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ABSTRACT

We propose an empirical approach centered on the spectral dynamics of weights—
the behavior of singular values and vectors during optimization—to unify and clar-
ify several phenomena in deep learning. We identify a consistent bias in optimiza-
tion across various experiments, from small-scale “grokking” to large-scale tasks
like image classification with ConvNets, image generation with UNets, speech
recognition with LSTMs, and language modeling with Transformers. We also
demonstrate that weight decay enhances this bias beyond its role as a norm reg-
ularizer, even in practical systems. Moreover, we show that these spectral dy-
namics distinguish memorizing networks from generalizing ones, offering a novel
perspective on this longstanding conundrum. Additionally, we leverage spectral
dynamics to explore the emergence of well-performing sparse subnetworks (lot-
tery tickets) and the structure of the loss surface through linear mode connectivity.
Our findings suggest that spectral dynamics provide a coherent framework to bet-
ter understand the behavior of neural networks across diverse settings.

1 INTRODUCTION

Interest in neural networks has exploded in the past decade. Capabilities are rapidly improving,
and deployment is ever-increasing. Yet, although issues with these technologies now have social
repercussions (Bender et al., 2021; Bommasani et al., 2021), many fundamental questions regarding
their behavior remain unanswered.

For instance, despite extensive research, we still lack a complete understanding of the implicit biases
of neural networks trained via stochastic optimization (Neyshabur et al., 2014). Even basic questions
regarding the role of regularization like weight decay (Hanson & Pratt, 1988; Krogh & Hertz, 1991;
Zhang et al., 2018a) have only partial answers (Van Laarhoven, 2017; Andriushchenko et al., 2023;
Yaras et al., 2023b). Perhaps most vexing, we lack a complete explanation for how neural networks
generalize, despite having the capacity to perfectly memorize the training data (Zhang et al., 2021).
Such an explanation may allow us to design better algorithms, however a lack of understanding
makes the deployment of neural networks vulnerable to uninterpretable errors across fields (Szegedy
et al., 2013; Ilyas et al., 2019; Hendrycks et al., 2021; Zou et al., 2023).

Although theoretical explanations have been put forward, these studies are often limited to special
settings like deep linear networks (Arora et al., 2018; 2019) or infinite-width systems (Jacot et al.,
2018), and arguments may rely on unsubstantiated or impractical assumptions like near-zero initial-
ization. On the empirical side, a growing body of work in interpretability has attempted to reverse-
engineer neural networks (Rahaman et al., 2019; Barak et al., 2022; Nanda et al., 2023), but given
the difficulty of the task, the systems of interest have been very small-scale, and the methodology
for analysis quite bespoke and challenging to scale. A third category of work aims at understanding
empirical behavior from a higher level (Zhang et al., 2021; Huh et al., 2022; Yu & Wu, 2023), but
while these works often study larger-scale systems, they often focus on more abstract objects like
the gram matrix (Huh et al., 2022) or the Neural tangent kernel (NTK) (Fort et al., 2020), and thus
do not have the granularity and predictive power of the previous two categories.

To bridge these gaps, we propose a task-agnostic, unifying perspective of many disparate phenomena
in deep learning across many different practical tasks and architectures, including image classifica-
tion with ConvNets, image generation with UNets, speech recognition with LSTMs and language
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(a) SV Schematic (b) SVs (c) Alignment Schematic

Figure 1: (a) Schematic for the spectral dynamics of a weight matrix. As training proceeds, top
singular vectors become stable and top singular values grow disproportionately large. (b) Singular
value evolution for a single matrix in a Transformer, where each line is a single singular value and
color represents rank. We see a disproportionate trend where large singular values grow larger faster.
(c) Previous works have used SV basis alignment between layers to prove similar theoretical results,
however actual alignment between consecutive layers is not strong, which we describe in Section 4.
We explore these spectral dynamics of weights and connect them to generalization, regularization,
and seemingly unrelated phenomena like linear mode connectivity.

modeling with Transformers. Through extensive experiments, we examine the dynamics (i.e., evolu-
tion over training) of singular values and singular vectors of weight matrices; the spectral dynamics
of weights. We observe a few key properties: singular values evolve unequally, with larger ones
evolving faster, as a result top singular vectors stabilize toward the end of training, and for top ranks
we see alignment between neighboring layers’ singular vectors, though this varies somewhat with
the setting. We preview these in Figure 1. We are motivated to study these dynamics specifically
as optimization is posited to be one of the fundamental process driving deep learning (Nagarajan &
Kolter, 2019; Zhang et al., 2021), and the SVD is fundamental to every matrix. We detail how these
properties connect to generalization and many other phenomena in the following paragraphs.

Contributions: As a test bed for understanding generalization, Power et al. (2022) introduce the
“grokking” phenomenon, where a small-scale model on arithmetic tasks initially minimizes the
training loss but performs poorly on validation data, then with much more training suddenly mini-
mizes the validation loss. In particular, Nanda et al. (2023) showed that in modular arithmetic, the
feature learning that occurs during grokking could be completely reverse-engineered from the final
weight matrices. Although this description is precise, it is limited to these particular tasks. In Sec-
tion 3, we notice a task-agnostic view of grokking, observing that the drop in validation loss during
grokking coincides with the simultaneous discovery of low-rank solutions across all weight matrices
in the network, whether it be modular arithmetic or an image-classification setting. We also find that
this transition relies on weight decay, echoing existing works (Lyu et al., 2023; Liu et al., 2023) as
neither grokking nor low-rank weights occur without sufficient weight decay.

Though the common tie between low-rank weights and generalization in grokking, suggests a con-
nection between rank and generalization, grokking is typically studied on synthetic tasks with very
small-scale models like single-layer Transformers or small MLPs, and requires very particular hy-
perparameter settings (Power et al., 2022; Nanda et al., 2023; Gromov, 2023; Kumar et al., 2023). If
our perspective is to be useful, it needs to scale to larger systems. Thus, we turn to common empir-
ical tasks drawn from the literature like image classification, image generation, speech recognition
and language modeling as well as varied and larger networks like VGG (Simonyan & Zisserman,
2014), UNet (Ronneberger et al., 2015), LSTM (Hochreiter & Schmidhuber, 1997b) and multi-layer
Transformers (Vaswani et al., 2017).

In Section 4, we demonstrate that the spectral dynamics are biased toward effective rank minimiza-
tion across various practical neural networks in complex settings. Although this behavior echoes
theoretical predictions in the deep linear setting, we find that the behavior of networks disagrees
with a common theoretical assumption about low-rank dynamics: the alignment of singular vectors
in consecutive layers (Saxe et al., 2014; Arora et al., 2018; 2019; Milanesi et al., 2021). Thus, the
rank minimization mechanism may differ from what the theory describes. It is notable too that our
hyperparameter settings are drawn from existing literature, thus the trend toward rank minimization
coincides with well-generalizing networks across settings.
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Given one particularly notable ingredient for grokking was a very high level of weight decay, in
Section 5 we empirically connect rank minimization to weight decay, showing that weight decay
promotes rank minimization across architectures and tasks, echoing Section 3. In addition, in some
cases, it also appears to promote singular vector alignment in consecutive weights despite the nonlin-
earities between layers. Although weight decay explicitly penalizes norm, studying spectral dynam-
ics allows us to observe a host of effects including on rank and alignment. Such effects may help
in understanding the reason weight decay is useful, as norm-based explanations have been found
insufficient (Andriushchenko et al., 2023).

To test the explanatory power of the framework, we turn to the classic memorization experiments of
Zhang et al. (2021), who demonstrated that even small networks can memorize random labels, thus
any arguments about generalization cannot be capacity-based alone. In Section 6 and Appendix B,
we show that training with random labels leads to high-rank solutions, while rank with true labels is
much lower. We also find that while random labels do not align consecutive layers, true labels do,
which is surprising given the non-linearities between layers. This echoes prior discussion on rank
and generalization. Through spectral dynamics, we see a clear distinction between generalizing and
memorizing networks, which provides a foothold toward better theoretical understanding.

