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Abstract

Chart2Code has recently received significant
attention in the multimodal community due to
its potential to reduce the burden of visualiza-
tion and promote a more detailed understand-
ing of charts. However, existing Chart2Code-
related training datasets suffer from at least
one of the following issues: (1) limited scale,
(2) limited type coverage, and (3) inadequate
complexity. To address these challenges, we
seek more diverse sources that better align
with real-world user distributions and con-
struct a data synthesis pipeline and further cre-
ated a large-scale Chart2Code training dataset.
Experimental results demonstrate that even
with fewer parameters, the model finetuned
on our dataset achieves state-of-the-art perfor-
mance on multiple Chart2Code benchmarks
within open-source models.

1 Introduction

With the development of multimodal large lan-
guage models (MLLMSs) (Liu et al., 2023; Wang
et al., 2024; Chen et al., 2024), an increasing
amount of research has applied them to Chart-
related tasks (Meng et al., 2024; Zhang et al.,
2024a; Han et al.,, 2023; Huang et al., 2024) .
Chart2Code is one of them which requires the
MLLM to receive a chart as input and generat-
ing source code that accurately replicates the chart.
The task requires the MLLM not only to perceive
the content of the chart precisely but also to or-
ganize the perceived information with appropriate
code logic (Wu et al., 2024; Shi et al., 2025).
Chart2Code has recently gained significant at-
tention because of its potential to assist in data
visualization (Shi et al., 2025) and promote a
more detailed understanding of charts (Xu et al.,
2025). Several benchmarks have been introduced
to evaluate Chart2Code (Wu et al., 2024; Shi et al.,
2025). According to the evaluation results, exist-
ing open-source MLLMs still perform poorly in
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Figure 1: Our work focuses on Chart2Code task. (a)
Different from existing work, we focus on creating
more advanced and complex charts. (b) High-level il-
lustration of our dataset construction pipeline. We use
ChatGPT to rewrite the existing diverse web plotting
code into executable code or directly instruct it to syn-
thesize executable code based on existing chart images.
The charts are obtained by executing the result code.
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Chart2Code and exhibit a significant gap when
compared with the closed-source models.
Currently, all the open-source Chart2Code-
related training dataset! have at least one follow-
ing issues: (1) Limited scale: The training sam-
ples are not enough for the model to learn the chal-
lenge task (He et al., 2024) . (2) Limited Type
Coverage: The most diverse dataset includes only
31 chart types (Pesaran Zadeh et al., 2024), while
matplotlib can generate many more types. (3) Gap
Exists with real-world user needs: Text2Vis
(Nguyen et al., 2024) points out that the exist-
ing datasets do not adequately align with the real-
world requirements of the users. For example,
current datasets mostly pay attention to single-
type charts while ignoring complex and composite

'We use Chart2Code-related as there are Text2Chart train-
ing dataset which closely related to Chart2Code.



Data form  # Chart types  # Data samples

# Matplotlib API types

# Different API combinations  # Avg code length

ChartLlama Chart2Code 10 11K
ChartMOE Chart2Code <20 800K

ReachQA Chart2Code 15 3K
Text2Chart31  Text2Chart 31 11.1K
Ours Chart2Code 53 120K

83 418 17
168 2222 22
188 1881 12
1219 84214 23

Table 1: Stastics of various Chart2Code-related datasets. ChartLlama (Han et al., 2023), ChartMOE (Xu et al.,
2025) and Text2Chart31 (Pesaran Zadeh et al., 2024) have relatively more training samples but limited complexity
and diversity. ReachQA (He et al., 2024) has enough diveristy and complexity while having limited scale. Our

dataset combines all the

charts.

To address the aforementioned issues, we aim to
construct a standard Chart2Code training dataset.
To solve issue(2), we construct a comprehensive
chart type taxonomy and synthesize data that in-
clude each type respectively. To solve issue(3),
we seek the source that may better reflect the user
needs and propose two synthesis pipelines: Syn-
thesize based on online plotting code (Kocetkov
et al., 2022), which predefines certain rules to fil-
ter relevant code snippts in Web Code and instructs
GPT4 (OpenAl et al., 2024) to synthesize exe-
cutable code based on them and Synthesize based
on web chart images (Li et al., 2024), which di-
rectly feed the selected chart images to GPT4 to
synthesize the code.

We conduct analysis and compare our con-
structed dataset with other Chart2Code-related
datasets. Our results demonstrate that our dataset
encompasses a wider variety of chart types and
a more diverse distribution of complexity. We
then fine-tune an open-source MLLM (Chen et al.,
2024) using our constructed data. Experimental
results demonstrate that even with relatively small
parameters (4B), the model fine-tuned on our data
exhibits significant improvements across various
Chart2Code benchmarks, achieving state-of-the-
art performance compared to other open-source
models.

