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ABSTRACT

Understanding the fundamental mechanism behind the success of transformer net-
works is still an open problem in the deep learning literature. Although their
remarkable performance has been mostly attributed to the self-attention mecha-
nism, the literature still lacks a solid analysis of these networks and interpretation
of the functions learned by them. To this end, we study the training problem of
attention/transformer networks and introduce a novel convex analytic approach to
improve the understanding and optimization of these networks. Particularly, we
first introduce a convex alternative to the self-attention mechanism and reformu-
late the regularized training problem of transformer networks with our alternative
convex attention. Then, we cast the reformulation as a convex optimization prob-
lem that is interpretable and easier to optimize. Moreover, as a byproduct of our
convex analysis, we reveal an implicit regularization mechanism, which promotes
sparsity across tokens. Therefore, we not only improve the optimization of atten-
tion/transformer networks but also provide a solid theoretical understanding of the
functions learned by them. We also demonstrate the effectiveness of our theory
through several numerical experiments.

1 INTRODUCTION

Transformer networks proposed by Vaswani et al. (2017) have become a dominant architecture in
various tasks, especially Natural Language Processing (NLP) (Devlin et al., 2018; Radford et al.,
2019), due to their extraordinary generalization properties and high capacity to learn from vast
amount of data. Although there exists substantial empirical evidence on the effectiveness of trans-
former networks, revealing the underlying theoretical reasons behind their success is still an open
research problem due to their highly nonlinear and nonconvex structure.

A significant body of research focused on analyzing certain components of transformer networks
via empirical studies. As an example, Liu et al. (2021a); Vashishth et al. (2019); Dong et al. (2021);
Voita et al. (2019); Takase et al. (2022); Liu et al. (2021a) studied the impact of the attention mech-
anism on transformer networks. Although these studies agreed that attention is an essential com-
ponent of transformers, they also raised several issues regarding interpretability and optimization.
Particularly, Voita et al. (2019) demonstrated that most attention heads can be removed without af-
fecting the performance of the network, which is an indicator of large amount of redundancy in the
network. Vashishth et al. (2019) provided a set of empirical evidence showing that attention might
not be needed for some NLP tasks. Additionally, Dong et al. (2021) revealed that although atten-
tion is at the heart of transformer networks, training an attention network in the absence of Fully
Connected Network (FCN) layers and skip connections is extremely challenging since the network
output degenerates quickly without them. Similarly, Takase et al. (2022) discussed the importance
of layer normalization and skip connections for transformer networks so that even changing the po-
sition of these might considerably impact the performance of a transformer network. However, a
solid theoretical analysis of the underlying factors behind these issues is sill lacking, likely due to
the highly complex and nonconvex structure of transformer networks.

A series of papers also focused on designing new alternatives to the self-attention mechanism which
perform similarly and might provide further interpretations towards the overall model. One set of
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Figure 1: Summary of our main findings: We first propose an alternative to attention, i.e., taking the
convex combinations of tokens, and then convexifying whole transformer block (attention + Fully
Connected Network (FCN)) with this new attention mechanism. The equivalent convex formulation
also reveals a sparsity-inducing regularization across tokens as detailed in Theorem 1, 2, and 3.

work utilizes multi-layer perceptron based architectures, Tolstikhin et al. (2021); Tatsunami & Taki
(2021); Touvron et al. (2021); Liu et al. (2021b); Yu et al. (2021), while another set of of papers pro-
poses Fourier based models Lee-Thorp et al. (2021); Rao et al. (2021); Li et al. (2020); Guibas et al.
(2021). Others also proposed replacing the self-attention mechanism with matrix decomposition
Geng et al. (2021). Although these works successfully applied to certain applications, they lack any
solid theoretical analysis and understanding from an optimization perspective. Recently, Sahiner
et al. (2022) attempted to analyzed transformer networks via convex duality by completely chang-
ing structure of the self-attention mechanism and removing FC layers. Even then, they failed to
provide solid practical implications/benefits for transformers since their formulations are extremely
challenging and complex to be solved in practice.

Recently, another line of research has focused on understanding structures and patterns emerge
throughout the training of transformer networks (Power et al., 2022; Thilak et al., 2022; Barak et al.,
2022). In particular, the grokking phenomenon was first observed by Power et al. (2022) on specific
algorithmic tasks, such as modular division operations. Specifically, grokking refers to a sudden
transition of validation or test accuracy to perfect generalization and this generalization happens
well past the point of perfect training accuracy. This interesting behavior contradicts the common
practice of early stopping in the training of deep learning models and definitely requires further
understanding as to why this phenomenon emerges.

In order to remedy the issues associated with the standard transformer networks, in this paper, we
develop a convex optimization perspective to train, analyze and understand transformer networks.
Particularly, we first propose a convex alternative to the self-attention mechanism and then develop
our convex analytic framework on the resulting model as detailed in Figure 1.

1.1 CONTRIBUTIONS

Our contributions can be summarized as follows:

• We propose an alternative formulation to the standard self-attention mechanism and study the
regularized training problem of attention/transformer networks with it.

• We convexify the regularized training problem of attention/transformer networks with the pro-
posed attention layer as shown in Figure 1 and therefore enable finding a globally optimal solu-
tion without requiring any nonconvex optimization heuristic, e.g., layer normalization and skip
connections.

• We also apply our convex analytic framework to various architectures, e.g., networks with or
without an FCN layer. Thus, we are able to explain the impact of each component on the models
learned throughout training.

• We reveal an implicit regularization mechanism induced by our attention mechanism. We further
characterize this regularization as a sparsity-inducing factor across tokens.
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• We demonstrate the effectiveness of our convex reformulation via various experimental results.
We also show that our reformulation significantly mitigates the grokking phenomenon studied in
recent papers (Power et al., 2022; Thilak et al., 2022).

1.2 NOTATIONS

Table 1: Notations.

Notation Description

N # of sentences/samples
n # of tokens
d embedding dimension
h # of heads
c # of outputs

We use lowercase and uppercase bold letters to denote
vectors and matrices, respectively. We denote a certain
column/element of a vector or matrix using subscripts. As
an example, wjk denotes the jkth entry of the matrix W.
We use Ik to denote the identity matrix of size k×k and 0
(or 1) to denote a vector/matrix of zeros (or ones) with ap-
propriate sizes. We also use [n] for the set of integers rang-
ing from 1 to n. We represent the Euclidean and Frobe-
nius norms as ‖ · ‖2 and ‖ · ‖F , respectively. We also use
1[x ≥ 0] to denote the 0-1 valued indicator function. We provide more notations we use throughout
the paper in Table 1.

