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Abstract

As deep learning (DL) models are increasingly being integrated into our everyday lives,
ensuring their safety by making them robust against adversarial attacks has become in-
creasingly critical. DL models have been found to be susceptible to adversarial attacks
which can be achieved by introducing small, targeted perturbations to disrupt the input
data. Adversarial training has been presented as a mitigation strategy which can result in
more robust models. This adversarial robustness comes with additional computational costs
required to design adversarial attacks during training. The two objectives – adversarial ro-
bustness and computational efficiency – then appear to be in conflict of each other. In this
work, we explore the effects of two different model compression methods – structured weight
pruning and quantization – on adversarial robustness. We specifically explore the effects of
fine-tuning on compressed models, and present the trade-off between standard fine-tuning
and adversarial fine-tuning. Our results show that compression does not inherently lead to
loss in model robustness and adversarial fine-tuning of a compressed model can yield large
improvement to the robustness performance of models. We present experiments on two
benchmark datasets showing that adversarial fine-tuning of compressed models can achieve
robustness performance comparable to adversarially trained models, while also improving
computational efficiency.

1 Introduction

The growing computational costs of large-scale deep learning (DL) models is concerning due to their in-
creasing energy consumption and corresponding carbon emissions (Strubell et al., 2019; Sevilla et al., 2022).
A wide range of solutions that improve the computational efficiency at different stages of a DL model life-
cycle are being explored to mitigate these costs (Bartoldson et al., 2023). Compressing neural networks to
improve their computational efficiency during training and at deployment has shown tremendous success.
Extreme model compression by neural network pruning, with high levels of weight sparsification (LeCun
et al., 1989; Hoefler et al., 2021), and quantization, by using low precision weights and/or activation maps,
have surprisingly shown little to no performance degradation (Hubara et al., 2016; Dettmers et al., 2022).
The conventional trade-off when performing model compression is between compute efficiency and test per-
formance. It is, however, unclear as to how compression of neural networks affects other model properties
such as adversarial robustness which is important in safety critical applications (Biggio et al., 2013; Huang
et al., 2017).

Adversarial training (Aleksander et al., 2018; Alexey et al., 2016; Tramèr et al., 2018) is one of the standard
approaches to improve the robustness of DL models. This is performed by adding noise to the original
training data in a specifically designed way (a.k.a. adversarial examples/attacks) and then training the
model with these noisy data (Goodfellow et al., 2015). Designing these adversarial examples incurs additional
computational costs compared to standard training procedures (Shafahi et al., 2019; Wong et al., 2020).
This increase in computational costs is at odds with the objective of improving computational efficiency, for
instance, when performing model compression. The key question that this work is concerned with is: Can
adversarial robustness be efficiently achieved for compressed neural networks?
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We set out to investigate the possibility of simultaneously attaining the dual objective of computational
efficiency and adversarial robustness in this work. We show that adversarial fine-tuning of already compressed
models are able to achieve similar performance compared to adversarially trained uncompressed models. In
effect, resulting in compounding gains of efficiency. To this end, we make the following contributions:

1. Study the influence of adversarial robustness on model compression;

2. Present adversarial fine-tuning of compressed neural networks as a means to achieving robustness
efficiently;

3. Perform comprehensive experiments using model pruning and quantization on two benchmark
datasets with and without adversarial fine-tuning;

4. Characterize the impact of model compression on robustness using intermediate feature-map anal-
ysis.

2 Related Works

Model compression: Model compression in machine learning (ML) refers to the process of reducing the
size of an ML model while maintaining its performance as much as possible. Smaller models require fewer
computational resources and usually have lower inference times, making them more efficient for deployment
on resource-constrained environments such as mobile devices.

Pruning (Gorodkin et al., 1993) is a technique that removes a certain number of parameters of the model that
has least effects to the performance. Generally speaking, pruning can be categorized as unstructured and
structured pruning. In unstructured pruning, individual parameters can be removed. While for structured
pruning, groups of parameters that are connected (weights of a kernel) are removed. Quantization (Hubara
et al., 2018; Wang et al., 2022) reduces the precision of stored model weights or of intermediate activation
maps (Eliassen & Selvan, 2024) from high to lower precision (32 bit to fewer, in modern computers). Quan-
tization can yield large reductions in memory usage and inference time, and can be adapted to particular
hardware devices for acceleration.

While it is not always apparent as to which of the model compression methods should be used, some
recent works have tried to characterize the difference in their performances. In (Kuzmin et al., 2024) an
empirical comparison between the effectiveness of pruning and quantization was presented and in most
settings quantization was reported to be better than pruning.

In addition to model pruning and quantization, knowledge distillation has shown potential in compressing
large networks into smaller networks (Hinton et al., 2014). For large-scale models the gains of distillation
are shown to be substantial, as observed with vision (Chen et al., 2017) and large language models (Sanh
et al., 2019).

