capture object motion, limiting their suitability for world model learning and control. To address this limitation, recent works have introduced motion-aware prompting techniques that explicitly encode spatio-temporal dynamics [16, 74, 34, 59]. Motion prompting [16] controls video diffusion models using sparse or dense motion tracks, enabling realistic and controllable object and camera dynamics. TraceVLA [74] overlays tracked trajectories [31] as visual prompts to inject temporal context into

vision—language action models without architectural changes. Complementarily, MoVideo [34] integrates optical flow and depth features to enhance motion fidelity and temporal consistency in video generation. These methods demonstrate that motion-aware prompt can enhance dynamic fidelity without compromising efficiency. However, they often target generative tasks or depend on offline trajectories. In contrast, we propose an online motion prompting scheme that integrates with interactive world models for efficient and physically constrained visual control.

3 Method

In this section, we elaborate on the proposed SAMPO, a scale-wise autoregressive world model that integrates temporally causal modeling with bidirectional spatial attention in each frame. We commence with a brief background on visual autoregressive modeling and formulate the problem.

3.1 Preliminaries and Problem Statement

Next-scale prediction. VAR [45] introduces a novel generation paradigm that predicts images hierarchically from coarse to fine token maps. Instead of autoregressively generating a flattened raster-scan sequence, VAR decomposes an image into multi-scale token maps and models generation at each spatial scale, conditioned on all previous scales. Formally, given hierarchical token maps $\{z^{(1)}, z^{(2)}, \ldots, z^{(L)}\}$, where each token map $z^{(l)} \in \mathbb{Z}^{H_l \times W_l}$ from low to high resolution, the generation objective can be factorized as:

$$p(\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(L)}) = \prod_{l=1}^{L} p(\mathbf{z}^{(l)} \mid \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(l-1)}), \tag{1}$$

where $z^{(l)}$ denotes the token map at scale l. Each finer scale prediction is conditional on all previously generated coarser token maps, enabling coherent and efficient spatial modeling.

This coarse-to-fine framework, while originally developed for images, preserves spatial locality and enables parallel decoding. When combined with frame-wise causal modeling, it naturally extends to spatiotemporal modeling and forms the basis of SAMPO for the structured world model.

World Model Formulation. We formulate world models as an interactive video prediction problem [60], where the model simulates future observations and rewards conditioned on past observations and actions, which can be formalized as a partially observable Markov decision process (POMDP), defined as: $\mathcal{M} = (\mathcal{S}, \mathcal{O}, \phi, \mathcal{A}, p, r, \gamma)$. At each timestep t, the agent receives a partial observation $o_t \in \mathcal{O}$, takes an action $a_t \in \mathcal{A}$, and transitions to a new latent state $s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)$, receiving a reward $r_t = r(s_t, a_t)$. The objective is to learn a policy $\pi(a_t \mid o_{1:t})$ that maximizes the expected discounted return. To support this, a world model approximates the environment's transition dynamics by learning the predictive distribution: $p(o_{t+1}, r_{t+1} \mid o_{1:t}, a_{1:t})$.

3.2 Scale-wise Visual Autoregressive for World Models

Hybrid Autoregressive Architecture. We propose SAMPO, a scale-wise visual autoregressive architecture for world modeling over multimodal inputs, which unifies temporal and spatial generation through a coarse-to-fine decoding scheme. This design enables our world model to preserve both temporal causality across frames and spatial semantic coherence within each frame. Our experiments demonstrate that the hybrid architecture improves generation quality while also accelerating inference.

Specifically, given an input sequence of observation frames $V = \{f_t \in \mathbb{R}^{H \times W \times 3}\}_{t=1}^T$, we first discretize each frame f_t into a hierarchy of multi-scale token maps using vector-quantized tokenizers [14, 48], yielding $\{z_t^{(l)} \in \mathbb{Z}^{H_l \times W_l} \mid l=1,\ldots,L\}$, where L denotes the total number of spatial scales. We then adopt a hybrid decoding scheme, which is autoregressive across frames (temporal) while generating tokens in a coarse-to-fine manner within each frame (spatial). The hybrid autoregressive likelihood is formulated as:

$$p(\{\boldsymbol{z}_{t}^{(l)} \mid \boldsymbol{a}_{(2)$$

where $z_{< t}^{(*)}$ denotes all token maps from previous frames, $z_t^{(< l)}$ represents coarser-scale maps already decoded within the current frame, and $a_{< t}$ is the action sequence from the initial to the current time

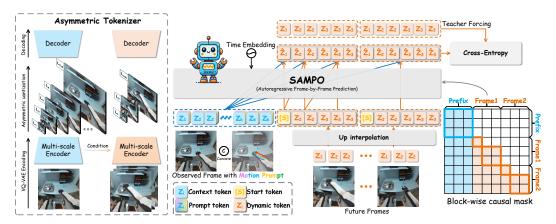


Figure 2: **The overall framework of SAMPO.** The observed and future frames are discretized by a multi-scale tokenizer to obtain dense and sparse token maps, which are then autoregressively predicted across time, while following a coarse-to-fine decoding order within each frame. Motion prompts extracted from observed frames are injected alongside visual tokens to guide dynamic modeling.

step. Actions are integrated by linear projection and added to the start token embedding. At the k-th generation step of the t-th frame, the observed frames are encoded into compact features along with previously decoded tokens, forming the prefix for generating the next-scale tokens $\boldsymbol{z}_t^{(l)}$. All tokens for the current step are generated in parallel, using a block-wise causal mask to ensure each token attends only to the prefix. During inference, we employ KV-caching [15] and no mask is needed.

Asymmetric Multi-scale Tokenizer. In robot-centric world modeling, observed frames (*e.g.*, those acquired before taking actions) and future frames (*e.g.*, those imagined during planning) exhibit distinct characteristics [58, 60]. Observed frames typically contain complex static spatial layouts, sensor noise, and rich contextual cues. In contrast, future frames primarily reflect sparse motion involving the robotic arms and manipulated objects, while most background remains static, assuming a relatively stable camera viewpoint without significant egomotion.

To better align with this asymmetry, we propose an asymmetric multi-scale tokenizer. Observed frames $(t \leq T_0)$ are tokenized across all spatial scales $l \in \{1, \ldots, L_{full}\}$, yielding fine-grained token maps with dimensions $\boldsymbol{z}^{(l)} \in \mathbb{Z}^{H_l \times W_l}$ at each scale. While for future frames $(t > T_0)$, we select only a sparse subset of coarser scales $l \in \{1, \ldots, L_{sub}\}$ with $L_{sub} < L_{full}$, reducing token redundancy and focusing modeling capacity on dynamic regions. The encoded token map is defined as:

$$\boldsymbol{z}_{t}^{(l)} = \begin{cases} \mathcal{T}_{l}(f_{t}), & \text{if } t \leq T_{0}, \ l \in \{1, \dots L_{full}\} \\ \mathcal{T}_{l}(f_{t}) + CrossAttn(f_{t}, \boldsymbol{z}_{1:T_{0}}), & \text{if } t > T_{0}, \ l \in \{1, \dots L_{sub}\} \end{cases},$$
(3)

where $\mathcal{T}_l(\cdot)$ denotes the scale-specific tokenizer at scales l. For future frames $(t>T_0)$, cross-attention incorporates information from observed frames. This asymmetry leads to efficient and structured representation by enhancing scale-aware attention during generation and disentangling static background priors from dynamic foreground variations.

3.3 Trajectory-aware Motion Prompt

While next scale autoregression improves spatial coherence, it remains insufficient for dynamic understanding, especially under static or quasi-static training distributions [13, 9]. To mitigate this, we incorporate explicit trajectory-aware motion prompts that guide the model to focus on dynamically relevant regions. We extract motion prompts using CoTracker3 [30], a point-tracking model. Specifically, we adopt the scaled_online¹ variant for efficient and robust trajectory extraction.

Following the definition of f_t in Sec. 3.2, we uniformly sample a regular grid of query points on the first frame f_1 with a predefined grid size $G \times G$, resulting in $N = G^2$ initial points $\{(x_i^{(1)}, y_i^{(1)})\}_{i=1}^N$.

¹A lightweight variant fine-tuned on 15k real-world videos via pseudo-labeling, showing significant improvements in robotic tracking benchmarks such as RoboTAP [49].