2 TRANSFORMER NETWORKS

Given a data sample (or sentence) X ∈ Rh×d as a sequence of h tokens with the embedding dimen-
sion d, we define the key, query, and value matrices as

Q = XWq, Wq ∈ Rd×d

K = XWk, Wk ∈ Rd×d

V = XWv, Wv ∈ Rd×d
,

which are the main components of the self-attention mechanism. Then, a single transformer block,
which is basically a stack of self attention, residual connection, layer normalization, and point-wise
feedforward connections, can be formulated as follows

As,j = softmax
(
QK>

)
V

Ao = AsWo, Wo ∈ Rd×d

XA = LayerNorm (Ao) + X

XB = σ (XAW1)W2

, (1)

where σ (·) denotes the activation function for the FCN layer. Although skip connections, layer
normalization and FCN also play a crucial role in a transformer block, the success of these networks
has been mostly attributed to the self-attention part, denoted as Ao (Vaswani et al., 2017). Therefore,
in the following section, we first study the training problem of a simplified transformer network, for
which the network output is directly Ao. We then extend our derivations to a transformer network
with FCN layers.

3 ATTENTION-ONLY NETWORKS

We first consider a simplified transformer network only with a self attention layer that maps input
sequence X ∈ Rn×d to the output sequence Ŷ ∈ Rn×c with c outputs as follows

Ŷ = softmax
(
XWqW

>
k X
>)XWvWo. (2)

We also call the model (2) as an attention-only network. This is a meaningful model and has been
applied to various tasks, including machine translation, language modeling, image captioning, and
object recognition (Vashishth et al., 2019).

We next consider a standard regression framework with an arbitrary convex loss function. Given a
training set {Xi,Yi}Ni=1, where Xi ∈ Rn×d and Yi ∈ Rn×c denote the input sequence and the
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labels/target outputs, respectively, the weight decay regularized training problem for the attention-
only network in (2) is as follows

min
Wq,Wk,Wv,Wo

N∑
i=1

L
(
softmax

(
XiWqW

>
k X
>
i

)
XWvWo,Yi

)
+
β

2

∑
#∈{q,k,v,o}

‖W#‖2F , (3)

where L (·) is an arbitrary convex loss function, including squared loss and cross entropy, and β > 0
is the regularization coefficient.

Although the attention-only model in (2) is quite powerful across various NLP tasks, e.g., natural
language inference, neural machine translation, and text classification (Vashishth et al., 2019), the
corresponding training problem in (3) is an extremely challenging optimization task and requires
various nonconvex optimization heuristics (Dong et al., 2021) to be adequately trained. To rem-
edy these issues, in the following sections, we first reformulate the training problem by replacing
the attention part with an alternative convex layer and then cast the reformulated training problem
as an interpretable convex optimization problem that enables the globally optimizing the network
parameters.

3.1 CONVEX ATTENTION LAYER

We first note that since the softmax (·) operation is highly nonlinear and nonconvex, the training
problem in (3) is a challenging nonconvex optimization problem. Therefore, one may not adequately
train attention networks and obtain trivial models at the end of training. For example, Dong et al.
(2021) shows that attention networks are likely to degenerate throughout the training and the output
converges to a rank-1 matrix. Thus, they fail to learn the underlying tasks.

To avoid the issues associated with the nonconvex formulation in (2), we first replace the softmax
operation with a simpler yet effective alternative. Particularly, since softmax converts the rows of
its input matrix to a probability distribution, it can be relaxed as a linear operation with unit simplex
constraints as follows

for any U ∈ Rn×n, ∃W ∈ ∆ s.t. softmax (U)X = WX,

where ∆ := {W ∈ Rn×n : wi ≥ 0,1>wi = 1,∀i ∈ [n]} denotes a convex set of constraints, also
termed as unit simplex constraints. Thus, we simplified and convexified the attention mechanism
without disturbing its structure. Based on this observation, (3) can be reformulated as follows

min
W1∈∆

W2∈Rd×d,W3∈Rd×c

N∑
i=1

L (W1XiW2W3,Yi) +
β

2

(
‖W2‖2F + ‖W3‖2F

)
. (4)

Note that the model above utilizes a single head attention model and, therefore, may not be practi-
cally relevant due to its insufficient expressive power. Thus, we introduce the concept of head to the
problem in (4) as follows

min
W1j∈∆

W2j∈Rd×d,W3j∈Rd×c

N∑
i=1

L

 h∑
j=1

W1jXiW2jW3j ,Yi

+
β

2

 h∑
j=1

‖W2j‖2F + ‖W3j‖2F

 .

(5)

Now, we are ready to apply the convex analytic tools to (5) as detailed in the next section.

3.2 CONVEX OPTIMIZATION FOR ATTENTION-ONLY NETWORKS

As a warm-up, let us consider the scalar output prediction problem where the targets are one-
dimensional, i.e., yi ∈ R. Then, (5) reduces to the following optimization problem

min
w1j∈∆

w2j∈Rd,w3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j , yi

+
β

2

h∑
j=1

(
‖w2j‖22 + (w3j)

2
)
. (6)

Next, we first apply a rescaling between the parameters w2j and w3j such that (6) can be described
as an `1 regularized optimization problem.
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Table 2: Number of parameters and FLOPs for the convex and nonconvex models. Here, we use the
following notations: n: # of tokens, d: embedding dimension, h: # of heads, and c: # of outputs.

