
Understanding Exploration in Bandits with Switching
Constraints: A Batched Approach in Fixed-Confidence

Pure Exploration

Newton Mwai
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-41296 Gothenburg, Sweden

mwai@chalmers.se

Milad Malekipirbazari ∗

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

SE-41296 Gothenburg, Sweden
milad.maleki@gmail.com

Fredrik D. Johansson
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-41296 Gothenburg, Sweden

frejohk@chalmers.se

Abstract

Most multi-armed bandit algorithms focus on efficient exploration, often oblivious
to constraints tied to exploration like the cost of switching between arms. Switching
costs arise in real-world applications such as personalized medicine, in which
changes in treatment may require a wash-out period where the patient is not taking
any drug; or in industrial applications where reconfiguring production is costly.
Unfortunately, controlling for switching is significantly understudied outside of
regret minimization. In this work, we present a formulation of the fixed-confidence
pure exploration problem with constraints on the arm switching frequency. We
show how this problem lends itself to batched bandits and give a lower bound
on the exploration time for any such algorithm. We translate this idea into two
algorithms inspired by the track-and-stop framework, adapted to batch plays with
a limited number of arm switches per batch. Finally, we demonstrate empirically
that our approach achieves quick stopping times, comparable to unconstrained
algorithms, even when constrained to a minimal switching limit.

1 Introduction

However, many applications come with costs tied to switching actions, and decision-making agents
are incentivized to use the same action repeatedly. For example, in healthcare settings such as in
clinical trials [4] and treatment personalisation for chronic diseases [16], switching treatments has
costs for the patient: every time a treatment is changed, the patient has to weave off their current

∗Work conducted during a postdoctoral affiliation at Chalmers University of Technology.

18th European Workshop on Reinforcement Learning (EWRL 2025).

therapy and get used to the new treatment and its potential side effects. In the personalization of web
pages or apps, switching content or interface frequently may be inconveniencing or annoying to users,
and in industrial applications, switching actions could mean high costs of reconfiguring production
setups. It is therefore desirable to limit the frequency of arm switches, even if they make exploration
more efficient.

In the multi-armed bandit (MAB) problem, an agent sequentially samples actions from a set of
unknown distributions, and it aims to sample (explore) them in a manner that helps it to learn
about the underlying distributions; either quickly, or with high confidence given an exploration
budget (pure exploration) [5, 12, 9], or in order to minimize the cumulative cost of choosing sub-
optimal actions (regret minimization) [23, 10, 19, 20]. Switching in multi-armed bandits has been
extensively studied in the regret minimization setting, [3, 7, 22, 2, 21] but it is less studied for pure
exploration, possibly because satisfying fixed-confidence correctness is difficult while minimizing
the total number of switches. Several works on regret minimization with switching costs use ideas
around batching the action selection in time. Although there are works on batched bandits for pure
exploration [15, 1, 17, 6], the area is still relatively under-explored.

Main contributions. 1) We propose a formulation of the fixed-confidence pure exploration problem
with a constraint on the frequency of arm switching (Section 2). 2) We provide a lower bound
for the search time of any bandit algorithm that solves this problem by limiting the arm switching
frequency using batches of uniform size (Section 3). 3) We present two tracking-based algorithm
variants, Sparse-Projected Batch C-Tracking (SPB C-Tracking) and Sparse Batch Configurations
(SBC) (Section 4), and give an asymptotic upper bound for the exploration time of both. 4) We
present empirical results from a simulation study showing that our algorithms identify the best arm in
time comparable to track-and-stop algorithms without switching constraints and more quickly than
existing successive-elimination batch algorithms (Section 5).

2 Problem Formulation

We study fixed-confidence pure exploration multi-armed bandits with a limit on the rate of arm
switches. Let A = {1, ...,K} be a set of arms and µa ∈ R the expected reward for arm a ∈ A,
with µ∗ = maxa∈A µa. A bandit algorithm ϕ plays an arm at in successive rounds t = 1, 2, ...,
before terminating according to a stopping criterion at time τ and recommending the arm âτ .
The total number of arm switches Sτ is the number of successive plays where the arms differ,
Sτ =

∑τ
t=2 [at ̸= at−1]. Our goal is to design a search strategy ϕ to minimize the expected number

of arm plays τ required to identify an optimal arm with confidence at least 1− δ for a given δ > 0,
while limiting the expected rate of switching arms to α ∈ [0, 1].

minimize
ϕ

Eϕ[τ]

subject to P(µâτ< µ∗) ≤ δ

Eϕ[Sτ] ≤ αEϕ[τ]

(1)

This formulation, however, poses a challenge: the switching rate constraint depends on the expected
stopping time Eϕ[τ], which is the very optimization target, creating a circular dependency. We
resolve this as a reformulation with a batched variant of the problem that provides a practical and
well-defined alternative to the original constraint.

In batched bandits [8, 13, 15, 6], arm plays are planned in a sequence at the start of a batch, and the
rewards for all plays are given at the end for the bandit to update its model. Using batches of fixed
size B allows us to ensure that all plays for a specific arm are made in sequence within the batches,
and the number of switches in a batch Sb is determined by the number of distinct arms, see Figure 1.
With this, the number of switches in exploration will be attributed either to switching between arms
within the batches when changing from one successive arm play segment to the next, or to changing
arms between batches.

Let Sb denote the number of switches in batch b. If Sb ≤ s for all b, we can bound the expected
number of switches by Eϕ[Sτ] ≤ Eϕ[β](s+ 1)− 1; where Eϕ[β] is the expected number of batches
played by ϕ before terminating. The bound covers the number of switches within a batch and the
switches from one batch to the next. As a result, the second constraint in our objective above can
be satisfied by keeping the switches in the batches low, requiring that the constraint in Eq. (1) holds

2

Unbatched

Batched

Arm selection & parameter updates after every play

Batch planning & parameter updates after every batch

Arms
1 2 3 4 5

𝐵 = 5, 𝑠 = 1

Figure 1: Illustration of batched arm plays used to limit the arm switching frequency in a 5-arm
problem. The number of plays of each arm is the same.

for the right-hand side of the inequality above, ∀b : Eϕ[β](s+ 1)− 1 ≤ αEϕ[τ] = αBEϕ[β]. If this
holds, with ⌊·⌋ the floor operator,

∀b : Sb ≤ s := ⌊αB − 1⌋ =⇒ Eϕ[Sτ] ≤ αEϕ[τ] . (2)

We can now re-formulate our goal to be to minimize the expected number of batches β required to
identify an optimal arm, with confidence at least 1− δ, while limiting the arm switches within the
batch to be at most s ∈ {0, ...,min(K − 1, B − 1)},

minimize
ϕ

Eϕ[β]

subject to P
(
µâβ

< µ∗) ≤ δ

Sb ≤ s, ∀b ∈ N

(3)

In this work, all batches are planned deterministically. Randomized algorithms could yield non-
integer expected numbers of switches but we do not explore that.

3 Lower Bounding the Number of Batches in Pure Exploration

For fixed-confidence pure exploration, [9] presented a general lower bound for the expected stopping
time E[τ] of any δ-PAC multi-armed bandit algorithm, i.e., one that returns the best arm with
probability at least 1− δ, for some δ > 0,

E[τ] ≥ T ∗(µ) kl(δ, 1− δ) . (4)

where T ∗(µ)−1 := sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

Here, d(.) is the KL-divergence, and ΣK := {w ∈ RK
+ :

∑K
a=1 wa = 1} is the simplex of possible

arm playing proportions. This lower bound is derived by considering the optimal allocation of arm
pulls w∗ to minimize the worst-case stopping time specific to the instance µ while ensuring that the
probability of incorrectly identifying the best arm does not exceed a pre-specified confidence level δ.
The term T ∗(µ) represents the inverse of the exploration time associated by the best-case (supremum)
playing proportions w and the worst-case (infimum) alternative bandit model λ (that differs from µ in
its optimal arm), Alt(µ) = {λ ∈ RK : argmaxa λa ̸= argmaxa µa} .
We apply the same idea to bound the number of batches necessary for exploration. Let E[β] denote
the expected number of batches β necessary for any δ-PAC algorithm. Seemingly, we can extend the
reasoning of the lower bound in Eq. (4),

E[β] ≥ T ∗
b (µ) kl(δ, 1− δ) (5)

T ∗
b (µ)

−1 := sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

⌈waB⌉ · d(µa, λa)

)
where wa represents the fraction of times that arm a is played out of the total expected number of arm
plays, and ⌈waB⌉ an upper bound on the expected number of times arm a is played in each batch,
with ⌈·⌉ the ceiling operator. However, for small batch sizes, playing according to this distribution of
arm plays every batch is infeasible. And even when batch sizes are large, this does not respect the
arm switching limit.

3

3.1 A Lower Bound on the Number of Batches with Switching Constraints

The lower bound in Eq. (5) may not generally be attainable by algorithms that obey the arm switching
constraint in Eq. (1) since this limitation is not represented in the bound. Incorporating the switching
constraint introduces a new dimension to the problem where planning the plays over successive
batches becomes crucial. To match the lower bound, we want to end up having played according
to the maximizer of Eq. (5), but we can’t play according to these proportions every batch. Arms
must be scheduled in a way that minimizes the exploration time across batches, while respecting the
given constraints. To represent this in a lower bound, we will study the optimal proportions of played
sparse batch configurations instead.

