
Published as a conference paper at ICLR 2024

REINFORCEMENT SYMBOLIC REGRESSION MACHINE

Yilong Xu1, Yang Liu2, Hao Sun1,∗
1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China;
2School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China;
Emails: xuyilong88@ruc.edu.cn; liuyang22@ucas.ac.cn; haosun@ruc.edu.cn

ABSTRACT

In nature, the behavior of many complex systems can be described by parsimonious
math equations. Symbolic Regression (SR) is defined as the task of automatically
distilling equations from limited data. Keen efforts have been placed on tackling
this issue and demonstrated success in SR. However, there still exist bottlenecks
that current methods struggle to break, when the expressions we need to explore
tend toward infinity and especially when the underlying math formula is intricate.
To this end, we propose a novel Reinforcement Symbolic Regression Machine
(RSRM) that masters the capability of uncovering complex math equations from
only scarce data. The RSRM model is composed of three key modules: (1) a Monte
Carlo tree search (MCTS) agent, designed for exploration, that explores optimal
math expression trees consisting of pre-defined math operators and variables, (2) a
Double Q-learning block, designed for exploitation, that helps reduce the feasible
search space of MCTS via properly understanding the distribution of reward, and
(3) a modulated sub-tree discovery block that heuristically learns and defines new
math operators to improve representation ability of math expression trees. Binding
of these modules yields the SOTA performance of RSRM in SR as demonstrated
by multiple benchmark datasets. The RSRM shows clear superiority over several
representative baseline models.

1 INTRODUCTION

The pursuit of mathematical expressions through data represents a crucial undertaking in contempo-
rary scientific research. The availability of quantitative mathematical expressions to depict natural
relationships enhances human comprehension and yields more precise insights. Parsing solutions
offer superior interpretability and generalization compared to numerical solutions generated by neural
networks. Additionally, simple expressions exhibit computational efficiency advantages over the
latter. As a result, these techniques have found applications across diverse fields, e.g., discovering
fundamental physical laws (Udrescu & Tegmark, 2020; Liu & Tegmark, 2021) or governing equations
(Schmidt & Lipson, 2009; Chen et al., 2021; Sun et al., 2023), modeling material constitutive relations
(Wang et al., 2019), and TCP congestion control Sharan et al. (2022), among many others.

The process of fitting expressions in early years involves polynomial interpolation to derive an
equation, followed by the appearance of the SINDy method (Kaiser et al., 2018), which utilizes sparse
regression to identify appropriate mathematical expressions based on a predefined library of candidate
terms. These methods e.g., (Sun et al., 2021; Chen et al., 2021; Champion, 2019), effectively reduce
the search space from an infinitely large set of possibilities to a limited fixed set of expressions,
thereby narrowing down the search process. However, the applicability of this approach is limited,
since the compositional structure of many equations cannot be predefined in advance. Therefore,
there is a need for more comprehensive methods to search for expressions.

The Equation Learner (Martius & Lampert, 2016; Sahoo et al., 2018) model was then introduced as a
novel method in symbolic learning, which incorporates symbolic operators as activation functions.
This modification enabled the neural network to generate more precise and interpretable functional
relationships, allowing for the discovery of intricate math expressions. However, given the compact
structure of EQL, optimizing the sparse network to distill parsimonious equations is a key challenge.

Another approach involves generating optimal expression trees (Hopcroft et al., 2006), where internal
nodes correspond to operators and each leaf node represents a constant or variable. By recursively

∗Corresponding author

1

xuyilong88@ruc.edu.cn
liuyang22@ucas.ac.cn
haosun@ruc.edu.cn

Published as a conference paper at ICLR 2024

computing the expressions of the sub-trees, these expression trees can be transformed into math
expressions. Initially, genetic programming (GP) (Schmidt & Lipson, 2009; Augusto & Barbosa,
2000; Gustafson et al., 2005) was employed to address these problems. Although GP showed promise,
its sensitivity to parameter settings leads to instability. Deep learning methods emerged then to tackle
the problem. SymbolicGPT (Valipour et al., 2021) utilizes a generative model like GPT to create
expression trees, while AIFeynman (Udrescu & Tegmark, 2020) uses neural networks to analyze the
relationships and dependencies between variables and search for relevant expressions. Despite its
ad-hoc characteristic, the AIFeynman (Udrescu et al., 2020) method was further improved, offering
faster and more precise expression search capabilities. Additionally, reinforcement learning (RL)
(Sun et al., 2023) has been employed, which utilizes the Monte Carlo tree search method to explore
and discover expressions, along with a module-transplant module that generates new expressions
based on existing ones. Deep (RL) methods, e.g. DSR (Petersen et al., 2019), utilize recurrent neural
networks to learn expression features and generate probabilities. A policy gradient search algorithm
samples the probabilities to generate a batch of expressions, which are subsequently evaluated for
performance. Combining DSR and GP leads to a new model called NGGP (Mundhenk et al., 2021a),
which achieves better performance. Then uDSR (Landajuela et al., 2022), a comprehensive framework
that combines DSR, AIFeynman, LSPT (Large-scale pre-training), GP, and LM (Linear models)
emerged to enhance the efficiency and accuracy of symbolic regression. Pre-trained generative
models (Holt et al., 2022) and end-to-end transformer modules (Kamienny et al., 2022; Li et al.,
2022) also achieved satisfactory expression search results.

Nevertheless, the existing methods still struggle with generating lengthy and complex equations, and
are faced with issues related to overfitting, e.g., poor generalizability. To overcome these challenges,
we propose a model named Reinforcement Symbolic Regression Machine (RSRM) that masters the
capability of uncovering complex math equations from only scarce data, composed of an RL-search
agent, a GP-based expression tuning element, and a modulated sub-tree discovery (MSDB) block.
The RL-search agent is designed based on the synergy between Monte Carlo tree search (MCTS)
(Coulom, 2006) and double Q-learning (Hasselt, 2010) for enhanced exploration and exploitation.
The GP learner is employed to fine-tune the generated expression trees (e.g., see the demonstration
in (Mundhenk et al., 2021a)), while the (MSDB) block heuristically learns and defines new math
operators to improve the representation ability of math expression trees.

We would like to emphasize that MSDB addresses a crucial observation that models often struggle
to generate complete expressions but excel in capturing certain components. For instance, NGGP
(Mundhenk et al., 2021a) may discover an expression like x4−x3+cos(y)+x−1, while the ground
truth is x4 − x3 − 0.5y2 + x. Notably, it successfully recovers the simplified expression x− 0.5y2

with the same distribution. To this end, MSDB offers a new alternative to simplify expressions by
subtracting specific components in the context of a sub-tree, as exemplified by the subtraction of
x4 − x3 in the aforementioned case. Such an MSDB module takes the divide-and-conquer concept
and could significantly improve the overall search performance of the RSRM model.

The aforementioned aspects form the main contributions of this paper: Our proposed RSRM model
offers a novel solution to the search for mathematical expressions. By incorporating double Q-learning
into MCTS, we effectively balance exploration and exploitation of SR tasks. The proposed (MSDB)
block can handle equations with symmetry (reducing the complexity), and assist in dealing with long
equations by identifying common patterns and defining new math operators on the fly. As a result,
the RSRM model demonstrates clear superiority over several baseline models, which surpasses that
of the baseline models in terms of accuracy and generalization ability.

2 BACKGROUND

Genetic Programming: Genetic programming (Stephens, 2016; Koza, 1994; Schmidt & Lipson,
2009) is employed to iteratively improve expression trees in order to approximate the optimal
expression tree. The mutation step in GP enables random mutations in the expression tree, while
genetic recombination allows for the exchange of sub-trees between expression trees, leading to the
creation of new expression trees based on the knowledge acquired from previous generations. This
“genetic evolution” process progressively yields highly favorable outcomes after a few generations.

Double Q-Learning: Double Q-learning (Hasselt, 2010) is a reinforcement learning algorithm
designed to overcome the overestimation bias issue in traditional Q-learning. The key idea behind
Double Q-learning is to use two sets of Q-values to independently estimate the value of each action in

2

Published as a conference paper at ICLR 2024

a given state. By using two separate Q-functions, Double Q-learning can mitigate the overestimation
bias of traditional Q-learning and provide more accurate value estimations, leading to better policy
learning and performance in various reinforcement learning tasks.

Monte Carlo Tree Search: MCTS (Coulom, 2006) is a decision-making search algorithm that
constructs a search tree representing possible game states and associated values. It employs stochastic
simulations to explore the tree and determine the value of each node. This algorithm gained promi-
nence via its adoption by the AlphaZero team (Silver et al., 2017). MCTS consists of four steps in
each iteration: (1) selection, (2) expansion, (3) simulation, and (4) backpropagation. During selection,
the best child node is chosen based on certain criteria. If an expandable node lacks children, it is
extended by adding available children. The simulation step involves simulating the current state
before selecting the next node, often using the Upper Confidence Bound for Trees (UCT) algorithm
to calculate the selection probabilities, defined as UCT (v′) = Q̄(v′) + c

√
ln(N(v))/N(v′). Here,

Q̄(v′) means the average reward of the child node, N(v) and N(v′) represents the number of visits to
the current node and its child node, respectively, and c typically represents the exploration-exploitation
tradeoff parameter. The first part of the equation makes the nodes with high reward visit more often,
and the second part ensures that the nodes with fewer visits have a higher probability of being selected.
Finally, in the backpropagation step, the reward function evaluates child nodes, and their values are
used to update the values of parent nodes in the tree. The theoretical analysis (e.g., convergence,
guarantees)) of the UCT-based MCTS algorithm can be found in Shah et al. (2022).