Nonconvex Convex
Standard Alternative (Ours)

# of params FLOPs # of params FLOPs # of params FLOPs
Scalar output h(3d2 + d) O(n2dh) h(n+ d+ 1) O(nd) nd O(nd)
Multi output h(3d2 + dc) O(n2dh+ ndhc) h(n+ d+ c) O(nd+ c) ndc O(ndc)

Multi output with FCN h(3d2 + dc) O(n2dh+ ndhc) h(n+ d+ c) O(nd+ c) ndch O(ndch)

Lemma 1. The problem in (6) is equivalent to the following `1 regularized training problem

min
w1j∈∆

‖w2j‖2≤1,w3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j , yi

+ β ‖w3‖1 . (7)

Based on the equivalent formulation in Lemma 1, the next theorem introduces a convex optimization
problem that is equivalent to (6).
Theorem 1. The nonconvex optimization problem (6) can be equivalently cast as the following
convex optimization problem

min
Z∈Rn×d

1

2

N∑
i=1

L
(
trace

(
Z>Xi

)
, yi
)

+ β

n∑
k=1

‖zk‖2 . (8)

Note that the equivalent convex model in (8) requires a single parameter matrix Z ∈ Rn×d, where
each row is the attentions scores of the corresponding token. We also remark that the regularization
in (8), i.e., the sum of `2 norms of the rows of the parameter matrix Z, is a specific type of regular-
ization, also known as group `1 or Lasso, introduced by (Bakin et al., 1999) and shown to promote
group sparsity across parameters (Yuan & Lin, 2006). In our case, the group sparsity is across the
token index k. Therefore, one can interpret the model in (8) as a sparse linear model, where the
sparsity is across tokens. In other words, (8) can be explained as a model that tries to use as few
tokens as possible to fit the training labels {yi}Ni=1.

Unlike the nonnegative attention scores in (6), denoted as w1j ∈ ∆, the convex parameters Z ∈
Rn×d do not require any constraints. Therefore, one can directly apply standard training algorithms,
such as SGD and Adam, to train the convex problem (8). Moreover, an optimal set of parameters
for (6) can be recovered from a solution to (8) as proven in the following result.
Proposition 1. After solving the convex optimization problem in (8), one can recover an optimal
solution to the nonconvex optimization problem in (6), denoted as {w∗1j ,w∗2j , w∗3j}hj=1, as follows

w∗1j = ej , w
∗
2j =

zj√
‖zj‖2

, w∗3j =
√
‖zj‖2,∀j ∈ [h],

where ej ∈ Rn is the jth ordinary basis vector, zj ∈ Rd is the jth row of Z, and we assume that
there are h nonzero rows out of n rows of Z due to the sparsity-inducing regularization in (8).

Proposition 1 proves that there is a one-to-one mapping between the parameters of the nonconvex
formulation in (6) and the convex formulation in (8). Therefore, there is no need to solve the chal-
lenging nonconvex optimization problem (6) which also requires several optimization heuristics to
be adequately trained. Instead, one can solve the convex problem (8) and then use the mapping in
Proposition 1 to obtain an optimal solution to (6).

3.3 EXTENSION TO MULTIDIMENSIONAL OUTPUTS

In the previous section, we considered a setting with scalar target variables, i.e., yi ∈ R. How-
ever, for some problems, e.g., multiclass classification, target variables can be multidimensional.
Therefore, we now extend the analysis to the problems with multiple/vector outputs as follows

min
w1j∈∆

w2j∈Rd,w3j∈Rc

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j ,yi

+
β

2

h∑
j=1

(
‖w2j‖22 + ‖w3j‖21

)
, (9)
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where yi ∈ Rc and c denotes the number of outputs/classes. Note that here we put `21-norm on w3j

to enable our convex arguments but this does not impact performance of the network in practice.
Then, following the same derivations yields the convex program in the next result.
Theorem 2. The nonconvex optimization problem (9) is equivalent to the following convex opti-
mization problem

min
Zl∈Rn×d

N∑
i=1

c∑
l=1

L
(
trace

(
Z>l Xi

)
, yil
)

+ β

c∑
l=1

n∑
k=1

‖zlk‖2 . (10)

Theorem 2 shows that the equivalent convex model becomes separable over the output index l, i.e.,
instead of a single parameter matrix in (8), here we have c parameter matrices due to having c outputs
in the nonconvex model (9) (see Table 2 for details). This also illustrates that the number of outputs
in the network directly controls the overparameterization level of the equivalent convex formulation.

3.4 ATTENTION NETWORKS WITH FCN LAYERS

Although the model in (5) exhibits interesting properties in various applications (Dong et al., 2021),
it is basically a linear function of the token matrix X. Therefore, it is likely to suffer from inadequate
performance especially for some challenging problems in NLP. A series of papers (Dong et al., 2021;
Geva et al., 2021; Meng et al., 2022; Geva et al., 2022b;a) also confirmed the importance of FCNs
via extensive empirical evidence. Therefore, in this section, we include an FCN layer to our attention
only model in (5) and derive an equivalent convex formulation for this new model.

Here, we consider the following optimization problem

min
w1j∈∆

w2j ,w3j∈Rc

N∑
i=1

L

σ
 h∑
j=1

w>1jXiw2j

w3j ,yi

+
β

2

 h∑
j=1

‖w2j‖22 + ‖w3j‖21

 , (11)

where σ (·) is the activation function.
Theorem 3. The nonconvex optimization problem (11) with the gated ReLU activation is equivalent
the following convex optimization problem

min
Zjl∈Rn×d

N∑
i=1

c∑
l=1

L

 h∑
j=1

1ijtrace
(
Z>jlXi

)
, yil

+ β

c∑
l=1

h∑
j=1

n∑
k=1

‖zjlk‖2 , (12)

where 1ij := 1
{
u>1jXiu2j ≥ 0

}
denotes the indicator function for gated ReLU activation and here

{u1j ,u2j}hj=1 are fixed vectors that can be randomly selected.

Theorem 3 implies that introducing the activation function further increases in the overparameteri-
zation level of the equivalent convex formulation. Precisely, (12) has h times more parameters than
(10) as shown in Table 2.

4 NUMERICAL EXPERIMENTS

In this section, we present experimental results corroborating our theory in the previous sections.

Student-teacher setting with BERT: We first consider a student-teacher setting with the pretrained
BERT model in the Hugging Face repository, i.e., bert-base-uncased. Particularly, we feed
the samples from the mrpc subset of the glue dataset (Warstadt et al., 2018; Wang et al., 2019)
through the pretreained BERT model and save the input and output activations in a certain layer.
Then, we train the attention-only models, i.e., standard nonconvex self-attention (3), alternative
nonconvex attention (9), and convex (10), from scratch using these pre and post activations as our
training dataset. All the experiments throughout this section are performed using a single GPU on
Google Colab. We also use the same regularization coefficient β and optimizer, i.e., Adam, and tune
the learning rate and regularization coefficient by performing a grid search on a validation dataset
for both algorithms. However, notice that we do not use any nonconvex optimization heuristics, e.g.,
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Figure 2: Comparison of the convex and nonconvex models on the dataset extracted from pretrained
BERT architecture in a student-teacher setting. Here, include two non-convex models, specifically
standard self-attention model (Nonconvex-Standard) in (3) and alternative attention (Nonconvex-
Alternative) in (9). Our convex training approach achieves significantly lower objective value and
test error than the original nonconvex training.