These query points are tracked across frames by CoTracker3, generating raw trajectories:

$$\mathcal{P}_i = \{ (x_i^{(t)}, y_i^{(t)}) \}_{t=1}^T, \quad \text{for } i = 1, \dots, N,$$
(4)

where $(x_i^{(t)}, y_i^{(t)})$ denotes the predicted 2D location of point i at frame t. For world modeling in robotic manipulation, we extract trajectories to focus on the dynamics of the robot arms and manipulated objects, rather than static backgrounds or noisy artifacts. To this end, we filter raw CoTracker3 outputs based on two criteria. First, trajectories with low average tracking confidence $c_i < \tau_c$ are discarded. Second, we compute the displacement over a short temporal window $\Delta t = 4$ frames to identify static points:

$$d_i^{(\Delta t)} = \|(x_i^{(t+\Delta t)}, y_i^{(t+\Delta t)}) - (x_i^{(t)}, y_i^{(t)})\|_2, \tag{5}$$

and discard trajectories where $d_i^{(\Delta t)}$ remains below 2% of the image diagonal throughout the sequence. The resulting dynamic trajectories serve as motion prompts, enabling spatiotemporal reasoning about interactive agents and objects. The retained dynamic trajectories are overlaid onto the original observation to form the motion prompt (see Fig. 3). Following [74], we concatenate the motion prompt with the observation, separated by a special token, to construct a dual-branch input. This design enhances the spatiotemporal grounding of the model and improves its ability to simulate physically plausible interactions.

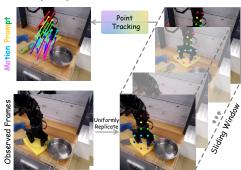


Figure 3: Motion Prompt generation.

3.4 Training Objectives

SAMPO is trained to autoregressively predict future token maps over both temporal and spatial scales. Let $\hat{\boldsymbol{z}}_t^{(l)} \in \mathbb{R}^{H_l \times W_l \times V}$ denote the predicted logits at scales l, where V represents the size of the codebook, and $\boldsymbol{z}_t^{(l)} \in \mathbb{Z}^{H_l \times W_l}$ are the corresponding ground-truth token indices. The training objective is a multi-scale cross-entropy loss over future frames:

$$\mathcal{L}_{\text{CE}}(\theta) = \sum_{l=1}^{L} \lambda_l \cdot \mathbb{E}_{t>T_0} \left[\frac{1}{H_l W_l} \sum_{i,j} -\log p\left(\hat{\boldsymbol{z}}_t^{(l)}(i,j) = \boldsymbol{z}_t^{(l)}(i,j)\right) \right]$$
(6)

where λ_l is a scale-specific weight (detailed in Appendix A.2), and T_0 denotes the final observed frame. The loss is computed only on future frames, encouraging prediction conditioned on context. Action-conditioned prediction with reward. For control-centric applications (e.g., model-based RL), the objective can be optionally extended with auxiliary heads, including reward prediction or trajectory decoding. For example, a linear head can be applied to the last token's hidden state in each frame, using a MSE loss for reward prediction [60]. This modification enables more effective task-relevant learning, improving performance in control tasks [35].

3.5 Implementation Details

Asymmetric Tokenizer. We design an asymmetric multi-scale tokenizer built on VQGAN [14], which independently encodes observed and future frames using separate codebooks of size 8192. Both share a CNN backbone but their parameters are independently updated. Our tokenizer is pretrained on Open X-Embodiment [37] with reconstruction and commitment loss.

Transformer. SAMPO follows the decoder-only architecture [40] implemented in VAR [45]. To maintain temporal consistency, we introduce a start token [S] at the beginning of each frame, which segments the frame and enables autoregressive prediction with teacher forcing. Additionally, we apply fixed 1D sine-cosine embeddings to encode temporal positions, following standard practice in visual Transformers [39, 12, 25]. By default, our Transformer pretrained on Open X-Embodiment [37] has 16 blocks and a width of 1024, which we refer to as the Base size or -B (~353M parameters).

Motion Prompt. We apply a dropout mechanism to randomly omit motion prompts, avoiding the limitation of using a single observation frame and enhancing robustness across both prompted and unprompted conditions. During inference, when the number of observed frames is shorter than the required window size [30], frames are uniformly replicated to satisfy the temporal input constraint. Full training recipe including model architecture and data preprocessing is provided in Appendix A.

Table 1: **Video prediction results on BAIR and RoboNet datasets.** "-" indicates values not reported. We report Fréchet Video Distance (FVD) [47] as the primary metric, complemented by PSNR [27], SSIM [55], and LPIPS [71] for perceptual quality assessment. LPIPS and SSIM are scaled by 100.

BAIR [13]	$\text{FVD}{\downarrow}$	PSNR↑	$SSIM \!\!\uparrow$	LPIPS↓	RoboNet [9]	$FVD\!\!\downarrow$	PSNR↑	SSIM↑	LPIPS↓
action-free & 64×64 resolution				action-conditioned & 64×64 resolution					
MaskViT [19]	93.7	-	-	-	MaskViT [19]	133.5	23.2	80.5	4.2
FitVid [4]	93.6	-	-	-	FitVid [4]	62.5	28.2	89.3	2.4
MCVD [51]	89.5	16.9	78.0	-	SVG [50]	123.2	23.9	87.8	6.0
MAGVIT [68]	62.0	19.3	78.7	12.3	GHVAE [57]	95.2	24.7	89.1	3.6
iVideoGPT [60]	75.0	20.4	82.3	9.5	iVideoGPT [60]	63.2	27.8	90.6	4.9
SAMPO	65.7	22.3	86.7	8.4	SAMPO	57.1	29.3	94.1	3.3
action-con	nditioned	l & 64×64	tresolution	on	action-conditioned & 256×256 resolution				ion
MaskViT [19]	70.5	-	-	-	MaskViT [19]	211.7	20.4	67.1	17.0
iVideoGPT [60]	60.8	24.5	90.2	5.0	iVideoGPT [60]	197.9	23.8	80.8	14.7
SAMPO	55.5	26.7	94.7	3.7	SAMPO-L	175.3	25.3	84.7	12.3

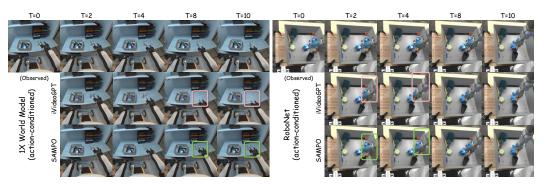


Figure 4: **Qualitative comparison of video prediction.** We compare SAMPO with iVideoGPT on the 1X World Model and RoboNet datasets under action-conditioned settings. SAMPO shows a clear advantage in modeling complex backgrounds and capturing dynamic object interactions over time.

4 Experiments

We conduct extensive experiments to validate the effectiveness of SAMPO across multiple settings, including action-free and action-conditioned video prediction, visual planning, and model-based reinforcement learning (MBRL). We follow standardized evaluation protocols [60] and report results on established benchmarks. Training details for each benchmark are provided in Appendix B.

4.1 Video Prediction Performance

Datasets and Setup. We evaluate on three categories of benchmarks: (i) BAIR Robot Pushing [13] for low-resolution video prediction, (ii) RoboNet [9] for large-scale action-conditioned prediction, and (iii) 1X World Model [1] for real-world human and robotic interactions in diverse indoor environments, designed for open-domain video prediction. We predict 15 future frames from 1 context frame on BAIR, 10 future frames from 2 context frames on RoboNet and 1X World Model. Action-conditioned is applied during rollouts.

In Tab. 1 and Tab. 2, SAMPO achieves the best FVD in video prediction. Qualitative comparisons, shown in Fig. 4, demonstrate significant improvements in perceptual quality and motion realism. These results highlight the effectiveness of scalewise generation in modeling multi-scale dynamics and the role of trajectory-aware motion prompts in guiding future predictions.

Table 2: Video prediction results on 1X.

1X [1]	FVD↓	PSNR↑	SSIM↑	LPIPS↓
action-co	nditione	ed & 256×	:256 reso	lution
iVideoGPT	251.8	24.1	78.3	20.3
SAMPO	227.1	25.7	80.3	18.7

Table 3: **Visual planning performance in VP**². We report the success rates across 8 tasks, and the average success rate excluding Flat Block. In addition, we provide the mean and standard deviation of the success rates (in %) on average in 3 random seeds.