3 METHOD

add form

A = exp(x)

find best

calculate reward convert to
odd or even

function

GP RLMSDB

best expressions

form discovery

update
form

Data Pre-processing

①

①②

③

④

④⑤

⑤ ②

⑥

Figure 1: RSRM comprises several steps. First, the data is
input into the data pre-processing module to determine the
parity. Each epoch, the process initiates with the utilization
of the MCTS module to generate expressions (Step 1⃝).
Subsequently, these expressions undergo the addition of
forms and reward calculation (Step 2⃝). The expressions
are then refined through GP (Step 3⃝), leading to more ac-
curate expressions (Step 4⃝). Following this, the equation
forms are integrated and rewards are calculated (Step 5⃝).
This iterative cycle, involving MCTS and GP, continues
for several rounds, ultimately resulting in the renewal of
forms based on the most proficient expressions (Step 6⃝).

The RSRM model consists of a three-
step symbolic learning process: RL-
based expression search, GP tuning, and
MSDB. With these steps, our model ef-
fectively learns and represents the re-
lationship present in the data, facilitat-
ing accurate and interpretable modeling.
The schematic representation of RSRM
is depicted in Figure 1. The full settings
of our model are in Appendix A.

The RL search consists of a double
Q-learning empowered MCTS agent.
Here, MCTS is employed for explo-
ration (global search) that aids in gen-
erating unexplored expressions, while
double Q-learning enables exploitation
that captures the local distribution of
equations. Additionally, we adopt a
method that involves visiting each child
node a specific number of times before
activating double Q-learning. This ap-
proach aims to avoid excessive reliance
on historical information, mitigating the
risk of overfitting and promoting a more robust learning process. To address the challenge of lengthy
and hard equations, we introduce an interpolation method (e.g., data pre-processing) to identify
whether the equation exhibits symmetry prior to each search, followed by a modulated sub-tree
discovery block (MSDB). If symmetry is present, we pre-process the equation accordingly to simplify
the subsequent search process. This approach effectively reduces the difficulty associated with
specific equations. The MSDB examines whether the few expressions that perform well adhere
to a specific form. This divide-and-conquer algorithm enables a step-by-step search for equations,
facilitating the generation of long expressions.

3.1 EXPRESSION TREE

The objective of SR can be transformed into the generation of an optimal expression tree (Hopcroft
et al., 2006), which represents a mathematical expression. The expression tree consists of internal

3

Published as a conference paper at ICLR 2024

1

Selection Expansion Simulation Backpropagation

Select Max
Reward

Double Q
learning

x 10%
+ 30%
- 2%
... ...

Random
 Pick

10 simulations

a’=UCT(n0)

+
x÷

?x

+
x÷

xx

+
x÷

logx

+
x÷

logx

+
x÷

logx
×

+
x÷

logx

+
x÷

logx
×

+
x÷

logx
×

x x +

+
x÷

logx
×

x
x x

+
x÷

?x

+
x÷

?x

+
x÷

?x

+
x÷

logx

+
x÷

logx
×

train

‘

‘ ‘

‘‘‘

a

+
x÷

logx
+

+
x÷

logx
-

.....

calculate reward after
applying the form

Figure 2: Schematic of the proposed RL search. MCTS selects functions based on the maximum
reward, expands them using the results of double Q-learning, simulates node selection through the
UCT function, randomly fills the current tree, and provides rewards to double Q-learning to train.
Once the generation is complete, the rewards are back-propagated to the parent node.

nodes that correspond to operators (e.g., +,−,×,÷, log, exp, sin, cos) and leaf nodes that correspond
to constants (e.g., 1, 2) or variables (e.g., x). By recursively computing the expressions of the sub-
trees, the expression tree can be transformed into mathematical expressions. The process of generating
an expression tree follows a recursive method where operators are added until no more can be added.
This approach simplifies the task of creating expressions as it focuses on constructing the expression
tree, which can be easily generated using recursive techniques.

In contrast to previous methods, we employ a hierarchical traversal strategy for generating expression
trees. This is motivated by the Monte Carlo tree search algorithm, where conducting more searches
on vertices that are filled earlier is deemed more beneficial. In the context of constructing expression
trees, this implies that higher-level nodes in the tree carry greater significance. Consequently, We
use a hierarchical construction method to build the expression tree layer by layer, similar to the
hierarchical traversal of trees.

3.2 REINFORCEMENT LEARNING GUIDED SEARCH

The search step relies on the double Q-learning and MCTS algorithms, which are shown in Figure 2.
The specific algorithm is shown in Algorithm 1.

Reward function: The reward function used in our approach is based on the root mean square
error (RMSE) and is designed to evaluate the fit of the generated equations to the measured data. It
promotes concise and accurate expressions by assigning higher rewards to shorter and more precise
functions. Inspired by the SPL approach (Sun et al., 2023), the reward function is computed by:

R =
ηl

1 +
√∑n

i=1(yi − ŷi)2
, (1)

where η is a discount factor promoting concise trees, and l is the number of nodes in the expression tree.
yi and ŷi the true and the predicted values generated by the MSDB with the output of Reinforcement
Learning Search of the ith data point, respectively. Using this reward function, our approach
encourages the discovery of equations that minimize the RMSE and favors shorter and more concise
expressions, leading to higher reward values for functions that provide better fits to the data.

4

Published as a conference paper at ICLR 2024

Algorithm 1 Expression generation by RSRM
Input: dataset Sdata, expression form F
Parameters: discount rate η, UCT const c, minimum selected times n0

Outputs: best expression
Initiate S as top of MTCS
Selection:
a← children of S with maxiumR ▷ Greedy selection
S take action a
Simulation:
S′ ← S
repeat

if children of S is empty then Expand S′

end if
if ∃x ∈ children of S′ → (N(x) < n0) then a′ ← x ▷ Select child with visit times < n0

else a′ ← randomly choose child of S′ by UCT ▷ Select through UCT function
end if
S′ take action a′, S′′ ← S′, Fill up randomly S′′

double Q-learning← S′, a′,R of S′′ ▷ train double Q-learning by simulated reward
until S′ is full
Expansion
children of S → double Q-learning→ pchildren ▷ estimate initial possibility of each child
Back-propagate
Back-propagateR of S′ based on F

Greedy selection: Our method employs greedy selection, similar to Sun et al. (2023). Instead of
selecting the token with the highest UCT score, we choose the token that currently yields the best
reward (Eq. 1). This ensures the selection of tokens leading to expressions resembling the current
best one, potentially resulting in improved expressions, yet, increasing the possibility of overfitting.
Note that UCT is employed during the MCTS simulation while the greedy selection of the maximum
reward is applied to choose the optimal expression tree.

Simulated reward: At each token generation, the entire expression tree is randomly completed based
on the current tree. The reward is then computed using the reward function and fed back to double
Q-learning for training. This approach avoids excessive rounds of learning at the top node and filters
out irrelevant nodes initially.

Parameter optimization: After an expression tree is built, we need to fill the parameter (i.e.,
equation coefficients) placeholders in it. We treat each placeholder as an unknown variable, which is
optimized to maximize the reward. The BFGS (Roger Fletcher & Sons, 2013) algorithm, available
in the scipy (Virtanen et al., 2020) module in Python, is used for optimization. In contrast to the
approach in DSR (Petersen et al., 2019), we find that Gaussian random numbers with a unit mean and
variance provide more effective initial values for optimization (see further information in Appendix
Section C.6 where we test the performance of the model with different initial values).

3.3 MODULATED SUB-TREE DISCOVERY

We incorporate three specific sub-tree expression forms to enhance the exploration and analysis of
equations, where A represents a fixed form and f(x) a learnable part, explained as follows:

• A+ f(x): This search form focuses on identifying expressions of the form like ex − x and
ex + x. By recognizing this pattern, we can effectively explore and analyze equations that
follow the structure of ex + f(x).

• A× f(x): In this search form, we obtain good expressions such as 1.57ex and 1.56ex + x,
aiming to detect equations of the form ex × f(x).

• Af(x): The search form Af(x) is designed to recognize equations like (ex)2.5 and (ex)e,
indicating the presence of expressions in the form (ex)f(x).

Our approach involves the establishment of these forms based on the initial token of the expression
tree, because the root of an expression tree serves as a focal point, indicating the primary operation or
function in the expression. Thus, we separate the sub-tree forms based on it. Specifically, if the first

5

Published as a conference paper at ICLR 2024

token corresponds to addition (+) or subtraction (−), the method proceeds to learn the generation
of the left and right sides of the respective operators. Similarly, for tokens such as multiplication
(×), division (÷), or exponentiation (ˆ), a similar procedure is followed. In the case of unary
expressions, such as trigonometric functions (sin and cos), the MCTS and GP models effortlessly
derive the complete expression. Therefore, while our method involves a degree of empirical design in
identifying the sub-tree expression forms, it possesses a universal nature.

The complete form-discovery algorithm, which outlines the procedure for selecting and generating
the search form among the three options, is provided in Algorithm 2 and Appendix Figure S1.

Algorithm 2 Search for the form of the expression through the generated expressions
Input: best expression set Sbest
Parameters: selection ratio ks, expression percentage ratio kp, maximum select number N
Output: the form of the expression F

l← length of (Sbest)
Sort Sbest byR decent
for i in 1, 2...l do

if i ≤ N andR(Sbest[i]) ≥ k ×Rmax then ▷ If number of G exceeds orR is low, break out
D = D + Split(Sbest[i]) ▷ Occurrences of function in Split-by-addition(Sbest[i]) +1

end if
end for
G0 ← D with maximum number of occurrences.
if ∃C /∈ Z → G0 = AC then F = Af(x) ▷ The form is Af(x), Z means integer set.
else if ∃C /∈ Z → G0 = A× C then F = A× f(x) ▷ The form is A× f(x)
else
F = f(x) ▷ The form is A± F (x)
for G in D do

if Occurrences of G ≥ l × kp then F = F + G ▷ Add G to A
end if

end for
end if

Splitting by Addition: In this step, we convert the formula, which is represented as a token set, into
a string using a library like sympy (Meurer et al., 2017). Then we expand the expression into a sum of
simpler expressions. Next, we split the expanded expression into multiple simple expressions using
sum or difference notation. In this way, we convert [+,×,−, x, y, z, log, x] to x× y + z − log(x),
and then transforms it to xy, z,− log(x).