(a) Ground truth (b) Nonconvex (c) Convex

Figure 3: Attention maps obtained by our convex and standard nonconvex training approaches as
well as the ground truth attention map in the BERT model. Here, we show that the nonconvex
training fails to learn the underlying patterns and simply achieves a uniform attention map. However,
our convex training approach outputs an attention map that is close to the ground truth map.

layer normalization and skip connections, for the convex model in all the experiments. In Figure 2,
we plot the objective values (i.e. training loss + regularization term) and test losses with respect to
time in seconds using the data extracted from the sixth layer of pretrained BERT model. We observe
that our convex training approach achieves almost an order of magnitude smaller objective value than
the standard nonconvex training, which is possibly stuck at a local minimum. This effectiveness in
training also translates into better generalization, i.e., our convex training approach obtains a lower
test loss than the standard nonconvex training. In order to understand the functions learned by each
models, we also analyzed the attention maps in Figure 3. Here, standard nonconvex training fails to
learn the underlying model and outputs a uniform attention map across token. However, our convex
training outputs an attention map that is quite similar to the ground truth attention map, and therefore
we successfully learn the structure in the training data. Hence, these experiments clearly illustrate
the effectiveness of our convex training approach in both training and testing.

Algorithmic datasets and Grokking: Inspired by the grokking phenomenon observed in Power
et al. (2022), we next validate the effectiveness of our convex training approach against standard
transformer networks with the self-attention mechanism in (1) on algorithmic datasets. Particularly,
we use the same setting in Power et al. (2022), and evaluate the performance on modular division
operations with mod 97 and mod 15, where we train the architectures till they reach 99% test
accuracy whenever possible. In Figure 4, we first replicate the results in Power et al. (2022) and
confirm that the grokking phenomenon indeed emerges here, i.e., the nonconvex curve (purple)
reaches 100% training accuracy at around 103 iterations in Figure 4a while it requires more than
105 iterations to reach perfect generalization in Figure 4b. We also compare the nonconvex and
convex training approaches. Here, we show that our convex training approach converges to the
perfect generalization accuracy 10× faster than the nonconvex one in Figure 4b. Moreover, the
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Figure 4: Comparison of the convex and nonconvex models on the modular division operation
mod 97. Here, we train the networks to reach 99% test accuracy and show that our convex training
approach exhibits a significantly faster convergence and lower test loss than the nonconvex training.
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Figure 5: Comparison of one- and two-layer transformer networks on the modular division task
mod 97, where L denotes the number of layers in each model. We observe that introducing one
more layer substantially improves the convergence speed of our convex formulation while it fails to
make a noticeable impact on the nonconvex formulation.

convex model also yield significantly lower test loss in Figure 4c, which implies that it has higher
confidence in test predictions and therefore more robust than standard nonconvex training.

We remark that in the previous section, we theoretically analyze only single attention/transformer
blocks. However, since the benign impact of depth or number of layers (denoted as L) has already
been empirically proven in the deep learning literature, we also propose an extension of our convex
model to deeper settings. We basically stack the convex transformer layers in (12) to obtain an arbi-
trarily deep network. In Figure 5, we compare the performance of two-layer transformer networks
with one-layer networks. Here, we observe that while adding one more layer results in significant
improvements for the convex model, especially in terms of optimization speed, it fails to make any
discernible difference for the nonconvex model. Moreover, we run the algorithms on the mod 15
operation which is basically more challenging task due to smaller number of samples. In this case,
one-layer models are not able learn the underlying task perfectly as demonstrated in Figure 6 but
our convex model is significantly better in terms of both test accuracy and test loss. By increasing
the number of layers to four, we enable both models to achieve perfect generalization accuracy. Our
deep model reaches this level much faster and also yields lower test loss than the nonconvex model.

We next empirically analyze the grokking phenomenon on both our convex and standard nonconvex
models. For this purpose, we plot the number of iterations to reach 99% test accuracy for each of our
experiments in Figure 7a. Notice that here we do not include the one-layer results for the mod 15
case, since both models fail to achieve perfect generalization in that case. Figure 7a clearly shows
that our convex training approach converges to the 99% accuracy level substantially faster than the
standard nonconvex training. Therefore, we also mitigate the impact of the grokking phenomenon
as demonstrated in Figure 7b, where we quantify the amount of grokking in terms of the number
of iterations. Based on this experiment, we also conjecture that the grokking phenomenon can be
mostly attributed to the highly nonlinear and nonconvex structure of standard transformer models.
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Figure 6: Comparison of one- and four-layer transformer networks on the modular division task
mod 15. Here, one-layer networks fail to achieve 99% test accuracy however our convex training
approach (light green) still generalizes better than the nonconvex training (light purple). We also
show that perfect generalization in terms of accuracy can be achieved with four-layer networks.
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Figure 7: Amount of grokking in terms of # of iterations required by our convex and standard
nonconvex training approaches, where p and L denote the coefficient for the modular division and
the number of layers, respectively. Here, we do not include the one-layer results in Figure 6 since
both algorithms fail to achieve 99% test accuracy. We demonstrate that the impact of grokking is
substantially mitigated with our convex training approach.

5 CONCLUSION

In this paper, we studied the regularized training problem of attention/transformer networks and
developed a convex analytic framework to train these networks. Particularly, we first proposed a
convex alternative to the self-attention mechanism and then reformulated the training problem with
this alternative attention mechanism as convex optimization problems. Thanks to our convex refor-
mulation, we globally optimize the network parameters without requiring any kind of nonconvex
optimization heuristics. In addition, the functions learned by our reformulation is transparent and
interpretable. More importantly, the reformulated problem reveals a sparsity-inducing regularization
mechanism across tokens in the data, which also sheds more light on the structure of the resulting
function and its generalization properties. We then empirically verified effectiveness of our convex
training approach over standard nonconvex training via several numerical experiments.

We also note that analyzing transformer networks through the lens of convex optimization theory is
extremely crucial since it may result in substantial improvements in the understanding and optimiza-
tion of these networks. However, it is also quite challenging due to the inherent nonconvex structure
of the network model. To the best of our knowledge, this paper is the first step in this direction
and therefore has some limitations which can hopefully be eliminated by future work. Specifically,
in this paper, we mainly focused on the theory side of convex analysis and empirically validated
the theory on a few small-scale problem instances. We hope that a comprehensive and large-scale
empirical verification of our theory will be conducted by the follow-up papers.