Method / Task	Robosuite Push	Flat Block	Open Drawer	Open Slide	Blue Button	Green Button	Red Button	Upright Block	Avg. Success↑
Simulator	$93.5^{\pm 1.2}$	$13.3^{\pm0.0}$	$76.7^{\pm0.0}$	$71.7^{\pm 1.4}$	$100.0^{\pm0.0}$	$96.7^{\pm0.0}$	$90.0^{\pm0.0}$	$90.0^{\pm0.0}$	100.0
FitVid [4]	$67.7^{\pm 6.4}$	9.2 ^{±2.8}	$25.3^{\pm 8.2}$	$35.3^{\pm 5.5}$	$94.0^{\pm 4.2}$	$84.0^{\pm 5.5}$	$58.7^{\pm 5.5}$	$51.3^{\pm 2.9}$	65.6
SVG' [50]	$79.8^{\pm 3.3}$	$2.0^{\pm 1.4}$	$16.7^{\pm 8.2}$	$57.3^{\pm 11.0}$	$97.3^{\pm 2.7}$	$81.3^{\pm 5.5}$	$76.0^{\pm 9.5}$	$48.7^{\pm 11.1}$	72.5
MCVD [51]	$77.3^{\pm 2.1}$	$4.0^{\pm 1.4}$	$11.7^{\pm 1.4}$	$18.3^{\pm 1.4}$	$95.0^{\pm4.1}$	$83.3^{\pm0.0}$	$73.3^{\pm 2.7}$	$56.7^{\pm 2.7}$	64.3
MaskViT [19]	82.6 $^{\pm 2.5}$	$4.0^{\pm 4.1}$	$4.0^{\pm 4.1}$	$8.7^{\pm 5.5}$	$94.7^{\pm 1.4}$	$64.0^{\pm 4.1}$	$24.0^{\pm 8.2}$	$62.2^{\pm 9.5}$	52.1
Struct-VRNN [36]	$55.4^{\pm4.1}$	$4.7^{\pm 5.5}$	$2.7^{\pm 4.2}$	$12.7^{\pm 6.9}$	$86.7^{\pm 4.2}$	$68.0^{\pm 9.5}$	$30.7^{\pm 4.2}$	$33.3^{\pm 2.7}$	44.2
iVideoGPT [60]	$78.3^{\pm0.8}$	$3.3^{\pm0.7}$	$37.5^{\pm 1.7}$	$16.1^{\pm 2.7}$	$95.6^{\pm2.1}$	$82.5^{\pm 3.4}$	$92.2^{\pm 1.4}$	$44.7^{\pm 1.7}$	70.1
SAMPO	80.7 ^{±1.4}	5.5 ^{±1.2}	40.3 ^{±2.3}	18.3 ^{±3.3}	97.3 ^{±1.7}	85.3 ^{±3.3}	94.7 ^{±2.1}	46.1 ^{±2.7}	72.2

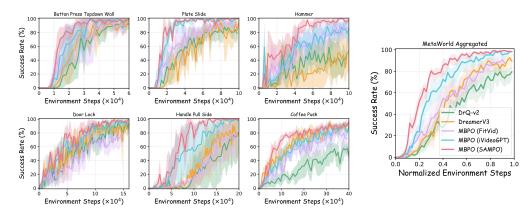


Figure 5: **Model-based RL with SAMPO.** We report the success rate (in %) across 6 tasks, along with the average success rate across all tasks and the 95% confidence interval [3] calculated from 5 random seeds. All models are pre-trained with world models [42].

4.2 Planning and Reinforcement Learning

Visual Planning with Action-Conditioned Rollouts. As perceptual metrics are not strictly correlated with control performance, we further verify the applicability of SAMPO on VP² [46], a visual planning benchmark. Each environment provides noisy, scripted interaction trajectories. Following [46, 60], we train SAMPO on 5k trajectories for Robosuite [76] and 35k for RoboDesk [29], and compare against established baselines.

As shown in Tab. 3, SAMPO achieves the best results in four tasks and the second-best results in the other two tasks. Compared to the baseline [60], the average performance is improved by 2.1%, indicating its capability to achieve high-fidelity perception while excelling in control performance.

Model-Based Reinforcement Learning. Beyond planning, an effective world model must facilitate efficient policy learning through interaction. In this work, we evaluate SAMPO by incorporating it into a model-based policy optimization (MBPO) framework [28], which extends the replay buffer with synthetic rollouts to train an actor-critic RL algorithm, implemented based on DrQ-v2 [66]. Experiments are conducted on six robotic manipulation tasks from the Meta-World benchmark [69].

Fig. 5 shows that SAMPO significantly accelerates policy convergence compared to iVideoGPT[60], while also improving the policy's upper bound. This enhancement is primarily driven by the temporal consistency and semantic coherence facilitated by our hybrid framework, in conjunction with the motion prompt. Moreover, SAMPO significantly outperforms the state-of-the-art MBRL method, DreamerV3 [22], regarding both sample efficiency and success rate.

4.3 Ablation Studies & Model Analysis

We perform ablation studies to isolate the contributions of each component. Results are in Tab. 4.

Table 4: **Abalation of SAMPO** on the action-conditioned RoboNet [9] at a resolution of 256×256 . The first two rows compare the baseline AR model with SAMPO model using a hybrid VAR architecture. Later rows add enhancements to SAMPO, including motion prompt, 1D temporal position embedding, and model scaling. " Δ ": improvement over the SAMPO-S model.

Description	# Para.	Model	Motion	T. E.	FVD↓	SSIM↑	Δ
AR	436M	AR [60]	X	X	197.9	80.8	-
Hybrid AR	207M	SAMPO-S	X	X	227.4	76.4	(0.00, 0.00)
+ Motion	232M	SAMPO-S	✓	X	217.8	78.8	(-9.6, +2.4)
+ Temp. Embed.	232M	SAMPO-S	\checkmark	\checkmark	193.8	81.5	(-33.6, +5.1)
+ Scale up	353M	SAMPO-B	✓	✓	184.1	83.2	(-43.3, +6.8)
	548M	SAMPO-L	\checkmark	\checkmark	175.3	84.7	(-52.1, +8.3)

Table 5: **Performance and speed trade-off**. We benchmark FVD, PSNR, average success rate on VP² and inference speed using one A800 GPU with a batch size of 16 on the BAIR.

Method	Spatial Scales	FVD↓	PSNR↑	Avg. Success↑	Inference Time↓
AR _{138M} [60]	-	60.8	24.5	70.1	9.05 s / vid.
SAMPO-S	[1, 2, 4, 8]	80.7	23.1	72.2	1.61 s / vid
SAMPO-S	[1, 2, 4, 8, 10]	73.1	24.3	71.3	3.27 s / vid
SAMPO-S	[1, 2, 3, 4, 5, 6]	55.5	26.7	70.6	2.06 s / vid.

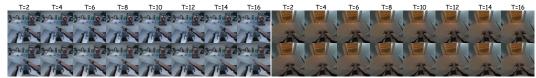


Figure 6: **Zero-shot performance.** The results show that SAMPO can effectively generalize without special design and finetuning, underscoring its potential for world models. Zoom in for a better view.

Effectiveness of Hybrid Framework. First, we evaluate the effectiveness of the hybrid framework, which combines scale-wise autoregressive generation with bidirectional spatial attention. Starting with the SAMPO-S model, we observe competitive performance in both FVD and SSIM, confirming its ability to generate higher-quality video. The parallel prediction of multiple tokens within each scale effectively reduces autoregressive steps, improving efficiency. In Tab. 5, SAMPO with various scales configurations significantly improve the inference speed. These demonstrate that our hybrid framework not only enhances generation quality but also accelerates inference.

Motion Prompt and Temporal Embedding. Both motion prompts and temporal position embedding improve temporal consistency and semantic coherence, as shown in Tab. 4. Particularly, temporal position embedding plays a crucial role in maintaining consistent temporal dynamics, resulting in significant improvements in FVD and SSIM.

Analysis of Spatial Scale Design. Fewer scales improve inference speed but reduce spatial fidelity. Notably, smaller inter-scale strides yield better performance under similar compute budgets, indicating that residual-based scale-wise autoregression benefits from gradual resolution refinement due to its sensitivity to abrupt scale transitions.

Scaling Laws. As a GPT-style world model, we explore the scaling behavior of SAMPO with 3 different sizes (depth 12, 16, 20) in Tab. 4. The observed improvements in FVD and SSIM align with the scaling laws, as larger models capture more complex temporal and spatial dependencies, improving both generation quality and consistency.

