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Abstract

World models allow agents to simulate the consequences of actions in imagined
environments for planning, control, and long-horizon decision-making. However,
existing autoregressive world models struggle with visually coherent predictions
due to disrupted spatial structure, inefficient decoding, and inadequate motion mod-
eling. In response, we propose Scale-wise Autoregression with Motion PrOmpt
(SAMPO), a hybrid framework that combines visual autoregressive modeling for
intra-frame generation with causal modeling for next-frame generation. Specifi-
cally, SAMPO integrates temporal causal decoding with bidirectional spatial atten-
tion, which preserves spatial locality and supports parallel decoding within each
scale. This design significantly enhances both temporal consistency and rollout
efficiency. To further improve dynamic scene understanding, we devise an asym-
metric multi-scale tokenizer that preserves spatial details in observed frames and
extracts compact dynamic representations for future frames, optimizing both mem-
ory usage and model performance. Additionally, we introduce a trajectory-aware
motion prompt module that injects spatiotemporal cues about object and robot
trajectories, focusing attention on dynamic regions and improving temporal con-
sistency and physical realism. Extensive experiments show that SAMPO achieves
competitive performance in action-conditioned video prediction and model-based
control, improving generation quality with 4.4 x faster inference. We also evaluate
SAMPO’s zero-shot generalization and scaling behavior, demonstrating its ability
to generalize to unseen tasks and benefit from larger model sizes.

1 Introduction

Building a world model that can simulate the physical environment and respond to the actions of agents
is a central challenge on the path to artificial general intelligence (AGI) [2, 11, 77, 33, 52, 72, 73].
Recently, video generation has been integrated into world models, enabling models to generate future
frames based on agent actions, simulating dynamic environments and making it possible for agents to
anticipate outcomes and make informed decisions [24, 7, 50, 4]. Despite growing progress, designing
a world model that is simultaneously high-fidelity, temporally consistent, and efficiently scalable
remains an open problem.

Prior works have advanced video-based world models by formulating future prediction as an action-
conditioned generation problem. These approaches can be categorized into three major families based
on their generative paradigms: masked modeling, diffusion-based models and autoregressive models.

ECorresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



iVideoGPT SAMPO

Acti iti V|d=o Pr-:dlcfmn

Fréchet Video Distance o Distance

I have learned:
 Complex static spatial
layouts

Next Token Prediction in Time

« Dynamic Interactive Next Token Map Reward | idirectional Reward
information fredicioninSpoce L ¢ AT St o 8] g wre
g %
z|z|z|wl z)z|z|w S
Fréchet Video Distance Inference Speed (s/vid)
SAMPO 3 2sis
Large -Scale : &/5 é—/
Robot Dafasefs H a1 | 20e o S
.4 Z: | Zs ||| Za [Al| Z: | Z5 [Al| Z. | Z5 x .4 x Speedup
. . Model based Reinforcement Learning
Multi-scale Tokenizer ?Up—mtzrpoluﬂon . Hammer Coffee Push
)

Rate (%)

Success Rate (1)
csazwsss

Success

MetaWorld Environment Steps (x10%)

tion Future Frames

Figure 1: SAMPO Overview. SAMPO is a scale-wise autoregressive world model for video predic-
tion and robotic control. It models temporal dynamics through frame-wise causal generation, while
capturing spatial structure via multi-scale tokenization and coarse-to-fine prediction. A trajectory-
aware motion prompt further enhances spatiotemporal grounding. SAMPO supports high-fidelity,
action-conditioned rollouts for visual planning and model-based reinforcement learning.

Masked modeling [75, 8, 19, 68, 51] achieves efficient pretraining by reconstructing missing patches,
yet often sacrifices temporal consistency and causality due to its localized objective. Diffusion-based
models [56, 7, 26, 65] produce high-fidelity video via iterative denoising, but suffer from slow
inference and limited interactivity. In contrast, autoregressive models [38, 77, 60, 62] generate tokens
sequentially, preserving causal structure and supporting in-context prediction [10], making them
better aligned with the requirements of world models, where accurate, interactive and temporally
consistent forecasting is essential.

Despite their success in building world models [60], current autoregressive approaches still face the
following limitations: 1) Structural degradation due to raster-scan flattening [45, 54, 32]. Flattening
disrupts the spatial locality of video frames, hindering the model’s ability to capture long-range de-
pendencies across space, leading to physically implausible generation, such as object disappearances
or blurred manipulators (Fig. 4). 2) Slow and error-prone next-token prediction leads to inefficiency
and the accumulation of errors during generation [5, 41]. 3) Insufficient modeling of salient motion
and interactions, which diminishes the physical realism and smoothness of dynamic scenes [74].

To address these challenges, we propose SAMPO, a scale-wise autoregressive framework that
combines bidirectional spatial attention within frames and causal temporal modeling across time.
SAMPO introduces a new autoregressive formulation tailored for world models, combining next-
scale spatial prediction [45] with temporal causal generation, thereby unifying spatial coherence
and temporal consistency under a scalable architecture. Specifically, the model autoregresses over
time while generating each frame’s token maps in a coarse-to-fine manner, progressively from low to
high resolution with parallel token generation within each scale. Compared to raster-scan flattening,
which disrupts spatial continuity and object boundaries [62, 32], our hierarchical token generation
effectively preserves spatial locality and structural coherence within each frame and supports scalable
and efficient generation across resolutions.

To further balance spatial detail and dynamic modeling [58, 60], we devise an asymmetric multi-
scale tokenizer based on vector quantization [14, 48]. Observed frames are densely tokenized to
preserve static background and contextual information, while future frames use sparse tokenization to
emphasize dynamic changes and reduce redundancy [18]. As shown in Fig. 1, this design improves
inference speed while maintaining visual fidelity. Notably, this formulation supports token-level
integration of visual inputs and agent actions. With autoregressive scalability, SAMPO can be
pretrained on large-scale robot datasets [37], enabling generalizable and control-centric world models
across diverse tasks and settings.

While improving visual fidelity is a desirable goal, the core objective of an interactive world model is
to accurately predict future states in response to agent actions [46, 33]. Existing approaches often
struggle to model meaningful dynamic interactions [60, 58, 62], particularly in environments domi-
nated by static or quasi-static frames [13, 9], resulting in blurred or inconsistent object interactions.
To address this limitation, we introduce a trajectory-aware motion prompt module that provides
spatiotemporal cues about object and robot trajectories within the observed frames [31, 30]. These
motion prompts serve as dynamic priors, guiding the model’s attention toward interaction-relevant



regions, such as robotic arms and manipulated objects. By explicitly conditioning on motion tra-
jectories, SAMPO improves its capability to model object-agent interactions, maintain temporal
consistency and capture underlying physical dependencies.