9
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A PROOFS OF THE RESULTS IN THE MAIN PAPER

A.1 PROOF OF LEMMA 1

We first note that similar scaling techniques were previously studied in several papers, e.g., Lemma
1 of Ergen & Pilanci (2021), Theorem 1 of Neyshabur et al. (2014), Section 2 of Savarese et al.
(2019), equation (2-3) of Pilanci & Ergen (2020).

We start with restating the optimization problem as follows

min
w1j∈∆

w2j∈Rd,w3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j , yi

+
β

2

h∑
j=1

(
‖w2j‖22 + (w3j)

2
)
, (13)

We first apply the following scaling for {w2j , w3j}mj=1

w̄2j := αjw2j , w̄3j :=
w3j

αj
. (14)

where αj > 0. Since this scaling doesn’t change the output of the network, i.e.,
h∑
j=1

w>1jXiw̄2jw̄3j =
h∑
j=1

w>1jXiw2jw3j ,

the training loss part of the objective function stays the same. Thus, we can directly search for the
optimal scaling parameter αj > 0 by minimizing the regularization term via the following AM-GM
inequality
h∑
j=1

(
‖w̄2j‖22 + (w̄3j)

2
)

=

h∑
j=1

(
α2
j ‖w2j‖22 +

(w3j)
2

α2
j

)
≥ 2

h∑
j=1

(
‖w2j‖2 |w3j |

)
= 2

h∑
j=1

(
‖w̄2j‖2 |w̄3j |

)
where the equality is achieved when αj =

√
|w3j |
‖w2j‖2

. Thus, we obtain a reformulation of (13) where
the regularization term is in a multiplicative form as follows

min
w1j∈∆

w2j∈Rd,w3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j , yi

+ β

h∑
j=1

‖w2j‖2 |w3j |. (15)

Next, we apply a variable change to the reformulation in (15) as follows

w′2j :=
w2j

‖w2j‖2
, w′3j := w3j ‖w2j‖2 .

13
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With this variable change, we rewrite (15) as

min
w1j∈∆

w′2j :‖w′2j‖2=1

w′3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw
′
2jw
′
3j , yi

+ β

h∑
j=1

|w′3j |. (16)

This concludes the proof and yields the following equivalent formulation of (16)

min
w1j∈∆

w′2j :‖w′2j‖2=1

w′3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw
′
2jw
′
3j , yi

+ β ‖w′3‖1 .

We also note that the equality constraint
∥∥w′2j∥∥2

= 1 can be relaxed as
∥∥w′2j∥∥2

≤ 1 due to the
optimality conditions arising from the regularization term ‖w′3‖1.

A.2 PROOF OF PROPOSITION 1

We first note that in order to maintain strong duality in our convex problem derivations, we basically
use the arguments in Pilanci & Ergen (2020); Rosset et al. (2007b), where the authors proved that
as long as h exceeds a certain threshold h∗, then there will be sparsity in the solution due to the
sparsity-inducing regularization in (7). And we have the following upperbound h∗ ≤ N + 1. Note
that this N + 1 upperbound is the worst case scenario and h∗ � N + 1 in practice as validated in
Pilanci & Ergen (2020). Thus, below, we assume that there is a sparsity pattern in the solution.

Given an optimal solution to (8), denoted as Z∗ ∈ Rn×d, we first rewrite this solution as a summation
of rank-1 matrices as follows

Z∗ =

h∑
j=1

ejz
>
j =

h∑
j=1

ej
z>j√
‖zj‖2

√
‖zj‖2

where ej ∈ Rn is the jth ordinary basis vector and we assume that there are h nonzero rows out of
n rows of Z due to the sparsity-inducing regularization in (8). Then, this implies that the output of
the optimal can be equivalently formulated as follows

trace
(
Z∗
>
Xi

)
=

h∑
j=1

e>j Xi
zj√
‖zj‖2

√
‖zj‖2

=

h∑
j=1

w∗
>

1j Xiw
∗
2jw
∗
3j

=⇒ w∗1j = ej , w
∗
2j =

zj√
‖zj‖2

, w∗3j =
√
‖zj‖2,

where {w∗1j ,w∗2j , w∗3j}hj=1 denotes an optimal solution to (6).

Next, we show that both of these solution sets achieve the same objective value

f
(
{Xi, yi}Ni=1

)
:=

N∑
i=1

L

 h∑
j=1

w∗
>

1j Xiw
∗
2jw
∗
3j , yi

+
β

2

h∑
j=1

(∥∥w∗2j∥∥2

2
+
(
w∗3j
)2)

=

N∑
i=1

L

 h∑
j=1

e>j Xi
zj√
‖zj‖2

√
‖zj‖2, yi

+
β

2

h∑
j=1

∥∥∥∥∥ zj√
‖zj‖2

∥∥∥∥∥
2

2

+
(√
‖zj‖2

)2


=

N∑
i=1

L

 h∑
j=1

e>j Xizj , yi

+
β

2

h∑
j=1

(
‖zj‖2 + ‖zj‖2

)

=

N∑
i=1

L

 h∑
j=1

trace
(
zje
>
j Xi

)
, yi

+ β

h∑
j=1

‖zj‖2

=

N∑
i=1

L
(

trace
(
Z∗
>
Xi

)
, yi

)
+ β

n∑
k=1

‖zk‖2 , (17)
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where the last inequality follows from the fact that there are h nonzero rows out of n rows of Z
due to the sparsity-inducing regularization in (8). Note that (17) and (8) are the same objectives
evaluated at Z∗, which concludes the proof.

Extension to multidimensional outputs in Section 3.3: Here we show that the proof above can
be straightforwardly extended to the multidimensional output case in Section 3.3.

Given an optimal solution to (10), denoted as Z∗l ∈ Rn×d, we first rewrite this solution as a summa-
tion of rank-1 matrices as follows

Z∗l =

h∑
k=1

elkz
>
lk =

h∑
k=1

elk
z>lk√
‖zlk‖2

√
‖zlk‖2.