Zero-shot Generalization. We further assess SAMPO's zero-shot generalization by evaluating a model pretrained on the Open X-Embodiment dataset [37] and tested on the 1X World Model dataset [1] without fine-tuning. As shown in Fig. 6, SAMPO generates high-quality videos with temporally consistent dynamics, demonstrating its strong generalization ability. More zero-shot visual examples are in Appendix C.

5 Conclusion and Discussion

In this work, we present SAMPO, a scale-wise autoregressive world model. It integrates a hybrid autoregressive framework with an asymmetric tokenizer to perform temporal and spatial token maps generated across multiple scales, and further leverages a lightweight motion prompt module to enhance dynamic scene understanding. Owing to its hybrid architecture, SAMPO maintains both temporal consistency and spatial coherence, achieving state-of-the-art performance in video prediction and model-based RL benchmarks. However, despite its strong accuracy and scalability in both simulated and reinforcement learning environments, SAMPO still struggles with long-term modeling, leading to error accumulation over time. Future work could explore techniques for improving long-term consistency and reducing error propagation.

Acknowledgement

This work was supported in part by the National Key Research and Development Project under Grant 2024YFB4708100, National Natural Science Foundation of China under Grants 62088102, U24A20325 and 12326608, and Key Research and Development Plan of Shaanxi Province under Grant 2024PT-ZCK-80.

References

- [1] 1X Technologies. 1X World Model Challenge, June 2024. URL https://www.1x.tech/discover/1x-world-model.
- [2] N. Agarwal, A. Ali, M. Bala, Y. Balaji, E. Barker, T. Cai, P. Chattopadhyay, Y. Chen, Y. Cui, Y. Ding, et al. Cosmos world foundation model platform for physical ai. <u>arXiv preprint</u> arXiv:2501.03575, 2025.
- [3] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 34:29304–29320, 2021.
- [4] M. Babaeizadeh, M. T. Saffar, S. Nair, S. Levine, C. Finn, and D. Erhan. Fitvid: Overfitting in pixel-level video prediction. arXiv preprint arXiv:2106.13195, 2021.
- [5] G. Bachmann and V. Nagarajan. The pitfalls of next-token prediction. ICML, 2024.
- [6] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.
- [7] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh. Video generation models as world simulators, 2024. URL https://openai.com/research/video-generation-models-as-world-simulators.
- [8] J. Bruce, M. D. Dennis, A. Edwards, J. Parker-Holder, Y. Shi, E. Hughes, M. Lai, A. Mavalankar, R. Steigerwald, C. Apps, et al. Genie: Generative interactive environments. In ICML, 2024.
- [9] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and C. Finn. Robonet: Large-scale multi-robot learning. <u>CoRL</u>, 2019.
- [10] H. Deng, T. Pan, H. Diao, Z. Luo, Y. Cui, H. Lu, S. Shan, Y. Qi, and X. Wang. Autoregressive video generation without vector quantization. ICLR, 2025.
- [11] J. Ding, Y. Zhang, Y. Shang, Y. Zhang, Z. Zong, J. Feng, Y. Yuan, H. Su, N. Li, N. Sukiennik, et al. Understanding world or predicting future? a comprehensive survey of world models. arXiv preprint arXiv:2411.14499, 2024.
- [12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

- [13] F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised visual planning with temporal skip connections. CoRL, 12(16):23, 2017.
- [14] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis. In CVPR, pages 12873–12883, 2021.
- [15] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard: Adaptive kv cache compression for llms. ICLR, 2024.
- [16] D. Geng, C. Herrmann, J. Hur, F. Cole, S. Zhang, T. Pfaff, T. Lopez-Guevara, C. Doersch, Y. Aytar, M. Rubinstein, et al. Motion prompting: Controlling video generation with motion trajectories. CVPR, 2025.
- [17] Z. Gong, P. Ding, S. Lyu, S. Huang, M. Sun, W. Zhao, Z. Fan, and D. Wang. Carp: Visuomotor policy learning via coarse-to-fine autoregressive prediction. <u>arXiv preprint arXiv:2412.06782</u>, 2024.
- [18] H. Guo, Y. Li, T. Zhang, J. Wang, T. Dai, S.-T. Xia, and L. Benini. Fastvar: Linear visual autoregressive modeling via cached token pruning. arXiv preprint arXiv:2503.23367, 2025.
- [19] A. Gupta, S. Tian, Y. Zhang, J. Wu, R. Martín-Martín, and L. Fei-Fei. Maskvit: Masked visual pre-training for video prediction. ICLR, 2023.
- [20] D. Ha and J. Schmidhuber. World models. NeurIPS, 2018.
- [21] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent imagination. ICLR, 2020.
- [22] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world models, 2023. URL https://arxiv. org/abs/2301.04104, 2023.
- [23] J. Han, J. Liu, Y. Jiang, B. Yan, Y. Zhang, Z. Yuan, B. Peng, and X. Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. arXiv preprint arXiv:2412.04431, 2024.
- [24] H. He, Y. Zhang, L. Lin, Z. Xu, and L. Pan. Pre-trained video generative models as world simulators. arXiv preprint arXiv:2502.07825, 2025.
- [25] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 16000–16009, 2022.
- [26] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. NeurIPS, 35:8633–8646, 2022.
- [27] Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr in image/video quality assessment. Electronics letters, 44(13):800–801, 2008.
- [28] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy optimization. NeurIPS, 32, 2019.
- [29] H. Kannan, D. Hafner, C. Finn, and D. Erhan. Robodesk: A multi-task reinforcement learning benchmark, 2021. URL https://github.com/google-research/robodesk.
- [30] N. Karaev, I. Makarov, J. Wang, N. Neverova, A. Vedaldi, and C. Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. <u>arXiv preprint arXiv:2410.11831</u>, 2024.
- [31] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. Cotracker: It is better to track together. In <u>ECCV</u>, pages 18–35. Springer, 2024.
- [32] D. Kondratyuk, L. Yu, X. Gu, J. Lezama, J. Huang, G. Schindler, R. Hornung, V. Birodkar, J. Yan, M.-C. Chiu, et al. Videopoet: A large language model for zero-shot video generation. ICML, 2024.

- [33] Y. LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review, 62(1):1–62, 2022.
- [34] J. Liang, Y. Fan, K. Zhang, R. Timofte, L. Van Gool, and R. Ranjan. Movideo: Motion-aware video generation with diffusion model. In ECCV, pages 56–74. Springer, 2024.
- [35] H. Ma, J. Wu, N. Feng, C. Xiao, D. Li, J. Hao, J. Wang, and M. Long. Harmonydream: Task harmonization inside world models. ICML, 2024.
- [36] M. Minderer, C. Sun, R. Villegas, F. Cole, K. P. Murphy, and H. Lee. Unsupervised learning of object structure and dynamics from videos. NeurIPS, 32, 2019.
- [37] A. O'Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In ICRA, pages 6892–6903. IEEE, 2024.
- [38] J. Parker-Holder, P. Ball, J. Bruce, V. Dasagi, K. Holsheimer, C. Kaplanis, A. Moufarek, G. Scully, J. Shar, J. Shi, S. Spencer, J. Yung, M. Dennis, S. Kenjeyev, S. Long, V. Mnih, H. Chan, M. Gazeau, B. Li, F. Pardo, L. Wang, L. Zhang, F. Besse, T. Harley, A. Mitenkova, J. Wang, J. Clune, D. Hassabis, R. Hadsell, A. Bolton, S. Singh, and T. Rocktäschel. Genie 2: A large-scale foundation world model, 2024. URL https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/.
- [39] W. Peebles and S. Xie. Scalable diffusion models with transformers. In <u>ICCV</u>, pages 4195–4205, 2023.
- [40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
- [41] D. Rohatgi, A. Block, A. Huang, A. Krishnamurthy, and D. J. Foster. Computational-statistical tradeoffs at the next-token prediction barrier: Autoregressive and imitation learning under misspecification. arXiv preprint arXiv:2502.12465, 2025.
- [42] Y. Seo, K. Lee, S. L. James, and P. Abbeel. Reinforcement learning with action-free pre-training from videos. In ICML, pages 19561–19579. PMLR, 2022.
- [43] A. Shtedritski, C. Rupprecht, and A. Vedaldi. What does clip know about a red circle? visual prompt engineering for vlms. ICCV, 2023.
- [44] J. Tian, L. Wang, S. Zhou, S. Wang, J. Li, H. Sun, and W. Tang. Pdfactor: Learning triperspective view policy diffusion field for multi-task robotic manipulation. In <u>CVPR</u>, pages 15757–15767, 2025.
- [45] K. Tian, Y. Jiang, Z. Yuan, B. Peng, and L. Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. <u>NeurIPS</u>, 37:84839–84865, 2024.
- [46] S. Tian, C. Finn, and J. Wu. A control-centric benchmark for video prediction. ICLR, 2023.
- [47] T. Unterthiner, S. Van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly. Towards accurate generative models of video: A new metric & challenges. <u>arXiv preprint arXiv:1812.01717</u>, 2018.
- [48] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. NeurIPS, 30, 2017.
- [49] M. Vecerik, C. Doersch, Y. Yang, T. Davchev, Y. Aytar, G. Zhou, R. Hadsell, L. Agapito, and J. Scholz. Robotap: Tracking arbitrary points for few-shot visual imitation. In <u>ICRA</u>, pages 5397–5403. IEEE, 2024.
- [50] R. Villegas, A. Pathak, H. Kannan, D. Erhan, Q. V. Le, and H. Lee. High fidelity video prediction with large stochastic recurrent neural networks. NeurIPS, 32, 2019.
- [51] V. Voleti, A. Jolicoeur-Martineau, and C. Pal. Mcvd-masked conditional video diffusion for prediction, generation, and interpolation. NeurIPS, 35:23371–23385, 2022.