Once the expression is refined into its desired form, the subsequent search becomes more manageable.
For instance, in the case of aiming to derive exp(x2) + x4 + x3 +0.5 log(x), we can break down the
search. Initially, we generate exp(x2) + ... to identify the form exp(x2) + f(x), and then extend this
to exp(x2) + x4 + x3 + f(x), simplifying the process of obtaining exp(x2) + x4 + x3 + 0.5 log(x).

Inspired by the approach proposed by Udrescu & Tegmark (2020), we introduce a data pre-processing
module to determine the potential parity of the underlying equation. The cubic splines (Catmull &
Rom, 1974) are applied for equation fitting, generating a function. Subsequently, this function is used
to compute the relationship between y(−x) and y(x), enabling the determination of whether y(x) is
an odd, even, or neither function, where y(x) is the relation of x and y in given data.

When the error (RMSE) between y(−x) and y(x) remains below constant Esym, the function is
considered even with respect to x. Negative values of the independent variables are transformed to
their absolute values, while retaining the dependent variable values. Further exploration is conducted
using the form of ŷ = (g(x) + g(−x))/2 to make it discover specific forms.

Similarly, if the error between y(−x) and y(x) is within the limit constant Esym, the function is
classified as odd relative to x. Negative values of the independent variables are converted to absolute
values, and the dependent variable values are inverted. The search continues employing the form of
ŷ = (g(x)− g(−x))/2 to make it odd in discovering specific forms.

Once the expression is refined to its parity form, the difficulty of searching for the expression is
reduced. If we want to get cosh(x), we only need to generate exp(x) after parity determination. Such
a partitioning strategy has been used in the past, e.g., Petersen et al. (2019) using sub-trees as new
tokens, Sun et al. (2023) using transplanted sub-trees, Udrescu & Tegmark (2020) using problem

6

Published as a conference paper at ICLR 2024

Table 1: Recover rate (%) of several difficult equations in symbolic regression: trigonometric
functions and sum of multiple power functions with parameter 1/2 in Nguyen; power functions and
trigonometric functions in Nguyenc, trigonometric functions and hyperbolic function and functions
with weird power in Livermore; rational functions in R and R0 (where x = 0, y = 0 add to dataset).

BenchMark Equation Ours SPL uDSR NGGP DSR GP

Nguyen-5 sin(x2
1)cos(x1)− 1 100 95 55 80 72 12

Nguyen-12 x4
1 − x3

1 − 0.5x2
2 + x2 100 28 30 21 0 0

Nguyen-2c 0.48x4
1 + 3.39x3

1 + 2.12x2
1 + 1.78x1 100 94 100 98 90 0

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 100 96 0 90 65 0

Livermore-3 sin(x3
1)cos(x

2
1)− 1 55 15 0 2 0 0

Livermore-7 sinh(x1) 100 18 0 24 3 0
Livermore-16 x

2/5
1 100 40 60 26 10 5

Livermore-18 sin(x2
1)cos(x1)− 5 100 80 59 33 0 0

AIFeynman-9 x1 + x2 + 2
√
x1x2 cos(x3) 67 0 8 7 0 0

AIFeynman-10 1
2
x1(x

2
2 + x2

3 + x2
4) 15 0 0 0 0 0

R-10 (x1 + 1)3/(x2
1 − x1 + 1) 49 0 17 2 0 0

R-20 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 89 0 0 0 0 0

R-30 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 91 0 0 4 0 0

decomposition. Our main innovation is the use of partial sub-trees separated according to the plus
sign as part of the new expression.

Also, we conduct a parity determination performance test to compare the efficiency and effectiveness
of form discovery by AIFeynman and our method. The experiment setting and results are given in
Appendix G. It shows that our method (based on cubic splines) outperforms AIFeynman (based on
MLP) in terms of higher accuracy and smaller data requirements.

4 RESULTS a

b

Figure 3: Recover rates of benchmark datasets. a, Basic benchmarks
(detailed results shown in Appendix C). b, SRbench dataset (detailed
results found in Appendix D and Appendix Figure S3), where the
symbol # denotes the presence of noise with a mean of 10−3 added
to the target values and ∗ represents missing data in the literature.

We test the performance
of our method on multiple
different datasets and com-
pare it with the following
baseline models in symbolic
learning: SPL (Sun et al.,
2023), DSR (Petersen et al.,
2019), NGGP (Mundhenk
et al., 2021a), uDSR (Lan-
dajuela et al., 2022), DGSR
(Holt et al., 2022), gplearn
(Stephens, 2016), and AFP-
FE (Schmidt & Lipson, 2010).
The description of each base-
line along with parameter set-
ting is found in Appendix B.

4.1 BASIC BENCHMARKS

To evaluate the efficiency of our model, we first utilize four basic benchmark datasets (see Appendix
C for details): Nguyen (Uy et al., 2011), Nguyenc (McDermott et al., 2012), R (Mundhenk et al.,
2021b), Livermore (Mundhenk et al., 2021b), and AIFeynman (Udrescu & Tegmark, 2020). Note that
parameter optimization (e.g., calibration of the equation coefficients) is prohibited in this experiment
except the Nyugenc dataset.

7

Published as a conference paper at ICLR 2024

We employ the recovery rate as the evaluation metric, which measures the number of times the correct
expression is recovered across multiple independent repetitions of a test. Note that this metric ensures
that the model’s output exactly matches the target expression.

We summarize the comparison of recovery rates for several difficult expressions on the five benchmark
datasets listed in Table 1. The results demonstrate that our model performs well on these complex
expressions. Furthermore, we compared the mean recovery rates of all equations on each benchmark
(see Figure 3a and Appendix C). Our method outperforms other approaches, achieving the highest
recovery rates for all benchmark expressions.

We also conducted an experiment on the trade-off between accuracy and the number of evaluations in
the Nyugen Benchmark. Details of this experiment are given in Appendix Section C.7.

4.2 SRBENCH DATASET

We further tested our model’s ability to learn more complex equations with noisy training data using
the SRbench dataset La Cava et al. (2021), where parameter optimization is allowed. This dataset
comprises 252 datasets sourced from Romano et al. (2021). We specifically concentrated on 131 of
these datasets equipped with ground truth equations, which were drawn from two primary sources,
namely, AIFeynman (Udrescu & Tegmark, 2020) and Strogatz (Strogatz, 2014) datasets.

Our evaluation encompassed a spectrum of baseline models from SRBench, as well as more contem-
porary approaches like uDSR (Landajuela et al., 2022) and DGSR (Holt et al., 2022). The recovery
rate results of each method for different testing datasets (e.g., all datasets, only Feynman, only Stro-
gatz) and noise effect can be found in Figure 3b. Here, the results for the AIfeynman dataset in Figure
3b are inconsistent with Figure 3a since parameter optimization is prohibited in a but engraved in b.
Notably, our MSDB module demonstrated proficiency in handling intricate equations, such as the
challenging example −(32x4

1x
2
3x

2
4(x3 + x4))/(5x

5
2x

5
5), which can be effectively discovered through

the form (Cx4
1)/(x

5
2x

5
5)× f(x). Additionally, numerous equations, like −10/3x3

1 − 10/3x1 +10x2,
were successfully identified by aggregating multiple smaller equations, a feat achievable through the
form Cx3

1 + f(x). Consequently, our model exhibited proficiency in uncovering a wide range of
equations. The comparative analysis in Figure 3b clearly illustrates the superior performance of our
approach in comparison with other baseline models.

We further tested our model by discovering a surrogate formula to approximate the cumulative density
function (CDF) of a normal distribution, e.g., F (x, µ, σ) =

∫ x

−∞
1√
2πσ

exp
[
−(t− µ)2/(2σ2)

]
dt,

where µ and σ denote the mean and standard deviation. Since this equation lacks an explicit
elementary expression, finding a parsimonious equation for approximation based on a small training
set is intractable. Nevertheless, our model shows a great capability of approximating the CFD with
generalizability (see Appendix Section F for more details).

4.3 FREE-FALLING BALLS DATASET

Table 2: MSE of free-falling balls dataset. Details of the equations
generated by different models are shown in Appendix E.

BenchMark Ours Ours∗ SPL M-A M-B M-C

baseball 0.053 0.068 0.300 2.798 94.589 3.507
blue basketball 0.008 0.027 0.457 0.513 69.209 2.227

bowling ball 0.014 0.034 0.003 0.33 87.02 3.167
golf ball 0.006 0.041 0.009 0.214 86.093 1.684

green basketball 0.094 0.045 0.088 0.1 85.435 1.604
tennis ball 0.284 0.068 0.091 0.246 72.278 0.161
volleyball 0.033 0.025 0.111 0.574 80.965 0.76

whiffle ball 1 0.038 0.660 1.58 1.619 65.426 0.21
whiffle ball 2 0.041 0.068 0.099 0.628 58.533 0.966

yellow whiffle ball 1.277 1.080 0.428 17.341 44.984 2.57
orange whiffle ball 0.031 0.368 0.745 0.379 36.765 3.257

Average 0.173 0.242 0.356 2.24 71.02 1.828

We conducted an experi-
mental evaluation on the
free-falling balls dataset
to assess the paramet-
ric learning capability of
our model. The dataset
consisted of experimen-
tal data of balls dropped
from a bridge, as de-
scribed in de Silva et al.
(2020). The dataset com-
prised 20-30 observations
of a ball throw height
within the first 2 seconds,
aiming to learn the equa-
tion governing the ball’s
drop and predict the height between 2 and 3 seconds. Since an exact solution for this dataset is not
available, we employed the mean squared error (MSE) as our evaluation metric.