Another successful approach to compressing neural networks is tensor factorization of the model
weights (Novikov et al., 2015). Techniques such as tensor trains (Oseledets, 2011) have been used to
factorize weights of neural networks resulting in considerable reduction in the overall number of trainable
parameters (Yin et al., 2021). Using knowledge distillation in conjunction with tensor decomposition
has been shown to be more beneficial as this can help the factorized tensor cores to re-learn some of the
representations that are destroyed during the factorization process (Wang et al., 2021).

Effects of model compression: The primary goal of model compression is to improve model efficiency,
by reducing the number of parameters or the memory consumption, while preserving the downstream test
performance. Recent works have shown drastic reduction in number of parameters (Wang et al., 2022) or
extreme quantization (Dettmers et al., 2022) while retaining competitive performance compared to uncom-
pressed models. There are no formal theories that explain these behaviors where extreme model compression
is possible. Some recent attempts at explaining these behaviors are based on the lottery ticket hypothesis
which speculates the existence of sub-networks within larger networks that can be retrieved by model com-
pression (Frankle & Carbin, 2019).
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In addition to the trade-off between test performance and efficiency, model compression could affect other
model properties. For instance, even though the overall test performance of compressed model is comparable
with the original one, there might be a set of data that suffers disproportionately high portion of the error,
which causes an unexpected effects of inductive bias and fairness (Ramesh et al., 2023; Hooker et al., 2020;
Stoychev & Gunes, 2022). Furthermore, recent works show that knowledge distillation has positive effects
(Jung et al., 2021; Chai et al., 2022) on improving fairness and adversarial robustness (Maroto et al., 2022)
of DL models.

Robustness-aware model compression: In order to mitigate the negative effects of model compression
on adversarial robustness (Jordao & Pedrini, 2021), several works have taken robustness as an additional
regularization term during model compression and attempted to compress the models concurrently with
robustness (Goldblum et al., 2020; Gui et al., 2019; Ye et al., 2019). Robustness-aware pruning (Jian et al.;
Sehwag et al., 2020) techniques have also been proposed recently which turn out to be useful in safety-
critical and computationally resource-constrained applications. It has also been shown that adversarial
fine-tuning (Jeddi et al., 2021) of a standardly trained model could prove to be useful enough in improving
the adversarial robustness instead of full adversarial training.

3 Methods for Model Compression and Adversarial Robustness

The standard process of model compression usually consists of three steps: (1) train a large over-
parameterized model which is likely to overfit to some extent; (2) apply compression techniques to reduce the
size of the trained model while preserving its performance as much as possible; (3) fine-tune the compressed
model, this helps recovering some of the lost performance and ensuring it performs well on the target task.
We consider two compression methods in this work: structured pruning and quantization.

3.1 Structured pruning

We consider ℓ1-norm based filter pruning (Li et al., 2017), which is a simple but effective way of structured
pruning for convolutional neural networks (CNNs). Suppose we have an input of shape cin × hin × win
where cin is the number of input channels, and hin × win is the height and width of the input features. A
convolutional layer, denoted by Fj , is a mapping that takes an input of shape cin × hin × win to an output
of shape cout × hout × wout, which is realized by cout many filters of shape cin × k × k:

F = [F1, . . . , Fcout ] : Rcin×hin×win −→ Rcout×hout×wout .

Each filter consists of cin kernels of shape k × k that maps individually the corresponding channel in the
input of shape hin × win to an output of shape hout × wout, depending on padding and stride parameters:

Fj =
cin∑
i=1

Fi,j : Rcin×hin×win −→ Rhout×wout ,

where each filter Fi,j acts on the i-th channel of the input.

Now compute the ℓ1-norm of each filter Fj , and denote by sj = ∥Fj∥1 =
∑cin

i=1 ∥Fi,j∥1. Depending on the
sparsity of pruning, we sort the filters by the values sj and leave out those with the minimum ℓ1-norm. Note
that each time a filter is removed, the output features of the next layer and the corresponding kernels in the
next layer are removed. In this way, the new filters are obtained for both the current layer and the next
layer. We do the pruning process for both standardly and adversarially trained models, which is also called
post-train pruning.

3.2 Quantization

A quantization scheme consists of a quantization operator that maps a real number to an integer, q(r) =
⌊r/s⌉ − z, and a dequantization operator r̂ = s(q(r) + z), where s ∈ R is called a scaling factor, and z ∈ Z
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is called a zero point. This procedure is also called uniform quantization, since the quantized values are
uniformly distributed due the rounding operator ⌊·⌉. Non-uniform quantization can be similarly derived by
adding powers to the quantization.

The scaling factor s is usually of form s = (β − α)/(2b − 1), where [α, β] is the clipping range and b is the bit
width of quantization, a.k.a. b-bit quantization. A common choice of α and β is the min-max value of the
real number r, i.e., α = min(r) and β = max(r). In this case, −α is not necessarily equal to β, hence we call
it asymmetric quantization. We can also set −α = β = max(| min(r)|, | max(r)|), which is called symmetric
quantization. Both of them have their advantages: asymmetric quantization usually gives tighter clipping
range, and symmetric quantization simplifies the computations. However, using symmetric quantization
wastes half of the precision on ReLU activation, because none of the negative values in the quantization
grid is used. For these reasons we use symmetric quantization for weight and asymmetric quantization for
activation maps in this work.