Our results suggest that viewing neural networks through the lens of spectral dynamics can shed light
on several generalization-related phenomena, but we suspect there are broader connections. In the
literature, many curious and unexplained phenomena regarding neural networks exist. We take two
as case studies. First, the lottery ticket hypothesis (LTH) (Frankle & Carbin, 2018) and second, linear
mode connectivity (LMC) (Nagarajan & Kolter, 2019; Frankle et al., 2020; Neyshabur et al., 2020).
We find that global magnitude pruning, a standard procedure for finding lottery tickets, preserves top
singular vectors and acts like a low-rank pruning. We also see that the ability to interpolate between
models in LMC strongly correlates with sharing top singular vectors. With these results, we note
that the two phenomena can be seen as aspects of the spectral dynamics of weights, bringing them
under the umbrella of prior sections. For detailed discussion see Section 6 and Appendix C.

To summarize the discussion above, by studying the spectral dynamics of weights, we find:

• Grokking is intimately linked to rank minimization;

• Rank minimization is a general phenomenon in more complex tasks;

• Weight decay acts implicitly as a low-rank regularizer;

• Generalizing solutions have a lower rank than memorizing ones; and

• Top singular vectors are preserved when performing magnitude pruning and while linearly
interpolating between connected modes.

All of these phenomena and effects have previously been studied in isolation to varying degrees, but
by approaching deep learning through spectral dynamics, we aim to provide a common language for
probing and understanding neural networks. Code for all experiments will be released.

2 RELATED WORK

2.1 SINGULAR VALUE DYNAMICS

Prior work on deep linear networks (Arora et al., 2019; Milanesi et al., 2021) suggests that rank
minimization may better describe implicit regularization in deep matrix factorization than simple
matrix norms. See Arora et al. (2018) (Appendix A) for a detailed argument. However, a critical
assumption in these works is “balanced initialization.” This means that for consecutive matrices Wi

and Wi+1 in the product matrix
∏

j Wj , we have W⊤
i+1Wi+1 = WiW

⊤
i at initialization. Decompos-

ing these matrices with SVDs and leveraging orthogonality leads to matching left and right singular
vectors between consecutive matrices. See Appendix A for a detailed explanation. Consequently,
the product of the diagonals will evolve in a closed-form manner, with larger singular values grow-
ing faster than smaller ones. As shown by Arora et al. (2019), this translates to rank-minimizing
behavior with increasing depth in the matrix products. This formula is also empirically validated
for linear matrix factorization problems. Similar results have been derived for tensor products and
other structured settings (Saxe et al., 2014; Yaras et al., 2023a). (Ji & Telgarsky, 2019) show that
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alignment between layers will happen specifically for deep linear networks with infinite training.
Still, there is no reason to believe standard networks obey this balancedness condition under practi-
cal initialization procedures. In Section 4, we explore how these conclusions and assumptions hold
for much larger, practical neural networks that are far from linear.

2.2 LOW-RANK PROPERTIES

Another line of research focuses on more general low-rank biases. Early work explored norms as an
implicit bias (Gunasekar et al., 2017). Theoretical analyses reveal that norms or closed-form func-
tions of weights might be insufficient to explain implicit regularization, but they do not necessarily
contradict the possibility of rank minimization (Razin & Cohen, 2020; Vardi & Shamir, 2021). Nu-
merous studies investigate low-rank biases in various matrices, including the Jacobian (Pennington
et al., 2018), weight matrices (Le & Jegelka, 2021; Martin & Mahoney, 2020; 2021; Frei et al.,
2022; Ongie & Willett, 2022), Gram matrix (Huh et al., 2022), and features (Yu & Wu, 2023; Feng
et al., 2022). Additionally, research suggests that dynamics influence the decay of rank (Li et al.,
2020; Chen et al., 2023; Wang & Jacot, 2023). Orthogonally, weight decay has a long history
as a regularizer explicitly penalizing parameter norm, which can be used for norm-based general-
ization bounds (Bartlett, 1996), but these bounds do not seem to explain the success of practical
systems (Nagarajan & Kolter, 2019; Jiang et al., 2019). Some works establish connections between
weight decay and rank minimization in idealized settings (Ziyin et al., 2022; Galanti et al., 2022;
Zangrando et al., 2024; Ergen & Pilanci, 2023; Parhi & Nowak, 2023; Shenouda et al., 2023), which
may be connected to generalization (Razin & Cohen, 2020). We are particularly interested in how
far these connections extend in practice.

3 GROKKING AND RANK MINIMIZATION

Power et al. (2022) first noticed a surprising phenomenon they called “grokking” where models
quickly fit the training data on toy tasks, then after a long period of training, very quickly generalize
on the validation data. Later, others found that this phenomenon can occur in a relaxed fashion (Thi-
lak et al., 2022) on very simple models and different datasets (Liu et al., 2022; Gromov, 2023; Kumar
et al., 2023; Xu et al., 2023), and that weight decay seems critical to cause it (Lyu et al., 2023; Liu
et al., 2023; Tan & Huang, 2023).

Motivated by theoretical work that proposes connections between rank and generalization (Razin &
Cohen, 2020), weight decay and rank (Galanti et al., 2022; Timor et al., 2023; Yaras et al., 2023b;
Zangrando et al., 2024), and the importance of weight decay for grokking (Power et al., 2022; Lyu
et al., 2023; Liu et al., 2023) in simple settings, we evaluate the potential connection between rank
and grokking in neural networks. This offers a complementary perspective on grokking with other
descriptions such as Fourier decomposition (Nanda et al., 2023), the simplification of linear decision
boundaries (Humayun et al., 2024), the connection to double descent (Davies et al., 2022), and the
discovery of a sparse solution (Merrill et al., 2023).

We replicate grokking in two settings: a single-layer Transformer for modular addition (Nanda et al.,
2023), and a 12-layer MLP for MNIST image classification (Fan et al., 2024) (see Appendix D for
details). Inspired by work in the deep linear case (Saxe et al., 2014; Arora et al., 2019; Milanesi
et al., 2021; Yaras et al., 2023b), we track the evolution of singular values for individual weight
matrices. To gain a high-level overview of all parameter evolutions, we compute the (normalized)
effective rank of a matrix W (Roy & Vetterli, 2007) with rank R as

EffRank(W ) := −
R∑
i=1

σi∑
j σj

log
σi∑
j σj

, (1)

NormEffRank(W ) :=
EffRank(W )

R
, (2)

where σi’s are the singular values of matrix W and EffRank(W ) is the entropy of the normalized
singular value distribution. As the probability mass concentrates, the effective rank decreases. We
plot NormEffRank(W ) to compare across layers and time.

In addition, inspired by the assumptions of balancedness made by prior work (Arora et al., 2018;
2019), we examine the alignment of consecutive weight matrices in the Transformer. To examine
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(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 2: Grokking and Spectral Dynamics. Top row: Grokking for Transformers on modular
addition (Nanda et al., 2023). Bottom row: Grokking for a 12-layer MLP on MNIST (Fan et al.,
2024). 1st column: Training and validation error. 2nd column: A visualization of singular value
evolution for the first attention parameter and the second MLP layer, where each line represents
a single singular value and the color represents the rank. 3rd column: Effective rank of all layers
(Eqn. 1). 4th column: A visualization of the alignment (Eqn. 3) between the embedding and the first
attention parameter, and the first and second MLP layers, where the y-axis corresponds to index i of
the diagonal. We see that grokking co-occurs with a transition to low-rank weights. In addition, there
is an alignment that begins early in training that evolves up the diagonal. In the image classification
case, we see a similar rank transition, though alignment appears seemingly out of nowhere.

and quantify this alignment between SVDs of consecutive matrices in a network at training time t,
i.e.,

Wi =

R∑
j=1

σj(t)uj(t)vj(t)
⊤, Wi+1 =

R∑
k=1

σ′
k(t)u

′
k(t)v

′
k(t)

⊤ ,

we compute,

A(t)jk = |⟨uj(t), v
′
k(t)⟩| , (3)

where the absolute value is taken to ignore sign flips in the SVD computation. We then plot the
diagonal of this matrix A(t)ii ∀ i ≤ 100 over time. For exact details on how alignment is computed
for different architectures and layers more complex than the fully connected case, see Appendix D.