8

Published as a conference paper at ICLR 2024

We consider two sets of RSRM models, the standard one and the one named RSRM* (denoted by
Ours* in Table 2) that fixes the expression form c4x

3 + c3x
2 + x2x + c1 + f(x). We compared

these models with the baseline method SPL (Sun et al., 2023), since other models tend to have
large generalization errors due to the limited data points (20-30 per training set) in the falling balls
benchmark given the fact that the exact solution is unknown. Three physics models derived from
mathematical principles were selected as baseline models for this experiment, and the unknown
constant coefficient values were estimated using POWELL (1964). The equations of the baseline
models are presented as follows. M-A: h(t) = c1t

3 + c2t
2 + c3t+ c4, M-B: h(t) = c1 exp(c2t) +

c3t+ c4, and M-C: h(t) = c1 log(cosh(c2t)) + c3.

The results (see Table 2) show that in most cases, the RSRM model performs better than SPL. The
RSRM model can successfully find the equation of motion for uniformly accelerated linear motion
(c1x2 + c2x+ c3 + f(x)) and search for additional terms to minimize the training error. This leads to
improved results compared to SPL. However, there are cases where RSRM makes mistakes, such as
obtaining expressions in the form of c1 cos(x)2 + c2 + f(x) when searching for the yellow whiffle
ball. This increases the generalization error and reduces the overall effectiveness compared to SPL.
Overall, RSRM outperforms SPL in physics equation discovery, demonstrating its effectiveness in
solving parametric learning tasks on the free-falling balls dataset.

5 ABLATION STUDY
Table 3: Ablation recovery rate (%) of the Livermore dataset.
The specific recovery rates are further shown in Appendix H.

Equation Ours M-A M-B M-C M-D M-E

sin(x2
1)cos(x1) − 2 100 100 100 6 100 100

sin(x3
1)cos(x

2
1) − 1 55 20 0 0 55 0

sinh(x1) 100 100 100 100 10 100∑9
k=1 xk 100 83 100 88 100 67
x
1/3
1 100 100 100 67 100 100

x
2/5
1 100 100 100 12 100 33

Average: 97.95 94.36 93.64 80.45 89.45 84.95

We conducted ablation studies on the
Livermore dataset, namely, ablations
of the double Q-learning (M-A), the
MCTS algorithm (M-B), the MSDB
(M-C), the pre-processing step (M-D),
and GP (M-E), respectively. We list
some of expressions affected by the
performance of the model in Table 3.

When the double Q-learning module is removed, Model A with only MCTS experiences a decrease in
knowledge from previous iterations. This results in reduced search efficiency but increased diversity.
As a result, we observe a decrease in performance for equations like

∑9
k=1 x

k, while equations
like sin(x3

1)cos(x
2
1)− 1 show improved performance. On the other hand, when the MCTS module

is removed, Model B with pure double Q-learning tends to overfit more quickly. Consequently, it
struggles to produce the most challenging equations, such as sin(x3

1)cos(x
2
1) − 1. Similarly, the

absence of the expression form search module in Model C limits its ability to discover complex
expressions with simple forms, such as x

1/3
1 and sin(x3

1)cos(x
2
1) − 1. Lastly, Model D, without

the preprocessing module, suffers a significant reduction in its ability to search for odd and even
functions like sinh(x1). The removal of the genetic algorithm (M-E) resulted in decreased efficiency
across all expression searches. While simpler expressions such as x1/3

1 still performed adequately,
the performance for complex expressions notably deteriorated.

These observations highlight the importance of all the modules in RSRM. Each module contributes
to the overall performance and enables the model to tackle different types of equations effectively.

6 CONCLUSION

We have proposed a novel model RSRM that integrates RL techniques, GP, and a modulated sub-tree
discovery block to improve the search process for mathematical expressions. Our model outperforms
the state-of-the-art baselines in the context of accurately recovering the exact equations for various
datasets, and demonstrates superior generalization capabilities. However, one limitation of our
current model is the lack of flexibility in setting the expression form as it currently encompasses only
three fixed types, which restricts its adaptability to different problem domains. We anticipate future
advancements in more flexible methods, e.g., potentially incorporating neural networks to generate
slots for SR, utilizing other Q-learning techniques such as prioritized experience replay (Schaul et al.,
2015) to enhance the exploitation, etc. Furthermore, we believe that our approach has the potential to
be extended to other domains, such as reinforcement learning control tasks. By applying our method
to diverse areas, we aim to enhance the performance and applicability of SR techniques.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The work is supported by the National Natural Science Foundation of China (No. 92270118), which
is greatly acknowledged. Code and models of Reinforcement Symbolic Regression Machine(RSRM)
are available at https://github.com/intell-sci-comput/RSRM.

REFERENCES

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, pp. 173–178. IEEE, 2000.

Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Computer aided geometric
design, pp. 317–326. Elsevier, 1974.

Kathleen Champion. From data to dynamics: discovering governing equations from data. PhD thesis,
2019.

Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce
data. Nature Communications, 12(1):6136, 2021.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
Conference on Computers and Games, 2006.

Brian M de Silva, David M Higdon, Steven L Brunton, and J Nathan Kutz. Discovery of physics
from data: Universal laws and discrepancies. Frontiers in artificial intelligence, 3:25, 2020.

Steven Gustafson, Edmund K Burke, and Natalio Krasnogor. On improving genetic programming
for symbolic regression. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pp.
912–919. IEEE, 2005.

Hado Hasselt. Double q-learning. Advances in Neural Information Processing Systems, 23, 2010.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. In
International Conference on Learning Representations, 2022.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Automata theory, languages, and computation. Pearson
Education, 2006.

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression methods and their
relative performance. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1. Curran, 2021. URL https:
//datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
symbolic regression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 33985–33998, 2022.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh
International Conference on Learning Representations, 2022.

10

https://github.com/intell-sci-comput/RSRM
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf

Published as a conference paper at ICLR 2024

Ziming Liu and Max Tegmark. Machine learning conservation laws from trajectories. Physical
Review Letters, 126(18):180604, 2021.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Vanneschi,
Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al. Genetic program-
ming needs better benchmarks. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pp. 791–798, 2012.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021a.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Brenden K Petersen, et al.
Symbolic regression via deep reinforcement learning enhanced genetic programming seeding.
Advances in Neural Information Processing Systems, 34:24912–24923, 2021b.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

MJD POWELL. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155–162, 1964.

John Wiley Roger Fletcher and Sons. Practical methods of optimization. 2013.

Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Goldberg, Praneel
Chakraborty, Natasha L Ray, Daniel Himmelstein, Weixuan Fu, and Jason H Moore. PMLB v1.0:
an open source dataset collection for benchmarking machine learning methods. arXiv preprint
arXiv:2012.00058v2, 2021.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81–85, 2009.

Michael D Schmidt and Hod Lipson. Age-fitness pareto optimization. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pp. 543–544, 2010.

Devavrat Shah, Qiaomin Xie, and Zhi Xu. Nonasymptotic analysis of monte carlo tree search.
Operations research, (6):3234–3260, 2022.

SP Sharan, Wenqing Zheng, Kuo-Feng Hsu, Jiarong Xing, Ang Chen, and Zhangyang Wang. Sym-
bolic distillation for learned TCP congestion control. Advances in Neural Information Processing
Systems, 35:10684–10695, 2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Trevor Stephens. Genetic programming in python, with a scikit-learn inspired api: gplearn. 2016.

SH Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and
engineering (westview, boulder, co), 2014.

11

Published as a conference paper at ICLR 2024

Fangzheng Sun, Yang Liu, and Hao Sun. Physics-informed spline learning for nonlinear dynamics
discovery. Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discover-
ing governing equations via Monte Carlo tree search. International Conference on Learning
Representations, 2023.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860–4871, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines, 12:91–119, 2011.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature Methods, 17(3):261–272, 2020.

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793–805, 2019.

12

Published as a conference paper at ICLR 2024

APPENDIX

A MODEL SETTING

In this section, we give more details about the settings of our models.

A.1 HYPERPARAMETERS

The full set of hyperparameters can be seen in Table S1.

Table S1: Hyperparameters of our model

Name Abbreviation Value

RL parameters

Minimum expression lengths lmin 4
Maximum expression lengths lmax 35

Maximum number of parameters cmax 10
Length discount rate η 0.99

Training rounds tr 50
UCT constant c

√
2

Minimum selected times n0 3
Learning rate of double Q-learning lr 10−3

Genetic Programming parameters

GP rounds tgp 30
GP population pgp 500

GP number of best expressions lb 20
GP Mate rate pmate 0.5

GP Mutate rate pmutate 0.5

MSDB parameters

Error of Symmetry Esym 10−5

Selection ratio ks 0.1
Expression percentage ratio kp 0.1

Maximum select number N 5

A.2 EXPRESSION CONSTRAINT

In this study, we incorporate a prior constraint inspired by the DSR (Petersen et al., 2019) method to
effectively reduce the search space for expressions. The following constraints are applied:

• Length constraint: The length of expressions is restricted within pre-defined minimum and
maximum values. If the current length falls below the minimum threshold, variables (x, y,
C, etc.) and parameters will not be generated. Conversely, if the current length, combined
with the number of nodes to be generated, reaches the maximum length, only these nodes
will be considered.

• Unary operator constraint: The direct successor node of a unary operator should not be
the inverse of that same operator. This constraint ensures that the generated expressions
adhere to the intended structure and prevent redundant combinations.

• Trigonometric function constraint: The successor node of a trigonometric function node
should not be another trigonometric function. This constraint prevents the generation of
expression structures that lead to unnecessary complexity or redundancy.

• Maximum parameter limit: A specified maximum number of parameters is imposed to
control the complexity of the expressions and prevent overfitting.

13

Published as a conference paper at ICLR 2024

+
x÷

logx
×

x x
RL/GP

+

+
x÷

logx
×

x
x x

ℱ = � + �log(�)

�

.....

+
� 100

�log(�) 30
�

���(�2)
5

... ...

�
�

� +
�

���(�2)

�����

Sort by ℛ

� +
�

���(2�2)

�
���(�2)

�

�
���(2�2)

Figure S1: Schematic of the proposed Form-discovery. We first obtain the output of RL/GP and select
the equations in which the loss is relatively small. After that, we separate these equations by plus and
minus signs and count the number of times these sub-expressions occur overall, and use the smaller
equations with more occurrences to cobble together to create new expression forms.