Given that the batch size is fixed and known, we can index all possible configurations c of integer
arm plays in a batch that satisfy the desired switching limit. For a given number of arms K, batch
size B and switching limit s, we denote this set CKB,s,

CKB,s :=

{
c ∈ NK :

K∑
a=1

ca = B, ∥c∥0 ≤ s+ 1

}
. (6)

Here, ∥·∥0 denotes the ℓ0-norm, which counts the number of nonzero elements in the vector, ∥x∥0 :=∑K
i=1 1[xi ̸= 0]. Each element c = [c1, ..., cK]⊤ ∈ CKB,s represents a configuration that can be

executed in a single batch and each coordinate ca represents the number of times arm a will be played
in the batch. We say that c is sparse if there are arms a such that ca = 0.

Building on the above definition, define pc to be the proportion of batches that use a configuration c
during the bandit algorithm run. The total plays up of arm a until batch β can be expressed as:

E[Na(β)] =

β∑
b=1

∑
c∈CK

B,s

pcca .

We can now state a lower bound for batch-playing bandits that obey the switching constraint.

Theorem 1. Let ΣC := Σ|C
K
B,s|−1 be the simplex over batch configurations of size B that use fewer

than s switches. Given a confidence level δ ∈ (0, 1), for any algorithm that returns the best arm with
probability at least 1− δ, and for any bandit problem µ ∈ RK , the following holds:

Eµ[β] ≥ T ∗
bc(µ) · kl(δ, 1− δ), (7)

where the characteristic time T ∗
bc(µ) is given by

T ∗
bc(µ)

−1 := sup
p∈ΣC

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pccad(µa, λa). (8)

A proof is given in Appendix A. In Eq. (8), the supremum is computed over the possible probabilities
of sparse configurations, thereby incorporating the switch limit into the batch play optimization.

Although similar in form and derivation, our lower bound differs from the result in [9] in several key
ways. First, arm plays are confined to batches with switching constraints, meaning only a limited
number of unique arms are played in each batch. Their result has no constraints on how arms can
be played in sequence. Second, the playing proportions in our result are defined for entire batch
configurations CKB,s of integer arm plays. As we will see in the next section, unlike in the non-batched
setting, this does not translate as easily to a bandit algorithm.

Our approach to combining batch plays with switching constraints is related to combinatorial bandits
with semi-bandit feedback, see e.g., Jourdan et al. [14]. Solving this problem involves making
decisions over combinations of several arms at a time. Similarly, our method involves managing
combinations of arm plays within each batch, taking into account the sparsity constraint to limit
switching between arms. The main difference with this setting is that our goal is to identify a single
optimal arm, not an optimal combination.

The configuration set CKB,s introduced in our method is typically very high-dimensional, scaling
exponentially with the number of arms. Restricting batches to contain at most s switches, we have∣∣CKB,s

∣∣ =∑s
i=0

(
K
i+1

)(
B−1
i

)
configurations. See Appendix Tables 2,3 for examples.

4

The large dimensionality of CKB,s means that solving Eq. (8) by enumerating all configurations is
practically infeasible. Moreover, the solution may not be unique since the combination of several
configurations with different proportions may yield the same expected number of arm plays. Consider,
for example, a problem with K = 3, B = 2, s = 1 and c1 = [2, 0, 0]⊤, c2 = [0, 0, 2]⊤, and
c3 = [1, 0, 1]⊤. Playing with proportions p = [0.5, 0, 0.5]⊤ and p′ = [0, 0, 1]⊤ yields the same
expected number of plays of each arm. As a result, although configurations take the place of arms in
the lower bound, the implications for algorithm design are quite different from the non-batched case.

4 Tracking Algorithms

Inspired by their analysis, Garivier and Kaufmann [9] introduced the idea of track-and-stop algorithms,
designed to track the optimal arm playing proportions w∗(µ̂) of the lower bound in Eq. (4),

w∗(µ̂) := argmax
w∈ΣK

inf
λ∈Alt(µ̂)

(
K∑

a=1

wad(µ̂a, λa)

)
. (9)

based on an estimate µ̂ of the arm parameters, continuously updated as more data is collected. A
track-and-stop algorithm plays arms following a tracking rule aiming for an overall arm proportion
as close to the optimal proportions as possible, combined with a stopping rule for terminating
exploration. The stopping rule is a statistical test of whether the past observations indicate, with a
risk of at most δ, that one arm has a higher average reward than the others.

Applying the track-and-stop framework in our setting requires imposing a switching constraint in
the tracking rule. We cannot impose sparsity in the tracked proportions w∗ without destroying the
solution to Eq. (9). If an arm a is never played, wa = 0, the adversary λ can exploit this and differ
arbitrarily for that arm, rendering the lower bound infinite. This is also evident from Lemma 4 in
Garivier and Kaufmann [9] which would be violated if ∃a : w∗

a = 0. Neither is it a good idea to play
configurations to track the proportions p∗ that solve Eq. (8). The solution is not necessarily unique
and, even if it is, the sheer number of possible configurations makes exploring (tracking) all of them
infeasible. Moreover, the number of batches where a configuration is played is not itself of interest,
only that the resulting distribution of arm plays is optimal.

Instead, we can attempt to track the optimal arm proportions with suitably chosen batches. Suppress-
ing superscripts and subscripts for convenience, we let C = CKB,s.

Observation 1. If the optimal arm allocation w∗ in Eq. (9) is “realizable” under C, i.e., ∃p∗ ∈ ΣC

such that
∑

c∈C p
∗
cc = w∗(µ̂), then p∗ are minimizers of Eq. (8).

This is clear since Eq. (8) is more constrained than Eq. (9). Whenever every single-arm configuration
is feasible, that is, ∀a : 1aB ∈ C, where 1a is the one-hot binary vector at a, the condition in
Observation 1 is true. This argument motivates constructing batch configurations that together track
the optimal proportions of arm plays given by Eq. (9).

4.1 Tracking Arm Proportions with Batches

We present an algorithm and two batch selection rules for tracking optimal proportions of arm
plays. Algorithm 1 provides a pseudocode outline of both variants. The general strategy for tracking
algorithms is to establish a set of goal proportions w̄ and select arms to minimize the deficit of played
arm proportions to the goal. In the C-tracking procedure[9], the goal proportion is the cumulative
sum of tracking weights over batches,

w̄(b) = B

b−1∑
i=0

wϵi(µ̂i) (10)

where wϵ(µ̂) is the L∞-projection of w∗(µ̂) in Eq. (9) onto ΣK
ϵ = {w ∈ R+ :

∑
a wa =

1,mina wa ≥ ϵ}. The deficit for arm a in batch b is then da(b) := w̄a(b) − Na(b) , and the
vector of deficits is d(b) = [d1(b), ..., dK(b)]⊤. We aim to minimize the total positive deficit
D(b) :=

∑K
a=1(da(b))+, where (x)+ = 1[x > 0]x. To this end, we define the selection rule,

c̃ ∈ argmin
c∈C

K∑
a=1

(
da(b)− ca

)
+

(11)

5

where ca are the number of plays of arm a in the batch configuration c. In Section 4.2, we prove that
this rule results in an upper bound on the number of batches necessary to find the best arm with high
probability, in the high-certainty asymptotic regime, δ → 0.

Greedy batch filling: Sparse Batch Configurations (SBC) C-Tracking algorithm

Unlike the lower bound problem Eq. (8), Eq. (11) can actually be solved in polynomial time through a
greedy algorithm (see Appendix C). We call this variant of our algorithm Sparse Batch Configurations
(SBC) C-Tracking (see Algorithm 1). However, the solution is not unique. For example, if more
than s+ 1 arms have positive deficit, there are cases where the allocations to the selected arms in
the batch can be decided partially arbitrarily. Once the deficit of selected arms has been removed,
the choice of how to distribute remaining plays between them won’t alter Eq. (11). The algorithm in
Appendix C puts the remaining allocation on the arm with the largest remaining fractional deficit.
Next, we consider another algorithm variant that constructs batches proportional to the arm deficits.

Proportional batch filling: Sparse Projected Batch (SPB) C-Tracking algorithm

The Sparse-Projected Batch Tracking algorithm is an alternative method of selecting batch con-
figurations that minimize total arm play deficits. The allocations in the batch are now distributed
proportionally to the deficits of the selected arms. The idea is to project the normalized positive
deficits between expected and actual plays (d̄(b))+ = (d(b))+∑

a∈A(da(b))+
onto an (s+1)-sparse simplex

and construct the batch configuration according to the resulting sparse proportions. Kyrillidis et al.
[18] showed that projection on a sparse simplex (e.g. s + 1-sparse) is solved exactly using the
polynomial greedy selector and simplex projector (GSSP) by selecting the largest (s+ 1) items and
then re-normalizing.

Let N(b) = [N1(b), ..., NK(b)]⊤ be the vector comprising the number of plays of each arm until
batch b and define the s switch-constrained ((s+ 1)-sparse) simplex,

ΣK
s+1 =

{
w ∈ RK

+ :

K∑
a=1

wa = 1, ∥w∥0 ≤ s+ 1

}
.

We compute batch proportions by projecting (with GSSP) the normalized positive deficits onto ΣK
s+1:

ŵs+1(b) ∈ argmin
w∈ΣK

s+1

∥∥w − (d̄(b))+
∥∥
2
. (12)

The configurations are then obtained as c̃ = integer(ŵs+1(b) ∗B) after rounding arm proportions,
using the procedure described in Appendix E.