In Figure 2, we see a tight connection: the sudden drop in validation loss coincides precisely with
the onset of low-rank behavior in the singular values. Examining inter-layer alignment during train-
ing, we observe that the final low-rank solution gradually emerges from the model’s middle ranks.
Conversely, in Figure 19, the grokking phenomenon is absent without weight decay, and no low-
rank solution seems to develop. Additionally, when using 90% of the data and no weight decay,
generalization still coincides with effective rank minimization. Fan et al. (2024) noted that in deep
MLPs, grokking coincided with a feature rank decrease, which we show stems from the parameter
rank decrease here. The familiar reader will also note that Nanda et al. (2023) previously showed
that the particular solution found in modular addition is a low rank fourier decomposition, so our
observations on low rank weights will follow, yet the same structure also applies to the MLP where
such reverse-engineering is difficult. In the following sections we argue that rank minimization is a
perspective that can apply in more complex settings when one does not know what to look for in the
weights, and it may be possible to interpret the neural network via the top ranks (Praggastis et al.,
2022).
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4 SPECTRAL DYNAMICS ACROSS TASKS

Inspired by the results on grokking and prior work on deep linear networks that studies the evolution
of the SVD of the weight matrices (Saxe et al., 2014; Arora et al., 2018; 2019; Milanesi et al., 2021;
Yaras et al., 2023a), we apply the same analysis to larger, more practical systems. We show that
the trends we saw in the analysis of grokking mostly hold true across networks and tasks at a much
larger scale, even though our findings do occasionally deviate from theoretical predictions.

4.1 METHODOLOGY

Our experiments aim to examine reasonably sized neural networks across a variety of tasks. We
select models and tasks that are representative of current applications. Specifically, we focus on:

• Image classification with CNNs (VGG-16 (Simonyan & Zisserman, 2014)) on CI-
FAR10 (Krizhevsky, 2009);

• Image generation through diffusion with UNets (Ronneberger et al., 2015) on MNIST (Le-
Cun, 1998);

• Speech recognition with LSTMs (Hochreiter & Schmidhuber, 1997b) on LibriSpeech (Panay-
otov et al., 2015); and

• Language modeling with Transformers (Vaswani et al., 2017) on Wikitext-103 (Merity et al.,
2016).

Training hundreds of runs for each of the above experiments is computationally expensive, limiting
the scale of models we can explore. We primarily adopt hyperparameters from existing literature,
with minor modifications for simplicity. This ensures that any correlations observed are likely a
reflection of common practices, not introduced bias on our part. We also provide evidence with
larger scale (up to 3B parameters) in Appendix D.5, from the Pythia suite (Biderman et al., 2023).

The primary evidence in this section comes from computing the SVDs of weight matrices within
the models. Consequently, we disregard 1D bias and normalization parameters in our analysis.
Indeed previous research suggests that in some cases these parameters are not crucial for perfor-
mance (Zhang et al., 2018b; Mohan et al., 2019; Karras et al., 2023). Due to the large number of
matrices in these models, we present plots of individual layers’ matrix parameters and statistics that
summarize behavior across layers for conciseness of presentation. Hundreds of thousands of plots
were generated for this study, making it impossible to include them all. Full experimental details,
including the choice of hyperparameters, are available in Appendix D.

4.2 EFFECTIVE RANK MINIMIZATION

Building on theoretical (Saxe et al., 2014; Arora et al., 2019; Milanesi et al., 2021; Boix-Adserà
et al., 2023; Yaras et al., 2023a) and empirical (Dittmer et al., 2019; Martin & Mahoney, 2020;
2021; Boix-Adserà et al., 2023) findings, we investigate effective rank minimization across parame-
ters in larger models and on a more diverse variety of tasks. Figure 3 reveals a consistent trend: the
effective rank of network parameters generally decreases throughout training, regardless of the spe-
cific parameter or network architecture. This suggests a progressive “simplification” of the network
as training progresses.

We further conduct a singular-value pruning experiment to explore the relationship between low-
rank behavior and model performance. We prune either the top or bottom half of the singular values
for each weight matrix in the network and then evaluate the pruned model at each training step.
Given their importance in L2 space, we expect the top singular values to capture the most critical
information for the network’s function. Figure 4 confirms this, demonstrating that the pruned pa-
rameters, without further training, can closely approximate the full model’s performance. It is not
necessarily obvious that pruning would have this effect. In particular, simultaneously pruning lower
components across all layers may lead to losing some critical signal that must be passed between
layers, or it could be that small-magnitude singular values may provide some important regularizing
noise. In later sections, we will rely on this observation that large singular values are more critical
to the function of the network.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 3: Top row: Singular value evolution for a single matrix in the middle of each model. Each
line represents a singular value, while color represents rank. Notice the unequal evolution where top
singular values grow at a disproportionate rate. Bottom row: Normalized effective rank (Eqn. 1)
evolution visualized in color for different matrices across architectures and time. As we move down
the y-axis, the depth of the parameters in the model increases, while the x-axis tracks training time.
Notice decreasing effective rank across nearly all parameters, though the magnitude differs across
layers. The block-like patterns for VGG are likely due to different channel dimension sizes. The
banding in the UNet, LSTM, and Transformer is due to the differences between convolutional and
linear layers, residual block connections, and attention and fully connected layers, respectively. The
sharp transition midway through training in the VGG case is likely due to a 10× learning rate decay.

(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 4: Left plot: Training loss. Right plot: Validation loss. Red is the full model. Blue is
post-training pruning the bottom half of the SVD for every matrix in the model that is not the final
layer. Green is post-training pruning the top half of the SVD. Notice that for all models, keeping the
top half of the SVD is close to the full model performance, supporting the idea that the top directions
provide a better approximation to the function.

4.3 ALIGNMENT OF SINGULAR VECTORS BETWEEN LAYERS

Similar to the analysis of grokking, we investigate the alignment between consecutive layers in the
larger neural networks considered in this section. We not only employ the alignment matrix defined
in Eqn. 3 but also derive and plot a scalar measure for alignment based on the top diagonal entries:

a(t) =
1

10

10∑
i=1

A(t)ii (4)

For specific details on calculating this measure in diverse architectures and complex layers (beyond
fully connected layers), please refer to Appendix D.

Figure 5 reveals a key finding: the theoretical assumption of balanced initialization, which posits
aligned singular value decompositions (SVDs) between weight matrices (Arora et al., 2018; Saxe
et al., 2014), does not hold true at the start of training in these larger networks. Additionally, unlike
the linear case discussed in Du et al. (2018), the alignment does not appear to remain static through-
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 5: Neighboring layer alignment of singular vectors. Left plot: The diagonal of the alignment
matrix A(t)ii (Eqn. 3) vs. training time for a single pair of matrices in the middle of each model. We
see a small amount of alignment in the top ranks between layers shortly after training begins, but
this becomes more diffuse over time. Right plot: Alignment metric (Eqn. 4) for pairs of matrices
for depth vs. training time. It is hard to make out a global trend across models, though the LSTM
shows a weak signal around Epoch 1 when the initial alignment occurs, and the Transformer case
has a banding pattern with depth due to alignment between the query and key matrices that have no
nonlinearity in between.

out training. However, a weak signal of alignment in the top ranks develops and disappears. This
trend is somewhat reminiscent of the theoretical result provided by Mulayoff & Michaeli (2020) for
linear networks under the assumption of whitened input data. Still, the weakness of the observed
signal means that existing theoretical models do not capture the complexities of neural network
training.

5 THE EFFECT OF WEIGHT DECAY

In light of the previously observed evolution of singular values, we investigate a proposed effect
of weight decay. Though weight decay explicitly penalizes the norm of weights, there is evidence
that complicates the connection between the norm and generalization for neural networks (Razin
& Cohen, 2020; Andriushchenko et al., 2023), meaning we do not have a full understanding as to
why weight decay may be useful. Alternatively, some theoretical (Boix-Adserà et al., 2023; Razin
& Cohen, 2020; Yaras et al., 2023a; Timor et al., 2023; Ongie & Willett, 2022; Galanti et al., 2022;
Zangrando et al., 2024) and empirical works (Galanti et al., 2022; Boix-Adserà et al., 2023) propose
a connection with the rank of matrices in constrained settings. Still, a comprehensive connection to
larger empirical networks has not yet been demonstrated.