By applying these expression constraints, we aim to enhance the search efficiency and guide the
generation of meaningful expressions that align with the desired properties of the target problem.

A.3 GENETIC PROGRAMMING

Following the generation of expressions by each reinforcement learning algorithm, we engage in the
optimization of a predetermined set of expressions. For this purpose, we employ a genetic algorithm,
utilizing the DEAP library in Python. This algorithm initializes half of the population using the
outcomes of the reinforcement learning process, while the remaining half is generated randomly.
Subsequently, we retain the most promising expressions and subject them to further analysis using a
subtree analyzer. This process serves to update and refine the expression form, enhancing the overall
efficacy of our approach.

A.4 FORM DISCOVERY

Presented below is an elucidative diagram (refer to Figure S1) pertaining to the process of form
discovery as outlined in Algorithm 2. This visual aid serves to elucidate the sequential progression
within the algorithm and delineates the roles and interpretations of variables such as Ssym, G, D, and
more.

B BASELINE MODELS

In this section, we give more details about the settings of baselines.

• SPL (Sun et al., 2023): Rooted in the use of MCTS, SPL employs various greedy strategies
to ensure efficient exploration. It utilizes full expressions as sub-trees to maximize the use
of past information. While excelling in shorter expressions, it falls short in handling longer
ones.

• DSR (Petersen et al., 2019): DSR takes a gradient-based RL approach along with a recurrent
neural network (RNN) that generates a probability distribution over expressions. While
effective for longer expressions, it may exhibit limitations in generalization ability.

• NGGP (Mundhenk et al., 2021a): Building upon DSR, NGGP enhances its capabilities.
Expressions sampled via probability distribution undergo further optimization using GP.
The refined expressions then train the RNN with risk-seeking policy gradient.

14

Published as a conference paper at ICLR 2024

• uDSR (Landajuela et al., 2022): The uDSR amalgamates DSR, AIFeynman, LSPT (Large-
scale pre-training), GP, and LM (Linear models). It excels in discovering formulas with
constants (favoring polynomial type expressions), but albeit at the cost of increased compu-
tation time.

• DGSR (Holt et al., 2022): This model leverages pre-trained deep generative models to
capture the inherent patterns and structures within equations. This pre-training phase
establishes a robust foundation for the subsequent optimization steps conducted through
genetic programming.

• gplearn(Stephens, 2016): The gplearn offers an efficient and rapid GP-based SR implemen-
tation. While proficient in speed, it may exhibit instability and poor scalability.

• AFP-FE (Schmidt & Lipson, 2010): Age-Fitness Pareto Optimization is an optimization
technique that combines two important factors, age, and fitness, to enhance the performance
of evolutionary algorithms. FE means Co-evolved Fitness Predictors.

The full set of hyperparameters can be seen below.

• SPL: In line with the original paper, we maintain the same parameter settings for SPL.
The discount rate is set to η = 0.9999, and the candidate operators include addition (+),
subtraction (−), multiplication (×), division (÷), cosine (cos(·)), sine (sin(·)), exponential
(exp(·)), natural logarithm (log(·)), and square root (

√
·). Other parameter values are as

follows: Maximum Module Transplantation: 20, Episodes Between Module Transplantation:
50000, Maximum Tree Size: 50, and Maximum Augmented Grammars: 5.

• DSR/NGGP/uDSR: In our study, we adopt the standard parameter configurations as pro-
vided in the publicly available implementation of Deep Symbolic Optimization (DSO). This
approach entails adjusting two primary hyperparameters. The entropy coefficient is set
λH = 0.05 and the risk factor is set ϵ = 0.005. Candidate operators are the same as those
employed in the SPL. Additionally, NGGP incorporates other hyperparameters related to
hybrid methods based on genetic programming. The specific values are listed in Table S2.

• Genetic Programming (GP): We employ the gplearn library for GP-based methods. The
hyperparameters for genetic programming are identical to those presented in Table S2.

• DGSR/AFP-FE: For both of these models, we exclusively utilized the results obtained from
the srbench dataset (La Cava et al., 2021), and the parameters were meticulously tested in
accordance with the specifications provided in the official srbench dataset and its associated
article.

Table S2: Genetic Programming Hyperparameters on baselines

Name Value

Rounds 20
Population 1000
Mate rate 0.5

Mutate rate 0.5

C BASIC BENCHMARK RESULT

C.1 OVERALL RESULT

In this section, we give more details about the Min Depth and Min Complexity of difficult equations
in each benchmark in Table S3.

In this table, the performance of uDSR appears to be subpar, even falling short of its pre-
decessor NGGP. This outcome can be attributed to two primary reasons. Firstly, our appli-
cation of symbolic learning lacks parameter optimization, except for the Nyugen-c dataset,
in which uDSR notably excels due to its compatibility with parameterized scenarios. Sec-
ondly, uDSR exhibits a stronger tendency towards generating polynomial functions, whereas

15

Published as a conference paper at ICLR 2024

our tests predominantly involve a substantial number of trigonometric and exponential functions.
For instance, expressions such as x1x2x3(sin(x4) + cos(x5)) result in complex equations like
x1

[
−0.0437x13 − 5.84x3− 0.01x43 + 0.0038x2

4x5− 0.492x4x5 + x4(x2 + sin(x5))...
]
.

C.2 NYUGEN BENCHMARK RESULT

Nyugen Benchmark is a standard benchmark for symbolic learning with one or two independent
variables and equations randomly sampled over a range. And Nyugenc is a parametric version of the
Nguyen benchmark, allowing the use of parametric optimization to test equations with parameters. In
this section, we provide additional details about the results obtained from the Nyugen and Nyugenc

Benchmark experiment.

By referring to Table S4, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

C.3 LIVERMORE BENCHMARK RESULT

LiverMore Benchmark contains challenging equations rarely encountered in symbolic learning,
including high exponentials, trigonometric functions, and complex polynomials. In this section, we
provide additional details about the results obtained from the LiverMore Benchmark experiment.

By referring to Table S5, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

C.4 R BENCHMARK RESULT

R Benchmark consists of three built-in rational equations with numerous polynomials as divisors and
devisees, increasing the learning difficulty. In this section, we provide additional details about the
results obtained from the R Rational Benchmark experiment.

By referring to Table S6, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

Table S3: Minimum Depth of expression tree and Minimum tokens of expression tree as Minimum
Complexity of several difficult equations in each benchmark.

BenchMark Equation Min Depth Min Complexity

Nguyen-5 sin(x2
1)cos(x1)− 1 6 12

Nguyen-12 x4
1 − x3

1 − 0.5x2
2 + x2 7 24

Nguyen-2c 0.48x4
1 + 3.39x3

1 + 2.12x2
1 + 1.78x1 6 25

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 5 11

LiverMore-3 sin(x3
1)cos(x

2
1)− 1 6 15

LiverMore-7 sinh(x1) 6 15
LiverMore-16 x

2/5
1 7 17

LiverMore-18 sin(x2
1)cos(x1)− 5 6 19

AIFeynman-9 x1 + x2 + 2
√
x1x2 cos(x3) 6 17

AIFeynman-10 1
2x1(x

2
2 + x2

3 + x2
4) 6 20

R-1 (x1 + 1)3/(x2
1 − x1 + 1) 6 21

R-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 7 31

R-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 7 35

16

Published as a conference paper at ICLR 2024

Table S4: Average Recovery Rate (%) of the Nyugen Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

Nguyen-1 x3
1 + x2

1 + x1 100 100 100 100 100 99
Nguyen-2 x4

1 + x3
1 + x2

1 + x1 100 100 100 100 100 90
Nguyen-3 x5

1 + x4
1 + x3

1 + x2
1 + x1 100 100 100 100 100 34

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 100 99 100 100 100 54

Nguyen-5 sin(x2
1)cos(x1)− 1 100 95 45 80 72 12

Nguyen-6 sin(x1) + sin(x1 + x2
1) 100 100 100 100 100 11

Nguyen-7 log(x1 + 1) + log(x2
1 + 1) 100 100 98 100 35 17

Nguyen-8
√
x1 100 100 100 100 96 100

Nguyen-9 sin(x1) + sin(x2
2) 100 100 91 100 100 17

Nguyen-10 sin(x1)cos(x2) 100 100 100 100 100 86
Nguyen-11 xx2

1 100 100 87 100 100 13
Nguyen-12 x4

1 − x3
1 − 0.5x2

2 + x2 100 28 30 21 0 0

Average 100.00±0.0 93.50±11.7 87.58±13.6 91.75±13.0 83.58±18.5 44.42±22.1

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 100 100 58 100 100 0
Nguyen-2c 0.48x4

1 + 3.39x3
1 + 2.12x2

1 + 1.78x1 100 94 100 100 100 0
Nguyen-5c sin(x2

1)cos(x1)− 0.75 100 95 67 98 0 1
Nguyen-7c log(x1 + 1.4) + log(x2

1 + 1.3) 100 0 100 100 93 2
Nguyen-8c

√
1.23x1 100 100 100 100 100 56

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 100 98 0 96 0 0

Nguyen-10c sin(1.5x1)cos(0.5x2) 100 0 0 100 100 0

Average 100.00±0.0 69.57±35.2 60.71±33.2 99.14±1.2 70.43±35.7 8.43±15.6

Table S5: Average Recovery Rate (%) of the LiverMore Benchmark over 100 parallel runs
Name Equation Ours SPL uDSR NGGP DSR GP

Livermore-1 1/3 + x1 + sin(x1) 100 94 100 100 67 100
Livermore-2 sin(x2

1)cos(x1)− 2 100 29 58 61 26 1
Livermore-3 sin(x3

1)cos(x
2
1)− 1 55 50 0 2 0 0

Livermore-4 log(x1 + 1) + log(x2
1 + x1) + log(x1) 100 61 100 100 72 100

Livermore-5 x4
1 − x3

1 + x2
1 − x2 100 100 100 100 55 100

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 100 8 100 100 100 100

Livermore-7 sinh(x1) 100 18 0 24 0 0
Livermore-8 cosh(x1) 100 6 8 30 0 0
Livermore-9