- [52] B. Wang, X. Meng, X. Wang, Z. Zhu, A. Ye, Y. Wang, Z. Yang, C. Ni, G. Huang, and X. Wang. Embodiedreamer: Advancing real2sim2real transfer for policy training via embodied world modeling. arXiv preprint arXiv:2507.05198, 2025.
- [53] S. Wang, L. Wang, S. Zhou, J. Tian, J. Li, H. Sun, and W. Tang. Flowram: Grounding flow matching policy with region-aware mamba framework for robotic manipulation. In <u>CVPR</u>, pages 12176–12186, 2025.
- [54] X. Wang, X. Zhang, Z. Luo, Q. Sun, Y. Cui, J. Wang, F. Zhang, Y. Wang, Z. Li, Q. Yu, et al. Emu3: Next-token prediction is all you need. arXiv preprint arXiv:2409.18869, 2024.
- [55] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE TIP, 13(4):600–612, 2004.
- [56] Z. Weng, X. Yang, Z. Xing, Z. Wu, and Y.-G. Jiang. Genrec: Unifying video generation and recognition with diffusion models. NeurIPS, 2024.
- [57] B. Wu, S. Nair, R. Martin-Martin, L. Fei-Fei, and C. Finn. Greedy hierarchical variational autoencoders for large-scale video prediction. In CVPR, pages 2318–2328, 2021.
- [58] J. Wu, H. Ma, C. Deng, and M. Long. Pre-training contextualized world models with in-the-wild videos for reinforcement learning. <u>NeurIPS</u>, 36:39719–39743, 2023.
- [59] J. Wu, X. Li, Y. Zeng, J. Zhang, Q. Zhou, Y. Li, Y. Tong, and K. Chen. Motionbooth: Motion-aware customized text-to-video generation. NeurIPS, 2024.
- [60] J. Wu, S. Yin, N. Feng, X. He, D. Li, J. Hao, and M. Long. ivideogpt: Interactive videogpts are scalable world models. In NeurIPS, 2024.
- [61] M. Wu, X. Cai, J. Ji, J. Li, O. Huang, G. Luo, H. Fei, G. Jiang, X. Sun, and R. Ji. Controlmllm: Training-free visual prompt learning for multimodal large language models. NeurIPS, 37: 45206–45234, 2024.
- [62] W. Yan, Y. Zhang, P. Abbeel, and A. Srinivas. Videogpt: Video generation using vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.
- [63] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.
- [64] L. Yang, Y. Wang, X. Li, X. Wang, and J. Yang. Fine-grained visual prompting. NeurIPS, 36: 24993–25006, 2023.
- [65] M. Yang, Y. Du, K. Ghasemipour, J. Tompson, D. Schuurmans, and P. Abbeel. Learning interactive real-world simulators. ICLR, 1(2):6, 2023.
- [66] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved data-augmented reinforcement learning. <u>ICLR</u>, 2022.
- [67] H. You, H. Zhang, Z. Gan, X. Du, B. Zhang, Z. Wang, L. Cao, S.-F. Chang, and Y. Yang. Ferret: Refer and ground anything anywhere at any granularity. arXiv preprint arXiv:2310.07704, 2023.
- [68] L. Yu, Y. Cheng, K. Sohn, J. Lezama, H. Zhang, H. Chang, A. G. Hauptmann, M.-H. Yang, Y. Hao, I. Essa, et al. Magvit: Masked generative video transformer. In <u>CVPR</u>, pages 10459– 10469, 2023.
- [69] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In <u>CoRL</u>, pages 1094–1100. PMLR, 2020.
- [70] J. Zhang, F. Xiong, and M. Xu. 3d representation in 512-byte: Variational tokenizer is the key for autoregressive 3d generation. arXiv preprint arXiv:2412.02202, 2024.
- [71] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, pages 586–595, 2018.

- [72] G. Zhao, C. Ni, X. Wang, Z. Zhu, X. Zhang, Y. Wang, G. Huang, X. Chen, B. Wang, Y. Zhang, et al. Drivedreamer4d: World models are effective data machines for 4d driving scene representation. In CVPR, pages 12015–12026, 2025.
- [73] G. Zhao, X. Wang, C. Ni, Z. Zhu, W. Qin, G. Huang, and X. Wang. Recondreamer++: Harmonizing generative and reconstructive models for driving scene representation. <u>arXiv:2503.18438</u>, 2025.
- [74] R. Zheng, Y. Liang, S. Huang, J. Gao, H. Daumé III, A. Kolobov, F. Huang, and J. Yang. Tracevla: Visual trace prompting enhances spatial-temporal awareness for generalist robotic policies. ICLR, 2025.
- [75] D. Zhou, Q. Sun, Y. Peng, K. Yan, R. Dong, D. Wang, Z. Ge, N. Duan, X. Zhang, L. M. Ni, et al. Taming teacher forcing for masked autoregressive video generation. CVPR, 2025.
- [76] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, Y. Zhu, and K. Lin. robosuite: A modular simulation framework and benchmark for robot learning. In <u>arXiv:2009.12293</u>, 2020.
- [77] Z. Zhu, X. Wang, W. Zhao, C. Min, N. Deng, M. Dou, Y. Wang, B. Shi, K. Wang, C. Zhang, et al. Is sora a world simulator? a comprehensive survey on general world models and beyond. arXiv preprint arXiv:2405.03520, 2024.
- [78] X. Zhuang, Y. Xie, Y. Deng, L. Liang, J. Ru, Y. Yin, and Y. Zou. Vargpt: Unified understanding and generation in a visual autoregressive multimodal large language model. <u>arXiv preprint</u> arXiv:2501.12327, 2025.
- [79] X. Zhuang, Y. Xie, Y. Deng, D. Yang, L. Liang, J. Ru, Y. Yin, and Y. Zou. Vargpt-v1. 1: Improve visual autoregressive large unified model via iterative instruction tuning and reinforcement learning. arXiv preprint arXiv:2504.02949, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the contributions of SAMPO, including the novel framework and improvements in video prediction and model-based RL, which are well-supported by the experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations, including the inability of the motion prompt method to handle single-frame inputs, as detailed in Appendix D. This limitation stems from the requirement of multiple frames to extract motion trajectories.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: While the paper does not include formal theoretical results, the experimental results provide strong empirical support for the model design. The effectiveness of SAMPO, especially in terms of video prediction and model-based reinforcement learning, validates the proposed framework through extensive experimentation.