We speculate on the intuition of the mechanism in more practical settings. In its simplest form,
weight decay involves the optimization arg minW L(W ) + λ∥W∥2F , where ∥W∥2F =

∑R
i=1 σ

2
i

with singular values σi of weight matrix W with rank R. We saw previously that larger singular
values of neural networks grow faster (Fig. 3, top row) and that the top singular vectors are much
more useful for minimizing task loss than the bottom ones (Fig. 4). Thus, with minor weight decay
regularization, one straightforward solution for the network may be to minimize the rank of a given
weight matrix while preserving the top singular values to minimize L(W ). Timor et al. (2023) argue
a similar effect: if all singular values are less than one, the norm of activations will shrink with depth,
so it will be impossible to pass signals from input to output in sufficiently deep networks with even
penalization. Thus it is better for a few singular values to be sufficiently large, while the rest can be
very small.

Figure 6 shows that adding weight decay produces this exact low-rank behavior, while too much
weight decay leads to complete norm collapse. The exact choice of “too much” varies across archi-
tectures and tasks.

Despite the low-rank regularization, we do not see particularly tight alignment in the top singular
vectors, with the exception of the highest weight decay Trasnformer (Figure 17). This behavior is
quite reminiscent of the balancedness condition (Arora et al., 2018; 2019; Du et al., 2018), though the
Transformer considered here has nonlinearities and much more complex structure. It is curious that
the trend reverses for only this architecture. We also provide additional evidence in Appendix D,
where Figure 18 shows that the solutions with very high weight decay are still performant, even
though they are much lower rank. Though it is difficult to argue as simple a trend as “lower rank
equals better generalization” because one does not know the minimal rank necessary for a given task,
we note that the role of weight decay for improving generalization is tied up with its function as a
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 6: SV evolution for a single matrix and normalized effective rank (Eqn. 1) across matrices
over time, where the rows use differing amounts of weight decay. From top to bottom, for VGG we
use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we use coefficients {0, 0.1, 1, 10}.
Higher weight decay coefficients promote more aggressive rank minimization. VGG uses SGD w/
momentum, while the rest use AdamW (Loshchilov & Hutter, 2017), which may explain the earlier
norm collapse.

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 7: Top row: results with true labels. Bottom row: results with random labels. We see that
the middle layers have a lower effective rank when using true labels and that alignment in the middle
layers persists throughout training, unlike in the random label case. We emphasize this alignment
occurs despite the nonlinearities.

rank regularizer. In addition, although we lack precise tools to entirely interpret complex models,
when there are only a few ranks per matrix, it may become possible to extend analysis efforts (Nanda
et al., 2023; Praggastis et al., 2022) to more complex domains.

6 ADDITIONAL CONNECTIONS

Here we briefly preview some connections between spectral dynamics and additional phenomena.

Memorization vs. Generalization: In Figure 7, we replicate the core memorization experiment of
Zhang et al. (2021), which highlighted the ability of modern neural networks to memorize perfectly

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

even random labels across several supervised learning tasks. We find that when training with random
labels, networks with higher rank final parameters are obtained as opposed to when training with
true labels. Thus, the spectral dynamics can distinguish between memorization (of random labels)
and generalization. We also see an alignment structure between the middle layers that disappears
with random labels, perhaps as it is necessary in order for the network to pass signals from input
to output. This echoes the pattern of grokking in Section 3, where generalization came with a
transition to low-rank and alignment in middle layers. We expand this experiment to more settings
in Appendix B with additional figures.

Lottery Tickets: On very small networks, Frankle & Carbin (2018) found the existence of sparse
sub-networks via magnitude pruning, keeping only the top p% of weights globally by magnitude,
that could train to similar performance as the full network. For larger image classification networks,
Frankle et al. (2020) observed that in order to find such sparse subnetworks, it was necessary to train
till the end in order to acquire the pruning mask that could be used retroactively in training. This cu-
rious observation still lacks a compelling explanation. We show that such global magnitude pruning
functions similarly to low-rank pruning, thus the lottery ticket masks found by rewinding (Frankle
et al., 2020), are effectively low-rank masks for the singular components that will become important
at the end of training. Training the masked network leads to the same dynamics in these compo-
nents. However, taking masks from too early in training leads to poor approximation of these final
components and simultaneously stunts training. We provide detail on this discussion in Appendix C.

Linear Mode Connectivity (LMC): Linear Mode Connectivity (Nagarajan & Kolter, 2019; Frankle
et al., 2020) refers to the property that models that share a portion of the training trajectory can be
averaged in weight-space to yield a stronger model (Wortsman et al., 2022; Ramesh et al., 2022).
This phenomenon indicates that, after some training, the loss surface is quite convex in a subspace,
even though the optimization problem is theoretically highly non-convex. As all fine-tuning from
pre-trained models stays in this convex space (Neyshabur et al., 2020; Li et al., 2022; Sadrtdinov
et al., 2023), an explanation for what underlies LMC could help to clarify the role of pre-training, and
may lead to faster fine-tuning. We show that LMC is tied with singular vector sharing. In particular,
when models can be averaged they share top singular vectors between weights, and when they cannot
they do not. This is an outcome of the early stability of top singular vectors, which arises due to
the unequal evolution of singular values. It is also straightforward to explain the large euclidean
distance between checkpoints that can be averaged, as they only share a very small portion of the
parameter space. Thus LMC, and by extension model-averaging, are deeply intertwined with the
dynamics of singular values that we explore in Section 4. Full discussion is deferred to Appendix C.

7 DISCUSSION

We provide an empirical perspective to understand deep learning through the lens of SVD dynam-
ics. We first note a tendency toward rank minimization on a small scale in grokking, then expand
these findings to practical networks and tasks. In addition we find that weight decay, though it ex-
plicitly penalizes norm, implicitly promotes this low-rank bias. We also show that generalization
and memorization differ in the rank and alignment of solutions found by optimization. We go be-
yond remarks on generalization and show that magnitude pruning for lottery tickets acts similarly to
low-rank pruning, and LMC coincides with the sharing of top singular vectors between checkpoints.

While a comprehensive theory for all these results remains elusive, these observations can act as
a platform for a deeper understanding of deep learning. Notably, the observed spectral dynamics
appear consistent across diverse settings, even without restrictive assumptions like balanced initial-
ization, linearity, or small weight scales. This suggests a common underlying mechanism.

On the empirical side, several interesting problems present themselves. Interpretability of neural
networks is a growing area of research (Nanda et al., 2023), and there already exist efforts to interpret
singular vectors of convolutional weights (Praggastis et al., 2022). There may also be connections
to other unexplained phenomena such as double descent (Belkin et al., 2019; Nakkiran et al., 2021;
Davies et al., 2022) or adversarial examples (Szegedy et al., 2013; Ilyas et al., 2019; Hendrycks et al.,
2021). The solutions to these problems may help design better optimizers or diagnose deployment
risks in the wild. There are also concerns of safety (Bai et al., 2022; Mazeika et al., 2024) that better
understanding of neural networks can alleviate (Burns et al., 2023; Park et al., 2024). We believe
our results contribute another step along this path.
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Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco Tudisco.
Low-rank lottery tickets: Finding efficient low-rank neural networks via matrix differential equa-
tions. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D Nowak. Vector-valued variation
spaces and width bounds for DNNs: Insights on weight decay regularization. arXiv preprint
arXiv:2305.16534, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerst-
ner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. In Proceedings of the International Conference on Machine Learn-
ing (ICML), 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the International Conference
on Machine Learning (ICML), 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Zhiquan Tan and Weiran Huang. Understanding grokking through a robustness viewpoint. arXiv
preprint arXiv:2311.06597, 2023.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in
relu networks. In Proceedings of the International Conference on Algorithmic Learning Theory
(ALT), 2023.