In summary, the main contributions of this study can be summarized as follows:

1. We propose SAMPO, a scale-wise autoregressive framework that combines temporal causal
modeling with coarse-to-fine visual autoregression and an asymmetric multi-scale VQ tokenizer,
preserving spatial locality while significantly improving generation efficiency.

2. We introduce a trajectory-aware motion prompt module that provides explicit spatiotemporal priors
over robot and object trajectories, enhancing the model’s ability to capture dynamic interactions
and physical dependencies in complex manipulation tasks.

3. Extensive experiments demonstrate that SAMPO outperforms existing state-of-the-art methods in
terms of video quality, motion modeling accuracy, and robot control performance, offering a new
insight for scalable and structurally coherent world model design.

2 Related Work

2.1 Generative Models for World Modeling

World Modeling as an Embodied Simulator. World models have emerged as a fundamental
paradigm for enabling agents to reason about and interact with complex environments. Broadly,
world models serve two complementary purposes: constructing internal representations that abstract
the external world and predicting its future evolution to guide decision-making [20, 33, 11]. Early
works emphasized building compact, latent models that capture essential environmental dynamics,
supporting tasks such as planning and policy learning in model-based reinforcement learning [21, 28].
Recent advances in video generation and large multimodal models have shifted attention toward
direct pixel-level predictions of future world states [77, 7, 8, 26], providing richer supervision and
expanding the applicability of world models to diverse tasks, from robotic manipulation to embodied
social simulation. Beyond pixel prediction, a critical evolution in world models lies in supporting
interactivity and control [60]. An effective world model should not only generate visually plausible
futures but also simulate the consequences of agent actions and respond with feedback. This
capability enables agents to interact with imagined environments in a closed-loop manner — testing
actions, observing outcomes, and refining strategies accordingly [6, 11]. Such interactive modeling
is essential for decision-making tasks that require dynamic adaptation, from robot manipulation to
embodied reasoning. In this work, we focus on advancing interactive world models toward efficient,
structurally coherent visual dynamics prediction, integrating spatial structure priors with scalable
autoregressive architectures.

Visual Autoregressive Modeling. VAR introduces a new generation paradigm that redefines au-
toregressive learning as next-scale prediction, enabling transformers to better capture visual distribu-
tions [45]. By replacing raster-scan ordering with multi-scale token map prediction, VAR preserves
spatial locality, reduces sequential dependency, and enables efficient parallel decoding within each
scale. Inspired by these insights, coarse-to-fine multi-scale generation has begun to influence a
broad range of fields, including high-resolution image synthesis[23], 3D generation [70], multimodal
LLM [78, 79] and robotic manipulation [17]. However, these methods have yet to explore integrating
VAR into intra-frame generation and still rely on suboptimal raster-scan ordering in image generation.

2.2 Motion Prompt for Visual Dynamics Modeling

Visual prompt have emerged as a lightweight alternative to architectural changes for guiding multi-
modal models [43, 64, 63, 67, 61]. Early efforts introduce coarse overlays or fine-grained masks to
input images, steering large vision—language models toward target regions [43, 64, 67, 53]. While
effective for object localization [63, 61], these prompts encode only static spatial cues and fail to
capture object motion, limiting their suitability for world model learning and control. To address this
limitation, recent works have introduced motion-aware prompting techniques that explicitly encode
spatio-temporal dynamics [16, 74, 34, 59]. Motion prompting [16] controls video diffusion models
using sparse or dense motion tracks, enabling realistic and controllable object and camera dynamics.
TraceVLA [74] overlays tracked trajectories [31] as visual prompts to inject temporal context into



vision—language action models without architectural changes. Complementarily, MoVideo [34]
integrates optical flow and depth features to enhance motion fidelity and temporal consistency in
video generation. These methods demonstrate that motion-aware prompt can enhance dynamic
fidelity without compromising efficiency. However, they often target generative tasks or depend on
offline trajectories. In contrast, we propose an online motion prompting scheme that integrates with
interactive world models for efficient and physically constrained visual control.

3 Method

In this section, we elaborate on the proposed SAMPO, a scale-wise autoregressive world model
that integrates temporally causal modeling with bidirectional spatial attention in each frame. We
commence with a brief background on visual autoregressive modeling and formulate the problem.

3.1 Preliminaries and Problem Statement

Next-scale prediction. VAR [45] introduces a novel generation paradigm that predicts images
hierarchically from coarse to fine token maps. Instead of autoregressively generating a flattened
raster-scan sequence, VAR decomposes an image into multi-scale token maps and models generation
at each spatial scale, conditioned on all previous scales. Formally, given hierarchical token maps

{2z 23 2B}, where each token map z() € ZH*Wi from low to high resolution, the
generation objective can be factorized as:
L
p(z",. 2 =T ez |20, 200), 0]
1=1

where z(") denotes the token map at scale /. Each finer scale prediction is conditional on all previously
generated coarser token maps, enabling coherent and efficient spatial modeling.

This coarse-to-fine framework, while originally developed for images, preserves spatial locality and
enables parallel decoding. When combined with frame-wise causal modeling, it naturally extends to
spatiotemporal modeling and forms the basis of SAMPO for the structured world model.

World Model Formulation. We formulate world models as an interactive video prediction prob-
lem [60], where the model simulates future observations and rewards conditioned on past observations
and actions, which can be formalized as a partially observable Markov decision process (POMDP),
defined as: M = (S,0, ¢, A,p,r,7). At each timestep ¢, the agent receives a partial observation
o; € O, takes an action a; € A, and transitions to a new latent state s;11 ~ p(S¢+1 | St,ae),
receiving a reward r; = (8¢, a;). The objective is to learn a policy 7(a; | 01.¢) that maximizes the
expected discounted return. To support this, a world model approximates the environment’s transition
dynamics by learning the predictive distribution: p(0¢41,7¢+1 | 01:4, @1:¢)-

3.2 Scale-wise Visual Autoregressive for World Models

Hybrid Autoregressive Architecture. We propose SAMPO, a scale-wise visual autoregressive
architecture for world modeling over multimodal inputs, which unifies temporal and spatial generation
through a coarse-to-fine decoding scheme. This design enables our world model to preserve both
temporal causality across frames and spatial semantic coherence within each frame. Our experiments
demonstrate that the hybrid architecture improves generation quality while also accelerating inference.