Arm Selection and Stopping Rules

Within each batch, the algorithms iteratively select the arm at with the highest number of plays in
the configuration, plays it c̃at times and observe the rewards (rt, ..., rt+c̃at−1). After the batch, the
arm estimates are updated. The process repeats for batches until a criterion based on a confidence
threshold is met. We use Chernoff’s stopping rule as presented in [9] with statistic

Zb = max
a∈A

min
ã̸=a

Na(b)dµ̂(b)(a, ã) +Nã(b)dµ̂(b)(ã, a) (13)

where dµ̂(a, ã) = KL(µ̂a, µ̂a,ã) and µ̂a,ã is the weighted average of µ̂a and µ̂ã, weighted by their arm

plays: µ̂a,ã(t) =
Na(t)

Na(t)+Nã(t)
µ̂a(t)+

Nã(t)
Na(t)+Nã(t)

µ̂ã(t). We use the threshold Zb > log
(

log(bB)+1
δ

)
.

At the stopping batch β, the estimated best arm âβ = argmaxa µ̂β,a is returned.

4.2 An Upper Bound on the Stopping Batch

By proving that batch configurations selected according to Eq. (11) track the optimal arm proportions
in Eq. (9), we show that both SBC and SPB C-Tracking in Algorithm 1 match the lower bound in
Eq. (4) in the high-certainty limit.

6

Algorithm 1 Sparse Batch Configurations (SBC) and Sparse Projected Batch (SPB) C-Tracking
Input: K arms, δ ∈ (0, 1), B: batch size
Input: s: batch switch limit
Output: β, âβ

1: b← 1, t← 1, Z1 ← 0, µ̂0 ← 0, N(1)← 0 ∈ RK

2: while Zb ≤ log
(

log(bB)+1
δ

)
do

3: Let ϵb ← (K2 + bB)−1/2/2 ▷ set ϵb = 1/K if bB < 3K2

4: Compute wϵb−1(µ̂b−1) ▷ See Eq. (10)

5: Compute d(b) = B

b−1∑
i=0

wϵi(µ̂i)−N(b)

6: if SBC C-Tracking then

7: Let c̃ ∈ argmin
c∈CK

B,s

K∑
a=1

(da(b)− ca)+

8: ▷ Greedy batch filling (App. C)
9: else if SPB C-Tracking then

10: Let ŵs+1(b) ∈ argmin
w∈

∑K
s+1

∥∥∥∥w − (d̄(b))+

∥∥∥∥
2

11: and c̃ = integer(ŵs+1 ∗B)
12: ▷ Proportional filling (Eq. (15), App. E)
13: end if
14: while t ≤ bB do
15: Let ā← argmaxa∈A c̃ and c̄ = c̃ā
16: Play at, ..., at+c̄−1 with arm ā
17: Observe rewards (rt, ..., rt+c̄−1)
18: Nat(b+ 1)← Nat(b) + c̄

19: µ̂b,at
← 1

Nā(b+1)

∑t+cā−1
j=1 1[aj = ā]rj

20: t← t+ c̄ and c̃ā ← 0
21: end while
22: b← b+ 1
23: Compute Zb ▷ See Eq. (13)
24: end while
25: Return âβ = argmaxa µ̂β,a

Theorem 2. Let µ ∈ RK , B ≥ 1, s ∈ [B − 1] be an instance of the switch-constrained pure explo-
ration problem with confidence δ > 0. Assume that the optimal arm allocation w∗(µ) is realizable
under CKB,s (Observation 1) and let α ∈ [1, e/2] and ρ(t) = O(tα). Then, using Algorithm 1, and
Chernoff’s stopping rule with threshold log(ρ(t)/δ),

lim sup
δ→0

E[βδ]

log 1/δ
≤ αT ∗

bc(µ) .

where T ∗
bc is the batch characteristic time from Eq. (8).

The result is proven in Appendices B–D: Lemmas 1–2 prove that the deviation of any tracking rule
minimizing Eq. (11) is bounded and are used in Appendix B.3 to give a general upper bound on
E[βδ]. In Appendices C–D, we prove that SBC and SPB C-tracking minimize Eq. (11).

Tightness of the bound Theorem 2 matches the lower bound in Theorem 1. The parameters s
and B are not visible in the bound but affect the batch characteristic time T ∗

bc. Moreover, in the
non-asymptotic case, the tightness of the bound depends on s, B, and K. For any non-zero δ,
Lemmas 1–2 (see Appendix B) used to prove Theorem 2 establish that there is a batch number
βϵ ≤ ((2K + 1)/(2ϵ))4 after which the proportion Na(b)/(bB) of plays of each arm differs by
at most 3(K − 1)ϵ from the optimal proportion w∗

a(µ), with ϵ the C-tracking forced-exploration
parameter. In this regime, the bound is tighter for small s since the bound on βϵ assumes that plays of
an important arm can be delayed by a whole batch due to the switching constraint.

7

Comparison to the unconstrained setting. In the asymptotic setting, the upper bound on the number
of batches (Theorem 2) matches the bound on the number of arm plays in the non-batched case. This
means we pay up to a factor B to reach the same guarantee as in the unconstrained case. This should
not be surprising—in the worst case, s = 0, we can play at most one unique arm in each batch but
the optimal proportions may be uniform. This is illustrated in our experiments, where the switching
constraint only limits performance in the high-batch size setting (see Figure 3b).

Extension to unrealizable allocations. Theorem 2 is restricted to the realizable case for presentation
since SPB and SBC C-tracking are designed for this case. The bound can be generalized to the case
where unconstrained arm allocations are not representable by CKB,s by replacing ΣK in Eq. (9) by
Σ̃K = {w : ∃p ∈ ΣC ,

∑
c∈C pcc = w} and carrying forward to Eq. (11). The remaining analysis is

unchanged.

5 Simulation Experiments

In our experiments, we are foremost interested in investigating if we can achieve a low stopping time
E[τ] = BE[β] while conforming to a given switching limit s during exploration. We investigate the
effects of different combinations of s and the batch size B. As discussed in Section 2, s and B are
inherently tied, s := ⌊αB − 1⌋. For different batch sizes, the choice of s will have a large impact on
which arm configurations can be played in a batch, and therefore on the nature of exploration. We
aim to validate this empirically.

We compare our SBC and SPB C-Tracking algorithms to BatchRacing [15], a batched racing
algorithm that successively eliminates arms across rounds, starting with the full set of available arms
as a surviving set S1 = A. In each batch of size B, it uses a round-robin algorithm to determine plays
in the batch uniformly. It is designed for top-k best-arm identification; our setting is top-1. In each
round, BatchRacing uses upper-confidence bounds (resp. lower-confidence bounds) to determine if
there is any arm that is confidently top-k (resp. not), and moves the arms to an accepted, At (resp
rejected, Rt) set. The arms moved to the accepted or rejected sets are removed from the surviving
sets and this repeats until k arms are accepted, whereby it ends, outputting the accepted set Aτ . In
our setting |Aτ | = 1.

5.1 Experimental Setup

The simulation setting presented comprises a set of 8 arms from Gaussian distributions, with means
µ = {0.8, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35} and standard deviation σ = 1. The algorithms (SBC
and SPB C-Tracking, BatchRacing and Track-and-Stop C-Tracking [9]) are run with δ = 0.01, and a
pull limit of 20,000. We run experiments to investigate the effect of varying a switching limit s in
SPB C-Tracking. In these, we set the number of switches Sb = s for all batches b, rather than let
them be bounded by s from above. We also compare the effect of the batch size in SPB C-Tracking
and the BatchRacing baseline. We use the stopping time, E[τ] = BE[β], as the evaluation metric and
we also compare the stopping times of the batched algorithms to the stopping time of the un-batched
Track-and-Stop C-Tracking. All experiments are done for 500 repetitions and results are presented
with means and standard deviation across runs.

5.2 Results and Discussion

Limiting switching and optimality. In Figure 2a, thicker points in the horizon indicate that more
of the repeated runs have not stopped until that point. We see that both our algorithms achieve
faster stopping compared to BatchRacing, even when constrained to a minimal switching limit
(s = 1). We see that the BatchRacing algorithm starts with the maximum possible switches in early
batches and eventually decreases in later batches, until s = 1. Successive elimination algorithms,
including BatchRacing, which comprise the bulk of the limited work in batched bandits in pure
exploration [15, 1, 17, 6] will always exhibit this switching behaviour. These algorithms are expected
to have a high number of switches during exploration, as they always start with the whole set of arms
as the feasible exploration set.

The stopping times in Figure 3a show that, as expected, SBC and SPB C-Tracking always outperform
the BatchRacing baseline. This can be explained by the algorithms’ characteristic of tracking
the optimal playing proportions from the lower bound, Eq. (9). The stopping times for batch

8

0 50 100 150 200 250 300
Time in batches (K=8, B=32, s=1)

0

1

2

3

4

5

6

7

O
bs

er
ve

d
sw

itc
he

s

BatchRacing SPB C-Tracking (Ours) SBC C-Tracking (Ours)

(a) Observed switches and stopping, along time
in batches for SBC and SPB C-Tracking (Ours)
with s = 1, B = 32 vs BatchRacing (Baseline).

0 1 2 3 4 5 6 7
Action (K=8, s=1, B=32, b=100 (t=3200 for T&S))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n
of

 p
la

ys

SBC C-Tracking (Ours)
SPB C-Tracking (Ours)
Track and stop C-Tracking

(b) Proportions of arm plays for SBC and SPB (Ours) after
100 batches (3200 plays, with B = 32, s = 1) and C-
Tracking after 3200 plays.

Figure 2: SBC and SPB stop quicker even with a restrictive switching limit and match well to the
optimal, unbatched Track-and-Stop C-tracking baseline in tracking proportions.

0 1 2 3 5 7
 switching limit, s (B=8, K=8)

0

5000

10000

15000

20000

E[
]=

BE
[

]

0 1 2 3 5 7
 switching limit, s (B=1024, K=8)

5000

10000

15000

20000

E[
]=

BE
[

]

BatchRacing Track and stop C-Tracking SBC C-Tracking (Ours) SPB C-Tracking (Ours)

(a) Comparison of stopping times over switching limits
s ∈ {0, 1, 2, 3, 5, 7} in SBC and SPB, and BatchRac-
ing, with B ∈ {8, 1024}.