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Pro-
ceedings of the Annual Conference on Learning Theory (COLT), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Binxu Wang and John Vastola. ML from scratch: Stable diffusion, day
2, 2022. URL https://colab.research.google.com/drive/
1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=
9is-DXZYwIIi.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

Zihan Wang and Arthur Jacot. Implicit bias of SGD in l {2}-regularized linear DNNs: One-way
jumps from high to low rank. arXiv preprint arXiv:2305.16038, 2023.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6
(60):3021, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In Proceedings of the International Conference on Machine
Learning (ICML), 2022.

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking
in ReLU networks for XOR cluster data. In Proceedings of the International Conference on
Learning Representations (ICLR), 2023.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. Invariant low-
dimensional subspaces in gradient descent for learning deep matrix factorizations. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023a.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. The law of parsimony
in gradient descent for learning deep linear networks. arXiv preprint arXiv:2306.01154, 2023b.

Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not! In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

David Yunis, Kumar Kshitij Patel, Pedro Henrique Pamplona Savarese, Gal Vardi, Jonathan Frankle,
Matthew Walter, Karen Livescu, and Michael Maire. On convexity and linear mode connectivity
in neural networks. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop),
2022.

Emanuele Zangrando, Piero Deidda, Simone Brugiapaglia, Nicola Guglielmi, and Francesco Tud-
isco. Neural rank collapse: Weight decay and small within-class variability yield low-rank bias.
arXiv preprint arXiv:2402.03991, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018a.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning with-
out normalization. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018b.

17

https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=9is-DXZYwIIi
https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=9is-DXZYwIIi
https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=9is-DXZYwIIi


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 8: Dynamics with random labels for VGG. Top row: results with true labels. Bottom row:
results with random labels. We see that the middle layers have a lower effective rank when using
true labels and that alignment in the middle layers persists throughout training. The results are less
stark in the VGG case, but similar to the MLP.

A EXPLANATION OF BALANCEDNESS

Prior work on deep linear networks (Arora et al., 2019; Milanesi et al., 2021) suggests that rank
minimization may describe implicit regularization in deep matrix factorization better than simple
matrix norms. See Arora et al. (2018) (Appendix A) for a detailed argument. However, a criti-
cal assumption used in these works is “balanced initialization.” This means that for consecutive
matrices Wi and Wi+1 in the product matrix

∏
j Wj , we have W⊤

i+1Wi+1 = WiW
⊤
i at initial-

ization. Decomposing these matrices with SVDs and leveraging orthogonality, this simplifies to
Vi+1Σ

2
i+1V

⊤
i+1 = UiΣ

2
iU

⊤
i where Ui and Vi+1 are orthogonal matrices. Since these are orthogonal

decompositions of the same matrix, their diagonals must be equivalent, allowing for the permuta-
tion of elements with the same value. This leads to Ui = Vi+1O up to signs, where O is a block
diagonal permutation matrix that may permute the rows of equivalent diagonal elements. Notably, if
all diagonal elements are distinct and Ui and Vi+1 are square matrices, then Ui = Vi+1 up to signs.
This gives us matching singular vectors for consecutive matrices.

B SPECTRAL DYNAMICS WITH RANDOM LABELS

Given the observations connecting generalization and rank thus far, and the enlightening view on
the implicit effects of weight decay, we are interested in seeing whether the perspective developed
sheds any light on the classic random label memorization experiments of Zhang et al. (2021).

Similar to Zhang et al. (2021), we train a MLP, VGG and an LSTM to fit random or true labels.
Please see Appendix D for the details regarding the experimental setup. Zhang et al. (2021) decay the
learning rate to zero, and the random label experiments only converge late in training. Consequently,
we use a constant learning rate to control this phenomenon. We see in Figure 7 that both cases are
able to achieve zero error, though with different singular value evolution and alignment in the middle
layer.

Surprisingly in Figure 7, we see that with true labels the inner layers are low rank, while with
random labels they are much higher rank. This may be explained by the shared structure in the
true classes of the dataset, which manifests in the parameters. Even more surprisingly, we find
here that even without weight decay, inner layers align with true labels, while with random labels,
this alignment occurs and then disappears with more training. This is particularly intriguing as
there are non-linearities that could theoretically separate the network from the linear case, and yet
strong alignment occurs despite that. Such alignment has not yet been leveraged by existing theory,
and might provide structured assumptions for new understanding. Results on the VGG (Figure 8)
are qualitatively quite similar, including on the alignment point. Results on the LSTM (Figure 9)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 9: Dynamics with random labels for LSTM. Top row: results with true labels. Bottom row:
results with random labels. We see that the middle layers have a lower effective rank when using
true labels and that alignment in the middle layers persists throughout training. Though the LSTM
doesn’t fit the random labels perfectly, the results are qualitatively similar to the other cases, except
alignment is almost nonexistent.

are weakly similar, though the alignment is much weaker. In summary, these results suggest that
viewing generalization through the lens of rank and alignment may be fruitful.

C BEYOND GENERALIZATION

We have seen over the course of many experiments that deep models are biased toward low rank, and
that there is a tempting connection between rank minimization and generalization. Still, the lens of
spectral dynamics can be applied more broadly. In the following subsections, we explore two phe-
nomena: lottery tickets (Frankle & Carbin, 2018) and linear mode connectivity (Frankle et al., 2020).
Beyond shedding further light on neural networks, these phenomena have implications for more ef-
ficient inference and storage, as well as understanding the importance of pretraining (Neyshabur
et al., 2020). We find that lottery tickets are a sparse approximation of final-checkpoint top singular
vectors. The ability to linearly interpolate between faraway checkpoints and improve performance
coincides strongly with top singular vector sharing between checkpoints. Such observations may
form a foundation for a better understanding compression and model averaging (Wortsman et al.,
2022; Ilharco et al., 2022).

C.1 TOP SINGULAR VECTORS BECOME STABLE EARLIER

Before we explore the phenomena, we first make another observation that will be helpful. As top
singular values grow disproportionately large, it would be natural that top singular vectors become
stable in direction as the gradients remain small. To demonstrate this, for a given matrix in the
network Wi(t) =

∑R
j=1 σj(t)uj(t)vj(t)

⊤ at training time t, we compute

S(t)jk = |⟨uj(t)vj(t)
⊤, uk(T )vk(T )

⊤⟩|, (5)

where T is the final step of training, and the absolute value is taken to ignore sign flips in the SVD
computation. We then plot the diagonal of this matrix S(t)ii ∀ i ≤ 100 over time. We also use a
scalar measure of the diagonal to summarize like in the alignment case: s(t) = 1

10

∑
i S(t)ii. In

Figure 10, we see that top singular vectors converge in direction earlier than bottom vectors.

C.2 LOTTERY TICKETS PRESERVE FINAL TOP SINGULAR VECTORS

As large singular vectors will become stable late in training, we wonder about the connection to
magnitude pruning and the lottery ticket hypothesis. Frankle & Carbin (2018) first showed evidence
for the lottery ticket hypothesis, the idea that there exist sparse subnetworks of neural networks that
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 10: Top row: Singular vector agreement for a single matrix in the middle of each model
(diagonal of Eqn. 5). Notice top singular vectors become stable in direction earlier. Bottom row:
Summary score for each matrix across architectures. As we move down the y-axis, the depth of
the parameters in the model increases, while the x-axis tracks training time. The sharp transition
midway through training in the VGG case is likely due to a 10x learning rate decay.

can be trained to a comparable performance as the full network, where the sparse mask is computed
from the largest magnitude weights of the network at the end of training. Frankle et al. (2020)
build further on this hypothesis and notice that, for larger networks, the masking cannot begin at
initialization, but rather at some point early in training. Still, the mask must come from the end of
training.

The reason for this particular choice of mask may be connected to the dynamics we previously
observed. Specifically, at the end of training large singular values are disproportionately larger, so
high-magnitude weights may correspond closely to weights in the top singular vectors at the end
of training. If magnitude masks were computed at the beginning, the directions that would become
the top singular vectors might be prematurely masked as they have not yet stabilized, which may
prevent learning on the task.