2 Dataset construction

2.1 Task definition

Given an input chart image I and plotting instruc-
tion 7, a MLLM is required to output an exe-
cutable code C'.

C:argmgxPMLLM(C]T,I) (1)

By utilizing an external interpreter (e.g., Python),
the plotting code is executed to generate an image
r.

I' = Interpreter(C) ()

The goal is to ensure I’ and I as close as possible.
In this work, we focus on matplotlib based charts,
leaving other types for future work.

2.2 Dataset construction pipelines

2.2.1 Creating chart type taxonomy

To address the limited type coverage issue, we first
construct a comprehensive chart type taxonomy by
first merging the chart types specified in recent
works(Xu et al., 2024; He et al., 2024; Hu et al.,
2024) and then adding additional chart types given
by GPT4, which result in 53 chart types. We syn-
thesize code that include each type respectively.

2.2.2 Synthesize based on online plotting
code

To synthesize dataset that more align with the
real need of users, we first extract plotting
code snippets from the Stack dataset following
Text2vis(Nguyen et al., 2024). However the ex-
tracted snippts have the following issues: (1) Con-
tain many lines unrelated to plotting. (2) The plot-
ting logic tends to be homogeneous. (3) Most code
snippets cannot be directly executed to produce
chart image. To address the issues, we divide the
synthesis process into three steps: extracting, fil-
tering, and rewriting. Each step is designed to
resolve issues (1), (2), and (3), respectively.

In the extracting step, for each python code
file, we extract matplotlib function calls and as-
signment statements following text2vis. We retain
relevant functions and control statements, and par-
tition the results based on the call chain.

In the filtering step, for each chart type, we
filter relevant code snippets based on predefined
rules and use LSH within different API length
ranges respectively to select code snippts, ensur-
ing coverage of diverse plotting logics.

In the rewriting step, we pass the results in
filtering to GPT4 to generate complete and exe-
cutable plotting code, with the prompt instructing



it to faithfully replicate the user’s plotting logic as
accurately as possible.

2.2.3 Synthesize based on online chart images

To increase the data volume of sparse chart
types and enhance the diversity of other cate-
gories, inspired by GPT4’s great performance in
Chart2Code, we propose to directly synthesizing
code based on chart image for each chart cate-
gory. Specifically, we choose Multi-modal arxiv
dataset(Li et al., 2024) as our image base. We
first use GPT4 to generate visual feature descrip-
tions for each chart type. Then we filter the cor-
responding charts using Siglip (Zhai et al., 2023).
Finally, we prompt GPT to generate the plotting
code based on the images.

2.2.4 Quality control

We aim to check and control the quality of our data
both in image aesthetics and code quality.

For image aesthetics, we follow the multi-
modal self-instruct (Zhang et al., 2024b), using
LLaVA vl1.5 (Liu et al., 2023) to check for con-
flicts in visual elements and the rationality of the
layout. We remove the image which fail to pass
the checking.

For code quality, we mainly check whether the
code contains anything that is unrelated to plot the
chart. We randomly selected 5 samples from each
chart type and found that fewer than 5% exhibit
such issues. Given resource limitations, we don’t
deal with them.

2.3 Dataset analysis

We give detailed analysis of our dataset in this sec-
tion. We show the chart type distribution of our
constructed dataset in 4 and show qualitive synth-
sised data in appendix.

Chart type and combination diversity As
shown in Table 1, our dataset is the largest
among existing Chart2Code-related datasets, with
53 chart types, the most diverse of any related
dataset. Additionally, due to we take more plot-
ting resource into consideration, our dataset in-
cludes 1219 Matplotlib API types and 84,214 API
combinations, both exceeding the numbers in ex-
isting datasets. To summarize, our dataset ex-
hibits much higher chart type and combination
diveristy.

Complexity diversity As shown in the Fig 2,
the distributions of the number of Matplotlib
APIs and total code length per plotting code
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Figure 2: Matplotlib api length distribution and code
length distribution.

in the ChartLlama and Text2Chart31 datasets
are densely concentrated around specific points,
whereas our dataset and ReachQA exhibit a
more uniform distribution (although the ReachQA
dataset is smaller in scale). This demonstrates
that our dataset offers a well-balanced diversity
in complexity.

3 Experiments

3.1 Experimental setup

We finetune the InternVL2-4B (Chen et al., 2024)
model using our constructed dataset and evaluate
the Chart2Code task using ChartMimic (Shi et al.,
2025) and Plot2Code (Wu et al., 2024) bench-
marks. We fully follow their evaluation pipelines.

3.2 Main results

Table 2 shows the evaluation results. We have the
following conclusions.

Chart-specific models fail on the benchmark
although finetuned on their own Chart2Code
data. ChartMOE and TinyChart were trained
on a larger-scale Chart2Code dataset and demon-
strated their superiority in performing this task.
However, when evaluated on these two real-
world Chart2Code benchmarks, their performance
showed a significant decline. This drop in perfor-
mance can primarily be attributed to the insuffi-
cient diversity and complexity of the charts in the
datasets they were trained on. The dataset we pro-
pose can effectively fill the gap.