8 16 32 64 128 256 512 1024
Batch size (s=0, K=8)

0

5000

10000

15000

20000

E[
]=

BE
[

]

8 16 32 64 128 256 512 1024
Batch size (s=7, K=8)

0

5000

10000

15000

20000

E[
]=

BE
[

]

Track and stop C-Tracking BatchRacing SBC C-Tracking (Ours) SPB C-Tracking (Ours)

(b) Comparison of stopping times over batch sizes for
SBC and SPB C-Tracking (s ∈ {0, 7}), and BatchRac-
ing, with B ∈ {8, 16, 32, 64, 128, 256, 512, 1024}.

Figure 3: SBC and SPB only suffer with highly restrictive switching and large batch sizes

sizes B ≤ 256 also match those of the unbatched (standard) Track-and-Stop C-Tracking which is
unconstrained in switching, so it switches almost every play during exploration. The matching in
stopping times is consistent across different switching limits for the same batch size (Figure 3a). The
proportions of arm plays also align closely (Figure 2b), which aligns with our theoretical result in
Theorem 2.

In Figures 3a and 3b, we also see that restricting arm switching hurts exploration only when the
batch size is large, for restrictive switching limits. Furthermore, with less restriction in switching
(s = K − 1), our results provide evidence that it is possible to batch and still achieve comparable
stopping times with un-batched optimal pure exploration algorithms like Track and Stop, even with
large batch sizes. These results are expanded in Appendix F with more combinations of batch size B,
and switching limit s. A simulation with 16 arms is also included, and the results are consistent.

Algorithms batch filling characteristics. In Appendix F with Examples 1 and 2, we discuss the
differences in SBC and SPB, which are in batch filling (greedily for SBC and proportionally for SPB)
and illustrate that in Appendix Figures 4 and 5.

6 Discussion

We have studied the problem of controlling arm-switching in fixed-confidence pure-exploration and
from our results, we learn that it is possible to impose a switching constraint for exploration by using
batching, and then restricting how often arms can be switched inside the batches. We derived a
lower bound (Theorem 1) for this, by considering feasible batch configurations respecting switching
constraints. While our lower bound can theoretically provide algorithms that explicitly track the
proportions pc of the configurations, these proportions are defined for entire batch configurations,
CKB,s, preventing us from applying an exact tracking rule. However, we observe (Observation 1)
that we can still leverage the core tracking ideas for algorithm design by constructing optimal batch
configurations. Constructing configurations turns out to be computationally feasible, as it reduces to
a polynomial-time problem.

9

We further presented the batched algorithms SBC and SPB C-Tracking that constrain the switching
frequency by playing constructed optimal batch configurations. Our algorithms empirically show that
it is possible to achieve efficient exploration even when constraining the arm-switching frequency,
and they perform well except under extreme conditions, specifically when the batch size is large and
the switching constraint is stringent. We also provided an upper bound (Theorem 2) matching our
lower bound, but an open question from our result is whether we can derive a tighter upper bound that
explicitly accounts for switching. A limitation of our approach is that the batch size of our algorithms
is not given by the problem, but is only a means to control switching. We use a static batch size that
may not be optimal for efficient exploration and whose selection is not obvious, as the optimal choice
is problem-dependent, so adaptively tuning the batch size is an interesting direction for future work.

Bibliography

[1] Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited
rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons.
In Conference on Learning Theory, pages 39–75. PMLR, 2017.

[2] Idan Amir, Guy Azov, Tomer Koren, and Roi Livni. Better best of both worlds bounds for bandits
with switching costs. Advances in neural information processing systems, 35:15800–15810,
2022.

[3] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive
adversary: from regret to policy regret. arXiv preprint arXiv:1206.6400, 2012.

[4] Maryam Aziz, Emilie Kaufmann, and Marie-Karelle Riviere. On multi-armed bandit designs
for dose-finding trials. Journal of Machine Learning Research, 22(14):1–38, 2021.

[5] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits
problems. In Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto,
Portugal, October 3-5, 2009. Proceedings 20, pages 23–37. Springer, 2009.

[6] Shengyu Cao, Simai He, Ruoqing Jiang, Jin Xu, and Hongsong Yuan. Best arm identification in
batched multi-armed bandit problems. arXiv preprint arXiv:2312.13875, 2023.

[7] Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: T 2/3
regret. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages
459–467, 2014.

[8] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits
problem. Advances in Neural Information Processing Systems, 32, 2019.

[9] Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on
Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages 998–1027,
Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[10] J. Gittens and Michael Dempster. Bandit processes and dynamic allocation indices. Journal of
the Royal Statistical Society. Series B: Methodological, 41:148–177, 02 1979.

[11] Chester Holtz, Chao Tao, and Guangyu Xi. BanditPyLib: a lightweight python li-
brary for bandit algorithms. Online at: https://github.com/Alanthink/banditpylib,
2020. URL https://github.com/Alanthink/banditpylib. Documentation at https:
//alanthink.github.io/banditpylib-doc.

[12] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb: An optimal
exploration algorithm for multi-armed bandits. In Conference on Learning Theory, pages
423–439. PMLR, 2014.

[13] Tianyuan Jin, Jing Tang, Pan Xu, Keke Huang, Xiaokui Xiao, and Quanquan Gu. Almost
optimal anytime algorithm for batched multi-armed bandits. In International Conference on
Machine Learning, pages 5065–5073. PMLR, 2021.

10

https://github.com/Alanthink/banditpylib
https://github.com/Alanthink/banditpylib
https://alanthink.github.io/banditpylib-doc
https://alanthink.github.io/banditpylib-doc

[14] Marc Jourdan, Mojmír Mutnỳ, Johannes Kirschner, and Andreas Krause. Efficient pure explo-
ration for combinatorial bandits with semi-bandit feedback. In Algorithmic Learning Theory,
pages 805–849. PMLR, 2021.

[15] Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, and Xiaojin Zhu. Top arm identification
in multi-armed bandits with batch arm pulls. In Artificial Intelligence and Statistics, pages
139–148. PMLR, 2016.

[16] Newton Mwai Kinyanjui, Emil Carlsson, and Fredrik D Johansson. Fast treatment personaliza-
tion with latent bandits in fixed-confidence pure exploration. Transactions on Machine Learning
Research, 2023.

[17] Junpei Komiyama, Kaito Ariu, Masahiro Kato, and Chao Qin. Optimal simple regret in bayesian
best arm identification. arXiv preprint arXiv:2111.09885, 2021.

[18] Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse projections
onto the simplex. In International Conference on Machine Learning, pages 235–243. PMLR,
2013.

[19] T.L Lai and H Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[21] Yingying Li, James A Preiss, Na Li, Yiheng Lin, Adam Wierman, and Jeff S Shamma. Online
switching control with stability and regret guarantees. In Learning for Dynamics and Control
Conference, pages 1138–1151. PMLR, 2023.

[22] Chloé Rouyer, Yevgeny Seldin, and Nicolo Cesa-Bianchi. An algorithm for stochastic and
adversarial bandits with switching costs. In International Conference on Machine Learning,
pages 9127–9135. PMLR, 2021.

[23] William R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444.

11

Appendix

Table 1: Table of commonly used notation
Symbol Description
K Number of actions/arms
A Set of arms, A = {1, ...,K}
a A single arm, a ∈ A
µa Expected reward of arm a
a∗ Optimal arm, a∗ = argmaxa µa

µ∗ Expected reward of optimal arm, a∗
τ Stopping time (in number of arm plays)
âτ Recommended arm at stopping time
Sτ The number of arm switches until time τ
α Constraint on the arm switching rate
δ Confidence parameter, δ ∈ (0, 1)
B Batch size, B ≥ 1
β Stopping batch (in number of batches)
Sb Number of arm switches inside batch b
s In-batch arm switching limit
T ∗ Characteristic time
ΣK Simplex over K arms, ΣK = {w ∈ RK :

∑
a wa = 1}

wa Arm playing proportion for arm a
λa Alternative bandit model
Alt(µ) Set of alternative bandit models with optimal arm that differs from that of µ
c Configuration of a single batch, c = [c1, ..., cK]⊤

CKB,s Set of configurations of size as B integer plays of K arms, limited to s switches
Na(β) Number of plays of arm a until batch β
ΣC Simplex over elements in set C
µ̂ Estimated arm parameters
w̄(b) Desired (cumulative) arm proportions at batch b
da(b) Play deficit for arm a at batch b
wϵ(µ) Proportions L∞-projected onto simplex where each element has weight at least ϵ
c̃ Chosen batch configuration

A Proof of Theorem 1

Proof of Theorem 1: Consider δ ∈ (0, 1) and a bandit model µ ∈ RK , along with a δ-PAC strategy.
For each block b ≥ 1, let Na(b) represent the number of times arm a is drawn up to the end of block b.
According to Garivier and Kaufmann [9, Lemma 1], the expected number of draws for each arm and
the Kullback-Leibler divergence between two bandit models with distinct optimal arms are related to
the error probability δ:

∀λ ∈ RK : a∗(λ) ̸= a∗(µ),

K∑
a=1

Eν [Na(β)]d(µa, λa) ≥ kl(δ, 1− δ).