We mostly use Post-Training Quantization (PTQ) (Nagel et al., 2021) throughout this work. PTQ is a
method which can be easily applied and it is efficient compared to, e.g., Quantization Aware Training
(QAT) (Jacob et al., 2018). As the name suggests, PTQ takes a pre-trained model and quantizes it. The
method may be data-free, but can also be applied with a small unlabeled dataset to adjust the quantization.
The implementation that we use, takes care of the adjustment of calibrating scaling factors and zero points.
This ensures that the resulting quantization ranges strike a favorable balance between rounding and scaling
errors.

3.3 Adversarial Training

Consider the n-dimensional Euclidean space Rn endowed with norm ∥·∥. For p > 0 and x ∈ Rn, the ℓp-norm
is defined as ∥x∥p = (

∑n
i=1 |xi|p)1/p if p < ∞, and ∥x∥p = maxi |xi| if p = ∞. Given a finite dataset

S = {(xi, yi)}N
i=1 ⊆ Rn+1, where each data (xi, yi) is assumed to be i.i.d. sampled from some unknown

distribution D, we are trying to learn a function f : Rn → R that maps all xi to yi.

Assume the functions are taken from some hypothesis space H, we define the generalization loss of f ∈ H
as L(f) = E(x,y)∼D[l(f(x), y)], where l : R2 → R+ is a loss function. The empirical loss of f is defined as

L̂S(f) = 1
N

N∑
i=1

l(f(xi), yi). (1)

A standard model is a function in H that minimizes the empirical loss, i.e., fst = arg minf∈H L̂S(f).

For perturbation ε > 0 and norm ∥ · ∥, the adversarial loss of f is defined as L(f, ε) =
E(x,y)∼D[max∥δ∥≤ε l(f(x + δ), y)], and the empirical adversarial loss is defined as

L̂S(f, ε) = 1
N

N∑
i=1

max
∥δ∥≤ε

l(f(xi + δ), yi). (2)

A robust model is a function in H that minimizes the empirical adversarial loss, i.e., frb =
arg minf∈H L̂S(f, ε).

For a model f ∈ H, the test performance of f over dataset S is given by the test accuracy on clean data:
#{(xi, yi) : f(xi) = yi}/N , and the robustness performance of f over S is computed by the test accuracy
on all possible adversarial perturbations: #{(xi, yi) : f(xi + δ) = yi, ∀ ∥δ∥ ≤ ε}/N . However, solving the
maximization problem in eq. (2) is usually difficult, therefore evaluating the exact robustness performance
of a model is not tractable. In practice, we use a simple and common strategy, called Projected Gradient
Descent (PGD) (Madry et al., 2018), to obtain a lower bound of the maximum. In fact, with PGD, the
gradient descent is performed over the negative loss function: at step t, we update xt by

xt+1 = ProjB(xi,ε)(xt + α · sign(∇xl(f(x), y))|x=xt),

where B(xi, ε) is the ball around xi with radius ε and some norm ∥·∥, α is the step size of the PGD iteration,
and ProjB(xi,ε) is the projection map.
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Denote by δpgd
i the adversarial perturbation obtained by PGD, then each xi + δpgd

i serves as an adversarial
attack. The robustness performance of f is estimated (and in fact, upper bounded) based on the number of
correct predictions on the worst-case perturbation, i.e., #{(xi, yi) : f(xi + δpgd

i ) = yi}/N . For conciseness,
we follow the notations in Table 1 throughout the paper.

Table 1: Overview of notations for models with different training, compression, and fine-tuning methods
used in this work.

Notation Description

fst (resp. frb) standard (resp. robust) model
fc any compressed model
fp (resp. fq) pruned (resp. quantized) model
fp

st (resp. fp
rb

) pruned standard (resp. robust) model
fq

st (resp. fq
rb

) quantized standard (resp. robust) model
Tst(f) (resp. Tad(f)) standardly (resp. adversarially) fine-tuned model
Tst(fp

st) (resp. Tst(fq
st)) pruned (resp. quantized) standard model with standard fine-tuning

Tst(fp
rb

) (resp. Tst(fq
rb

)) pruned (resp. quantized) robust model with standard fine-tuning
Tad(fp

st) (resp. Tad(fq
st)) pruned (resp. quantized) standard model with adversarial fine-tuning

Tad(fp
rb

) (resp. Tad(fq
rb

)) pruned (resp. quantized) robust model with adversarial fine-tuning

4 Data & Experiments

Data and models: All experiments were performed on the Fashion-MNIST and CIFAR10 datasets, which
are commonly used for adversarial robustness benchmarks. A simple 8-layer CNN with 6 convolutional
blocks and 2 fully-connected layers is defined, and used for the Fashion-MNIST dataset. For CIFAR10 we
use the ResNet-18 architecture (He et al., 2016) that has been pre-trained on CIFAR10 for 300 epochs. All
experiments were performed using Pytorch (Paszke et al., 2019) on a single Nvidia Titan RTX with 16GB
GPU memory. We use the neural network intelligence (NNI) library (Microsoft, 2021) to use quantization
and pruning and follow the structure of (Kolter & Madry) for the PGD attacks. For quantized models, we
use the training framework proposed by authors in (Jacob et al., 2018) that uses integer-only arithmetic
during inference and floating-point arithmetic during training.