Then, this implies that the output of the optimal can be equivalently formulated as follows

trace
(
Z∗
>

l Xi

)
=

h∑
k=1

e>lkXi
zlk√
‖zlk‖2

√
‖zlk‖2 =⇒ w∗1j = elk, w

∗
2j =

zlk√
‖zlk‖2

, w∗3j = el

√
‖zlk‖2,

where {w∗1j ,w∗2j ,w∗3j}hcj=1 denotes an optimal solution to (9). Note that here index j ∈ [hc] instead
of j ∈ [h] in the scalar output case.

A.3 PROOF OF THEOREM 1

We first provide a summary of our proof strategy. For the derivations of the convex formulation, we
basically need to find the bidual form of (6), i.e., the dual of the dual problem. Thus, we start with
taking the dual of (6). To avoid nonconvexity in the dual problem, we reformulate the dual constraint,
which makes the problem nonconvex, as a convex constraint. Therefore, we obtain a convex dual
problem. Then, we take the dual of the dual problem to get the bidual formulation of (6). Since we
convexify the dual problem, the bidual formulation is also a convex problem. Therefore, we achieve
an equivalent convex formulation of the original nonconvex training problem (6). We also note that
a similar proof strategy was also used in Pilanci & Ergen (2020).

In order to take the dual of (7) (i.e. restated below for the convenience of the reader) we need to
form the Lagrangian function for the following optimization problem

min
w1j∈∆

‖w2j‖2≤1,w3j∈R

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j , yi

+ β ‖w3‖1 .

To construct the Lagrangian function, we first introduce an additional variable ŷ ∈ RN as follows

min
ŷ∈RN ,w1j∈∆
‖w2j‖2≤1,w3j∈R

N∑
i=1

L (ŷi, yi) + β ‖w3‖1 s.t. ŷi =

h∑
j=1

w>1jXiw2jw3j , ∀i ∈ [n]. (18)

Now we can form the Lagrangian for (18) as

L(v,y,w3) :=

N∑
i=1

L (ŷi, yi) + β ‖w3‖1 +

N∑
i=1

vi

ŷi − h∑
j=1

w>1jXiw2jw3j


=

N∑
i=1

L (ŷi, yi) +

N∑
i=1

viŷi + β ‖w3‖1 −
N∑
i=1

vi

h∑
j=1

w>1jXiw2jw3j

=

N∑
i=1

L (ŷi, yi) +

N∑
i=1

viŷi + β ‖w3‖1 −
h∑
j=1

N∑
i=1

viw
>
1jXiw2jw3j

Minimizing the Lagrangian L(·) yields the following dual problem of (6)

max
v∈RN

−L∗ (v,y) s.t. max
w1∈∆,‖w2‖2≤1

∣∣∣∣∣
N∑
i=1

viw
>
1 Xiw2

∣∣∣∣∣ ≤ β, (19)
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where L∗ (·) denotes the Fenchel congregate function of the original loss function L (·) (Boyd &
Vandenberghe, 2004), which is defined as follows

L∗ (v,y) := max
z∈RN

z>v − L (z,y) .

In order to convexify the dual constraint, we next find the maximizers of the dual constraint as
follows

max
w1∈∆,‖w2‖2≤1

∣∣∣∣∣
N∑
i=1

viw
>
1 Xiw2

∣∣∣∣∣ = max
w1∈∆

∥∥∥∥∥
N∑
i=1

viw
>
1 Xi

∥∥∥∥∥
2

= max
w1∈∆

∥∥∥∥∥
N∑
i=1

n∑
k=1

viw1kxik

∥∥∥∥∥
2

≤ max
w1∈∆

n∑
k=1

w1k

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

= max
k∈[n]

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

, (20)

where the upperbound is achieved when each w1 has is a vector of zeros except a single one located
at the index of maximum norm of weighted tokens.

Based on the observation in (20), we can equivalently write the dual problem in (19) as follows

d∗ = max
v∈RN

−L∗ (v,y) s.t. max
k∈[h]

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

≤ β

= max
v∈RN

−L∗ (v,y) s.t.

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

≤ β,∀k ∈ [n]. (21)

Next, we form the Lagrangian for the dual problem (21)

L(v,y,λ) := −L∗ (v,y) +

n∑
k=1

λk

(
β −

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

)
and the corresponding optimization problem can be written in terms of the Lagrangian as

min
λ≥0

max
v∈RN

L(v,y,λ) = −1

2
‖v − y‖22 +

1

2
‖y‖22 +

n∑
k=1

λk

(
β −

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

)
.

Then, we introduce additional variables rk ∈ Rd to equivalently formulate the optimization problem
above as

min
λ≥0

max
v∈Rn

min
rk:‖rk‖2≤1

−L∗ (v,y) +

n∑
k=1

λk

(
β − r>k

N∑
i=1

vixik

)
.

Due to Sion’s minimax theorem (Sion, 1958), we can change the order the minimization and maxi-
mization to obtain closed-form solutions for the maximization over the dual variable v. This yields
the following problem

min
λ≥0

min
rk:‖rk‖2≤1

N∑
i=1

L

(
n∑
k=1

λkr
>
k xik, yi

)
+ β

n∑
k=1

λk.

Next, we apply a variable change as zk := λkrk, then the problem above reduces to

min
zk:‖zk‖2≤λk

N∑
i=1

L

(
n∑
k=1

z>k xik, yi

)
2 + β

n∑
k=1

λk.
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From the KKT conditions, we now that λk = ‖zk‖2 at a global optimum. In particular, if λk >
‖zk‖2, then one can further minimize the objective function by reducing the λk and therefore λk
would not be optimal. With this, the problem can be reformulated as

min
zk

N∑
i=1

L

(
n∑
k=1

z>k xik, yi

)
+ β

n∑
k=1

‖zk‖2 ,

which is the same formulation with (8) and therefore concludes the proof.

A.4 STRONG DUALITY PROOF

To get the bidual of (7), we first utilize semi-infinite duality theory as follows. We first compute the
dual of (21) with respect to the dual parameter v to have

p∗∞ := min
µ

N∑
i=1

L

∫
w1j∈∆
‖w2j‖2≤1

w>1jXiw2jdµ(W1,w2), yi

+ β‖µ‖TV , (22)

where ‖µ‖TV represents the total variation norm of the signed measure µ. Remark that (22) is an
infinite-dimensional dimensional training problem such as the ones in Bach (2017). Also, notice that
this problem is convex withe respect to the linear measure µ (Bach, 2017). Therefore, strong duality
holds, i.e., d∗ = p∗∞ where d∗ denotes the objective value of (21). In addition to this, although (22)
is an infinite-dimensional problem, it has at mostN+1 heads at the optimum due to Caratheodory’s
theorem (Rosset et al., 2007a). Therefore, (22) is equivalent to the following problem

p∗∞ = min
w1j∈∆
‖w2j‖2≤1

N∑
i=1

L

 h∗∑
j=1

w>1jXiw2jw3j , yi

+ β‖w3‖1 (23)

where h∗ ≤ N + 1. We note that that provided that h ≥ h∗, (23) and (7) are the same problems,
which proves strong duality, i.e., p∗ = p∗∞ = d∗, where p∗ denotes the objective value of (7).