Guidelines

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a comprehensive description of the experimental setup and results, including model architecture, training datasets, and hyperparameters, ensuring that the experiments are reproducible. Detailed information is available in Appendix A and B for both the model and experimental configurations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper provides open access to the code necessary to reproduce the experimental results, as described in the supplemental material. While the data is not included, the code ensures that the results can be replicated.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies all necessary training and test details, including data splits, hyperparameters, and optimizer settings, in Appendix A.1, ensuring the experiments can be reproduced.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and statistical significance in Tab. 3, with success rates including mean and standard deviation values, and explains the method for calculating them in the experimental setup section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provides detailed information about the compute resources in Tab. C, including the type of compute workers (A800 GPUs), memory requirements, and execution times, ensuring transparency in resource usage.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics, as it does not involve human subjects or sensitive data, and no ethical concerns or deviations from the guidelines are identified.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are trained solely on publicly available robot datasets, eliminating the risk of misuse, such as deepfakes involving significant events or figures.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper credits the creators and original owners of the datasets and models, explicitly mentioning the relevant licenses and terms of use, and cites the original sources to ensure compliance.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets such as datasets, code, or models that require documentation. The focus is on using existing models and datasets, and no new assets are released as part of this research.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects. The experiments are conducted using existing datasets and models, with no participation from human subjects or crowdsourced data collection.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any research with human subjects or crowdsourcing, so IRB approval or equivalent review is not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not involve Large Language Models (LLMs) as a core component, focusing instead on enhancing world models and reinforcement learning, which do not depend on LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Implementation Details

A.1 Details of Network

Table A: Hyperparameters of Asymmetric Tokenizer.

Tokenizer	Low-resolution	High-resolution
Parameters	114M	310M
Resolution	64×64	256×256
Obs. scale	[1, 2, 3, 4, 5, 6, 8, 10, 13, 16]	[1, 2, 3, 4, 5, 6, 8, 10, 13, 16]
Fut. scale	[1, 2, 3, 4, 5, 6]	[1, 2, 3, 4, 5, 6, 8, 10]
Embedding dim	64	64
Codebook size	8192	8192
Norm	GroupNorm	GroupNorm
Norm group	32	32
Activation	SiLU	SiLU

Table B: Hyperparameters of Transformer.

Transformer	SAMPO-S	SAMPO-B	SAMPO-L
Parameters	207M	328M	523M
Layers	12	16	20
Heads	12	16	20
Hidden dim	768	1024	1280
Feedforward dim	768	1024	1024
Dropout	0.05	0.067	0.083
Norm	LayerNorm	LayerNorm	LayerNorm
Activation	GELU	GELU	GELU

Table C: **Hyperparameters for Training.**

Tokenizer/Transformer		Low-resolu	$tion_{(64 \times 64)}$		High	n-resolution $_{(256)}$	5×256)
Config	Pre-train [37]	BAIR [13]	RoboNet [9]	VP2 [46]	Pre-train [37]	RoboNet [9]	1X WM [1]
GPU Device				8 × A800			
GPU days	20 / 24	3/2	10 / 12	4/3	20 / 11	10 / 27	10 / 27
Training iteration	1M/1M	0.2M / 0.1M	0.6M / 0.6M	0.2M / 0.2M	0.3M / 0.4M	0.15M / 0.5M	0.15M / 0.5M
Batch size	128 / 128	128 / 128	128 / 128	64 / 16	32 / 32	32 / 32	32 / 32
Sequence length	16 / 16	16 / 16	12 / 12	12 / 12	16 / 16	12 / 12	12 / 12
Context frames	2/2	1/1	2/2	2/2	2/2	2/2	2/2
Future frames	6/-	7/-	6/-	6/-	6 / -	6 / -	6 / -
Learning rate	$5/1 \ 1e^{-4}$	$1/1 \ 1e^{-4}$	$1/1 \ 1e^{-4}$	$1/1 \ 1e^{-4}$	$5/1 \ 1e^{-4}$	$1/1 \ 1e^{-4}$	$1/1 \ 1e^{-4}$
LR Schedule				Cosine			
Weight decay				0.01			
Grad clip				1.0			
Warmup steps				5000			
Optimizer				AdamW			
Gradient moment				(0.9, 0.999)			
Weight decay	0.0 / 0.01						
Mixed precision				bf16			
Motion prompt dropout ratio				0.5			
Sampling top-k	100						
Sampling top-p				1.0			

Tokenizer. In the proposed asymmetric multi-scale tokenizer, we adopt a hierarchical design to balance spatial detail preservation and computational efficiency [45]. As detailed in Tab. A, for observed frames $(t \leq T_0)$, dense tokenization is applied across all spatial scales $L_{full}=10$. For future frames $(t > T_0)$, a sparse subset of coarser scales $L_{full}=6$ is used, focusing on dynamic regions while minimizing redundancy [18]. Both observed and future frames use a codebook size of 8192 with an embedding dimension of 64.

Transformer. The SAMPO transformer utilizes a scalable decoder-only architecture, inspired by GPT-2, to efficiently model spatiotemporal dynamics. Unlike iVideoGPT [60], which relies on specialized tokens for frame segmentation, we initialize each frame with a single start token [S]. This token serves a dual function: it marks the beginning of intra-frame autoregressive generation and naturally defines the temporal boundaries between consecutive frames. Fixed 1D sine-cosine positional embeddings are applied to encode temporal dynamics, following standard practices in vision Transformers [39, 12, 25, 44]. We design a set of models with different sizes, as illustrated in Tab. B. Model scaling adheres to a linear relationship between depth d, width w, head count h, and dropout rate dr:

$$w = 64d, h = d, dr = 0.1 \cdot d/24.$$
 (7)

A.2 Details of Training

Training setup. Tab. C summarizes the hyperparameters used in SAMPO across datasets. Training proceeds via uniform segment sampling with dataset-specific step sizes (see Tab. D), where step lengths are tuned to match each dataset's native temporal frequency. For tokenizer training, we use the initial observed frames as context, while the transformer is trained on full-length sequences.

Scale-specific weight. The scale-specific weight λ_l in Eq. (6) balances the contribution of each spatial scale to the total loss. Given a multi-scale tokenizer with patch sizes $L_{patch} = [1, ..., L_K]$, where $K = \text{len}(L_{patch})$ is the number of spatial scales, λ_l is defined as:

$$\lambda_l = \frac{L_l^2}{\sum_{k=1}^K L_k^2} \cdot K. \tag{8}$$

where L_l denotes the spatial dimension of patches at scale l, and L_l^2 denotes the number of tokens per scale (e.g., a $L_l \times L_l$ patch grid contains L_l^2 tokens). The denominator $\sum_{k=1}^K L_k^2$ normalizes the token counts across all scales, ensuring that finer-grained resolutions (larger L_l) are not overshadowed by coarser ones (smaller L_l). This ensures the model prioritizes dynamic regions over static ones, which are more likely to change across frames. Such a weighted strategy is essential for capturing the underlying spatial patterns in robot-centric world modeling, leading to more effective learning.

Algorithm 1 1X Dataset Preprocessing Pipeline

```
Require: Dataset root paths \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}, Target frame rate f_{\text{target}}, Minimum segment length T_{\text{min}} =
      51, Clip length T_{\text{clip}} = 30
Require: Joint index mapping \mathcal{J}: \{0, \dots, 24\} \to \{HIP\_YAW, \dots, Angular Velocity\}
 1: repeat
            \mathcal{M}, \mathcal{S}, \mathcal{R}, \mathcal{V} \sim \mathcal{D}_{train} > Load metadata, segment indices, robot states, and video frames
 2:
            \mathcal{S}, \mathcal{R}, \mathcal{V} \leftarrow \text{Downsample}(\mathcal{S}, \mathcal{R}, \mathcal{V}, \delta f = \left\lfloor \frac{30}{f_{\text{target}}} \right\rfloor)
 3:
                                                                                                                         ▶ Temporal downsampling
            \mathcal{U} \leftarrow \text{UniqueSegments}(\mathcal{S})
                                                                                                             ⊳ Extract unique action segments
 4:
            for all s \in \mathcal{U} do
 5:
                   \tau_{\text{start}}, \tau_{\text{end}} \leftarrow \text{FindBounds}(\mathcal{S} = s)
 6:
                                                                                                                  ▶ Segment boundary detection
 7:
                   if 	au_{
m end} - 	au_{
m start} < T_{
m min} then
 8:
                         continue
                                                                                                                                 ⊳ Skip short segments
 9:
                   end if
                   \begin{array}{l} \mathcal{V}_s \leftarrow \mathcal{V}[\tau_{\text{start}}:\tau_{\text{end}}], \mathcal{R}_s \leftarrow \mathcal{R}[\tau_{\text{start}}:\tau_{\text{end}}] \\ \mathcal{W} \leftarrow \text{SlidingWindow}(\mathcal{V}_s, T_{\text{clip}}) \end{array}
10:
                                                                                                                                  ▷ Sequence cropping
                                                                                                                       ▷ Create temporal windows
11:
                   for all w \in \mathcal{W} do
12:
                         \mathcal{V}_w \leftarrow \mathcal{V}_s[w:w+T_{\text{clip}}], \mathcal{R}_w \leftarrow \mathcal{R}_s[w:w+T_{\text{clip}}]
                                                                                                                        ▶ Windowed subsequences
13:
                         if |\mathcal{V}_w| < 15 then
14:
                               continue
15:
                                                                                                                               ⊳ Skip ultra-short clips
16:
                         end if
                         SaveNPZ(\mathcal{V}_w, \mathcal{R}_w, "train")
17:
                                                                                                                                ▷ Compressed storage
                   end for
18:
19:
            end for
20:
            ProcessValidation(\mathcal{D}_{val})
                                                                                                           ⊳ Symmetric validation processing
21: until Dataset processed
```

Table D: **Detailed Dataset Mixture.** We include the detailed number of trajectories and the number of dataset sampling weight in the pretraining mixture. These include 41 dataset from Open X-Embodiment [37].