Specifically, given an input sequence of observation frames V' = {f; € REXW>31T  "we first
discretize each frame f; into a hierarchy of multi-scale token maps using vector-quantized tok-

enizers [14, 48], yielding {zgl) € ZH>Wi | | = 1,... L}, where L denotes the total number of
spatial scales. We then adopt a hybrid decoding scheme, which is autoregressive across frames
(temporal) while generating tokens in a coarse-to-fine manner within each frame (spatial). The hybrid
autoregressive likelihood is formulated as:

p(t=" Jacr) = TTTTp (7128027 ace) @

t=11=1

. <l
where z(<*t) denotes all token maps from previous frames, zg ) represents coarser-scale maps already

decoded within the current frame, and a; is the action sequence from the initial to the current time
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Figure 2: The overall framework of SAMPOQ. The observed and future frames are discretized
by a multi-scale tokenizer to obtain dense and sparse token maps, which are then autoregressively
predicted across time, while following a coarse-to-fine decoding order within each frame. Motion
prompts extracted from observed frames are injected alongside visual tokens to guide dynamic
modeling.

step. Actions are integrated by linear projection and added to the start token embedding. At the k-th
generation step of the ¢-th frame, the observed frames are encoded into compact features along with

previously decoded tokens, forming the prefix for generating the next-scale tokens z(l) All tokens
for the current step are generated in parallel, using a block-wise causal mask to ensure each token
attends only to the prefix. During inference, we employ KV-caching [15] and no mask is needed.

Asymmetric Multi-scale Tokenizer. In robot-centric world modeling, observed frames (e.g., those
acquired before taking actions) and future frames (e.g., those imagined during planning) exhibit
distinct characteristics [58, 60]. Observed frames typically contain complex static spatial layouts,
sensor noise, and rich contextual cues. In contrast, future frames primarily reflect sparse motion
involving the robotic arms and manipulated objects, while most background remains static, assuming
a relatively stable camera viewpoint without significant egomotion.

To better align with this asymmetry, we propose an asymmetric multi-scale tokenizer. Observed
frames (¢t < Tj) are tokenized across all spatial scales | € {1,..., L}, yielding fine-grained token
maps with dimensions 2z € ZM>Wi gt each scale. While for future frames (¢ > Tj), we select only
a sparse subset of coarser scales | € {1,..., Lgy} with Ly, < Ly, reducing token redundancy
and focusing modeling capacity on dynamic regions. The encoded token map is defined as:

@ {ﬂ(ft); ift <Tp, [ € {la”'qull} 3)
t Ti(f:) + CrossAttn(fi, z1.1,), ift>To, L €{1,... Lyp}’

where 7;(-) denotes the scale-specific tokenizer at scales . For future frames (¢t > Tj), cross-

attention incorporates information from observed frames. This asymmetry leads to efficient and

structured representation by enhancing scale-aware attention during generation and disentangling

static background priors from dynamic foreground variations.

3.3 Trajectory-aware Motion Prompt

While next scale autoregression improves spatial coherence, it remains insufficient for dynamic
understanding, especially under static or quasi-static training distributions [13, 9]. To mitigate this,
we incorporate explicit trajectory-aware motion prompts that guide the model to focus on dynami-
cally relevant regions. We extract motion prompts using CoTracker3 [30], a point-tracking model.
Specifically, we adopt the scaled_online' variant for efficient and robust trajectory extraction.

Following the definition of f; in Sec. 3.2, we uniformly sample a regular grid of query points on the

first frame f; with a predefined grid size G x G, resulting in N = G? initial points {(z; ) yz(l)) sy

'A lightweight variant fine-tuned on 15k real-world videos via pseudo-labeling, showing significant improve-
ments in robotic tracking benchmarks such as RoboTAP [49].



These query points are tracked across frames by CoTracker3, generating raw trajectories:

Pi={(=" y"N,, fori=1,...,N, )

where (x Et), yl( )) denotes the predicted 2D location of point ¢ at frame ¢. For world modeling

in robotic manipulation, we extract trajectories to focus on the dynamics of the robot arms and
manipulated objects, rather than static backgrounds or noisy artifacts. To this end, we filter raw
CoTracker3 outputs based on two criteria. First, trajectories with low average tracking confidence
¢; < 7. are discarded. Second, we compute the displacement over a short temporal window At = 4
frames to identify static points:

a2 = 12 ) = @ ) e, )
and discard trajectories where dl( remains below
2% of the image diagonal throughout the sequence.
The resulting dynamic trajectories serve as motion
prompts, enabling spatiotemporal reasoning about
interactive agents and objects. The retained dy-
namic trajectories are overlaid onto the original
observation to form the motion prompt (see Fig. 3).
Following [74], we concatenate the motion prompt
with the observation, separated by a special token,
to construct a dual-branch input. This design en-
hances the spatiotemporal grounding of the model

and improves its ability to simulate physically plau- . . R
sible interactions. Figure 3: Motion Prompt generation.
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3.4 Training Objectives

SAMPO is trained to autoregressively predict future token maps over both temporal and spatial
2 (l) RH], X W{

the codebook, and zgl) € ZH>Wi are the corresponding ground-truth token indices. The training

objective is a multi-scale cross entropy loss over future frames:

Lex (6 ZAI Eis, HWZ togp (2" (i.5) = =" (i.5)) ©)

where )\; is a scale-specific weight (detailed in Appendix A.2), and Tj denotes the final observed
frame. The loss is computed only on future frames, encouraging prediction conditioned on context.
Action-conditioned prediction with reward. For control-centric applications (e.g., model-based
RL), the objective can be optionally extended with auxiliary heads, including reward prediction or
trajectory decoding. For example, a linear head can be applied to the last token’s hidden state in
each frame, using a MSE loss for reward prediction [60]. This modification enables more effective
task-relevant learning, improving performance in control tasks [35].

scales. Let 2 *V" denote the predicted logits at scales [, where V' represents the size of

3.5 Implementation Details

Asymmetric Tokenizer. We design an asymmetric multi-scale tokenizer built on VQGAN [14],
which independently encodes observed and future frames using separate codebooks of size 8192.
Both share a CNN backbone but their parameters are independently updated. Our tokenizer is
pretrained on Open X-Embodiment [37] with reconstruction and commitment loss.