A.5 PROOF OF THEOREM 2

We first apply the scaling technique in Lemma 1 for {w2j ,w3j}mj=1

w̄2j := αjw2j , w̄3j :=
w3j

αj
.

Then, following the same steps in Lemma 1, (9) can be equivalently formulated as

min
w1j∈∆

w2j :‖w2j‖2≤1
w3j∈Rc

N∑
i=1

L

 h∑
j=1

w>1jXiw2jw3j ,yi

+
β

2

h∑
j=1

‖w3j‖1 . (24)

Next, we again construct the Lagrangian function by introducing an additional variable ŷi ∈
Rc,∀i ∈ [N ] as follows

min
ŷi∈Rc,w1j∈∆
‖w2j‖2≤1,w3j∈R

N∑
i=1

L (ŷi,yi) + β

h∑
j=1

‖w3j‖1 s.t. ŷi =

h∑
j=1

w>1jXiw2jw3j , ∀i ∈ [N ]. (25)

Now we can form the Lagrangian for (25) as

L
(
{vi}Ni=1 ,y, {w3j}hj=1

)
:=

N∑
i=1

L (ŷi,yi) + β

h∑
j=1

‖w3j‖1 +

N∑
i=1

v>i

ŷi −
h∑
j=1

w>1jXiw2jw3j


=

N∑
i=1

L (ŷi,yi) +

N∑
i=1

v>i ŷi + β

h∑
j=1

‖w3j‖1 −
N∑
i=1

v>i

h∑
j=1

w>1jXiw2jw3j

=

N∑
i=1

L (ŷi,yi) +

N∑
i=1

v>i ŷi + β

h∑
j=1

‖w3j‖1 −
h∑
j=1

N∑
i=1

w>1jXiw2jv
>
i w3j
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Minimizing the Lagrangian L(·) yields the following dual problem of (9)

max
vi∈Rc

−L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
s.t. max

w1∈∆,‖w2‖2≤1

∥∥∥∥∥
N∑
i=1

viw
>
1 Xiw2

∥∥∥∥∥
∞

≤ β, (26)

where L∗ (·) denotes the Fenchel congregate function of the original loss function L (·) (Boyd &
Vandenberghe, 2004), which is defined as follows

L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
:= max

Z∈RN×c
trace

(
Z>V

)
− L (Z,Y) ,

where V,Y ∈ RN×c are the matrix representations for the set of variables {vi,yi}Ni=1. In order to
characterize the optimal layer weight explicitly, we next find the maximizers of the dual constraint
as follows

max
w1∈∆,‖w2‖2≤1

∥∥∥∥∥
N∑
i=1

viw
>
1 Xiw2

∥∥∥∥∥
∞

= max
w1∈∆

max
l∈[c]

∥∥∥∥∥
N∑
i=1

vilw
>
1 Xi

∥∥∥∥∥
2

= max
w1∈∆

max
l∈[c]

∥∥∥∥∥
N∑
i=1

n∑
k=1

vilw1kxik

∥∥∥∥∥
2

≤ max
w1∈∆

max
l∈[c]

n∑
k=1

w1k

∥∥∥∥∥
N∑
i=1

vixik

∥∥∥∥∥
2

= max
l∈[c]

max
k∈[n]

∥∥∥∥∥
N∑
i=1

vilxik

∥∥∥∥∥
2

, (27)

where the upperbound is achieved when each w1 has is a vector of zeros except a single one located
at the index of maximum norm of weighted tokens.

Based on the observation in (27), we can equivalently write the dual problem in (26) as follows

max
v∈RN

−L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
s.t.

∥∥∥∥∥
N∑
i=1

vilxik

∥∥∥∥∥
2

≤ β,∀k ∈ [n],∀l ∈ [c]. (28)

Then directly following the steps in the proof of Theorem 1 yields the following convex optimization
problem

min
Zl∈Rn×d

N∑
i=1

c∑
l=1

L
(
trace

(
Z>l Xi

)
, yil
)

+ β

c∑
l=1

n∑
k=1

‖zlk‖2 .

A.6 PROOF OF THEOREM 3

We first apply the scaling technique in Lemma 1 for {w2j ,w3j}mj=1

w̄2j := αjw2j , w̄3j :=
w3j

αj
.

Then, following the same steps in Lemma 1, (11) can be equivalently formulated as

min
w1j∈∆

w2j :‖w2j‖2≤1
w3j∈Rc

N∑
i=1

L

 h∑
j=1

σ
(
w>1jXiw2j

)
w3j ,yi

+
β

2

h∑
j=1

‖w3j‖1 . (29)

Next, we again construct the Lagrangian function by introducing an additional variable ŷi ∈
Rc,∀i ∈ [N ] as follows

min
ŷi∈Rc,w1j∈∆
‖w2j‖2≤1,w3j∈R

N∑
i=1

L (ŷi,yi) + β

h∑
j=1

‖w3j‖1 s.t. ŷi =

h∑
j=1

σ
(
w>1jXiw2j

)
w3j , ∀i ∈ [N ].