Hyperparameters: All standard and adversarial training is performed for a fixed 20 epochs using
stochastic gradient descent (SGD) with no momentum. The learning rate is set to 10−1 in the first four
epochs, after which it is reduced to 10−2. All PGD attacks were run for 20 iterations, with the learning rate
set to 10−2. According to the standard for Fashion-MNIST and CIFAR10 within adversarial robustness
literature (Croce et al., 2020), we set the adversarial perturbation ε for ℓ∞-norm to 0.1 and 8/255, for
Fashion-MNIST and CIFAR10, respectively. The same PGD attack is used for both adversarial training
and robustness evaluation. The hyperparameters of fine-tuning after compression are slightly different,
see Appendix A.1 for details.

Pruning ratio and quantization precision: In order to choose the appropriate compression level for
structured pruning and quantization, we explored which fine-tuning settings would be best suited. This was
studied using the Fashion-MNIST dataset and the 8-layer CNN model with 50% sparsity ratio for structured
pruning and INT8 quantization, following the general settings used in the literature (Kuzmin et al., 2024).
Using these configurations, the models were trained standardly and adversarially with no fine-tuning, stan-
dard fine-tuning Tst(·), and adversarial fine-tuning Tad(·). We found that adversarial fine-tuning is the most
useful technique in terms of improving test performance and adversarial robustness. Therefore, we fix a con-
figuration of adversarial fine-tuning of standard models, and perform a comprehensive sweep of compression
extents for both datasets. We use [0.1, 0.2, . . . , 0.9] for sparsity ratios and [INT16, INT8, INT4, INT2, INT1] for
quantization precision.
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For each dataset, we then choose the levels where the test performance of the compressed standard models
with adversarial fine-tuning Tad(f c

st) are comparable. This results in our choice of using 80% sparsity ratio
versus INT8 quantization for Fashion-MNIST, and 50% versus INT8 for CIFAR10, as shown in Figure 1.
This, we argue, is a fairer way of fixing compression levels between methods like pruning and quantization
instead of arbitrary choices that could give undue advantage to one of the methods, which was the case
in (Li et al., 2017). The assumption that halving precision by lowering precision, say from INT16 to INT8,
need not correspond with 50% sparsity ratio.

(a) ℓ1-norm pruning on Fashion-MNIST (b) ℓ1-norm pruning on CIFAR10

(c) PTQ on Fashion-MNIST (d) PTQ on CIFAR10

Figure 1: Performance of compressed models on Fashion-MNIST and CIAFR10 with adversarial fine-tuning
Tad(·). We perform ℓ1-norm pruning (Figure 1a, Figure 1b) and post-train quantization (Figure 1c, Figure 1d)
on standard and robust models. In each subfigure, the horizontal axis shows the level of compression
performed on the model, and the vertical axis shows the performance. Each model was trained three times
and averaged out, error bars show the standard deviation between runs. Note that the scaling of performance
are different for pruning and quantization.

Experiments: We perform a series of experiments to investigate the three-way interplay among compute ef-
ficiency, test performance and robustness performance. At a high-level, these experiments can be categorized
based on whether or not model compression, adversarial training, and fine-tuning were performed:

1. Full model training: fst, frb;
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2. Model compression with standard fine-tuning: Tst(f c
st), Tst(f c

rb);

3. Model compression with adversarial fine-tuning: Tad(f c
st), Tad(f c

rb).

The superscript, c, could correspond to pruning or quantization. See Table 1 for an overview of notations
used. The trends from these experiments are described in detail in the next section.

5 Results

Full model training: In this setting, no model compression is performed and it serves as our baseline to
assess the impact of compression on robustness. We perform standard and adversarial training by minimizing
eq. (1) and eq. (2), respectively. Full models (with no compression) are used for both Fashion-MNIST and
CIFAR10 datasets, and the results are reported in Table 2. We clearly notice that the standard models,
fst, have poor adversarial robustness for both datasets (first row for each dataset in Table 2). Performing
adversarial training results in the robust models, frb, and improves the robustness for both datasets with
an expected drop in test performance (second row for each dataset in Table 2). Adversarial fine-tuning of
the standard models also improves the robustness in line with results from (Jeddi et al., 2021), reported
here for Fashion-MNIST, Tad(fst), which increases robustness from 4.26 ± 2.36 to 77.53 ± 1.17 with a small
drop in test performance.