Dataset	# Traj.	Step size	Sampling weight
Pretrain			
Kuka	580392	3	8.33%
Language Table	442226	3	8.33%
Fractal (RT-1)	87212	1	8.33%
RoboNet	82649	1	8.33%
BC-Z	43264	3	8.33%
Bridge	28935	2	8.33%
Droid	29437	10	8.33%
Agent Aware Affordances	24000	66.6	8.33%
ManiSkill Dataset	21346	20	8.33%
Robo Set	15603	5	7.5%
Functional Manipulation Benchmark	15350	10	7.5%
Isaac Arnold Image	3214	15	0.3125%
Stanford MaskViT	9200	1	0.3125%
UIUC D3Field	768	1	0.3125%
Taco Play	3603	5	0.3125%
Jaco Play	1085	3	0.3125%
Roboturk	1995	3	0.3125%
Viola	150	7	0.3125%
Toto	1003	10	0.3125%
Columbia Cairlab Pusht Real	136	3	0.3125%
Stanford Kuka Multimodal Dataset	3000	7	0.3125%
Stanford Hydra Dataset	570	3	0.3125%
Austin Buds Dataset	50	7	0.3125%
NYU Franka Play Dataset	456	1	0.3125%
Furniture Bench Dataset	5100	3	0.3125%
UCSD Kitchen Dataset	150	1	0.3125%
UCSD Pick and Place Dataset	1355	1	0.3125%
Austin Sailor Dataset	240	7	0.3125%
UTokyo PR2 Tabletop Manipulation	240	3	0.3125%
UTokyo Xarm Pick and Place	102	3	0.3125%
UTokyo Xarm Bimanual	70	3	0.3125%
KAIST Nonprehensile	201	3	0.3125%
DLR SARA Pour	100	3	0.3125%
DLR SARA Grid	107	3	0.3125%
DLR EDAN Shared Control	104	3	0.3125%
ASU Table Top	110	4	0.3125%
UTAustin Mutex	1500	7	0.3125%
Berkeley Fanuc Manipulation	415	3	0.3125%
CMU Playing with Food	174	3	0.3125%
CMU Play Fusion	576	2	0.3125%
CMU Stretch	135	3	0.3125%
USC Cloth Sim	684	3 10	0.3125%
Mimic Play	323	10	0.3125%
Total	1,407,330	-	100.0%

A.3 Details of Data

Real Robot Dataset. In total, we use a subset of 41 datasets in the Open X-Embodiment dataset [37], as shown in Tab. D. The datasets used in this work consist of both real-world data and simulator-generated data, providing a rich and diverse foundation for action-conditioned video prediction and model-based reinforcement learning.

Preporcess on 1X World Model Dataset. The 1X World Model Dataset is a large-scale multimodal dataset for training and evaluating robotic world models in dynamic environments. It includes sensory data from 1X Technologies' EVE humanoid robots performing tasks like door opening, cloth folding, and obstacle navigation. The dataset contains synchronized 512×512 RGB video frames,

25-dimensional proprioceptive state vectors, and metadata, with state vectors capturing joint angles, gripper openness, and velocities. Video frames are stored in MP4 format, with segmentation and configuration details provided in binary segment indices and JSON files.²

Preprocessing follows custom pipelines developed to align with iVideoGPT [60] evaluation protocols, as detailed in Algorithm 1, including parsing raw files, frame-state alignment, and task-specific normalization. This dataset facilitates standardized evaluation of temporal dependency learning, multi-modal integration, and real-world generalization for robotics.³

B Benchmark Setup

Our experiments follow the same evaluation protocols as iVideoGPT [60]. For completeness, we provide a brief introduction to the following three experiments:

Video Prediction. We evaluate SAMPO using four metrics: SSIM [55], PSNR [27], LPIPS [71], and FVD [47]. In line with previous work [62, 60, 4, 51, 19], we address the stochasticity of video prediction by sampling 100 future trajectories for each test video and selecting the best one for PSNR, SSIM, and LPIPS. All 100 samples are used for FVD evaluation.

Visual Planning. We finetuning the pretrained SAMPO on VP2 datasets and integrating it into an interface compatible with the official VP2 visual planning code. ⁴ For Robosuite tasks, a trajectory is deemed successful if the reward, which reflects the distance to the goal, falls below 0.05. In contrast, for Robodesk tasks, success is defined by a reward value below -0.5, with the environment returning either 0 or -1, where -1 signifies success.

Visual Model-based RL. For Model Rollout, the initial rollout batch size is set to 640, with an interval of 200 environment steps, a batch size of 32, and a horizon of 10. For Model Training, the initial training steps are 1000. The tokenizer training interval is 40 environment steps, while the transformer training interval is 10 environment steps. The batch size is 16, with a sequence length of 12, context frames set to 2, and 5 sampled future frames for tokenization. The learning rate is $1e^{-4}$, with no weight decay, and the optimizer used is Adam. The model-based RL real data ratio is 0.5.

C Additional Visualization

In this section, we present additional qualitative results of SAMPO across various datasets to complement the main text. We showcase video prediction results in Fig. 7, 8, 9, 10, 11, 12; zero-shot performance in Fig. 13; the illustration of motion prompt in Fig. 14; and the a visual comparison with the iVideoGPT [60] in Fig. 15.

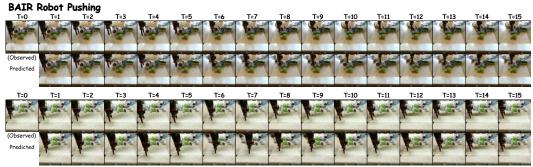


Figure 7: Additional visualization on the BAI RRobot Pushing dataset for action-conditioned video generation in low resolution (64×64) .

²Dataset and code are available at: https://huggingface.co/datasets/1x-technologies/world_model_raw_data under cc-by-nc-sa-4.0 license and https://github.com/1x-technologies/1xgpt under Apache-2.0 license

³For further details, see: https://www.1x.tech/discover/1x-world-model

⁴Code is available at: https://github.com/s-tian/vp2

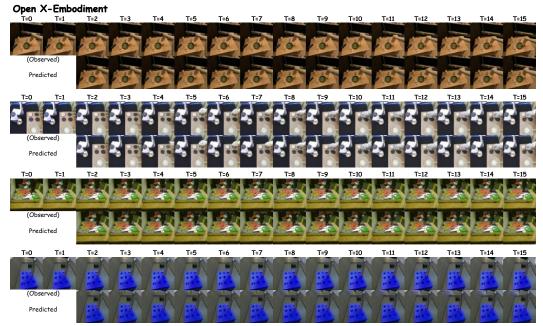


Figure 8: Additional visualization on the Open X-Embodiment dataset for action-free pretraining in low resolution (64×64) .

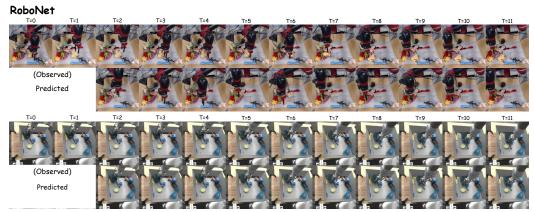


Figure 9: Additional visualization on the RoboNet dataset for action-conditioned video generation in high resolution (256×256) .

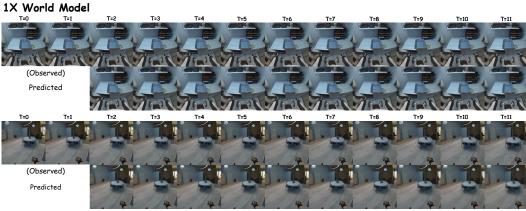


Figure 10: Additional visualization on the 1X world model dataset for action-conditioned video generation in high resolution (256×256) .