(30)
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Now we can form the Lagrangian for (30) as

L
(
{vi}Ni=1 ,y, {w3j}hj=1

)
:=

N∑
i=1

L (ŷi,yi) + β

h∑
j=1

‖w3j‖1 +

N∑
i=1

v>i

ŷi −
h∑
j=1

σ
(
w>1jXiw2j

)
w3j


=

N∑
i=1

L (ŷi,yi) +

N∑
i=1

v>i ŷi + β

h∑
j=1

‖w3j‖1 −
N∑
i=1

v>i

h∑
j=1

σ
(
w>1jXiw2j

)
w3j

=

N∑
i=1

L (ŷi,yi) +

N∑
i=1

v>i ŷi + β

h∑
j=1

‖w3j‖1 −
h∑
j=1

N∑
i=1

σ
(
w>1jXiw2j

)
v>i w3j

Minimizing the Lagrangian L(·) yields the following dual problem of (11)

max
vi∈Rc

−L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
s.t. max

w1j∈∆,‖w2j‖2≤1

∥∥∥∥∥
N∑
i=1

viσ
(
w>1jXiw2j

)∥∥∥∥∥
∞

≤ β,∀j ∈ [h],

(31)
where L∗ (·) denotes the Fenchel congregate function of the original loss function L (·) (Boyd &
Vandenberghe, 2004), which is defined as follows

L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
:= max

Z∈RN×c
trace

(
Z>V

)
− L (Z,Y) ,

where V,Y ∈ RN×c are the matrix representations for the set of variables {vi,yi}Ni=1.

We next note that we utilize the gated ReLU nonlinearity introduced in Mishkin et al. (2022). Thus,
the activations σ

(
w>1jXiw2j

)
can be expressed as

σ
(
w>1jXiw2j

)
:= 1ijw

>
1jXiw2j ,

where 1ij := 1
{
u>1jXiu2j ≥ 0

}
and here {u1j ,u2j}hj=1 are fixed vectors that can be randomly

selected. For instance, a common choice is u1j ∼ N (0, In) and u2j ∼ N (0, Id). For the rest of the
derivations, we use this equivalent formulation of the activation function.

In order to characterize the optimal layer weight explicitly, we next find the maximizers of the dual
constraint as follows

max
j∈[h]

max
w1j∈∆,‖w2j‖2≤1

∥∥∥∥∥
N∑
i=1

viσ
(
w>1jXiw2j

)∥∥∥∥∥
∞

= max
j∈[h]

max
l∈[c]

max
w1j∈∆

∥∥∥∥∥
N∑
i=1

vil1ijw
>
1jXi

∥∥∥∥∥
2

= max
j∈[h]

max
w1j∈∆

max
l∈[c]

∥∥∥∥∥
N∑
i=1

n∑
k=1

vil1ijw1jkxik

∥∥∥∥∥
2

≤ max
j∈[h]

max
w1j∈∆

max
l∈[c]

n∑
k=1

w1jk

∥∥∥∥∥
N∑
i=1

vi1ijxik

∥∥∥∥∥
2

= max
j∈[h]

max
l∈[c]

max
k∈[n]

∥∥∥∥∥
N∑
i=1

vil1ijxik

∥∥∥∥∥
2

, (32)

where the upperbound is achieved when each w1j has is a vector of zeros except a single one located
at the index of maximum norm of weighted tokens.

Based on the observation in (32), we can equivalently write the dual problem in (31) as follows

max
v∈RN

−L∗
(
{vi}Ni=1 , {yi}

N
i=1

)
s.t.

∥∥∥∥∥
N∑
i=1

vil1ijxik

∥∥∥∥∥
2

≤ β,∀k ∈ [n],∀l ∈ [c],∀j ∈ [h]. (33)

Then directly following the steps in the proof of Theorem 2 yields the following convex optimization
problem

min
Zjl∈Rn×d

N∑
i=1

c∑
l=1

L

 h∑
j=1

1ijtrace
(
Z>jlXi

)
, yil

+ β

c∑
l=1

h∑
j=1

n∑
k=1

‖zjlk‖2 .
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A.7 MATRIX TARGETS

We now consider the following vector output attention based model training problem, where the
targets are vectors, i.e., Yi ∈ Rn×c,

min
W1j∈∆

W2j∈Rd×c,w3j∈R

1

2

N∑
i=1

∥∥∥∥∥∥
h∑
j=1

W1jXiW2jw3j −Yi

∥∥∥∥∥∥
2

F

+
β

2

h∑
j=1

(
‖W2j‖21 + (w3j)

2
)
. (34)

Then the corresponding dual problem is as follows

max
vi∈Rn×c

1

2

N∑
i=1

(
−‖Vi −Yi‖2F + ‖Yi‖2F

)
s.t. max

W1∈∆,‖W2‖2≤1

∣∣∣∣∣trace

(
N∑
i=1

V>i W1XiW2

)∣∣∣∣∣ ≤ β.
(35)

In order to characterize the optimal layer weight explicitly, we next find the maximizers of the dual
constraint as follows

max
W1∈∆,‖W2‖2≤1

∣∣∣∣∣trace

(
N∑
i=1

V>i W1XiW2

)∣∣∣∣∣ = max
W1∈∆

∥∥∥∥∥
N∑
i=1

v>i W1Xi

∥∥∥∥∥
∞

= max
l∈[c]

max
j∈[d]

max
W1∈∆

∣∣∣∣∣
N∑
i=1

v>ilW1xij

∣∣∣∣∣ (36)

Based on the equivalent formulation in (36), the dual problem in (35) can be equivalently written as

max
Vi∈Rn×c

1

2

N∑
i=1

(
−‖V −Y‖2F + ‖Y‖2F

)
s.t. max

W1∈∆

∣∣∣∣∣
N∑
i=1

v>ilW1xij

∣∣∣∣∣ ≤ β, ∀j ∈ [d], ∀l ∈ [c].

(37)

The rest of the derivations directly follows from the proof of Theorem 2 and yields the following
result.
Theorem A.1. Based on the characterization of the dual constraint in (36), the non-convex opti-
mization problem (34) can be equivalently cast as the following convex optimization problem

min
Z

(1)
jl ,Z

(2)
jl ∈R

n×n
+

1

2

N∑
i=1

c∑
l=1

∥∥∥∥∥∥
d∑
j=1

(
Z

(1)
jl − Z

(2)
jl

)
xij − yil

∥∥∥∥∥∥
2

2

+ β

c∑
l=1

d∑
j=1

(∥∥∥Z(1)
jl

∥∥∥
1,∞

+
∥∥∥Z(2)

jl

∥∥∥
1,∞

)
.

(38)

Remark A.2. Instead of the non-convex formulation in (34), we can also start from the following
formulation in this setting

min
W1j∈∆

w2j∈Rd,w3j∈Rc

1

2

N∑
i=1

∥∥∥∥∥∥
h∑
j=1

W1jXiw2jw
>
3j −Yi

∥∥∥∥∥∥
2

F

+
β

2

h∑
j=1

(
‖w2j‖21 + ‖w3j‖21

)
, (39)

which also yields the convex formulation in (38).
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