Here we train an unmasked VGG-16 (Simonyan & Zisserman, 2014) on CIFAR10, then compute
either a random mask, or a global magnitude mask from the end of training, and rewind to an early
point (Frankle et al., 2020) to start sparse retraining. We also do the same with an LSTM (Hochreiter
& Schmidhuber, 1997b) on LibriSpeech (Panayotov et al., 2015). Please see Appendix D for details.
In Figures 11 and 12, we plot the singular vector agreement (SVA, Eqn. 5) between the final model,
masked and unmasked, where we see exactly that magnitude masks preserve the top singular vectors
of parameters, and with increasing sparsity fewer directions are preserved. Even though prior work
has remarked that it is possible to use low-rank approximations for neural networks (Yu et al., 2017),
and others have explicitly optimized for low-rank lottery tickets (Wang et al., 2021; Schotthöfer
et al., 2022), we rather are pointing out that the magnitude pruning procedure seems to recover a
low-rank approximation.

We also compute the singular vector agreement (SVA) between the masked model trajectory and the
original unmasked model trajectory (diagonal of Eqn. 5). We see in Figures 11 and 12 that there is
no agreement between the bottom singular vectors at all, but there is still loose agreement in the top
singular vectors. Thus, it seems the mask allows the dynamics of only the top singular vectors to
remain similar, which we know are most important from the pruning analysis in Figure 4.

Preserving top singular vectors by pruning seems like a natural outcome of large matrices, so as a
control, we follow exactly the same protocol except we generate the mask randomly with the same
layerwise sparsity. We can see in Figures 11 and 12 that this results in much lower preservation of

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 11: Pruning results for VGG. Top row: Magnitude pruning. Bottom row: random pruning.
First column: Training loss. We see that at 5% sparsity magnitude pruning is significantly better
than random pruning of the same layerwise sparsity. 2nd column: Singular vector alignment pre-
and post-pruning at the end of training for a single layer (the 3rd convolution). We see that magnitude
pruning approximates the top singular vectors, while random pruning at the same level does not.
3rd column: Singular vector alignment score pre- and post-pruning across all layers. Agreement
is higher across all layers for magnitude pruning, though later layers do not agree, likely as later
layers are wider so weights are lower magnitude. 4th column: Singular vector alignment between
the pruned and unpruned models along the training trajectory. We see that the magnitude pruning
still has similar dynamics in its top singular vectors, while random pruning does not. Last column:
Singular vector alignment score between pruned and unpruned models across layers and time. Again
evolution is similar for early layers with magnitude pruning, and completely different for random
pruning.

(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 12: Pruning results for LSTM. Top row: Magnitude pruning. Bottom row: random pruning.
See Figure 11 for details. Results are quite similar for the LSTM at 25% pruning as the VGG in
Figure 11.

top singular vector dynamics, and also performs worse, as in (Frankle et al., 2020). It would not
be surprising that random pruning is worse if simply evaluated at the end of training, but masking
is applied quite early in training at epoch 4 of 164 long before convergence, so it’s striking that
the network now fails to learn further even though it is far from convergence. We interpret this as
evidence that the mask has somehow cut signal flow between layers, so it is now impossible for the
network to learn further, while magnitude pruning and rewinding still allows signals to pass that
eventually become important.
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C.3 SPECTRAL DYNAMICS AND LINEAR MODE CONNECTIVITY

We come to the final phenomenon that we seek to describe: linear mode connectivity. Linear mode
connectivity (LMC) is the property that one can interpolate linearly between two different minima
in weight space and every parameter set along that path performs well, which gives the impression
that the loss surface of neural networks is somehow convex despite its theoretical nonconvexity.
This was first demonstrated in small networks with the same initialization (Nagarajan & Kolter,
2019), then expanded to larger networks and connected to lottery tickets (Frankle et al., 2020; Paul
et al., 2022). Entezari et al. (2021) first conjecture that two arbitrary minima show LMC up to
permutation, and demonstrate it in simple models. This was expanded to wide models (Ainsworth
et al., 2022; Jordan et al., 2022; Qu & Horvath, 2024), and can be proven in various ways (Kuditipudi
et al., 2019; Brea et al., 2019; Simsek et al., 2021; Ferbach et al., 2023), but it does not hold for
standard models (Qu & Horvath, 2024). LMC has also been exploited for model-averaging and
performance gains (Wortsman et al., 2022; Ilharco et al., 2022; Rame et al., 2022). Still despite all
of this work, we lack a description for why LMC occurs. In particular: why is there a convex, high
dimensional (Yunis et al., 2022) basin that models find shortly in training (Frankle et al., 2020), or
after pretraining (Neyshabur et al., 2020; Sadrtdinov et al., 2023)? We do not answer this question
in full, but find an interesting view through the singular vectors.

C.3.1 LINEAR MODE CONNECTIVITY CORRELATES WITH TOP SINGULAR VECTOR
AGREEMENT

As we saw earlier directional convergence of top singular vectors in Figure 10, it suggests the dy-
namics of those components are more stable, so we might expect mode-connected solutions to share
these components. To examine this, we plot agreement between the singular vectors of the weight
matrices at either endpoint of branches:

W (1)(T ) =

R∑
j

σj(T )uj(T )vj(T )
⊤ ,

W (2)(T ) =

R∑
k

σ′
k(T )u

′
k(T )v

′
k(T )

⊤ ,

spawned from the same initialization in training. If the branches are split from an initialization
on a trunk trajectory W (t), we call t the split point or epoch. We visualize the diagonal of
|⟨uj(T )vj(T )

⊤, u′
k(T )v

′
k(T )

⊤⟩|jk vs. split epoch, where the absolute value is taken to ignore sign
flips in SVD computation.

To remind the reader, LMC only occurs after a small amount of training time has passed. Too early
and the final models of each branch will show a bump, or barrier, in the loss surface along the linear
interpolation (Frankle et al., 2020). To measure this precisely, we use the definition from Neyshabur
et al. (2020), which is the maximum deviation from a linear interpolation in the loss, an empirical
measure for convexity in this linear direction. When this deviation is 0, we consider the checkpoints
to exhibit LMC. Please see Appendix D.10 for details on the calculation. Given evidence in Figure 4
that top components are the most important for prediction, and that top components become stable
before training has finished, it is plausible that LMC is connected to the stability of top singular
vectors in the later portion of training.

This would mean that checkpoints that do not exhibit the LMC property should not share top singular
vectors, while checkpoints that do exhibit the LMC property should share top singular vectors.
We see in Figure 13 that this is the case across models and tasks, where the alignment between
endpoints is much stronger in top singular vectors. We also see no LMC and poor agreement in
top components between branches that have initializations from different trunk trajectories, but with
the same split epoch t and the same branch data order in Figure 14. Thus, these top directions are
not a unique property of the architecture and data, but rather are dependent on initialization. It is
notable that concurrent work (Ito et al., 2024) arrives at a similar conclusion: permutation solvers
between optima match top singular vectors. Though the conclusions are similar, their experiments
are primarily conducted on smaller scale settings, and only for permutation matching at the end of
training. Here we connect these observations to the optimization behavior of networks throughout
training.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 13: Top row: Barrier size vs. split step. Middle row: singular vector agreement for a single
matrix parameter between branch endpoints that share a common trunk. Bottom row: summary
statistic for singular vector agreement across layers vs. split step. We see that as models exhibit
LMC, they also share top singular vectors.

C.3.2 PERTURBING BREAKS LINEAR MODE CONNECTIVITY AND SINGULAR VECTOR
AGREEMENT SIMULTANEOUSLY

To make the connection between top singular vectors and LMC even tighter, we intervene in the
normal training process. If we add random perturbations to destabilize the components that will
become the top components long before they have converged, and if singular vector agreement is
tied to LMC, we would like to see that final models no longer exhibit the LMC property. Indeed
this is the case. In Figure 15, when increasingly large random perturbations are applied, the barrier
between final checkpoints increases and the LMC behavior disappears. Please see Appendix D
for details. In addition, the previously-strong singular vector agreement disappears simultaneously.
Thus it seems this agreement is tied to linear mode connectivity.