Transformer. SAMPO follows the decoder-only architecture [40] implemented in VAR [45]. To
maintain temporal consistency, we introduce a start token [S] at the beginning of each frame, which
segments the frame and enables autoregressive prediction with teacher forcing. Additionally, we apply
fixed 1D sine-cosine embeddings to encode temporal positions, following standard practice in visual
Transformers [39, 12, 25]. By default, our Transformer pretrained on Open X-Embodiment [37] has
16 blocks and a width of 1024, which we refer to as the Base size or -B (~353M parameters).

Motion Prompt. We apply a dropout mechanism to randomly omit motion prompts, avoiding the
limitation of using a single observation frame and enhancing robustness across both prompted and
unprompted conditions. During inference, when the number of observed frames is shorter than the
required window size [30], frames are uniformly replicated to satisfy the temporal input constraint.

Full training recipe including model architecture and data preprocessing is provided in Appendix A.

6



Table 1: Video prediction results on BAIR and RoboNet datasets. "-" indicates values not reported.
We report Fréchet Video Distance (FVD) [47] as the primary metric, complemented by PSNR [27],
SSIM [55], and LPIPS [71] for perceptual quality assessment. LPIPS and SSIM are scaled by 100.

BAIR [13] FVD] PSNR?T SSIMT LPIPS| ‘ RoboNet [9] FVD| PSNRT SSIM?T LPIPS|
action-free & 64x64 resolution action-conditioned & 64x64 resolution
MaskViT [19] 93.7 - - - MaskViT [19] 1335 232 80.5 4.2
FitVid [4] 93.6 - - - FitVid [4] 62.5 28.2 89.3 24
MCVD [51] 89.5 16.9 78.0 SVG [50] 1232 239 87.8 6.0

MAGVIT [68] 62.0 19.3 78.7 12.3 | GHVAE [57] 952 24.7 89.1 3.6
iVideoGPT [60] 75.0 20.4 823 9.5 iVideoGPT [60] 63.2 27.8 90.6 4.9

SAMPO 65.7 22.3 86.7 84 | SAMPO 571 29.3 9.1 33

action-conditioned & 64x64 resolution action-conditioned & 256x256 resolution
MaskViT [19] 70.5 - - - MaskViT [19] 2117 204 67.1 17.0
iVideoGPT [60]  60.8 24.5 90.2 5.0 iVideoGPT [60] 1979  23.8 80.8 14.7

SAMPO 55.5 26.7 94.7 3.7 | SAMPO-L 1753 253 84.7 12.3

(Observed)

iVideoGPT
iVideoGPT

1X World Model
(action-conditioned)
RoboNet
(action-conditioned)

SAMPO

i’
- T T4

Figure 4: Qualitative comparison of video prediction. We compare SAMPO with iVideoGPT on
the 1X World Model and RoboNet datasets under action-conditioned settings. SAMPO shows a clear
advantage in modeling complex backgrounds and capturing dynamic object interactions over time.

4 Experiments

We conduct extensive experiments to validate the effectiveness of SAMPO across multiple settings,
including action-free and action-conditioned video prediction, visual planning, and model-based
reinforcement learning (MBRL). We follow standardized evaluation protocols [60] and report results
on established benchmarks. Training details for each benchmark are provided in Appendix B.

4.1 Video Prediction Performance

Datasets and Setup. We evaluate on three categories of benchmarks: (i) BAIR Robot Pushing [13]
for low-resolution video prediction, (ii) RoboNet [9] for large-scale action-conditioned prediction, and
(iii) 1X World Model [ 1] for real-world human and robotic interactions in diverse indoor environments,
designed for open-domain video prediction. We predict 15 future frames from 1 context frame on
BAIR, 10 future frames from 2 context frames on RoboNet and 1X World Model. Action-conditioned
is applied during rollouts.

In Tab. 1 and Tab. 2, SAMPO achieves the best ~ Table 2: Video prediction results on 1X.

FVD in. vid.eo prediction. Quali}atiye comparisons, 1X [1] FVD]/ PSNR{ SSIM{ LPIPS|
shown in Fig. 4, demonstrate significant improve-
ments in perceptual quality and motion realism. action-conditioned & 256x256 resolution

These results highlight the effectiveness of scale- iVideoGPT 251.8  24.1 783 203
wise generation in modeling multi-scale dynamics  ~gayvipo 2271 257 303 187
and the role of trajectory-aware motion prompts in
guiding future predictions.




Table 3: Visual planning performance in VP2. We report the success rates across 8 tasks, and the
average success rate excluding Flat Block. In addition, we provide the mean and standard deviation
of the success rates (in %) on average in 3 random seeds.

Robosuite Flat Open Open Blue Green Red Upright Avg.
Method / Task
Sl Push Block Drawer Slide Button Button Button Block SuccessT
Simulator 93.5%12  133%00 767%00 71 7ELY 100.0500 967500 90.0%70  90.0¥°° | 100.0
FitVid [4] 67.7%64  92%28 95382 35355 gy gt gq FSS 58755 51 3E29 65.6
SVG’ [50] 79.8%3:3 20t 167%82 57310 973+2T g1 355 76 095 47l | 725
MCVD [51] 77.3%21 4 0%t qp7Fbt 183t g50%tl g33*00 73 3E2T 567427 64.3
MaskViT [19] 82.6T25 40Tt 40ttt 8755 947Nt 640t 240182 62.2%0° 52.1
Struct-VRNN [36] 55.4%41  47%5:5  p7*#42 | 7#69  gg7H42 g F95 307%42  333+27 442
iVideoGPT [60] 783108 33%0.7 37 5ELT 16 #2795 6+21 gy 5E3A gpotld g4 7ELT 70.1

1.4 1.2 2.3 3.3 1.7 3.3 2.1 2.7
SAMPO 80.7% 55412 40323 18.3* 97.3+17  853%33 947%21  461* 72.2
Button Press Topdown Wall Plate Slide Hammer
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Figure 5: Model-based RL with SAMPQO. We report the success rate (in %) across 6 tasks, along
with the average success rate across all tasks and the 95% confidence interval [3] calculated from 5
random seeds. All models are pre-trained with world models [42].

4.2 Planning and Reinforcement Learning

Visual Planning with Action-Conditioned Rollouts. As perceptual metrics are not strictly correlated
with control performance, we further verify the applicability of SAMPO on VP2 [46], a visual
planning benchmark. Each environment provides noisy, scripted interaction trajectories. Following
[46, 60], we train SAMPO on 5k trajectories for Robosuite [76] and 35k for RoboDesk [29], and
compare against established baselines.