Rather than selecting a specific λ for each arm a to provide a lower bound on Eµ[β], we integrate the
inequalities from all alternative λs:

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(β)]d(µa, λa)

12

Let CKB,s be the available integer playing configurations for plays corresponding to the desired sparsity

and ΣC := Σ
|CK

B,s|
1 be the simplex over sparse batch configurations. Then, we have

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ

 β∑
b=1

∑
c∈CK

B,s

ca,b

 d(µa, λa) = inf
λ∈Alt(µ)

K∑
a=1

Eµ[β]Eµ

 ∑
c∈CK

B,s

ca

 d(µa, λa)

≤ Eµ[β] sup
p∈ΣC

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pcca d(µa, λa),

where the last inequality arises because the probabilities of arm draws specific to each batch are less
than or equal to their maximum values. This substitution is made to derive a bound that applies to
any δ-PAC algorithm.

B An upper bound on the expected stopping time of the tracking algorithms

We repeat Theorem 2 below.

Theorem 3. Let µ ∈ RK , B ≥ 1, s ∈ [B − 1] be an instance of the switch-constrained pure
exploration problem with confidence δ > 0. Let α ∈ [1, e/2] and ρ(t) = O(tα). Using Algorithm 1
with any selection rule that solves Eq. (11), and Chernoff’s stopping rule with threshold log(ρ(t)/δ),

lim sup
δ→0

E[βδ]

log 1/δ
≤ α

B
T ∗(µ) .

where T ∗ is the characteristic time in the non-batched setting, Eq. (4).

To prove this result, our strategy will be to show that, despite planning arm plays in batches, we will
track the optimal proportions for the non-batched settings. To do this, we need to generalize two key
lemmas due to Garivier and Kaufmann [9] for the batched setting. First, we will show that playing
according to a selection rule like that of Algorithm 1 maintains an error that is upper bounded by
a constant w.r.t. the batch index. Second, we use this result to show that the tracking rule ensures
that the deviation of historical plays from the optimal playing proportion is bounded. At this point,
we have established all we need to follow the remainder of the proof of Theorem 14 in Garivier and
Kaufmann [9].

B.1 Proportion Tracking with Batch Plays and a Switching Limit

Lemma 1. Let K and B be positive integers, and let ΣK be the simplex of dimension K − 1. For
each arm a ∈ {1, . . . ,K}, define the expected cumulative number of plays after batch b as BPa(b)
where for every b ≤ n, Pa(b) = pa(1) + ...+ pa(b). Let Na(b) denote the actual cumulative number
of plays after batch b.

At each batch b, choose the batch configuration c̃b+1 ∈ CKB,s (a feasible configuration of arm plays
that respects the batch size B and switching limit s) such that:

c̃b+1 = argmin
c∈CK

B,s

K∑
a=1

(
B

b−1∑
i=0

pa(i)−Na(b)− c(a)

)
+

,

where
∑b−1

i=0 pa(i) represents the cumulative weight estimate for arm a up to batch b− 1.

Then, the maximum deviation between the actual and expected number of plays for any arm is
bounded as:

max
1≤a≤K

|Na(b)−BPa(b)| ≤ B(K − 1).

Proof. We intend to prove the same bound for the two edge cases, which is when s = 0, implying
that c̃b+1 contains only one arm played B times, or s ≥ B − 1, meaning that any number of switches
is allowed. Since the bounds are the same, the intermediate cases s ∈ (0, B − 1) follow.

13

First, we prove by induction on b that:

max
1≤a≤K

Na(b)−BPa(b) ≤ B.

At batch b = 0, no plays have been made, so Na(0) = 0 for all arms a, and Pa(0) = 0 for all arms a.
Therefore, the base case is trivially satisfied:

max
1≤a≤K

Na(0)−BPa(0) = 0.

Assume that this holds for some b ≥ 0. Then, for a /∈ c̃b+1, Na(b+ 1)− BPa(b+ 1) = Na(b)−
B(Pa(b) + p(b)) ≤ B(1 − pa(b)) ≤ B and for a ∈ c̃b+1, Na∈c̃b+1

(b + 1) − BPa∈c̃b+1
(b + 1) =

c̃b+1(a) + (Na∈c̃b+1
(b)−BPa∈c̃b+1

(b+ 1)). Using the fact that that
∑

a BPa(b+ 1)−Na(b) = 0,
we know that, for any selected arm a ∈ c̃b+1, Na∈c̃b+1

(b) − BPa∈c̃b+1
(b + 1) ≤ 0 or there was a

non-selected arm a ̸∈ c̃b+1 that had a smaller value in the criterion. But if such an arm exists, it would
have been selected in place of a. This is true whether only one arm can be selected (s = 0) or any arm
can be selected (s = B−1). Hence, for all a ∈ c̃b+1, c̃b+1(a)+(Na∈c̃b+1

(b)−BPa∈c̃b+1
(b+1)) ≤

B + 0 ≤ B.

It follows that for all terms:

max
1≤a≤K

|Na(b)−BPa(b)| = max

{
max

1≤a≤K
BPa(b)−Na(b), max

1≤a≤K
Na(b)−BPa(b)

}
≤ max

{
K∑

a=1

(BPa(b)−Na(b))+ , B

}

To complete the proof, we introduce the auxiliary variable, for every b ∈ {1, ..., n},

rb =

K∑
a=1

(BPa(b)−Na(b))+ .

and prove by induction on b that

rb ≤ B(K − 1).

To start, we note that the base case b = 1 holds trivially. Next, we’ll assume that the statement holds
for some b > 1 and prove that rb+1 ≤ B(K − 1). First, recall that the plays in batch b+ 1 are given
by the selection rule

c̃b+1 = argmin
c∈CK

B,s

K∑
a=1

(BPa(b+ 1)−Na(b)− c(a))+ .

We’ll use the short-hand c = c̃b+1 for the remainder of this proof.

Define the play deficit for arm a at time b+ 1 as da := BPa(b+ 1)−Na(b+ 1). We can separate
the terms in the sum making up rb+1 as follows,

rb+1 =
∑

a:c(a)=0

(da)+ +
∑

a:c(a)>0
da>0

da +
∑

a:c(a)>0
da≤0

0 .

For convenience, let c+ represent the terms in the second sum, c+ = {a ∈ [K] : c(a) > 0, BPa(b+
1)−Na(b+1) > 0} and c− the terms in the third, c− = {a ∈ [K] : c(a) > 0, BPa(b+1)−Na(b+
1) < 0}. We also use the convention a ∈ c ⇔ c(a) > 0. We will consider two cases, one where
c− = ∅ and one where it is not.

14

Case I: c− = ∅ ⇔ ∀a ∈ c : BPa(b+ 1)−Na(b+ 1) ≥ 0

In this case, all played arms have a remaining deficit, i.e., they have not yet caught up to the expected
number of plays, BPa∈c(b+ 1). We can re-write rb+1 as a function of rb as follows.

rb+1 ≤ rb +

K∑
a=1

[Bpa(b+ 1)− c(a)]1(BPa(b+1) ≥ Na(b+1))

= rb +

K∑
a=1

pa(b+ 1)1(BPa(b+1) ≥ Na(b+1)) −
∑
a∈c

c(a)1(BPa∈c(b+1) ≥ Na∈c(b+1))

≤ rb +B −
K∑

a=1

c(a) = rb +B −B = rb ≤ B(K − 1) .

The second to last inequality holds because, by assumption c = c+ and c(a) = 0 for all a ̸∈ c.

In the general case, some played arms may have no remaining deficit, and some do.

Case II: |c−| > 0⇔ ∃a ∈ c : BPa(b+ 1)−Na(b+ 1) < 0

In this case, the number of plays Na(b + 1) for at least one played arm a ∈ c has surpassed the
expected number of plays BPa(b+ 1). This implies that there is no longer a positive deficit for the
arm being played.

By construction, we can write rb+1 as follows.

rb+1 =
∑
a̸∈c

(BPa(b+ 1)−Na(b))+ +
∑
a∈c+

(BPa(b+ 1)−Na(b)− c(a)) .

For any arm not selected, a ̸∈ c, the deficit before selection, BPa(b+ 1)−Na(b), must have been
smaller than the pre-selection deficit for any selected arm, including those in c−. This holds true in
both edge cases, s = 0 and s = B − 1. Otherwise, a play for arm a would have been selected for the
batch instead of a play for an arm in c−. Thus,∑

a̸∈c

(BPa(b+ 1)−Na(b))+ ≤
∑
a ̸∈c

min
a′∈c−

(BPa′(b+ 1)−Na′(b))+ .

Further, for any arm a′ ∈ c−, BPa′(b+ 1)−Na′(b+ 1) = BPa′(b+ 1)−Na′(b)− c(a′) ≤ 0 by
definition, and so BPa′(b+ 1)−Na′(b) ≤ ca′ ≤ B. Thus,∑

a̸∈c

(BPa(b+ 1)−Na(b))+ ≤
∑
a̸∈c

B .

A similar argument can be used for any arm in c+. The remaining deficit after deciding on the plays
must be smaller for arms in c+ than what the deficit would have been if an arm play was moved from
c+ to an arm in c−,

∀a ∈ c+ : BPa(b+ 1)−Na(b)− ca ≤ min
a′∈c−

BPa′(b+ 1)−Na′(b)− ca′ + 1

≤ min
a′∈c−

ca′ − ca′ + 1 = 1

Thus, whenever |c−| > 0, rb+1 ≤
∑

a̸∈c B +
∑

a∈c+
1 ≤ B(K − 1) . This last inequality is loose

in general, but if only one arm is played and no played arm have remaining deficit, it is tight.

B.2 Tracking rule convergence

Lemma 2. For any batch b ≥ 1 and a ∈ A, any tracking rule that is optimal with respect to Eq. (11)
(the problem in Lemma 1) ensures that Na(b) ≥ B(

√
bB +K2 − 2K + 1) and that

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ B(K − 1).

where w∗ are the solution to Eq. (9).