∑9
i=1 x

i
1 100 21 100 99 18 0

Livermore-10 6sin(x1)cos(x2) 100 75 100 100 70 23
Livermore-11 (x2

1x
2
2)/(x1 + x2) 100 0 100 100 78 95

Livermore-12 x5
1/x

3
2 100 100 100 100 13 100

Livermore-13 x
1/3
1 100 12 100 100 59 0

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
1) 100 100 100 100 91 100

Livermore-15 x
1/5
1 100 0 100 100 28 2

Livermore-16 x
2/5
1 100 0 60 26 0 0

Livermore-17 4sin(x1)cos(x2) 100 89 100 100 100 84
Livermore-18 sin(x2

1)cos(x1)− 5 100 18 59 33 37 0
Livermore-19 x5

1 + x4
1 + x2

1 + x1 100 89 98 100 100 100
Livermore-20 exp(−x2

1) 100 100 100 100 100 100
Livermore-21

∑8
i=1 x

i
1 100 52 100 100 13 12

Livermore-22 exp(−0.5x2
1) 100 100 100 100 82 100

Average 97.95±4.0 51.00±16.9 81.05±14.6 80.68±14.0 50.41±15.7 50.77±20.4

Table S6: Average Recovery Rate (%) of the R Rational Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

R0-1 (x1 + 1)3/(x2
1 − x1 + 1) 5 0 82 15 0 0

R0-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 80 0 0 40 0 0

R0-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 100 0 0 100 0 0

R∗-1 (x1 + 1)3/(x2
1 − x1 + 1) 48 0 17 2 0 0

R∗-2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 89 0 0 0 0 0

R∗-3 (x5
1 + x6

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 91 0 0 3 0 0

Average 68.83±28.9 0.00±0.0 16.50±26.2 26.67±31.1 0.00±0.0 0.00±0.0

C.5 AIFEYNMAN BENCHMARK RESULT

AIFeynman Benchmark contains lots of equations with physical meaning (as part of SRBench
(La Cava et al., 2021)), such as expressions for gravity, kinetic energy, and light intensity superposi-

17

Published as a conference paper at ICLR 2024

tion. In this section, we provide additional details about the results obtained from the AIFeynman
Benchmark experiment.

By referring to Table S7, readers can obtain more detailed information about the performance of each
model on each expression, their comparative analysis, and any other relevant insights derived from
the experiment.

The selection of 12 AI Feynman equations was based on a stratified representation of difficulty levels.
The chosen expressions include easy ones, such as x1x2 and 3

2x1x2; medium complexity expressions
like x1x2x3 sin(x4) and x1x2+x3x4+x5x6; medium-hard expressions such as 0.5x1(x

2
2+x2

3+x2
4)

and x1x2x3(
1
x4

− 1
x5
); and hard expressions like x1x2x3

(x4−x5)2+(x6−x7)2+(x8−x9)2
and 1 + x1x2

1−x1x2/3
,

providing a comprehensive coverage of the AIFeynman benchmark.

The comprehensive coverage of the AIFeynman benchmark is reflected in Figure 3b of the results
section, showcasing the outcomes for all AI Feynman equations considered in the problem set.
Notably, our model achieves a state-of-the-art 80% recovery rate, indicating its proficiency in
capturing the underlying mathematical structures across a diverse range of expressions.

Table S7: Average Recovery Rate (%) of the AIFeynman Benchmark over 100 parallel runs

Name Equation Ours SPL uDSR NGGP DSR GP

AIFeynman-1 x1x2 100 100 100 100 100 100
AIFeynman-2 3

2x1x2 100 99 97 100 97 87
AIFeynman-3 x1x2x3 100 100 100 100 100 100
AIFeynman-4 x1x2x3 sin(x4) 100 98 90 100 100 78
AIFeynman-5 x1x2 + x3x4 + x5x6 100 100 100 100 100 82
AIFeynman-6 x1(1 + x2 cos(x3)) 100 100 80 100 100 100
AIFeynman-7 x1x2x3(

1
x4

− 1
x5
) 100 100 87 100 100 80

AIFeynman-8 x1(x2 + x3x4 sin(x5)) 100 100 100 100 100 100
AIFeynman-9 x1 + x2 + 2

√
x1x2 cos(x3) 67 0 8 7 0 0

AIFeynman-10 1
2x1(x

2
2 + x2

3 + x2
4) 15 0 0 0 0 0

AIFeynman-11 x1x2x3

(x4−x5)2+(x6−x7)2+(x8−x9)2
0 0 0 0 0 0

AIFeynman-12 1 + x1x2

1−x1x2/3
0 0 0 0 0 0

Average 73.50±24.1 66.42±27.8 63.50±26.0 67.25±27.4 66.42±27.8 60.58±25.7

C.6 CONST-OPTIMIZATION EXPERIMENT

We conducted an experiment considering different initialization approaches for constant optimization.
Specifically, we explored seven methods:

• Case 1. Initializing constants with a vector of ones.
• Case 2. Initializing constants with a vector of random uniform values between 0 and 1.
• Case 3. Initializing constants with a vector of random uniform values between 0.5 and 1.5.
• Case 4. Initializing constants with a vector of random Gaussian values with a mean of 0 and

standard deviation of 1.
• Case 5. Initializing constants with a vector of random Gaussian values with a mean of 1 and

standard deviation of 1.
• Case 6. Initializing constants with a vector of random Gaussian values with a mean of 1 and

standard deviation of 0.5.
• Case 7. Initializing constants with a vector of random Gaussian values with a mean of 0 and

standard deviation of 1
3 .

We evaluated the recovery rate of each expression using different constant initialization methods
across diverse benchmarks, employing ranges of input values such as [0,1], [-1,1], [0,10], [-10,10],
[0,50], [-50,50], and data sizes of 20 or 500. Notably, Table S8 demonstrates that the average recovery
rates across all initializing methods are remarkably close.

Examining the distribution of expression recovery rates below 50%, 10%, and 0%, it becomes
apparent that the method employing a vector of ones exhibits the highest percentage in Table S9.
This observation indicates that the vector of ones initialization method has the highest number of
expressions unable to converge across 100 parallel runs.

18

Published as a conference paper at ICLR 2024

Table S8: Average Recovery Rate (%) of the Const Optimization Benchmark over 100 parallel runs
on each size and each range

Name Equation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Keijzer-1 0.3x1 sin(6.28x1) 33.6 33.8 33.6 33.7 33.7 33.6 34.3
Keijzer-4 (30.0x1x2x3)/((x1 − 10.0)x2

2) 34.2 13.3 35.7 14.8 20.7 24.3 24.1
Keijzer-14 8.0/(2.0 + x2

1 + x2
2) 100.0 99.8 100.0 82.0 95.8 99.6 99.8

Keijzer-15 x0.6
1 + x1.5

2 − x2 − x1 88.0 83.2 90.3 75.5 83.8 88.3 88.7

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x1 97.2 97.5 97.5 96.8 95.9 96.9 97.4
Nguyen-2c 0.48x4

1 + 3.39x3
1 + 2.12x2

1 + 1.78x1 98.0 92.3 97.9 92.9 95.0 97.5 96.2
Nguyen-5c sin(x2

1) cos(x1) − 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nguyen-7c log(x1 + 1.4) + log(x2

1 + 1.3) 100.0 53.4 78.4 50.6 56.0 70.4 97.1
Nguyen-8c

√
1.23x1 100.0 100.0 100.0 99.5 100.0 100.0 100.0

Nguyen-9c sin(1.5x1) + sin(0.5x2
2) 35.3 47.9 43.4 42.6 43.8 45.6 46.3

Nguyen-10c sin(1.5x1) cos(0.5x2) 35.1 47.7 38.7 42.8 42.7 44.3 42.3
Nguyen-11c 2.7x

x2
1 99.2 88.2 98.5 79.3 89.3 95.8 100.0

Jin∗-1 2.5x4
1 − 1.3x3

1 + 0.5x2
1 − 1.7x1 98.3 97.5 96.3 97.0 94.7 97.7 97.4

Jin∗-2 8.0x3
1 − 8.0x2

1 + 15.0x1 81.0 83.0 81.4 83.2 83.1 82.9 82.5
Jin∗-3 0.7x3

1 − 1.7x1 100.0 54.1 92.2 52.9 76.1 83.3 87.9
Jin∗-4 1.5 exp(x1) + 5.0 cos(x1) 87.7 93.8 94.6 88.1 92.3 94.5 93.6
Jin∗-5 6.0 sin(x1) cos(x1) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Jin∗-6 1.35x2

1 + 5.5 sin((x1 − 1)2) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 81.06 76.19 80.90 73.46 77.17 79.74 81.08

Table S9: Persentage (%) of expressions under certain recovery rate about the Const Optimization
Benchmark over each initializing method

Recovery Rate Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

<50% 18.04 25.26 18.04 26.29 19.07 17.53 17.01
<10% 15.98 11.34 13.92 11.86 11.86 11.34 12.37

0% 7.22 4.12 6.19 3.61 4.64 3.61 3.09

C.7 TRADE-OFF EXPERIMENT

We used five different configurations for symbolic regression on the Nyugen dataset and obtained five
different sets of results. We calculated the curves of the average number of tests about the expression
recovery rate for all data/ Nyugen-4/ Nyugen-5/ Nyugen-11/ Nyugen-12 for the five different data
with different configurations as shown in Figure S2.

25 50 75 100 125 150 175 200
Numbers of Evaluations (1000x)

0%

20%

40%

60%

80%

100%

Re
co

ve
r-r

at
e

trade-off experiment

ALL
Nyugen-4
Nyugen-5
Nyugen-11
Nyugen-12

Figure S2: Trade-off between accuracy and number of evaluations in Nyugen Benchmark.

The evaluation count of the RMSM exhibits a discernible pattern, roughly falling within two ranges:
the first encompasses around 80% of the recovery rate, while the second spans from 80% to 100%.