As shown in Tab. 3, SAMPO achieves the best results in four tasks and the second-best results in
the other two tasks. Compared to the baseline [60], the average performance is improved by 2.1%,
indicating its capability to achieve high-fidelity perception while excelling in control performance.

Model-Based Reinforcement Learning. Beyond planning, an effective world model must facilitate
efficient policy learning through interaction. In this work, we evaluate SAMPO by incorporating it
into a model-based policy optimization (MBPO) framework [28], which extends the replay buffer
with synthetic rollouts to train an actor-critic RL algorithm, implemented based on DrQ-v2 [66].
Experiments are conducted on six robotic manipulation tasks from the Meta-World benchmark [69].

Fig. 5 shows that SAMPO significantly accelerates policy convergence compared to iVideoGPT[60],
while also improving the policy’s upper bound. This enhancement is primarily driven by the temporal
consistency and semantic coherence facilitated by our hybrid framework, in conjunction with the
motion prompt. Moreover, SAMPO significantly outperforms the state-of-the-art MBRL method,
DreamerV3 [22], regarding both sample efficiency and success rate.

4.3 Ablation Studies & Model Analysis

We perform ablation studies to isolate the contributions of each component. Results are in Tab. 4.



Table 4: Abalation of SAMPO on the action-conditioned RoboNet [9] at a resolution of 256 x256.
The first two rows compare the baseline AR model with SAMPO model using a hybrid VAR
architecture. Later rows add enhancements to SAMPO, including motion prompt, 1D temporal

position embedding, and model scaling. "A": improvement over the SAMPO-S model .

Description | #Para. Model Motion T.E. | FVD, SSIMT A

AR 436M AR [60] X X 197.9 80.8 -

Hybrid AR 207M SAMPO-S X X 227.4 76.4 (0.00, 0.00)

+ Motion 232M SAMPO-S v X 217.8 78.8 (9.6, +2.4)

+ Temp. Embed. 232M SAMPO-S v v 193.8 81.5 (-33.6, +5.1)

+ Scale up 353M SAMPO-B v v 184.1 83.2 (-43.3, +6.8)
548M SAMPO-L v v 175.3 84.7 (-52.1, +8.3)

Table 5: Performance and speed trade-off. We benchmark FVD, PSNR, average success rate on
VP? and inference speed using one A800 GPU with a batch size of 16 on the BAIR.

Method Spatial Scales FVD] PSNR1 Avg. SuccessT Inference Time|
ARj38p [60] - 60.8 24.5 70.1 9.05 s / vid.
SAMPO-S [1,2,4,8] 80.7 23.1 72.2 1.61s/vid
SAMPO-S [1,2,4,8,10] 73.1 243 71.3 3.27 s/ vid
SAMPO-S [1,2,3,4,5, 6] 55.5 26.7 70.6 2.06 s / vid.

F1gure6 Zero shot performance The results show that SAMPO can effectively generalize without
special design and finetuning, underscoring its potential for world models. Zoom in for a better view.

Effectiveness of Hybrid Framework. First, we evaluate the effectiveness of the hybrid framework,
which combines scale-wise autoregressive generation with bidirectional spatial attention. Starting
with the SAMPO-S model, we observe competitive performance in both FVD and SSIM, confirming
its ability to generate higher-quality video. The parallel prediction of multiple tokens within each
scale effectively reduces autoregressive steps, improving efficiency. In Tab. 5, SAMPO with various
scales configurations significantly improve the inference speed. These demonstrate that our hybrid
framework not only enhances generation quality but also accelerates inference.

Motion Prompt and Temporal Embedding. Both motion prompts and temporal position embedding
improve temporal consistency and semantic coherence, as shown in Tab. 4. Particularly, temporal
position embedding plays a crucial role in maintaining consistent temporal dynamics, resulting in
significant improvements in FVD and SSIM.

Analysis of Spatial Scale Design. Fewer scales improve inference speed but reduce spatial fidelity.
Notably, smaller inter-scale strides yield better performance under similar compute budgets, indicating
that residual-based scale-wise autoregression benefits from gradual resolution refinement due to its
sensitivity to abrupt scale transitions.

Scaling Laws. As a GPT-style world model, we explore the scaling behavior of SAMPO with 3
different sizes (depth 12, 16, 20) in Tab. 4. The observed improvements in FVD and SSIM align
with the scaling laws, as larger models capture more complex temporal and spatial dependencies,
improving both generation quality and consistency.

Zero-shot Generalization. We further assess SAMPO’s zero-shot generalization by evaluating
a model pretrained on the Open X-Embodiment dataset [37] and tested on the 1X World Model
dataset [1] without fine-tuning. As shown in Fig. 6, SAMPO generates high-quality videos with
temporally consistent dynamics, demonstrating its strong generalization ability. More zero-shot
visual examples are in Appendix C.



5 Conclusion and Discussion

In this work, we present SAMPO, a scale-wise autoregressive world model. It integrates a hybrid
autoregressive framework with an asymmetric tokenizer to perform temporal and spatial token
maps generated across multiple scales, and further leverages a lightweight motion prompt module
to enhance dynamic scene understanding. Owing to its hybrid architecture, SAMPO maintains
both temporal consistency and spatial coherence, achieving state-of-the-art performance in video
prediction and model-based RL benchmarks. However, despite its strong accuracy and scalability
in both simulated and reinforcement learning environments, SAMPO still struggles with long-term
modeling, leading to error accumulation over time. Future work could explore techniques for
improving long-term consistency and reducing error propagation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the contributions
of SAMPO, including the novel framework and improvements in video prediction and
model-based RL, which are well-supported by the experimental results.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations, including the inability of the motion prompt
method to handle single-frame inputs, as detailed in Appendix D. This limitation stems from
the requirement of multiple frames to extract motion trajectories.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: While the paper does not include formal theoretical results, the experimental
results provide strong empirical support for the model design. The effectiveness of SAMPO,
especially in terms of video prediction and model-based reinforcement learning, validates
the proposed framework through extensive experimentation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a comprehensive description of the experimental setup and
results, including model architecture, training datasets, and hyperparameters, ensuring that
the experiments are reproducible. Detailed information is available in Appendix A and B
for both the model and experimental configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the code necessary to reproduce the
experimental results, as described in the supplemental material. While the data is not
included, the code ensures that the results can be replicated.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary training and test details, including data splits,
hyperparameters, and optimizer settings, in Appendix A.1, ensuring the experiments can be
reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The paper reports error bars and statistical significance in Tab. 3, with success
rates including mean and standard deviation values, and explains the method for calculating
them in the experimental setup section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information about the compute resources in Tab. C,
including the type of compute workers (A800 GPUs), memory requirements, and execution
times, ensuring transparency in resource usage.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics, as it does not involve human
subjects or sensitive data, and no ethical concerns or deviations from the guidelines are
identified.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix E.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are trained solely on publicly available robot datasets, eliminating
the risk of misuse, such as deepfakes involving significant events or figures.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

Justification: The paper credits the creators and original owners of the datasets and models,
explicitly mentioning the relevant licenses and terms of use, and cites the original sources to
ensure compliance.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets such as datasets, code, or models
that require documentation. The focus is on using existing models and datasets, and no new
assets are released as part of this research.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects.
The experiments are conducted using existing datasets and models, with no participation
from human subjects or crowdsourced data collection.

Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any research with human subjects or crowdsourcing,
so IRB approval or equivalent review is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not involve Large Language Models (LLMs) as a core
component, focusing instead on enhancing world models and reinforcement learning, which
do not depend on LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details
A.1 Details of Network

Table A: Hyperparameters of Asymmetric Tokenizer.

Tokenizer Low-resolution High-resolution
Parameters 114M 310M

Resolution 64 x 64 256 x 256

Obs. scale [1,2,3,4,5,6,8, 10, 13, 16] [1,2,3,4,5,6,8, 10, 13, 16]
Fut. scale [1,2,3,4,5,6] [1,2,3,4,5,6,8, 10]
Embedding dim 64 64

Codebook size 8192 8192

Norm GroupNorm GroupNorm

Norm group 32 32

Activation SiLU SiLU

Table B: Hyperparameters of Transformer.

Transformer SAMPO-S SAMPO-B SAMPO-L
Parameters 207M 328M 523M
Layers 12 16 20
Heads 12 16 20
Hidden dim 768 1024 1280
Feedforward dim 768 1024 1024
Dropout 0.05 0.067 0.083
Norm LayerNorm LayerNorm LayerNorm
Activation GELU GELU GELU

Table C: Hyperparameters for Training.

Tokenizer/Transformer Low-resolution 444 High-resolution ;56 256)

Config Pre-train [37] BAIR [13] RoboNet [9] VP2 [46]  Pre-train [37] RoboNet [9] 1X WM [1]
GPU Device 8 x A800

GPU days 20/24 3/2 10/12 4/3 20/11 10/27 10/27
Training iteration IM/IM  02M/0.1IM 0.6M/0.6M 02M/02M 0.3M/04M 0.15M/0.5M 0.15M/0.5M
Batch size 128 /128 128 /128 128 /128 64/16 32/32 32/32 32/32
Sequence length 16/16 16/ 16 12712 12/12 16/16 12712 12/12
Context frames 2/2 1/1 2/2 2/2 2/2 2/2 2/2
Future frames 6/- 71/- 6/- 6/- 6/- 6/- 6/-
Learning rate 5/11e? 1/11e* 1/11e* 1/11e* 5/11e™* 1/11e* 1/11e
LR Schedule Cosine

Weight decay 0.01

Grad clip 1.0

Warmup steps 5000

Optimizer AdamW

Gradient moment (0.9, 0.999)

Weight decay 0.0/0.01

Mixed precision bf16

Motion prompt dropout ratio 0.5

Sampling top-k 100

Sampling top-p 1.0

Tokenizer. In the proposed asymmetric multi-scale tokenizer, we adopt a hierarchical design to
balance spatial detail preservation and computational efficiency [45]. As detailed in Tab. A, for
observed frames (t < Tp), dense tokenization is applied across all spatial scales L,;; = 10. For
future frames (¢ > Tj), a sparse subset of coarser scales Ly,;; = 6 is used, focusing on dynamic
regions while minimizing redundancy [18]. Both observed and future frames use a codebook size of
8192 with an embedding dimension of 64.



Transformer. The SAMPO transformer utilizes a scalable decoder-only architecture, inspired by
GPT-2, to efficiently model spatiotemporal dynamics. Unlike iVideoGPT [60], which relies on
specialized tokens for frame segmentation, we initialize each frame with a single start token [S].
This token serves a dual function: it marks the beginning of intra-frame autoregressive generation
and naturally defines the temporal boundaries between consecutive frames. Fixed 1D sine-cosine
positional embeddings are applied to encode temporal dynamics, following standard practices in
vision Transformers [39, 12, 25, 44]. We design a set of models with different sizes, as illustrated in
Tab. B. Model scaling adheres to a linear relationship between depth d, width w, head count h, and
dropout rate dr:

w = 64d, h =d, dr=0.1-d/24. @)

A.2 Details of Training

Training setup. Tab. C summarizes the hyperparameters used in SAMPO across datasets. Training
proceeds via uniform segment sampling with dataset-specific step sizes (see Tab. D), where step
lengths are tuned to match each dataset’s native temporal frequency. For tokenizer training, we use
the initial observed frames as context, while the transformer is trained on full-length sequences.

Scale-specific weight. The scale-specific weight )\; in Eq. (6) balances the contribution of each
spatial scale to the total loss. Given a multi-scale tokenizer with patch sizes Lyqicn, = [1,..., Lk],
where K = len(Lpqcn) is the number of spatial scales, )\; is defined as:

_ I
= .
> L

where L; denotes the spatial dimension of patches at scale [, and L? denotes the number of tokens

A\ K. @®)

per scale (e.g., a L; x L; patch grid contains L? tokens). The denominator Zszl L? normalizes the
token counts across all scales, ensuring that finer-grained resolutions (larger L;) are not overshadowed
by coarser ones (smaller L;). This ensures the model prioritizes dynamic regions over static ones,
which are more likely to change across frames. Such a weighted strategy is essential for capturing the
underlying spatial patterns in robot-centric world modeling, leading to more effective learning.