15

To obtain Lemma 2, we start by applying Lemma 1 with the batch configuration and weights
p(b) = wϵb−1(µ̂(b− 1)), so that

P (b+ 1) =

b∑
i=0

wϵi(µ̂i).

This gives us the following deviation bound for the number of plays after batch b:

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

wϵi
a (µ̂i)

∣∣∣∣∣ ≤ B(K − 1).

Moreover, by the definition of wϵ(i), we can express the difference between the weighted actual
plays and the optimal allocation as:

max
1≤a≤K

∣∣∣∣∣B
b−1∑
i=0

wϵi
a (µ̂i)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ BKϵi.

Now, with ϵb = (K2 + bB)−1/2/2, we get√
bB +K2 −K =

∫ bB

0

ds

2
√
K2 + i

≤
bB−1∑
i=0

ϵi ≤
∫ bB−1

−1

ds

2
√
K2 + i

=
√
bB +K2 − 1−

√
K2 − 1.

This yields the following bound on the deviation:

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ B(K − 1) +BK
(√

bB +K2 − 1−
√
K2 − 1

)
≤ BK(1 +

√
bB).

We now derive the lower bound for Na(b). From the previous results, it follows that:

Na(b) ≥ B

b−1∑
i=0

ϵi −B(K − 1).

Using the integral approximation for
∑b−1

i=0 ϵi, we obtain:

Na(b) ≥ B
(√

bB +K2 −K
)
−B(K − 1).

Simplifying this gives:
Na(b) ≥ B(

√
bB +K2 − 2K + 1)

We can further apply the techniques from Lemma 20 in Garivier and Kaufmann [9]. Let h(β) = β1/4.
For all b >

√
β and all arms a, with ϵ the C-tracking constant used in the L∞ projection.∣∣∣∣Na(b)

bB
− w∗

a(µ)

∣∣∣∣ ≤
∣∣∣∣∣Na(b)

bB
− 1

b

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣+
∣∣∣∣∣1b

b−1∑
i=0

w∗
a(µ̂i)− w∗

a(µ)

∣∣∣∣∣
≤ BK(1 +

√
bB)

bB
+

h(β)

b
+

1

b

b−1∑
i=h(β)

|w∗
a(µ̂i)− w∗

a(µ)|

≤ 2K + 1

β1/4
+ ϵ .

Thus, for any β ≥ ((2K + 1)/(2ϵ))4,∣∣∣∣Na(b)

bB
− w∗

a(µ)

∣∣∣∣ ≤ 3ϵ .

Note that this adds a factor B to the lower bound on the corresponding stopping time, T = Bβ.

16

B.3 Prooof of Theorem 2

Once Lemmas 1–2 have been established, we can exploit the proof of Theorem 14 in Garivier and
Kaufmann [9] to show that any tracking rule that select batches that solve Eq. (11) satisfies the
statement in Theorem 2. Proposition 1 shows that SBC-C tracking solves Eq. (11).

Here, Lemma 2 takes the role of “Lemma 7” in their case and the other key component, “Lemma
19” applies directly also in our setting. The rest of the proof follows the same steps as the proof of
Theorem 14. In the end, terms that are constant w.r.t. δ vanish in the division 1/δ when δ → 0. This
includes the waiting time for the played proportions to converge to the tracked proportions, discussed
in the previous result. Applying Theorem 14 yields a bound on the stopping time in number of plays
E[τδ], which immediately yields a stopping time on the number of batches E[βδ] = E[τδ]/B since
the batch size is fixed to B and stopping is only performed when completing a full batch. Finally,
when there exists p∗ ∈ ΣCK

B,s such that
∑

c∈CK
B,s

p∗cca = w∗(µ), it holds that T ∗(µ) = BT ∗
bc(µ),

where T ∗(µ) is the characteristic time (number of arm plays) in the non-batched case Eq. (4), since
the optimal arm allocations are feasible to construct from batch configurations.

C A greedy algorithm for constructing configurations

The problem in Eq. (11) can be abstracted to the following form. Given demands da ∈ R for
a = 1, ..,K, a batch size B ∈ N and a switching constraint s ∈ {0, ..., B − 1}, the sparse batch
deficit minimization problem is,

minimize
c∈NK

∑
a

(da − ca)+

subject to
K∑

a=1

ca = B

∥c∥0 ≤ s+ 1

(14)

We now give a greedy algorithm to solve Eq. (14) and prove that it is optimal.
Proposition 1. Algorithm 2 returns an optimal solution to Eq. (14).

Proof. Each round of Phase I of the algorithm allocates a play that results in a reduction of 1 in the
overall deficit or moves on to the next arm. The arm is changed only if the remaining deficit for the
current arm is smaller than 1 and the switching limit has not yet been reached. It is easy to see that,
after Phase 1, any arms a that are assigned at least one play, ca ≥ 1, will have deficit da − ca ∈ [0, 1)
or the batch limit has been filled. It is also easy to see that any unplayed arm, ca = 0, has a smaller
initial demand da than any played arm or there were no arms with a positive demand. If this were
true, any configuration would be optimal.

We can now argue for the result by contradiction. Assume that the solution is suboptimal. That means
that there exists at least one arm a′ such that increasing ca′ by 1 and reducing ca for a selected arm a
results in a better solution. Since the total deficit removed by the batch can be expressed as the sum
of deficit removed with each play, it is sufficient to consider one such change at a time.

Case (i) ca′ = 0. If a′ was not played, increasing ca′ would increase ∥c∥0 which would require
removing all plays of a played arm a if the switching constraint was active. If the switching constraint
was not active, Phase 1 terminated with a non-active constraint as well. This means that either (i.i)
all plays in the batch were already allocated or (i.ii) all arms had already been examined and a′ was
ignored. In case (i.i), there would be no use substituting a′ for any played arm since any selected plays
remove a deficit of 1 per round, and the total removed for any arm is at least as large as what could
be removed for a′, due to the initial sorting. In case (i.ii), arm a′ must have had a total deficit da′

smaller than 1, or the arm would have been added. But since ca′ = 0 also after the entire algorithm,
a′ must have been ignored also in Phase II. But if the switching constraint was not active, this must
mean that other arms had larger remaining deficits or a′ would have been selected.

If the switching constraint was active, it could have been activated either in Phase I or Phase II. If
it happened in Phase II, a′ must have had da′ < 1 since, otherwise, it would have been selected

17

Algorithm 2 Greedy batch filling
Input K arms, B : batch size, s : batch switch limit, d ∈ RK : arm demands

1: Phase I: Removing integer deficit
2: Create an index {ai} of arms ordered by d in descending order such that i < j ⇒ dai ≥ daj for

all i, j ∈ [K].
3: Initialize the batch configuration c = [0, ..., 0]⊤ ∈ NK .
4: Set i = 1
5: while

∑K
a=1 ca < B and i ≤ K do

6: if dai − cai ≥ 1 then
7: cai = cai + 1
8: else if ∥c∥0 < s+ 1 then
9: i = i+ 1

10: else
11: Break
12: end if
13: end while
14:
15: Phase II: Removing remaining fractional deficit
16: Sort d− c in descending order such that i < j ⇒ dai

− cai
≥ daj

− caj
for all i, j ∈ [K].

17: Set i = 1
18: while

∑K
a=1 ca < B and i ≤ K do

19: if (dai − cai ≥ 0) and (cai > 0 or ∥c∥0 < s+ 1) then
20: cai = cai + 1
21: dai

= dai
− 1

22: else
23: i = i+ 1
24: end if
25: end while
26: Distribute any remaining plays arbitrarily among previously played arms. (E.g. Greedily onto the

arm with the largest fractional deficit in the selected arms)

in Phase I. But this must mean that da′ was smaller than the demand for an arm that activated the
constraint in Phase II. If the constraint was made active in Phase I, there must have been an arm a
with at least as large demand da ≥ da′ that was added instead. Switching a′ for any such a could not
reduce the remaining deficit.

Case (ii) ca′ > 0. If arm a′ was already allocated plays, its allocation could be increased without
concern for the switching constraint. By construction, interchanging plays between selected arms
during Phase I makes no difference to the total removed deficit. This means that the allocation must
change during Phase II to improve the objective. But since Phase II proceeds in order of remaining
deficit, either a′ was assigned an additional play in Phase II, in which case increasing ca′ further
would not reduce the total deficit since any deficit in Phase II is < 1, or Phase II terminated before
increasing ca′ . Since ca′ > 0, this can only happen if other arms given allocations in Phase II had
higher remaining deficit than a′.

In summary, there is no arm a′ for which an increased allocation, at the cost of reducing the allocation
for another arm a, would reduce the total deficit more than the solution by Algorithm 2.

D Sparse-Projected Batch (SPB) Algorithm for Constructing Configurations

Let d ∈ RK
+ denote the vector of deficits for K arms, where da ≥ 0 for a = 1, . . . ,K. Given a batch

size B ∈ N and a switching constraint s ∈ {0, . . . ,min(K − 1, B − 1)} , we consider the following
batch configuration problem:

18

Choose

c ∈ NK such that
K∑

a=1

ca = B and ∥c∥0 ≤ s+ 1,

so as to minimize the total remaining (positive) deficit

D(c) =

K∑
a=1

(
da − ca

)
+
,

or equivalently, to maximize the total deficit removal

R(c) =

K∑
a=1

min{ca, da} .

The Sparse-Projected Batch (SPB) algorithm proceeds as follows:

1. Compute the Normalized Positive Deficits:

d̄ =
(d)+∑K

a=1(da)+
.