Table 2: Baseline performance of standard and robust models over Fashion-MNIST and CIFAR10 datasets
comparing their test performance and robustness. For Fashion-MNIST, we additionally consider standard
model with adversarial fine-tuning Tad(·).

Dataset Model Test Robustness

Fashion-MNIST
fst 90.49±0.22 4.26±2.36

frb 87.87±0.33 82.51±0.16

Tad(fst) 85.37±0.44 77.53±1.17

CIFAR10
fst 88.74±0.00 0.05±0.00

frb 85.72±0.27 57.22 ±0.91

Model compression with standard fine-tuning: As discussed in Section 3, we use 1) structured pruning
of model weights, and 2) PTQ with symmetric quantization for weights combined with asymmetric quan-
tization of activation maps, as our preferred model compression techniques. Furthermore, we follow the
procedure of standard fine-tuning of the compressed models for a fixed number of epochs. This enables us
to compare these compression methods, in a similar way as conducted in (Kuzmin et al., 2024), but for
adversarial robustness.

Once this equivalence in performance is established, we evaluate and compare the robustness performance.
This broader assessment enables a more accurate understanding of the trade-offs and benefits associated with
ℓ1-norm pruning and quantization. To isolate the effects of fine-tuning after compression we also report the
performance without standard fine-tuning for both compression methods. All results for these experiments
for standard training and standard fine-tuning are reported in Table 3 for Fashion-MNIST, and Table 4 for
CIFAR10, respectively.

• Standard training: We first look at the influence of standard fine-tuning, Tst(·), on standard models,
fp

st, fq
st (see corresponding rows in Table 3). We first observe that the test performance of the pruned

models drop significantly without fine-tuning (“Fine-Tuning: None” column). Furthermore, we
observe that both standard fine-tuning Tst(·) and adversarial fine-tuning Tad(·) are more important
for pruning than for quantization. The pruned standard model after standard fine-tuning, Tst(fp

st),
achieves comparable test performance to the full models, fst, as shown in Table 2. In the case of
quantization, it is interesting to note that the test performance of the standard models is not affected
by standard fine-tuning, Tst(fq

st). This is to be expected as PTQ usually does not involve fine-tuning.
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Standard fine-tuning, however, does not help recover any adversarial robustness as expected for both
pruned and quantized standard models (see the “robustness” rows for fp

st, fq
st).

• Adversarial training: We next look at the influence of standard fine-tuning on robust models,
Tst(fp

rb), Tst(fq
rb), (bottom rows in Table 3). We note that for robust models, standard fine-tuning

helps recover the test performance for both pruning and quantization, whereas results in a significant
reduction of robustness.

Table 3: Performance of compressed standard and robust models on Fashion-MNIST dataset. We consider
ℓ1-pruning with 80% sparsity ratio and INT8 post-train quantization for 8-layer CNN. After compression,
we consider further performing standard fine-tuning Tst(·), adversarial fine-tuning Tad(·), and without fine-
tuning.

Model Performance
Fine-Tuning

None Tst(·) Tad(·)

fp
st

test 33.21±3.96 88.94±1.03 83.91±1.53

robustness 00.33±0.64 00.28±0.64 76.74±2.33

fq
st

test 90.40±0.16 90.07±0.56 84.93±0.71

robustness 11.72±2.71 7.00±1.44 79.43±0.59

fp
rb

test 16.68±4.57 87.71±0.40 84.53±1.21

robustness 14.40±5.47 16.26±5.45 78.84±2.04

fq
rb

test 87.90±0.34 89.54±0.47 87.51±0.04

robustness 82.80±0.14 25.66±10.61 82.65±0.11

Model compression with adversarial fine-tuning: One of the main questions considered in this work
is to jointly improve the robustness and computational efficiency of DL models. In this experiment, we
adversarially fine-tune, Tad(·), compressed models instead of standard fine-tuning. These results are reported
in the last column “Tad(·)” of Table 3 and Table 4.

Adversarial fine-tuning allows the models to fully recover its test performance of the compressed robust
models, f c

rb, and only slightly decreases it for the compressed standard models, f c
st. Both f c

st, fc
rb, show a

sharp increase in adversarial robustness after Tad(·). Notably, the compressed standard models, undergoing
adversarial fine-tuning, Tad(f c

st), of only three epochs achieves robustness which is within a 5% difference
from the fully adversarially trained model, f c

rb. For instance, the pruned standard models after adversarial
fine-tuning, Tad(fp

st), achieves robustness of 76.74 ± 2.33 which after standard fine-tuning, Tst(fp
st), was close

to zero at 00.28 ± 0.64. Similarly, for quantized standard models with only three epochs of adversarial fine-
tuning, Tad(fq

st), the robustness performance improved from 7.00 ± 1.44 to 79.43 ± 0.59, see Table 3. These
findings align with those of (Jeddi et al., 2021), suggesting that a significant portion of adversarial training
can be achieved with minimal fine-tuning, even after compression. In our work, we have shown that these
gains are also carried over for compressed models.