We speculate that, due to the results in Figure 4 that show the top half of the SVDs are much
more critical for performance, if these components are shared then interpolating will not affect
performance much. Rather, interpolation will eliminate the orthogonal bottom components which
may only make a minor impact on performance. If however the top components are not shared,
then interpolating between two models will remove these components, leading to poor performance
in between. Such observations may help in explaining the utility of pretraining (Neyshabur et al.,
2020), weight averaging (Rame et al., 2022; Wortsman et al., 2022; Ilharco et al., 2022) or the use
of LoRA (Huh et al., 2022) to replace full finetuning.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 14: Top row: Barrier size vs. split step. Middle row: singular vector agreement for a single
matrix parameter between branch endpoints that do not share a common trunk, but do share split
time and branch data order. Bottom row: summary statistic for singular vector agreement across
layers. We see that when branches do not share a common trunk, there is neither LMC nor singular
vector agreement, even though the optimization is otherwise the same.

D EXPERIMENTAL DETAILS

For all experiments, we use 3 random seeds and average all plots over those 3. This is relatively
small, but error bars tend to be very tight, and due to the high volume of runs required for this work
we lack the resources to run much more.

In order to compute alignment we consider only pairs of layers that directly feed into each other,
and ignore the influence of residual connections so as to cut down on the number of comparisons.
Specifics on individual architectures are given below.

D.1 IMAGE CLASSIFICATION WITH VGG

We train a VGG-16 (Simonyan & Zisserman, 2014) on CIFAR-10 (Krizhevsky, 2009) for 164
epochs, following hyperparameters and learning rate schedule in (Frankle et al., 2020), but with-
out data augmentation. For the optimizer we use SGD with batch size 128, initial learning rate 0.1
and momentum of 0.9. We also decay the learning rate 3 times by a factor of 10 at epoch 82, epoch
120, and finally at epoch 160. We also use a minor amount of weight decay with coefficient 0.0001.

VGG-16 uses ReLU activations and batch normalization (Ioffe & Szegedy, 2015), and includes both
convolutional and linear layers. For linear layers we simply compute the SVD of the weight matrix.
For convolutional layers, the parameters are typically stored as a 4D tensor of shape (cout, cin, h, w)
for the output channels, input channels, height and width of the filters respectively. As the filters
compute a transformation from each position and input channel to an output channel, we compute
the SVD of the flattened tensor (cout, cin ·h·w), which maps all inputs to outputs, similar to Praggastis
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 15: Top row: Barrier size vs. perturbation magnitude. Middle row: singular vector agree-
ment for a single matrix parameter between branch endpoints vs. perturbation magnitude. Bottom
row: summary statistic for singular vector agreement across layers with perturbation magnitude.
We see that whereas without perturbation models would exhibit LMC after training, with increasing
perturbations the LMC property disappears simultaneously with the agreement in top singular vec-
tors.

et al. (2022). This is not the SVD of the entire transformation of the feature map to the next feature
map, but rather the transformation from a set of adjacent positions to a particular position in the next
layer. For the individual SV evolution plot, we use the 12th convolutional layer.

In order to compute alignment of bases between consecutive convolutional layers, V ⊤
i+1Ui we need

to match the dimensionality between Ui and Vi+1. For convolutional layers we are presented with
a question as to how to handle the spatial dimensions h and w as naively the input dimension of
the next layer will be a factor of h · w larger dimension. We experimented with multiple cases,
including aligning at each spatial position individually or averaging over the alignment at all spatial
positions, and eventually settled at aligning the output of one layer to the center spatial input of the
next layer. That is, for a 3x3 convolution mapping to a following 3x3 convolution, we compute the
alignment only for position (1,1) of the next layer. This seemed reasonable to us as on average the
edges of the filters showed poorer alignment overall. For the individual alignment plot, we use the
alignment between the 11th and 12th convolutional layers at the center spatial position of the 12th
convolutional layer.

D.2 IMAGE GENERATION WITH UNETS

We train a UNet (Ronneberger et al., 2015) diffusion model (Sohl-Dickstein et al., 2015; Ho
et al., 2020) on MNIST (LeCun, 1998) generation. We take model design and hyperparame-
ters from (Wang & Vastola, 2022). In particular we use a 4-layer residual UNet and train with
AdamW (Loshchilov & Hutter, 2017) with batch size 128, and learning rate of 0.0003 for 100

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

epochs. This model uses swish (Ramachandran et al., 2017) activations and a combination of linear
and convolutional, as well as transposed convolutional layers.

Computing SVDs and alignment is similar to the image classification case described above, except
in the case of the transposed convolutions where an extra transpose of dimensions is needed as
parameters are stored with the shape (cin, cout, h, w). For the individual SV evolution plot, we use
the 3rd convolutional layer. For the alignment plot, we use the alignment between the 3rd and 4th
convolutional layers at the center spatial position of the 4th convolutional layer.

D.3 SPEECH RECOGNITION WITH LSTMS

We train a bidirectional LSTM (Hochreiter & Schmidhuber, 1997a) for automatic speech recognition
on LibriSpeech (Panayotov et al., 2015). We tune for a simple and well-performing hyperparameter
setting. We use AdamW (Loshchilov & Hutter, 2017) with batch size 32, learning rate 0.0003 and
weight decay 0.1 for 50 epochs. We also use a cosine annealing learning rate schedule from 1 to 0
over the entire 50 epochs.

The LSTM only has matrix parameters and biases, so it is straightforward to compute SVDs of
the matrices. For individual SV evolution plots, we plot the 3rd layer input parameter. In the case
of alignment, we make a number of connections: first down depth for the input parameters, then
connecting the previous input parameter to the current hidden parameter in both directions, then
connecting the previous hidden parameter to the current input parameter. In particular the LSTM
parameters are stored as a stack of 4 matrices in PyTorch, and we find alignment is highest for
the ”gate” submatrix, so we choose that for all plots. For the individual layer alignment, we plot
alignment between the 3rd and 4th layer input parameters.

D.4 LANGUAGE MODELING WITH TRANSFORMERS

We train a Transformer (Vaswani et al., 2017) language model on Wikitext-103 (Merity et al., 2016).
We base hyperparameter choices on the Pythia suite (Biderman et al., 2023), specifically the 160
million parameter configuration with sinusoidal position embeddings, 12 layers, model dimension
768, 12 attention heads per layer, and hidden dimension 768. We use AdamW (Loshchilov & Hutter,
2017) with batch size 256, learning rate 0.0006 and weight decay 0.1. We use a context length of
2048 and clip gradients to a maximum norm of 1. We also use a learning rate schedule with a linear
warmup and cosine decay to 10% of the learning rate, like Biderman et al. (2023).

For SVDs, for simplicity we take the SVD of the entire (3dmodel, dmodel) parameter that computes
queries, keys and values from the hidden dimension inside the attention layer, without splitting into
individual heads. This is reasonable as the splitting is done after the fact internally. We also take
the SVD of the output parameters, and linear layers of the MLPs, which are 2 dimensional matrices.
For the individual SV evolution plot, we plot the SVs of W1 of the 8th layer MLP

For alignment, we consider the alignment of WQ and WK matrices, WV and WO matrices, com-
puting alignment between heads individually then averaging over all heads. We also consider the
alignment between WO and W1 of the MLP block, between W1 and W2 of the MLP block, and
between W2 and the next attention layer. For the individual layer alignment, we plot alignment
between W1 and W2 of the 8th layer MLP.

D.5 SPECTRAL DYNAMICS WITH SCALE (PYTHIA)

Here we apply the perspective developed in Section 4 to larger scale models. As we lack the re-
sources to train these models ourselves, we leverage the Pythia (Biderman et al., 2023) family which
provides training trajectories for language models across a range of scales (70m to 12b parameters).
We are further constrained to the 2.8b parameter model at the largest due to memory requirements
when computing SVDs and alignment.

In Figure 16, we see similar rank dynamics across a variety of scales. We choose to select the 7th
layer MLP to compare between models as it is present at all scales. We do see an unequal evolution
in singular values, but also a contraction as training proceeds for longer. The difference between
scales is not very obvious, but slightly fewer of the singular values evolve to be large in the 2.8b
model as opposed to the 410m model, which one can see from the thickness of the light magenta
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(a) Val. Loss (b) SVs (c) Eff. Rank (d) Alignment (e) Alignment Score

Figure 16: Spectral dynamics of Pythia suite. From top to bottom we examine the 160m, 410m,
1.4b and 2.8b parameter models. Notably, much less noise appears in the alignment plot with in-
creasing scale. Presumably this could be due to the fact that larger dimensional vectors have higher
probability to be orthogonal, which may play a role in making optimization easier. We see stronger
alignment score (Eqn. 4) in all layers in the larger model, perhaps because of that cleaner signal.

color. The lack of alignment except for the top rank is quite consistent with earlier observations, and
such alignment happens much later for the largest model.