Algorithm 1 1X Dataset Preprocessing Pipeline

Require: Dataset root paths Diin, Dyai, Target frame rate fiarger, Minimum segment length Tinin =
51, Clip length T¢y;, = 30
Require: Joint index mapping 7 : {0, ...,24} — {HIP_YAW, ..., Angular Velocity}
1: repeat

2 M, S8, R,V ~ Dyain > Load metadata, segment indices, robot states, and video frames
3 S, R,V + Downsample(S, R, V,6f = LfigaJ) > Temporal downsampling
4: U + UniqueSegments(S) > Extract unique action segments
5: for all s € U/ do
6: Tstarts Tend <— FindBounds(S = s) > Segment boundary detection
7 if Tend — Totart < Tmin then
8: continue > Skip short segments
9: end if
10: Vs < V[Tstart © Tend)s Rs < R[Tstart © Tend) > Sequence cropping
11: W « SlidingWindow Vs, Tiip) > Create temporal windows
12: for all w € W do
13: Vw = Vs[w : w + Taip), Ry  Rs[w : w + Tip) > Windowed subsequences
14: if |V,,| < 15 then
15: continue > Skip ultra-short clips
16: end if
17: SaveNPZ(Vy,, Ry, "train") > Compressed storage
18: end for
19: end for
20: ProcessValidation(D,,) > Symmetric validation processing

21: until Dataset processed




Table D: Detailed Dataset Mixture. We include the detailed number of trajectories and the number
of dataset sampling weight in the pretraining mixture. These include 41 dataset from Open X-
Embodiment [37].

Dataset # Traj. Step size Sampling weight
Pretrain

Kuka 580392 3 8.33%
Language Table 442226 3 8.33%
Fractal (RT-1) 87212 1 8.33%
RoboNet 82649 1 8.33%
BC-Z 43264 3 8.33%
Bridge 28935 2 8.33%
Droid 29437 10 8.33%
Agent Aware Affordances 24000 66.6 8.33%
ManiSkill Dataset 21346 20 8.33%
Robo Set 15603 5 7.5%
Functional Manipulation Benchmark 15350 10 7.5%
Isaac Arnold Image 3214 15 0.3125%
Stanford MaskViT 9200 1 0.3125%
UIUC D3Field 768 1 0.3125%
Taco Play 3603 5 0.3125%
Jaco Play 1085 3 0.3125%
Roboturk 1995 3 0.3125%
Viola 150 7 0.3125%
Toto 1003 10 0.3125%
Columbia Cairlab Pusht Real 136 3 0.3125%
Stanford Kuka Multimodal Dataset 3000 7 0.3125%
Stanford Hydra Dataset 570 3 0.3125%
Austin Buds Dataset 50 7 0.3125%
NYU Franka Play Dataset 456 1 0.3125%
Furniture Bench Dataset 5100 3 0.3125%
UCSD Kitchen Dataset 150 1 0.3125%
UCSD Pick and Place Dataset 1355 1 0.3125%
Austin Sailor Dataset 240 7 0.3125%
UTokyo PR2 Tabletop Manipulation 240 3 0.3125%
UTokyo Xarm Pick and Place 102 3 0.3125%
UTokyo Xarm Bimanual 70 3 0.3125%
KAIST Nonprehensile 201 3 0.3125%
DLR SARA Pour 100 3 0.3125%
DLR SARA Grid 107 3 0.3125%
DLR EDAN Shared Control 104 3 0.3125%
ASU Table Top 110 4 0.3125%
UTAustin Mutex 1500 7 0.3125%
Berkeley Fanuc Manipulation 415 3 0.3125%
CMU Playing with Food 174 3 0.3125%
CMU Play Fusion 576 2 0.3125%
CMU Stretch 135 3 0.3125%
USC Cloth Sim 684 10 0.3125%
Mimic Play 323 10 0.3125%
Total 1,407,330 - 100.0%

A.3 Details of Data

Real Robot Dataset. In total, we use a subset of 41 datasets in the Open X-Embodiment dataset [37],
as shown in Tab. D. The datasets used in this work consist of both real-world data and simulator-
generated data, providing a rich and diverse foundation for action-conditioned video prediction and
model-based reinforcement learning.

Preporcess on 1X World Model Dataset. The 1X World Model Dataset is a large-scale multimodal
dataset for training and evaluating robotic world models in dynamic environments. It includes
sensory data from 1X Technologies’ EVE humanoid robots performing tasks like door opening, cloth
folding, and obstacle navigation. The dataset contains synchronized 512x512 RGB video frames,



25-dimensional proprioceptive state vectors, and metadata, with state vectors capturing joint angles,
gripper openness, and velocities. Video frames are stored in MP4 format, with segmentation and
configuration details provided in binary segment indices and JSON files.”

Preprocessing follows custom pipelines developed to align with iVideoGPT [60] evaluation protocols,
as detailed in Algorithm 1, including parsing raw files, frame-state alignment, and task-specific
normalization. This dataset facilitates standardized evaluation of temporal dependency learning,
multi-modal integration, and real-world generalization for robotics.’

B Benchmark Setup

Our experiments follow the same evaluation protocols as iVideoGPT [60]. For completeness, we
provide a brief introduction to the following three experiments:

Video Prediction. We evaluate SAMPO using four metrics: SSIM [55], PSNR [27], LPIPS [71],
and FVD [47]. In line with previous work [62, 60, 4, 51, 19], we address the stochasticity of video
prediction by sampling 100 future trajectories for each test video and selecting the best one for PSNR,
SSIM, and LPIPS. All 100 samples are used for FVD evaluation.

Visual Planning. We finetuning the pretrained SAMPO on VP2 datasets and integrating it into an
interface compatible with the official VP2 visual planning code. * For Robosuite tasks, a trajectory is
deemed successful if the reward, which reflects the distance to the goal, falls below 0.05. In contrast,
for Robodesk tasks, success is defined by a reward value below -0.5, with the environment returning
either O or -1, where -1 signifies success.

Visual Model-based RL. For Model Rollout, the initial rollout batch size is set to 640, with an
interval of 200 environment steps, a batch size of 32, and a horizon of 10. For Model Training, the
initial training steps are 1000. The tokenizer training interval is 40 environment steps, while the
transformer training interval is 10 environment steps. The batch size is 16, with a sequence length of
12, context frames set to 2, and 5 sampled future frames for tokenization. The learning rate is le ™%,
with no weight decay, and the optimizer used is Adam. The model-based RL real data ratio is 0.5.

C Additional Visualization

In this section, we present additional qualitative results of SAMPO across various datasets to
complement the main text. We showcase video prediction results in Fig. 7, 8, 9, 10, 11, 12; zero-shot
performance in Fig. 13; the illustration of motion prompt in Fig. 14; and the a visual comparison with
the iVideoGPT [60] in Fig. 15.

BAIR Robot Pushing
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Figure 7: Additional visualization on the BAI RRobot Pushing dataset for action-conditioned
video generation in low resolution (64 x 64).