2. Project onto the (s+ 1)-Sparse Simplex:

ΣK
s+1 =

{
w ∈ RK

+ :

K∑
a=1

wa = 1, ∥w∥0 ≤ s+ 1
}
.

That is, solve
ŵs+1 ∈ arg min

w∈ΣK
s+1

∥w − d̄∥2 . (15)

The GSSP algorithm [18] showed that this projection can be performed by selecting the
largest s+ 1 arms in d̄ and then re-normalizing.

3. Form the Continuous Configuration:

ĉ = B ŵs+1 .

4. Round to an Integer Configuration: Obtain c̃ ∈ NK from ĉ via the rounding procedure
described in Appendix E.

Next, we give a results that when combined with Lemma 1 shows that SPB C-tracking attains the
upper bound of Theorem 2.
Proposition 2. Let d ∈ RK

+ be the vector of arm deficits, and let B ∈ N and s ∈
{0, . . . ,min(K − 1, B − 1)} be the batch size and switching limit, respectively. Then the SPB
algorithm—which selects the continuous configuration ĉ = Bŵs+1 with ŵs+1 given by Eq. (15) and
rounds it as described in Appendix E—returns a batch configuration c̃ that minimizes

D(c) =

K∑
a=1

(
da − ca

)
+

over all c ∈ NK satisfying
∑K

a=1 ca = B and ∥c∥0 ≤ s+ 1.

Proof. We now prove Proposition 2 showing that the SPB algorithm minimizes Eq. (14) and thus
enjoys the tracking guarantee.

Consider the batch configuration construction problem at a given batch b, where we select

c ∈ CKB,s = {c ∈ NK :

K∑
a=1

ca = B, ∥c∥0 ≤ s+ 1}

19

to minimize

D(c) =

K∑
a=1

(
da − ca

)
+
.

Any algorithm that minimizes D(c) automatically satisfies the tracking guarantee required by Theo-
rem 2. We now show that the SPB algorithm minimizes D(c) by the following steps.

Step 1. Optimality via Maximum Deficit Removal.

Minimizing

D(c) =

K∑
a=1

(
da − ca

)
+

is equivalent to maximizing the total deficit removal

R(c) =

K∑
a=1

min{ca, da} ,

since

D(c) =

K∑
a=1

da −R(c).

This is because
∑K

a=1 da is independent of the allocation c, so minimizing D(c) is equivalent to
maximizing R(c):

argmin
c

D(c) = argmax
c

R(c).

Hence, an allocation that removes the largest fraction of the total positive deficit
∑K

a=1(da)+ is
optimal for Eq. (14).

Step 2. Decomposition into Integer and Fractional Deficit Removal. For each arm a, decompose
the deficit as

da = ⌊da⌋+ {da} ,
where 0 ≤ {da} < 1. Any play allocated to arm a first removes one full unit until ca = ⌊da⌋
plays are allocated; additional plays then remove only the fractional part {da}. Therefore, if two
configurations remove the same number of integer deficit units, they are equivalent in terms of integer
deficit removal. We call a configuration integer-optimal if it removes the maximum possible number
of integer deficit units. For such configurations, the only difference in total deficit removal comes
from the removal of the remaining (fractional) deficit.

Step 3. Maximizing Integer Deficit Removal. Since each play on arm a reduces the deficit by one
unit until ca = ⌊da⌋ plays are allocated, any configuration that does not allocate plays to the arms
with the largest deficits cannot remove more integer deficit.

We now prove by contradiction that any configuration which does not allocate all B plays solely to
the arms with the largest integer parts of the deficits (i.e. the top s+ 1 arms in terms of ⌊da⌋) cannot
be integer-optimal.

Suppose, for the sake of contradiction, that there exists a configuration

c ∈ NK with
K∑

a=1

ca = B and ∥c∥0 ≤ s+ 1,

which is integer-optimal (i.e. it maximizes
K∑

a=1

min{ca, ⌊da⌋}

over all feasible configurations) but which does not allocate all B plays to the top s+ 1 arms. This
means there exists an arm j that is not among the top s+ 1 arms (with respect to ⌊da⌋) for which
cj > 0.

20

If the configuration uses at most s+ 1 arms and arm j is not among the top s+ 1 arms, there must
exist an arm i among the top s+ 1 arms for which either ci is less than its capacity to remove integer
deficit (i.e. ci < ⌊di⌋) or even ci = 0.

Now, define a new configuration c′ by transferring one play from arm j to arm i:

c′i = ci + 1, c′j = cj − 1, c′a = ca for all a /∈ {i, j}.

Because ci < ⌊di⌋, we have

min{c′i, ⌊di⌋} = ci + 1 > ci = min{ci, ⌊di⌋}.
For arm j, note that reducing cj by one unit cannot increase the term min{cj , ⌊dj⌋}; indeed, if
cj ≤ ⌊dj⌋ then the removal decreases by one unit, and if cj > ⌊dj⌋ the term remains ⌊dj⌋. Therefore,

min{c′j , ⌊dj⌋} ≤ min{cj , ⌊dj⌋}.

Consequently, the total integer deficit removal in configuration c′ satisfies
K∑

a=1

min{c′a, ⌊da⌋} >
K∑

a=1

min{ca, ⌊da⌋}.

This contradicts the assumption that c was integer-optimal.

Thus, by contradiction, any integer-optimal configuration must allocate all B plays to a subset of at
most s+ 1 arms with the highest ⌊da⌋ values. By design, the SPB algorithm selects these top s+ 1
deficit arms, thereby maximizing the number of integer deficit units removed.

Step 4. Maximizing Fractional Deficit Removal among Integer-Optimal Configurations. Once
the integer deficit is maximized, the remaining difference among configurations is solely due to the
removal of the fractional parts {da}. Since {da} < 1 for every arm, the optimal strategy is to allocate
any extra plays in decreasing order of the fractional deficit.

Via the rounding procedure in Appendix E, the SPB algorithm produces an integer configuration that
allocates any remaining plays in decreasing order of the fractional remainders. Therefore, among
all integer-optimal configurations, the SPB-selected configuration removes the maximum possible
fractional deficit.

Step 5. Concluding Optimality. Combining Steps 3 and 4, we conclude that the SPB algorithm:

(i) Selects an allocation that is integer-optimal (i.e., it removes the maximum number of integer
deficit units by playing only the top s+ 1 arms).

(ii) Among integer-optimal configurations, allocates any extra plays so as to maximize the
removal of the fractional deficits.

Thus, any configuration different from the SPB-selected configuration must either remove fewer
integer deficit units or (if integer-optimal) remove a smaller sum of fractional deficits. In either case,
the total remaining deficit D(c) would be larger than that achieved by the SPB algorithm.

Since minimizing D(c) is equivalent to obtaining the tracking guarantee (and any algorithm min-
imizing Eq. (14) attains the same upper bound as the SBC algorithm), we conclude that the SPB
algorithm minimizes D(c) and enjoys the same upper bound.

Conclusion. In summary, we have shown that:

• Any batch configuration that removes the largest fraction of the total positive deficit is
optimal with respect to Eq. (14).

• Among configurations that remove the same number of integer deficit units (i.e., among
integer-optimal configurations), the one that removes the maximum fractional deficit is best.

• The SPB algorithm, by selecting the top s + 1 arms and using a rounding procedure that
allocates extra plays in decreasing order of fractional deficit, simultaneously maximizes
both the integer and fractional deficit removal.

21

Thus, the SPB algorithm minimizes D(c) and consequently enjoys the tracking guarantee as stated in
Theorem 2.

E Rounding Procedure

To convert the continuous solution ĉ = B · ŵs+1 (with ŵs+1 ∈ ΣK
s+1) into a valid integer allocation

c̃ ∈ NK , we proceed as follows:

1. Flooring: For each arm a, set
c̃a = ⌊ĉa⌋ .

2. Computing Remainders: For each arm a, compute the fractional remainder

fa = ĉa − ⌊ĉa⌋ .

3. Allocating Remaining Plays: Let

R = B −
K∑

a=1

c̃a .

Distribute the remaining R plays to the arms in decreasing order of fa (breaking ties
arbitrarily).

F Appendix: Additional experimental results

Table 2 contains the number of configurations for 8 arms, batch size B = 128 for various values of
the switching constraint s.

s At most s switches Exactly s switches
7 138432467745 89356415775
6 49076051970 41355035400
5 7721016570 7118489700
4 602526870 578739000
3 23787870 23336250
2 451620 448056
1 3564 3556
0 8 8

Table 2: The number of configurations
∣∣CKB,s

∣∣ for different s values K = 8, B = 128.

K At most s switches Exactly s switches
4 366145 333375
8 23787870 23336250

16 611238316 606742500
32 12027912984 11988165000
64 212152083760 211818474000
128 3559176881760 3556444500000

Table 3: The number of configurations
∣∣CKB,s

∣∣ for different K values s = 3, B = 128.

Example 1: Tracking characteristics Consider an illustrative example with K = 8, B =
64 and s = 2 where until batch b = 10, both algorithms have accumulated the same number
of arm plays and deficits (rounded):

w̄(b)/B = [1.6, 1.7, 1.6, 1.8, 1.1, 1.1, 1.1, 1.1]⊤

N(b) = [86, 99, 85, 136, 54, 52, 64, 64]⊤

d(b) = [15.6, 9.1, 17.9,−18.7, 14.5, 16.5, 4.5, 4.5]⊤

22

0 1 2 3 4 5 6 7
Action (K=8, B=64, s=2)

0

5

10

15

20

25

30

B
at

ch
 p

la
ys

SBC C-Tracking (Ours)
SPB C-Tracking (Ours)
Batch Racing

Figure 4: Illustrative example showing arm selection for SPB and SBC starting from the same
accumulated arm plays N(b) and desired proportions w̄(b) after b = 10 batches. BatchRacing
included for reference.