6 Discussions

Adversarial fine-tuning instead of adversarial training: Based on the experiments in Section 5, we
have shown that adversarial fine-tuning, Tad(·), can improve the robustness of compressed models. With
only three epochs of adversarial fine-tuning, the robustness performance shows a remarkable improvement,
from about 0% to almost the same levels as full robust models. These gains are across the two datasets
and both the compression methods considered in this work, as captured in Table 3 and Table 4 for
Fashion-MNIST, and CIFAR10, respectively. This in our view is a remarkable results, as the efficiency gains
due to compression and adversarial fine-tuning can aggregated over. These experiments show that both ef-
ficiency and robustness can be jointly improved by performing adversarial fine-tuning on compressed models.
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Table 4: Performance of compressed standard and robust models on CIFAR10 dataset. We consider ℓ1-
pruning with 50% sparsity ratio and INT8 post-train quantization for ResNet-18. After compression, we
consider further performing standard fine-tuning Tst(·), adversarial fine-tuning Tad(·), and without fine-
tuning.

Model Performance
Fine-Tuning

None Tst(·) Tad(·)

fp
st

test 86.68±0.01 89.74±0.33 81.98±0.71

robustness 00.00±0.00 00.00±0.00 56.99±0.11

fq
st

test 88.23±0.00 90.75±0.16 84.21±0.93

robustness 0.09±0.00 0.01±0.00 60.03±0.67

fp
rb

test 74.95±0.67 89.31±1.33 83.18±0.88

robustness 35.31±0.77 03.26±0.32 57.13±0.42

fq
rb

test 85.64±0.32 90.75±0.72 84.31±0.22

robustness 58.08±0.92 03.98±0.59 57.23±0.63

Pruning versus quantization: Works that compare the test performance of pruning and quantization
previously have used compression ratios that might not be fair. For instance, comparing compressed models
with 50% pruning ratio and INT8 quantization precision (Li et al., 2017). We performed a systematic tuning
of compression levels for structured pruning and quantization, to match their test performance, as shown
in Figure 1. This results in the use of 80% sparsity ratio versus INT8 precision for Fashion-MNIST dataset,
and 50% versus INT8 for CIFAR10. This is reasonable as CIFAR10 is a more complex dataset and to match
the same performance with INT8 the sparsity ratio has to be smaller. Furthermore, consistent with the
literature, we also find that model pruning depends on fine-tuning to recover test performance, whereas
quantization does not necessarily benefit from fine-tuning.

Robust and non-robust features after compression: To better characterize the influence of fine-
tuning on compressed models, we present an analysis of the intermediate feature maps of the CNN models.
We hypothesize that visualizing these feature maps could provide insights into how test performance and
robustness is recovered when performing adversarial fine-tuning.

We use the intermediate feature maps for the standard and robust models. For ease of interpretation, we use
our 8-layer CNN and evaluate it on Fashion-MNIST images from the “bag” class. The analysis is done for
three standard/robust model pairs: baseline, pruned and quantized models. The t-SNE embedding (Van der
Maaten & Hinton, 2008) of these feature maps can be seen in Figure 2.

The top row in Figure 2 shows the features created by the standard and robust baseline models, fst, frb.
The second row depicts the quantized (with PTQ) standard model with standard fine-tuning, Tst(fq

st), and
adversarial fine-tuning, Tad(fq

st). The bottom row consists of the pruned (with 80% sparsity ratio) standard
model, with standard fine-tuning, Tst(fp

st), and adversarial fine-tuning, Tad(fp
st). Columns show the feature

representations for the input layer, the 6th, 7th and 8th hidden layer, of the CNN model.

In a typical CNN, when examining features for natural images, we often notice distinct clusters representing
different classes or patterns (Zeiler & Fergus, 2014). However, when the model encounters adversarial
examples (perturbations), these clusters become less clear and start to overlap. This is shown in Figure 2,
where the features of the standard models start to scatter in the later layers of the model. This might suggest
that the misclassification do not register until later in the model when more abstract features are considered.

An interesting aspect of the robust features is their stability and consistency. They seem to remain in
the same position or maintain their clustering in the feature space, regardless of adversarial perturbations.
This consistency suggests that these features are resilient to the perturbations of adversarial examples.
Furthermore, our feature analysis clearly shows how the robust models have the ability to classify standard
and adversarial images alike. This observation also holds for compressed models (the second and third rows
in Figure 2). The distinction between standard and adversarial images is clearer when looking at the features
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Figure 2: Features created by a 8-layer CNN on the subset of Fashion-MNIST dataset with class “bag”.
The first column shows t-SNE visualization generated from standard and adversarial images from white
box attacks on the standard and robust models.. The last three columns show the features generated by
the last three hidden layers (layer 6, 7, 8) of three different model pairs: standard and robust baseline
models (fst versus frb), quantized (with INT8 post-train quantization) standard models with and without
adversarial fine-tuning (fq

st versus Tad(fq
st)), and pruned (with 80% sparsity) standard model with standard

and adversarial fine-tuning (Tst(fp
st) versus Tad(fp

st)).

produced by the 6th, 7th and 8th hidden layer of the models.