Model Finetuned on our dataset achieve SOTA
performance. As shown in Table 2, the InternVL2-
4B model, after fine-tuning on our dataset,
achieves a significant performance improvement.
Moreover, it outperform other open-source model
of much larger parameters and achieves SOTA per-
formance. This strongly validates the effective-
ness of our dataset. On the high-level metric of
ChartMimic, the model performs slightly worse
than InternVL2-Llama3-76B, despite having a sig-
nificantly lower code execution success rate. We



Model Name Params ChartMimic. Plot2Code ‘
Execute Rate  Low-Level High-Level ~Overall | Execute Rate  GPT4v rating
GeminiProVision - 68.2 53.8 533 53.55 68.2 3.69
Claude-3-opus - 83.3 60.5 60.1 60.3 84.1 3.8
GPT-40 - 93.2 79 83.5 81.25 88.6 5.71
Qwen2-VL-7B 8.2B 47 329 35 33.95 68.2 3.12
InternVL2-4B 4.2B 50.5 338 384 36.1 66.3 2.52
InternVL2-8B 8.1B 52.5 344 389 36.65 77.3 2.78
MiniCPM-Llama3-V-2.5 8.4B 67 36.6 42.1 39.35 76.3 2.61
InternVL2-26B 26.0B 69.3 41.4 47.4 44.4 81.3 342
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 58.5 83.2 54.1
TinyChart 3B 42.5 26.3 25.9 26.1 43.2 2.19
ChartMOE 7B 52.7 253 229 24.1 65.2 222
InternVL2-4B-Finetune(Ours) 4.2B 78.3 63.4 60.4 61.9 84.8 4.49

Table 2: Chart2Code results for various closed-source and open-source models. The highest scores in each model
category are marked in bold. Despite having only 4B parameters, the model fine-tuned on our dataset achieves
state-of-the-art performance across the evaluated benchmarks.

Model \ Text Layout Type Color Avg
GPT-40 81.5 898 773 67.2 79

InternVL2-26B 392 587 359 318 414
InternVL2-Llama3-76B 54.1 74.5 492 415 5438
ChartMOE 244 4205 1861 161 253
InternVL2-4B-Finetune(Ours) | 61.6 74.9 62.9 54 63.4

Table 3: Model performance across different dimen-
sions in ChartMimic.
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Figure 3: Matplotlib api length distribution and code
length distribution.

believe that this performance gap is more likely
due to the inherent limitations in code generation
capabilities of the 4B parameter base model itself.

3.3 Analysis

We use our finetuned model to conduct in-depth
analysis based on ChartMimic in this section.

The model shows consistent significant perfor-
mance improvements across different categories.
As shown in the figure 3 left, our model demon-
strates significant performance gains across all
chart types, including complex types such as CB
and HR which are not explicitly specified in our
chart taxonomy. This suggests that our dataset is
well-balanced, enabling the model to better adapt
to diverse and complex real-world scenarios.

The models ability to capture chart details and
handle complex logic needs improvement. As
shown in Table 3, our model shows a notable gap
in text performance compared to GPT-40. Addi-

tionally, all models score much lower on the color
metric, indicating weaker capture of low-level de-
tails. We also find that samples with for-loops
perform nearly 10% worse, suggesting the model
struggles with complex plotting logic.

Most coding error of the model are Syntax er-
rors and variable planning errors. As shown in
the figure 3 right, coding errors are primarily syn-
tax and value errors, with the latter mainly due to
dimension mismatches of the variables defined be-
fore the they are used. This indicates that apart
from general coding abilities, variable planning
is an important ability for Chart2Code task that
might be considered to be further improved, which
may be challenging due to the auto-regressive na-
ture of current MLLMs.

4 Conclusion

This paper addresses the limitations of exist-
ing Chart2Code-related datasets, including insuf-
ficient quantity, diversity, and complexity. We pro-
pose a data synthesis pipeline to create a large-
scale Chart2Code training dataset and conduct
fine-tuning experiments on an open-source model.
The results show that the model achieves SOTA
performance with fewer parameters. However, the
analysis reveals that even after large-scale fine-
tuning, the model’s ability to perceive chart de-
tails and generate code remains a limiting factor.
We hope our dataset will inspire further research
in this area.

Limitations

The primary limitation of this study lies in the
training dataset, which is currently restricted to the
matplotlib library. While this covers a wide range



of common visualizations, it restricts the diversity
of charts that can be generated, as other libraries
such as seaborn, plotly, or ggplot are not included.
Future work could expand the dataset to include
these libraries, allowing for a broader variety of
visualization code generation.
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Sample Polar Bar Chart
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Grid and Contour (200 points, 20000 grid points)
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