0 1 2 3 4 5 6 7
Action (K=8, B=64, s=2)

0

5

10

15

20

25

30

B
at

ch
 p

la
ys

SBC C-Tracking (Ours)
SPB C-Tracking (Ours)
Batch Racing

Figure 5: Illustrative example comparing arm selection for SPB and SBC starting from the same
accumulated arm plays N(b) and desired proportions w̄(b) after b = 10 batches. BatchRacing
included for reference.

In deciding the next plays, SBC and SPB respectively yield the following configurations, see Figure 4:

SPB: c̃ = [21, 0, 22, 0, 0, 21, 0, 0]⊤

SBC: c̃ = [16, 0, 31, 0, 0, 17, 0, 0]⊤

Both SBC and SPB select the arms with the largest deficit to be included in the next batch (both
are integer-optimal, see Appendix D). SBC, with the greedy batch filling subroutine (Appendix C),
yields configurations where the remaining batch allocation after removing integer deficits is allocated
greedily onto the arm with the largest fractional deficit in the selected arms. For SPB, the batch is
filled proportionally to the deficits in the selected arms. BatchRacing is also shown in Figure 4 with
uniform plays across all arms, from the round-robin procedure given that all arms are still in the
feasible set. See Appendix F, Example 2 for another example.

Example 2: Tracking characteristics Consider an illustrative example with K = 8, B =
64 and s = 2 where until a batch b = 10, both algorithms have accumulated the same num-
ber of arm plays, as well as the deficits:∑b−1

i=0 w
ϵi(µ̂i) = [2.918, 1.643, 1.696, 1.082, 0.708, 0.894, 1.291, 0.769]⊤,

N(b) = [177, 103, 94, 50, 43, 61, 72, 40]⊤,
d(b) = B

∑b−1
i=0 w

ϵi(µ̂i)−N(b) = [9.752, 2.152, 14.544, 19.248, 2.312,−3.784, 10.624, 9.216]⊤.

In deciding the next plays, SBC and SPB respectively yield the following configurations, also shown
in Figure 5:
SPB: c̃ = [0, 0, 21, 26, 0, 0, 17, 0]⊤

SBC: c̃ = [0, 0, 15, 20, 0, 0, 29, 0]⊤

23

F.1 Additional results

0 200 400 600 800 1000 1200
Time in batches (K=8, B=8, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 100 200 300 400 500 600
Time in batches (K=8, B=16, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 50 100 150 200 250 300
Time in batches (K=8, B=32, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 20 40 60 80 100 120 140
Time in batches (K=8, B=64, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 10 20 30 40 50 60 70
Time in batches (K=8, B=128, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 5 10 15 20 25 30 35
Time in batches (K=8, B=256, s=1)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

BatchRacing SPB C-Tracking (Ours) SBC C-Tracking (Ours)

Figure 6: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking
(Ours) vs BatchRacing (Baseline) with s = 1 for different batch sizes B ∈ {8, 16, 32, 64, 128, 256}

0 200 400 600 800 1000 1200
Time in batches (K=8, B=8, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 100 200 300 400 500 600
Time in batches (K=8, B=16, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 50 100 150 200 250 300
Time in batches (K=8, B=32, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 20 40 60 80 100 120 140
Time in batches (K=8, B=64, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 10 20 30 40 50 60 70
Time in batches (K=8, B=128, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

0 5 10 15 20 25 30 35
Time in batches (K=8, B=256, s=3)

0
1
2
3
4
5
6
7

O
bs

er
ve

d
sw

itc
he

s

BatchRacing SPB C-Tracking (Ours) SBC C-Tracking (Ours)

Figure 7: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking
(Ours) vs BatchRacing (Baseline) with s = 3 for different batch sizes B ∈ {8, 16, 32, 64, 128, 256}

24

0 1 2 3 5 7
 switching limit, s (B=8, K=8)

0

10000

20000

E[
]=

BE
[

]

0 1 2 3 5 7
 switching limit, s (B=16, K=8)

0

10000

20000

E[
]=

BE
[

]

0 1 2 3 5 7
 switching limit, s (B=32, K=8)

0

10000

20000

E[
]=

BE
[

]

0 1 2 3 5 7
 switching limit, s (B=64, K=8)

0

10000

20000

E[
]=

BE
[

]

0 1 2 3 5 7
 switching limit, s (B=128, K=8)

0

10000

20000

E[
]=

BE
[

]

BatchRacing Track and stop C-Tracking SBC C-Tracking (Ours) SPB C-Tracking (Ours)

Figure 8: Comparison of stopping times over switching limits s ∈ {0, 1, 2, 3, 5, 7} in SPB C-Tracking
(Ours) with different batch sizes B ∈ {8, 16, 32, 64128}. Track-and-stop C-tracking is not batched.

F.2 A second set of 16 arms

A second simulation setting comprises a set of 16 arms from Gaussian distributions, with means
µ = {0.80, 0.69, 0.66, 0.62, 0.59, 0.55, 0.52, 0.48, 0.45, 0.41, 0.38, 0.34, 0.31, 0.27, 0.24, 0.20} and
standard deviation σ = 0.3. The results are consistent with the first simulation and are shown in
Figures 10, 11 and 12.

G Code

All code in Python for the algorithms implementation and reproducing graphs is included in the
supplemental files as zip file. The algorithm modules were written as extension modules to Bandit-
PyLib by Holtz et al. [11] and they can be found in the banditpylib/learners/mab_fcbai_learner
directory. Notebooks for running the experiments with Slurm and for reproducing the graphs are also
included in the examples/ folder.

25

8 16 32 64 128 256 512 1024
Batch size (s=0, K=8)

0

10000

20000

E[
]=

BE
[

]

8 16 32 64 128 256 512 1024
Batch size (s=1, K=8)

0

10000

20000

E[
]=

BE
[

]

8 16 32 64 128 256 512 1024
Batch size (s=3, K=8)

0

10000

20000

E[
]=

BE
[

]

8 16 32 64 128 256 512 1024
Batch size (s=5, K=8)

0

10000

20000

E[
]=

BE
[

]

8 16 32 64 128 256 512 1024
Batch size (s=7, K=8)

0

10000

20000

E[
]=

BE
[

]

Track and stop C-Tracking BatchRacing SBC C-Tracking (Ours) SPB C-Tracking (Ours)

Figure 9: Effect of batch size on the stopping times for BatchRacing and SPB C-Tracking s ∈
{0, 1, 3, 5, 7}, B ∈ {8, 16, 32, 64, 128, 256, 512, 1024}.

0 100 200 300 400 500 600
Time in batches (K=16, B=32, s=1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

O
bs

er
ve

d
sw

itc
he

s

BatchRacing SPB C-Tracking (Ours) SBC C-Tracking (Ours)

Figure 10: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking
(Ours) with s = 1, B = 32 vs BatchRacing (Baseline).

26

0 1 5 10 15
 switching limit, s (B=16, K=16)

10000

15000

20000

E[
]=

BE
[

]

0 1 5 10 15
 switching limit, s (B=128, K=16)

10000

15000

20000

E[
]=

BE
[

]

0 1 5 10 15
 switching limit, s (B=256, K=16)

10000

15000

20000

E[
]=

BE
[

]

0 1 5 10 15
 switching limit, s (B=512, K=16)

10000

15000

20000

E[
]=

BE
[

]

0 1 5 10 15
 switching limit, s (B=1024, K=16)

10000

15000

20000

E[
]=

BE
[

]

BatchRacing Track and stop C-Tracking SBC C-Tracking (Ours) SPB C-Tracking (Ours)

Figure 11: Comparison of stopping times over switching limits s ∈ {0, 1, 5, 10, 15} in SPB C-
Tracking (Ours) with different batch sizes B ∈ {16, 128, 256, 512, 1024}. Track-and-stop C-tracking
is not batched.

27

16 32 64 128 256 512 1024
Batch size (s=0, K=16)

10000

20000

E[
]=

BE
[

]

16 32 64 128 256 512 1024
Batch size (s=1, K=16)

10000

15000

20000

E[
]=

BE
[

]

16 32 64 128 256 512 1024
Batch size (s=5, K=16)

10000

15000

20000

E[
]=

BE
[

]

16 32 64 128 256 512 1024
Batch size (s=10, K=16)

10000

20000

E[
]=

BE
[

]

16 32 64 128 256 512 1024
Batch size (s=15, K=16)

10000

20000

E[
]=

BE
[

]

Track and stop C-Tracking BatchRacing SBC C-Tracking (Ours) SPB C-Tracking (Ours)

Figure 12: Effect of batch size on the stopping times for BatchRacing and SPB C-Tracking s ∈
{0, 1, 5, 10, 15}, B ∈ {16, 32, 64, 128, 256, 512, 1024}.

28

	Introduction
	Problem Formulation
	Lower Bounding the Number of Batches in Pure Exploration
	A Lower Bound on the Number of Batches with Switching Constraints

	Tracking Algorithms
	Tracking Arm Proportions with Batches
	An Upper Bound on the Stopping Batch

	Simulation Experiments
	Experimental Setup
	Results and Discussion

	Discussion
	Proof of Theorem 1
	An upper bound on the expected stopping time of the tracking algorithms
	Proportion Tracking with Batch Plays and a Switching Limit
	Tracking rule convergence
	Prooof of Theorem 2

	A greedy algorithm for constructing configurations
	Sparse-Projected Batch (SPB) Algorithm for Constructing Configurations
	Rounding Procedure
	Appendix: Additional experimental results
	Additional results
	A second set of 16 arms

	Code