19

Published as a conference paper at ICLR 2024

Table S10: Trade-off experiment: Average Evaluation Number /Average Recovery Rate (%) of the
Nyugen Benchmark over 100 parallel runs

Name 5 epochs 15 epochs 25 epochs 35 epochs 45 epochs

ALL 15654/53 27543/77 41525/87 55395/98 58240/100
Nyugen-4 28389/5 41638/43 54151/75 58483/100 76216/100
Nyugen-5 25084/0 57033/33 77075/80 118661/83 149868/100

Nyugen-11 20932/41 36487/62 67237/88 77757/100 84902/100
Nyugen-12 26345/0 65122/13 123571/41 175970/89 207889/98

0 20 40 60 80
Solution Rate (%)

RSRM
AIFeynman

AFP_FE
DSR
AFP

gplearn
GP-GOMEA

ITEA
EPLEX
Operon

SBP-GP
BSR

FEAT
FFX

MRGP

Target Noise
0.0
0.001
0.01
0.1

0 50 100
Solution Rate (%)

RSRM
AIFeynman

AFP_FE
DSR
AFP

gplearn
GP-GOMEA

ITEA
EPLEX
Operon

SBP-GP
BSR

FEAT
FFX

MRGP

 Feynman

0 50 100
Solution Rate (%)

 Strogatz

Target Noise
0.0
0.001
0.01
0.1

Figure S3: Result of SRBench with 10 parallel runs for each dataset.

Both ranges can be approximated with linear functions; however, the second range displays a notably
steeper slope, indicating that achieving higher recovery rates beyond 80% becomes considerably
more challenging.

We categorized RSRM into using 5, 15, 25, 35, 45 epochs and tested the average number of tests and
the average recovery rate for each different environment and different data respectively in Table S10.

D SRBENCH RESULT

We used the full set of SRBench for testing, and the overall results are as follows in Figure S3,
including both the AIFeynman dataset and the Strogatz dataset.

E FREE-FALLING BALLS DATASET RESULT

In this section, we provide additional details about the results obtained from the Falling-Balls
dataset experiment. To improve the performance of the SPL model, we incorporated the operators
log(cosh(·)). This addition aimed to enhance the model’s ability to capture the underlying patterns
in the data.

The complete results of the experiment, including the functions found, can be found in Table S11.

20

Published as a conference paper at ICLR 2024

Table S11: Functions generated in Falling-Balls Experiment

Name Model Equation

baseball
Ours −4.43t2 + 0.36 sin(t2 + 1.51)2 + 47.35

Model A 0.09t3 − 5.47t2 + 2.47t+ 46.52 + cos(t2 − 2.5t)0.5

SPL −4.54t2 + 0.625t+ 47.8

blue basket ball
Ours −1.66t3 − 4.95t2 cos(

√
t) + 46.46

Model A −0.1t3 − 4.49t2 + 37.54t+ 46.49− t(cos(t) + 36.77)
SPL −0.25t4 + t3 − 5.11t2 + 46.47

bowling ball
Ours −4.63t2 + sin(0.83t) sin(t) + 46.13

Model A 0.18t3 − 6.0t2 + 2.15t+ 45.43 + |t− 0.62|
SPL −0.285t3 − 3.82t2 + 4.14× 10−5 exp(20.74t2 − 12.45t3) + 46.1

golf ball
Ours −0.09t3 − 4.44t2 + 5.26× 10−5t/ log(t) + 49.51

Model A −2.18t3 + 11.75t2 + 1.96t+ 25.86− 2.36 exp(t) + 25.98 cos(t)
SPL −4.9633t2 + log(cosh(t)) + 49.5087

green basket ball
Ours 46.34− 4.15t2

Model A −0.09t3 − 4.59t2 + 1.6t+ 45.26 + (0.02
√
t

t−exp(cos(t))
− t+ 1) cos(t)

SPL −4.1465t2 + 45.9087 + log(cosh(1))

tennis ball
Ours 47.78 cos(0.43t− 0.02)

Model A 0.33t3 − 4.9t2 + 0.66t+ 47.74
SPL −4.0574t2 + log(cosh(0.121t3)) + 47.8577

volleyball
Ours 48.15− 3.67(t+ 0.03)2

Model A 1.59t3 − 11.1t2 + 0.93t+ 58.53− 10.53 cos(t)
SPL −3.78t2 + 48.0744

whiffle ball1
Ours −t2(3.83− 0.31t) + 47.07

Model A −0.08t3 − 2.17t2 − 1.69t+ 46.29 +
√

t+ sin(3t)
SPL −t3 + 4.16t2 + 47.01 exp(−0.15t2)

whiffle ball2
Ours −2.18t2 + 0.1t cos(t) + 3.35 cos(t) + 43.88

Model A 0.46t3 − 4.39t2 + 0.19t+ 47.26− 0.05 cos(exp(t))
SPL 65.86 exp(−0.0577t2)− 18.61

yellow whiffle ball
Ours (cos(1.75t) + 47.59) cos(0.36t)

Model A −0.27t3 − 2.58t2 − 2.5t+ 48.25 + (t+ 0.41) exp(
√

t+ t2 − 2
√
t3)

SPL (148.99− 14.58t2 + 48.96 log(cosh(x)))/(log(cosh(t)) + 3.065)

orange whiffle ball
Ours −17.82t− 33.11/ exp(t)0.5 + 80.94

Model A 0.42t3 − 3.81t2 − 1.4t+ 47.84
SPL −1.66t+ 47.86 exp(−0.0682t2)

F GENERALIZATION EXPERIMENT RESULT

To compare the generalization ability of our model with other methods, we conducted an experiment
on generalization performance. The dataset was generated using the cumulative distribution function
(CDF) defined as

F (x, µ, σ) =

∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ2 dt

with varying means (µ) and variances (σ). The dataset consisted of 201 points spanning the range
from −100 to 100. Each dataset is divided into three subsets: a training set, a test set, and a validation
set. The training set comprises points ranging from 30 to 80, while the test set consists of points
ranging from 10 to 25. The validation set covers a broader range, spanning from 0 to 100.

Because this equation lacks an explicit elementary expression, it’s impossible to obtain an analytical
solution for the entire curve by reducing the training error to zero. Therefore, learning this function

21

Published as a conference paper at ICLR 2024

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-1 σ=1/30

Target
Ours
NGGP
Cubic Spline
MLP

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-2 σ=1/40

Target
Ours
NGGP
Cubic Spline
MLP

−100 −50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

training/validationextrapolation

Curve-3 σ=1/50

Target
Ours
NGGP
Cubic Spline
MLP

Figure S4: Result of generalization test experiment.

requires balancing between training error and generalization error, demanding a stronger ability to
generalize. Moreover, only half of the curve data is provided, necessitating strong generalization
skills from the model to extrapolate and accurately fit the missing portion of the curve. This calls for
the proficiency of the model in capturing the distribution of the entire curve.

To evaluate the performance of our approach and compare it with baselines, we define the following
settings for each method:

• Ours: The training set is utilized for generating expressions and calculating the correspond-
ing rewards. The test set is employed to evaluate the quality of the generated expressions.
Finally, the validation set is employed to select the most promising expressions from the
outputs.

• NGGP(Mundhenk et al., 2021a): Both the training set and the test set are used for generating
expressions and computing rewards. The HallOfFame, which contains the best expressions,
is then leveraged to choose expressions using the validation set.

• Linear regression: The training set and the test set are employed for training the linear
regression model.

• Cubic splines: The training set and the test set are used to train the cubic spline model.
• Deep learning: In the deep learning approach, we employ a Multilayer Perceptron (MLP)

architecture with one input, one output, and a hidden layer ranging in size from 30 to
50. We set the learning rate to 10−3 and train 100 epochs. We experiment with different
configurations of the hidden layer and select the model that yields the best performance. The
MLP is trained using the training set, and the test set is used to evaluate the performance of
each model. By varying the size of the hidden layer, we aim to find the optimal architecture
that achieves the highest accuracy or lowest error on the given task.

The full results of the generalization experiment can be found in Table S12 and Figure S4. This table
presents a detailed overview of the performance of the model and the baselines. Additionally, Table
S13 presents the equations discovered by the model and the baselines. These tables demonstrate that
our model outperforms the baseline methods in terms of generalization ability. The curves fitted by
our model exhibit better accuracy and capture the underlying patterns in the data more effectively.

G PARITY DETERMINATION EXPERIMENT

In this section, we conduct an experiment to compare the efficiency and effectiveness of form
discovery by AIFeynman(Udrescu & Tegmark, 2020) and our method.

According to AIFeynman (Udrescu & Tegmark, 2020), it is also possible to use MLP as a learning
curve to determine the parity of a function, so we compared the efficiency and effectiveness of MLP
and cubic splines in determining parity.

The configuration of the MLP follows the structure employed in AIFeynman. It consists of a five-layer
neural network with a balanced training set and validation set ratio of 5:5. The input layer accepts
one variable and yields an output of 128. Subsequent to the input layer, the hidden layers encompass
input-output feature pairs of 128-128, 128-64, and 64-64. The output layer produces a single variable.
Optimization is executed using the Adam optimizer, and the activation function for each layer is set

22

Published as a conference paper at ICLR 2024

Table S12: Mean Squared Error (MSE) of each method and each part of the curve in the Generalization
Experiment

Name Ours NGGP Linear Cubic Splines MLP

total error on curve 1 1.05× 10−5 0.00215 0.0114 0.000381 0.0142
total error on curve 2 9.79× 10−6 0.00163 0.0297 0.00162 0.261
total error on curve 3 2.61× 10−7 0.327 0.0821 0.00563 0.0762

extrapolation error on curve 1 1.65× 10−5 0.00429 0.0215 0.000758 0.0278
extrapolation error on curve 2 1.41× 10−5 0.00324 0.0565 0.00323 0.518
extrapolation error on curve 3 2.67× 10−7 0.65 0.158 0.0112 0.151

validation error on curve 1 4.46× 10−6 2.59× 10−10 0.00129 2.76× 10−10 0.000532
validation error on curve 2 5.45× 10−6 1.08× 10−10 0.00265 2.87× 10−9 0.00177
validation error on curve 3 2.55× 10−7 2.94× 10−5 0.00518 3.75× 10−8 0.00106

test error on curve 1 6.95× 10−6 9.09× 10−12 0.000545 < 1× 10−12 0.000253
test error on curve 2 2.25× 10−7 < 1× 10−12 0.00127 < 1× 10−12 0.00344
test error on curve 3 8.8× 10−8 < 1× 10−12 0.00272 < 1× 10−12 0.00358

training error on curve 1 3.88× 10−6 3.57× 10−12 0.000254 < 1× 10−12 6.93× 10−5

training error on curve 2 1.26× 10−6 < 1× 10−12 0.000524 < 1× 10−12 8.6× 10−5

training error on curve 3 3.34× 10−7 7.14× 10−12 0.000905 < 1× 10−12 7.9× 10−5

Table S13: Functions generated in Generalization Experiment. Our functions are easier to calculate
and shorter than NGGP’s.