Computational gains: In our experiments we have shown that robustness can be achieved by fine-tuning
of compressed models with only three epochs. Performing adversarial fine-tuning instead of adversarial
training can reduce the computation time from about 118 minutes to only about 14 minutes on the
CIFAR10 dataset. Furthermore, adversarial fine-tuning of compressed models is cheaper than fine-tuning
of baseline models, and yields further reduction in computation time. For CIFAR10, we estimated
that adversarial fine-tuning of a compressed model required around 10 minutes. This indicates that
the gains in computational efficiency are compounded when adversarial fine-tuning is performed on com-
pressed models while retaining reasonable test and robustness performance, as shown in Table 3 and Table 4.

Limitations: We have performed multiple experiments to highlight the key results about the influence of
adversarial fine-tuning of compressed neural networks. However, there still remain some limitations to our
work and future extensions.

10
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In all our experiments we found fine-tuning for three epochs was adequate to improve the robustness per-
formance. The number of fine-tuning epochs might be task-, dataset-, and model- dependent and should
be carefully treated as another hyperparameter. Furthermore, we did not perform any cross-architectural
experiments on the two datasets. For instance, training ResNet-18 on Fashion-MNIST could allow us to
explore to what extent a relatively more complex network can maintain robustness after compression. Con-
versely, the trade-off between efficiency and test performance when using a smaller network on CIFAR10
could also shine some light on the influence of using models with less scope for pruning. While pruning and
quantization are popular compression methods, extending our experiments to a wider range of compression
techniques could be interesting. For instance, we could explore knowledge distillation, where the expertise
of a robust model is transferred to a simpler model (Shao et al., 2021).

Another limitation of our work is that we evaluated adversarial robustness only against PGD-ℓ∞ attacks.
However, true robustness necessitates performing well against a diverse range of attack methods and norm
specifications. Future works could focus on testing the robustness of models against other types of attacks,
such as DeepFool (Moosavi-Dezfooli et al., 2016) and AutoAttack (Croce & Hein, 2020) known for its
effectiveness. Additionally, we could explore using different norms for the ball onto which our perturbations
are projected in PGD attacks, thereby expanding the scope of possible perturbations for evaluation.

7 Conclusion

In this work, we set out to explore the interplay among model compression, test performance, and adver-
sarial robustness. We have shown that adversarial fine-tuning of compressed models can yield robustness
performance that is comparable to models that are adversarially trained.

With adversarial fine-tuning, the robustness performance of standard models is close to that of robust models.
Our results suggest that adversarial fine-tuning also might be a lighter substitute for adversarial training
even with pruning or quantization. For PTQ, all results have less than a 5% point distance for both test and
robustness performance between the standard and robust models with adversarial fine-tuning. On CIFAR10
dataset, the standard model with adversarial fine-tuning even outperforms the robust model on robustness
performance.

In general, the robust models do perform better on both performance measures. However, adversarial
fine-tuning does indeed lend itself as an approach with lightweight training, for cases where less energy
consumption and speed is favored over a marginal increase in performance. This yields a joint improvement
of robustness and compute efficiency, as fine-tuning for a handful of epochs is considerably cheaper than
full adversarial training. Based on these results we conclude that there might not be an inherent trade-off
between robustness and efficiency, and we can obtain compressed models that are both efficient and robust.
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A Experimental Set-up

A.1 Parameters for optimization during fine-tuning

After compression, the optimization hyperparameters are adjusted for both standard and adversarial fine-
tuning. For pruning, the learning rate is increased to 0.1. For both PTQ and QAT, a momentum of 0.9 is
added, and the learning rate is fixed at 0.01.

A.2 Implementation details for t-SNE visualization of features

We use t-SNE embedding implemented in scikit-learns to perform the visualizations. We set the perplexity
to 30 and learning rate to “auto”. Before applying the embedding, the features of the three last layers of
every model pair are flattened.

We also visualize the inputs, both on clean images and on the images attacked by PGD with respect to each
model, which is why we end up with three different labels (and not four) for the input plots in the first
column of Figure 2.

B Additional Results

B.1 Performance of compressed models on Fashion-MNIST without fine-tuning

We evaluate the test and robust performance of standard and robust models with different compression
levels. Adversarial training is still an essential and effective way of improving the robustness performance of
compressed models, as shown in Figure 3.