D.6 WEIGHT DECAY EXPERIMENTS

All tasks are trained in exactly the same fashion as mentioned previously, with increasing weight
decay in the set {0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. For ease of presentation we consider a subset
of settings across tasks. In Figure 18 we include trained model performance and pruned model
performance to show that, even with high levels of weight decay, models do not entirely break
down. More so, the approximation of the pruned model to the full model gets better with higher
weight decay.

D.7 GROKKING EXPERIMENTS

For the Trasnformer, we mostly follow the settings and architecture of Nanda et al. (2023), except
we use sinusoidal positional encodings instead of learned.

For the slingshot case we follow hyperparameter settings in Thilak et al. (2022), Appendix B except
with the 1-layer architecture from Nanda et al. (2023) instead of the 2-layer architecture specified.
W perform addition modulo 97. The original grokking plot in Thilak et al. (2022) appears much
more dramatic as it log-scales the x-axis, which we do not do here for clarity.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 17: Diagonal of alignment for a single pair over time (Eqn. 3) and alignment metric across
pairs of matrices over time (Eqn. 4) where the y-axis represents depth. From top to bottom, for VGG
we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we use coefficients {0, 0.1, 1, 10}.
We see that the maximum alignment magnitude is higher with large weight decay, and in particular,
the Transformer has the strongest alignment even when nonlinearities separate the MLP layers.

In the case of the deep MLP, we follow Fan et al. (2024), where we use a 12-layer MLP with ReLU
activations and width 400, trained on MSE loss on MNIST (LeCun, 1998). We use 2000 examples,
a batch size of 100, weight decay 0.01, and initialization scale 8 (Liu et al., 2023).

D.8 RANDOM LABEL EXPERIMENTS

We train a 4-layer MLP on CIFAR10 (Krizhevsky, 2009) with either completely random labels, or
the true labels. We use SGD with momentum of 0.9 and constant learning rate of 0.001, and train
for 300 epochs to see the entire trend of training. The major difference to the setting of Zhang et al.
(2021) is the use of a constant learning rate, as their use of a learning rate schedule might conflate
the results.

For the VGG case, we follow our previous hyperparameters, except we leave out weight decay and
learning rate scheduling, instead using a constant learning rate of 0.01.

For the LSTM case, we follow our previous hyperparameters, and extend the training budget to 200
epochs allow for the random label setting to train longer. In this case, our network does not have
sufficient capacity to memorize the data completely.

D.9 MAGNITUDE PRUNING EXPERIMENTS

We use the same VGG setup as described previously. In this case we train til the end, then compute a
global magnitude mask. To do this we flatten all linear and convolutional weights into a single vector,
except for the last linear layer, and sort by magnitude. Then we keep the top 5% of weights globally,
and reshape back to the layerwise masks. This results in different sparsity levels for different layers,
so when generating the random masks, we use the per-layer sparsities that resulted from the global
magnitude mask.

To retrain the network, we rewind to epoch 4, then continue training with the mask, always setting
other weights and their gradients to 0. We average all results over 3 random seeds.

For the LSTM we follow exactly the same procedure, except our mask only reaches a level of 25%
sparsity, due to large performance degradations past that.
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(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 18: Training loss over time, where the rows use differing amounts of weight decay. From
top to bottom, for VGG we use coefficients {0, 0.001, 0.01, 0.1}, while for other networks we use
coefficients {0, 0.1, 1, 10}. We see that it is still possible to achieve low training loss under high
weight decay, and as we increase the amount of weight decay, the gap between pruned and unpruned
parameters closes, lending support to the idea that the parameters become lower rank.

D.10 LMC EXPERIMENTS

We save 5 evenly-spaced checkpoints in the first epoch, as well as at the end of the next 4 epochs
for 10 intializations in total. We train 3 trunks, and split 3 branches from each trunk for a total of 9
branches which we average all plots over.

Following Neyshabur et al. (2020), we compute the barrier between checkpoints as follows: given
W (1)(T ) and W (2)(T ) that were branched from W (t) we compute

b(t) = ( max
α∈[0,1]

L((1− α)W (1)(T ) + αW (2)(T ))− ((1− α)L(W (1)(T )) + αL(W (2)(T ))) (6)

when this quantity is 0, we consider the checkpoints to exhibit LMC.

We recompute batch normalization parameters after interpolating for VGG-16, and group normal-
ization parameters for the UNet, as these do not necessarily interpolate well (Frankle et al., 2020).
We also compute singular vector agreement for the same parameter between either branch endpoint.
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(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 19: Grokking and Spectral Dynamics in Modular addition. Top row: 30% data and no
weight decay. 2nd row: 30% data and weight decay 1.0 (grokking), using hyperparameters from
Nanda et al. (2023). 3rd row: 70% data with no weight decay (slingshot), using hyperparameters
from Thilak et al. (2022). Bottom row: 90% data and no weight decay. 1st column: Training and
validation error. 2nd column: Singular value evolution is visualized for the first attention parameter,
where each line represents a single singular value and the color represents the rank. 3rd column:
Effective rank of all layers (Eqn. 1). 4th column: Alignment (Eqn. 3) between the embedding
and the first attention parameter is also visualized, where the y-axis corresponds to index i of the
diagonal. One can see that grokking co-occurs with low-rank weights. In addition, there is an
alignment that begins early in training that evolves up the diagonal. Without weight decay and with
less data, neither grokking nor the other phenomena occur during the entire training budget, but using
more data, even without weight decay, leads to low-rank solutions from the beginning of training.
The slingshot case follows a similar trend, though the validation loss is gradually fit. Across cases
with good generalization, parameters are lower rank, and alignment is also more prevalent in the top
ranks.

To plot the singular vector (dis)agreement and LMC between different modes, we make 11 evenly
spaced measurements interpolating between branch endpoints that had the same split epoch, and the
same branch seed, but different trunk initializations.
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D.11 PERTURBED LMC EXPERIMENTS

We perturb all weights W after the point of dynamics stability where we expect to see LMC at the
end of training (epoch 4 is sufficiently late in all cases) using randomly sampled normal perturbations
ϵ ∼ N (0, I) with ∥ϵ∥ = η∥W∥ where η ∈ {0.0, 0.1, 0.25, 0.5, 1.0, 2.5}. We do not perturb the
output layer, as this has a very substantial effect on the optimization. We also do not perturb the
input layer for the Transformer as it is too computationally expensive for our resources.

E LIMITATIONS

There are a few key limitations to our study. As mentioned, we lack the computational resources
to run more than 3 random seeds per experiment, though we do find error bars to be quite tight in
general (except for the generalization epoch in the grokking experiments). In addition, as discussed
we ignore 1D parameters in the neural networks, which may be particularly crucial (especially nor-
malization). In addition, due to computational constraints we do not consider alignment of layers
across residual connections as this quickly becomes combinatorial in depth, thus there may be other
interesting interactions that we do not observe. Finally, due to computational constraints we are un-
able to investigate results on larger models than the 12 layer Transformer, which may have different
behavior.

F COMPUTE RESOURCES

All experiments are performed on an internal cluster with on the order of 100 NVIDIA 2080ti GPUs
or newer. All experiments run on a single GPU in less than 8 hours, though it is extremely helpful to
parallelize across machines. We estimate that end-to-end it might take a few days on these resources
to rerun all of the experiments in this paper. Additionally, the storage requirements for all of the
checkpoints will take on the order of 5 terabytes.

G CODE SOURCES

We use PyTorch (Paszke et al., 2019) and NumPy (Harris et al., 2020) for all experiments and
Weights & Biases (Biewald, 2020) for experiment tracking. We make plots with Matplotlib (Hunter,
2007) and Seaborn (Waskom, 2021). We also use HuggingFace Datasets (Lhoest et al., 2021) for
Wikitext-103 (Merity et al., 2016).
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