Name Model Equation

curve-1 Ours 0.503 + (117.088x)/(x2 + 14702)
NGGP cos(exp((0.49x log(0.028x+ 29.5/(0.039x+ 9.82))− 2.78)/(0.115x− 60.5)))

curve-2 Ours (6.08x+ 0.785)/(0.0639x2 + 615.179) + 0.50003
NGGP cos(2.95 exp(−0.68 exp(0.41 exp(5.5x exp(24.67/(115.6 exp((4.75x+ 13.3)/x) + 3.2))/(2x+ 214.3)))))

curve-3 Ours (x sin(371.57/(13928/x+ x)) + x)/(0.0024 + 2x)
NGGP cos(log(1 + 1.67 exp(−1.56/(exp(17.7 exp(exp((−12.9 + 4.95 log(x)/x)/x))/x)− 1.16 + 0.656/x))))

to the hyperbolic tangent (tanh). The training process encompasses 2000 rounds, initiated with a
learning rate of 0.01, which is subsequently reduced by a factor of 0.1 whenever the loss increases.

We used seven functions, the top three are odd functions, from easy to hard, then the next three are
even functions, and the last one is a non-odd non-even function.

We first tested the speed of both methods. The cubic spline method takes 0.216, 0.217, 0.219,
0.220, 0.226 milliseconds to run on 10, 100, 1000, 10000, and 100000 data points, respectively.
Correspondingly, MLP takes 3.28, 3.64, 8.97, 64.1, 549.7 seconds to run.

We then tested two loss equations for the corresponding functions, as shown in the Table S14, and the
loss functions are as follows: Lodd =

∑n
i=1(y(x)+y(−x))2/n, Leven =

∑n
i=1(y(x)−y(−x))2/n.

It can be seen in Figure S5 that if 10−4 of MSE is used as the cutoff for whether it is an odd/even
function or not, the amount of data required by MLP is about 100–1000 times more than that of the
spline.

H ABLATION EXPERIMENT RESULT

In this section, we provide more detailed information about the results obtained from the ablation
experiment on LiverMore benchmark. The full results of the ablation experiment can be found in
Table S15. This table presents a comprehensive overview of the performance of the model under
different ablation settings.

23

Published as a conference paper at ICLR 2024

odd-1 odd-2 odd-3 even-1 even-2 even-3
100

102

104

106

nu
m
be

r o
f d

at
a
ne

ed

Comparison of Parity Determination
spline
MLP

Figure S5: The parity determination performance test. We test the ability of parity determination of
two models by three odd functions and even functions from easy to hard. Compete Setting of this
experiment is shown in Table S14.

Table S14: The average loss results for the Parity Determination Experiment across 10 parallel runs
are presented in the table below. Each cell in the table contains two values: the upper value, situated
above the horizontal line, signifies the loss value of the MLP, while the lower value indicates the loss
of the cubic splines.

Name Equation Input Range 10 100 1000 10000 100000

odd-1 x
[−1, 1] 2.84×10−1

1.99×10−16
2.57×10−3

5.58×10−17
1.15×10−3

2.78×10−17
5.88×10−4

3.47×10−18
1.21×10−4

1.35×10−20

[−5, 5] 3.04×10−1

1.40×10−15
3.31×10−3

3.18×10−17
3.37×10−3

0.00×100
9.79×10−4

1.55×10−17
1.22×10−4

4.85×10−19

odd-2 x+ sinh(x) + x3 [−1, 1] 2.15×10−1

5.59×10−4
2.04×10−3

7.02×10−7
1.58×10−3

1.77×10−9
1.40×10−4

4.51×10−13
1.11×10−4

2.16×10−12

[−5, 5] 7.70×10−1

2.85×100
5.37×10−2

2.05×10−3
4.53×10−2

5.22×10−7
1.17×10−3

2.70×10−10
3.96×10−4

1.99×10−12

odd-3 x3 + x+ x5+ [−1, 1] 1.64×10−1

3.10×10−2
1.09×10−3

8.76×10−5
5.76×10−4

2.52×10−8
2.38×10−4

8.57×10−12
8.04×10−5

4.00×10−11

sin(x)× cosh(x) [−5, 5] 7.60×10−2

3.45×102
7.07×10−4

8.16×10−2
7.95×10−4

6.28×10−5
1.55×10−4

2.75×10−8
6.95×10−5

1.62×10−9

even-1 x2 [−1, 1] 2.60×10−1

2.64×10−14
4.33×10−3

5.11×10−15
7.44×10−4

3.01×10−15
1.59×10−4

1.78×10−13
8.76×10−5

7.81×10−13

[−5, 5] 1.85×10−1

1.33×10−13
2.13×10−3

2.73×10−13
6.02×10−4

1.38×10−13
3.53×10−4

1.20×10−12
2.22×10−4

1.95×10−11

even-2 x× sinh(x)
[−1, 1] 7.25×10−2

2.43×10−4
1.20×10−2

2.93×10−7
9.35×10−4

5.77×10−10
2.65×10−4

3.23×10−13
7.32×10−5

2.70×10−12

[−5, 5] 9.94×10−1

5.54×100
7.90×10−1

1.58×10−3
8.06×10−1

1.55×10−5
2.88×10−1

1.00×10−9
3.15×10−4

2.02×10−10

even-3 x4 + log(x2 + 1)+ [−1, 1] 1.09×10−1

3.68×10−2
2.61×10−3

7.85×10−6
1.52×10−3

1.53×10−8
3.09×10−4

3.20×10−12
1.48×10−4

6.55×10−12

cos(x)× exp(0.1x2) [−5, 5] 9.49×10−1

5.20×100
9.30×10−1

3.61×10−2
9.21×10−1

2.10×10−5
6.65×10−1

2.54×10−9
7.76×10−4

3.09×10−10

none x3 + log(x2 + 1)+ [−1, 1] 9.90×10−1

1.68×100
4.99×10−1

7.05×100
5.13×10−1

2.23×101
5.13×10−1

6.81×101
5.16×10−1

2.16×102

x7 + sinh(x) [−5, 5] 9.11×10−1

6.95×102
9.16×10−1

4.22×101
9.22×10−1

1.30×102
6.81×10−1

4.16×102
4.20×10−3

1.31×103

24

Published as a conference paper at ICLR 2024

Table S15: Average Recovery Rate (%) of the Ablation Experiment over 100 parallel runs

Name Equation Ours ModelA ModelB ModelC ModelD

Livermore-1 1/3 + x1 + sin(x1) 100 100 100 100 100
Livermore-2 sin(x2

1)cos(x1)− 2 100 100 100 6 100
Livermore-3 sin(x3

1)cos(x
2
1)− 1 55 20 0 0 55

Livermore-4 log(x1 + 1) + log(x2
1 + x1) + log(x1) 100 100 100 100 100

Livermore-5 x4
1 − x3

1 + x2
1 − x2 100 100 100 100 100

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 100 100 100 100 100

Livermore-7 sinh(x1) 100 100 100 100 10
Livermore-8 cosh(x1) 100 100 100 100 3
Livermore-9

∑9
i=1 x

i
1 100 83 100 88 100

Livermore-10 6sin(x1)cos(x2) 100 100 100 100 100
Livermore-11 (x2

1x
2
2)/(x1 + x2) 100 91 100 100 100

Livermore-12 x5
1/x

3
2 100 100 100 100 100

Livermore-13 x
1/3
1 100 100 100 67 100

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
1) 100 100 100 100 100

Livermore-15 x
1/5
1 100 100 100 97 100

Livermore-16 x
2/5
1 100 100 100 12 100

Livermore-17 4sin(x1)cos(x2) 100 100 100 100 100
Livermore-18 sin(x2

1)cos(x1)− 5 100 89 90 0 100
Livermore-19 x5

1 + x4
1 + x2

1 + x1 100 100 100 100 100
Livermore-20 exp(−x2

1) 100 100 100 100 100
Livermore-21

∑8
i=1 x

i
1 100 100 100 100 100

Livermore-22 exp(−0.5x2
1) 100 100 100 100 100

Average 97.95±4.0 94.68±7.2 95.00±8.9 80.45±15.6 89.45±11.9

25

	Introduction
	Background
	Method
	Expression Tree
	Reinforcement Learning Guided Search
	Modulated Sub-tree Discovery

	Results
	Basic Benchmarks
	SRBench Dataset
	Free-falling Balls Dataset

	Ablation Study
	Conclusion
	Model Setting
	Hyperparameters
	Expression constraint
	Genetic Programming
	Form Discovery

	Baseline Models
	Basic Benchmark Result
	Overall Result
	Nyugen Benchmark Result
	LiverMore Benchmark Result
	R Benchmark Result
	AIFeynman Benchmark Result
	Const-Optimization experiment
	Trade-off experiment

	SRbench Result
	Free-falling Balls Dataset Result
	Generalization Experiment Result
	Parity Determination Experiment
	Ablation Experiment Result