Dataset and code are available at: https://huggingface.co/datasets/1x-technologies/world_
model_raw_data under cc-by-nc-sa-4.0 license and https://github.com/1x-technologies/1xgpt un-
der Apache-2.0 license

3For further details, see: https://www.1x.tech/discover/1x-world-model

*Code is available at: https://github.com/s-tian/vp2
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Figure 8: Additional visualization on the Open X-Embodiment dataset for action-free pretraining
in low resolution (64 x 64).
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Flgure 9: Additional visualization on the RoboNet dataset for action- condltloned video generation
in high resolution (256 x 256).

1X World Model
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Figure 10: Additional visualization on the 1X world model dataset for action-conditioned video
generation in high resolution (256 x 256).
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Figure 11: Additional visualization on the VP? benchmark for action-conditioned video generation
in low resolution (64 x 64).

Meta World
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Figure 12: Additional Vlsuallzatlon on Meta-World tasks for actlon conditioned video generation
at low resolution. Each row corresponds to a different task: Coffee Push, Plate Slide, Handle Pull
Side. Both actual reward and predicted reward are shown in the upper left corner.



Zero-Shot
T=0 =

9‘?‘ rﬂ* o@"‘ f'f tﬁ’“ ﬁ' 2 1
m&. wmmmmwﬁj

A
(Observed)
Predicted

(Observed)
Predicted

(Observed)
Predicted

(Observed)

Predicted

Figure 13: Additional visualization of zero-shot performance for action-free video generation
in high resolution. The first two rows show zero-shot results on the RoboNet dataset, while the
last two rows illustrate performance on the 1X dataset. Pretraining was conducted on the Open
X-Embodiment dataset. The results in this figure supplement Fig. 6 in the main paper.

Motion prompts

Figure 14: Additional visualization of motion prompts at varying resolution. Motion prompt
examples are visualized on the RoboNet, 1X, BAIR, and VP2 datasets. The image in the bottom right
corner is shown at a resolution of 64 x 64. For high-resolution images (256 x 256), the grid size is
set to 16, while for low-resolution images (64 x 64), the grid size is set to 12, supplementing the
content of Sec. 3.3 in the main paper. Zoom in for a better view



RoboNet

T=0__  T= = =3 =4 “ =6 =7 =8 =9 __  T=10 T=11

(Observed)
iVideoGPT

SAMPO
T=10  T=ll

o -2 o 2 i 5 5 I & 2 J ¢ >
ol ) ] ﬂfl ﬂsk . fx; ﬁ{ ) )
(Observed) J ( - 2

iVideoGPT

SAMPO

VPZ RoboDesk

T=0 T=1 = = = T=10 T=11
L L L LJ L L] LJ L

B e e

iVideoGPT

VP2 RoboSuite
T=0 T=1 T=2 =3 =4 =5 =6 =7 =8 =9 T=10 T=11

(Observed)
iVideoGPT

SAMPO

Figure 15: Additional visual comparison with iVideoGPT for action-conditioned video generation
on RoboNet (256 x 256) and VP2 (64 x 64) datasets. The first column shows the ground truth
(GT), the second column displays the predictions made by iVideoGPT, and the final column presents
our predictions. As shown, our results not only effectively maintain spatial coherence in visually
cluttered environments, but also better align with the ground truth motion trajectories, indicating
better performance in capturing scene dynamic behaviors. This figure supplements Fig. 4 in the main
paper, providing further evidence of our model’s enhanced accuracy in trajectory prediction.



D Limitations and Future Work

Single-frame Input Limitation. The current motion prompt method relies on multi-frame obser-
vation sequences to extract motion trajectories (e.g., point tracking for ¢ = 1 to T frames using
CoTracker3 as described in Sec. 3.3). However, when the input consists of only a single frame
(Th = 1), it is impossible to generate effective motion prompts, as trajectory extraction requires at
least two frames to compute the displacement.

This limitation essentially stems from a fundamental issue in the setting: for a world model, a single
frame only provides a ‘starting point’ for a static scene, whereas the diversity of dynamic interactions
(e.g., a robotic arm that may move in different directions) results in a multimodal distribution of
future states. Consequently, the model needs to rely on random sampling or implicit prior generation
of possible results.

To address this, potential improvements could involve the design of an implicit dynamic prior based
on a single frame (e.g., generating pseudo-trajectories via geometric constraints or a physics engine),
or introducing a stochasticity control mechanism that balances generation diversity with physical
plausibility.

Motion Prompt as a Way of Incorporating Historical Information. In Sec. 3.1 of the paper, the
world model is formalized as a partially observable Markov decision process (POMDP), where the
integration of historical information plays a crucial role in enhancing the model’s ability to predict
future states and develop more meaningful strategies.

In Sec.3.3, the trajectory-aware motion prompt is introduced as an external module designed to inject
historical information into the hybrid autoregressive framework. While this approach has been shown
to improve performance through ablation studies (Tab.4), it currently serves as an intuitive, but not
necessarily the most optimal, solution for incorporating historical data.

Future work could explore more refined alternatives, such as:

1. Implicit Dynamic Modeling: Directly learning spatiotemporal saliency via attention mechanisms
without explicit trajectory extraction (e.g., combining neural differential equations to model
continuous motion fields);

2. End-to-End Motion Guidance: Integrating trajectory prediction heads into the backbone network
for joint optimization of both motion prompts and frames generation;

E Broader Impact

Broader Impact of SAMPO Model. The research presented in this paper introduces SAMPO,
a model that enhances both the quality of generated content and the speed of inference, offering
significant advantages over traditional autoregressive models. By mitigating issues such as object
disappearance and inaccurate predictions commonly encountered in previous models, SAMPO
ensures higher-quality generation. Moreover, its fast inference capabilities enable real-time decision-
making and dynamic environment interactions, making it a promising solution for applications in
robotic control, video prediction, and model-based reinforcement learning.

Potential Negative Societal Impacts. However, as with any powerful generative model, there are
potential negative societal impacts. One concern is the misuse of the technology in creating deepfakes
or generating realistic video content for disinformation, surveillance, or manipulation purposes.
While SAMPO’s primary application is in improving robotic systems, its underlying techniques could
be applied in harmful ways if left unchecked.

Mitigation Strategies for Responsible Use. To mitigate these risks, it is essential to consider
safeguards such as restricted access to the model, robust detection systems for misuse, and ethical
guidelines for deployment. Additionally, ensuring transparency in the development and application of
such models and creating oversight mechanisms will help prevent unintended societal consequences.
Future work should also explore the potential for bias in the model’s predictions, ensuring fairness
and ethical deployment across diverse groups and settings.
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