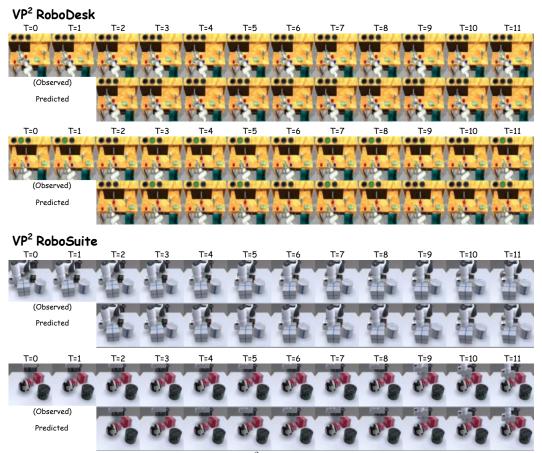


Figure 11: **Additional visualization on the VP** 2 **benchmark** for action-conditioned video generation in low resolution (64 × 64).

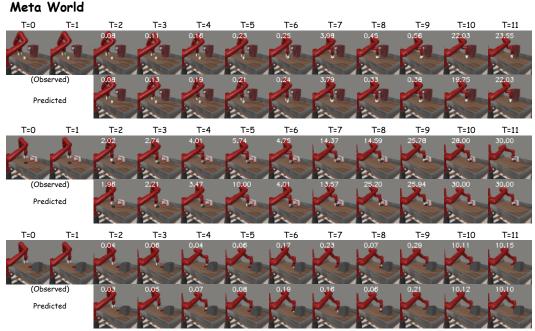


Figure 12: **Additional visualization on Meta-World tasks** for action-conditioned video generation at low resolution. Each row corresponds to a different task: *Coffee Push*, *Plate Slide*, *Handle Pull Side*. Both actual reward and predicted reward are shown in the upper left corner.

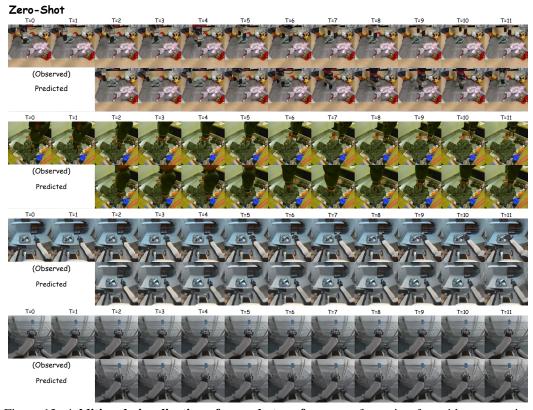


Figure 13: **Additional visualization of zero-shot performance** for action-free video generation in high resolution. The first two rows show zero-shot results on the RoboNet dataset, while the last two rows illustrate performance on the 1X dataset. Pretraining was conducted on the Open X-Embodiment dataset. The results in this figure supplement Fig. 6 in the main paper.

Motion prompts

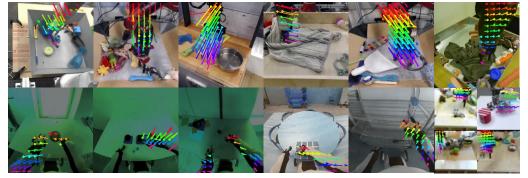


Figure 14: **Additional visualization of motion prompts** at varying resolution. Motion prompt examples are visualized on the RoboNet, 1X, BAIR, and VP^2 datasets. The image in the bottom right corner is shown at a resolution of 64×64 . For high-resolution images (256×256), the grid size is set to 16, while for low-resolution images (64×64), the grid size is set to 12, supplementing the content of Sec. 3.3 in the main paper. Zoom in for a better view

RoboNet

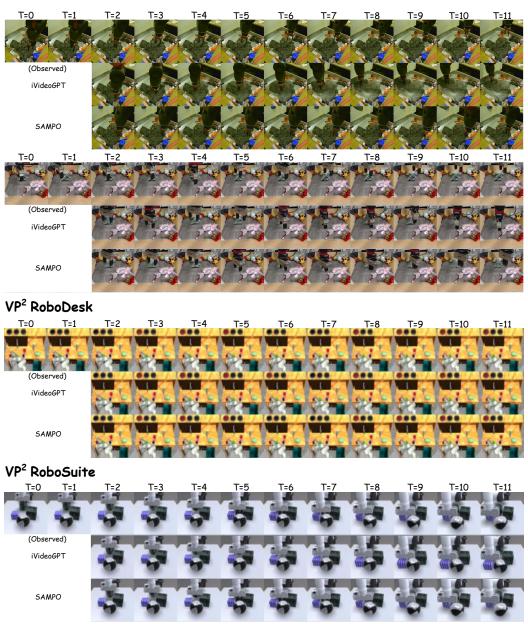


Figure 15: Additional visual comparison with iVideoGPT for action-conditioned video generation on RoboNet (256×256) and VP2 (64×64) datasets. The first column shows the ground truth (GT), the second column displays the predictions made by iVideoGPT, and the final column presents our predictions. As shown, our results not only effectively maintain spatial coherence in visually cluttered environments, but also better align with the ground truth motion trajectories, indicating better performance in capturing scene dynamic behaviors. This figure supplements Fig. 4 in the main paper, providing further evidence of our model's enhanced accuracy in trajectory prediction.

D Limitations and Future Work

Single-frame Input Limitation. The current motion prompt method relies on multi-frame observation sequences to extract motion trajectories (e.g., point tracking for t=1 to T frames using CoTracker3 as described in Sec. 3.3). However, when the input consists of only a single frame $(T_0=1)$, it is impossible to generate effective motion prompts, as trajectory extraction requires at least two frames to compute the displacement.

This limitation essentially stems from a fundamental issue in the setting: for a world model, a single frame only provides a 'starting point' for a static scene, whereas the diversity of dynamic interactions (e.g., a robotic arm that may move in different directions) results in a multimodal distribution of future states. Consequently, the model needs to rely on random sampling or implicit prior generation of possible results.

To address this, potential improvements could involve the design of an implicit dynamic prior based on a single frame (*e.g.*, generating pseudo-trajectories via geometric constraints or a physics engine), or introducing a stochasticity control mechanism that balances generation diversity with physical plausibility.

Motion Prompt as a Way of Incorporating Historical Information. In Sec. 3.1 of the paper, the world model is formalized as a partially observable Markov decision process (POMDP), where the integration of historical information plays a crucial role in enhancing the model's ability to predict future states and develop more meaningful strategies.

In Sec.3.3, the trajectory-aware motion prompt is introduced as an external module designed to inject historical information into the hybrid autoregressive framework. While this approach has been shown to improve performance through ablation studies (Tab.4), it currently serves as an intuitive, but not necessarily the most optimal, solution for incorporating historical data.

Future work could explore more refined alternatives, such as:

- 1. **Implicit Dynamic Modeling:** Directly learning spatiotemporal saliency via attention mechanisms without explicit trajectory extraction (*e.g.*, combining neural differential equations to model continuous motion fields);
- 2. **End-to-End Motion Guidance:** Integrating trajectory prediction heads into the backbone network for joint optimization of both motion prompts and frames generation;

E Broader Impact

Broader Impact of SAMPO Model. The research presented in this paper introduces SAMPO, a model that enhances both the quality of generated content and the speed of inference, offering significant advantages over traditional autoregressive models. By mitigating issues such as object disappearance and inaccurate predictions commonly encountered in previous models, SAMPO ensures higher-quality generation. Moreover, its fast inference capabilities enable real-time decision-making and dynamic environment interactions, making it a promising solution for applications in robotic control, video prediction, and model-based reinforcement learning.

Potential Negative Societal Impacts. However, as with any powerful generative model, there are potential negative societal impacts. One concern is the misuse of the technology in creating deepfakes or generating realistic video content for disinformation, surveillance, or manipulation purposes. While SAMPO's primary application is in improving robotic systems, its underlying techniques could be applied in harmful ways if left unchecked.

Mitigation Strategies for Responsible Use. To mitigate these risks, it is essential to consider safeguards such as restricted access to the model, robust detection systems for misuse, and ethical guidelines for deployment. Additionally, ensuring transparency in the development and application of such models and creating oversight mechanisms will help prevent unintended societal consequences. Future work should also explore the potential for bias in the model's predictions, ensuring fairness and ethical deployment across diverse groups and settings.