(a) Standard and robust model with pruning (b) Standard and robust model with PTQ

Figure 3: Performance of 8-layer compressed CNN models on Fashion-MNIST without fine-tuning. We
perform ℓ1-norm pruning (fp, left) and post-train quantization (fq, right) on standard and robust models.
In each subfigure, the horizontal axis shows the level of compression performed on the model, and the
vertical axis shows the performance. Each model was trained three times and averages out, error bars show
the standard deviation between runs.

B.2 Performance of quantized robust models using QAT

We test the robustness performance of a quantized robust model fq
rb with QAT. For Fashion-MNIST, we

adversarially train the model from scratch with QAT, whereas for CIFAR10 we adversarially train on top
of the pre-trained model ResNet-18. Our experiment reveal that in line with our comparison framework,
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the test performance among the various compression schemes remains highly similar, with differences of less
than 5% points, as shown in Figure 4.

(a) Robust model on Fashion-MNIST with QAT (b) Robust model on CIFAR10 with QAT

Figure 4: Performance of 8-layer compressed 8-layer CNN on Fasion-MNIST (fq
rb, left) and ResNet-18 on

CIFAR10 (fq
rb, right) without fine-tuning. We perform quantization-aware training with different precision

on robust models. In each subfigure, the horizontal axis shows the level of compression performed on the
model, and the vertical axis shows the performance. Each model was trained three times and averages out,
error bars show the standard deviation between runs.

B.3 With versus without adversarial fine-tuning

This section provides parallel experimental results of Table 3 and Table 4, where we evaluate the effectiveness
of adversarial fine-tuning on compressed models.

Fashion-MNIST: Examining the results on the Fashion-MNIST dataset as depicted in Table 5, we find
that with adversarial fine-tuning, the standard model demonstrates comparable performance to the robust
model in terms of both test and robustness performance. This similarity can be attributed to the relatively
straightforward nature of the Fashion-MNIST dataset, where robustness property are less intricate compared
to more complex datasets. Notably, PTQ emerges as the highest performing method, achieving an robustness
performance of 82.65%. Even though QAT takes much longer to train, it does not seem to perform better
than PTQ in our specific setting, and has a higher standard error. However, QAT does slightly outperform
PTQ on test performance.

CIFAR10: Analyzing the results on the CIFAR10 dataset presented in Table 6, we see similar results as
the Fashion-MNIST. After adversarial fine-tuning of the baseline models the test performance is reclaimed
with difference of less than 5% points. Additionally the standard model performs as well as the robust model
with only 3 epochs of adversarial fine-tuning. The model without compression, the pruned model and the
quantized model all achieve robust performance of 57.50±0.75, showing again the effectiveness of adversarial
fine-tuning. Surprisingly, PTQ outperforms QAT in on both test and robust performance.

Even though the benefits of QAT are not revealed in the results of Table 5 and Table 6, we see that when
performing QAT on a much more over-parameterized network, eg., ResNet-18 on CIFAR10, it better retains
both test and robust performances when being quantized to INT4, see Figure 4. However, for the 8-layer
CNN on Fashion-MNIST, QAT with INT4 precision does not seem to work at all, as shown in Figure 1.

16



Under review as submission to TMLR

Table 5: Performance of 8-layer CNN on Fashion-MNIST dataset. For standard models, we consider the
model fst without compression, the pruned model fp

st with 80% sparsity ratio, the quantized model fq
st

with INT8 post-train quantization. For robust models, we consider the model frb without compression, the
pruned model fp

rb with 80% sparsity ratio, the quantized model fq
rb with INT8 post-train quantization and

quantization-aware training. All compressed models are adversarially fine-tuned Tad(·).

Model Test Robustness

fst 90.49±0.22 4.26±2.36
Tad(fp

st) 83.91 ±1.53 76.74 ±2.23
Tad(fq

st) (PTQ) 84.93±0.71 79.43±0.59

frb 87.87±0.33 82.51±0.16
Tad(fp

rb
) 84.53±1.21 78.84±2.04

Tad(fq
rb

) (PTQ) 87.51±0.04 82.65±0.11
Tad(fq

rb
) (QAT) 88.27±0.42 81.18±1.08

Table 6: Performance of ResNet-18 on CIFAR10 dataset. For standard models, we consider the model fst

without compression, the pruned model fp
st with 50% sparsity ratio, the quantized model fq

st with INT8 post-
train quantization. For robust models, we consider the model frb without compression, the pruned model fp

rb

with 50% sparsity ratio, the quantized model fq
rb with INT8 post-train quantization and quantization-aware

training. All compressed models are adversarially fine-tuned Tad(·).

Model Test Robustness

fst 88.74±0.00 0.00±0.00
Tad(fp

st) 82.62±0.17 56.56±0.77
Tad(fq

st) (PTQ) 84.21±0.93 60.03±0.67

frb 85.77±0.95 57.93±0.27
Tad(fp

rb
) 83.55±0.86 57.27±0.47

Tad(fq
rb

) (PTQ) 84.31±0.22 57.23±0.63
Tad(fq

rb
) (QAT) 83.19±0.69 55.38±0.52
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