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Abstract

Chart2Code has recently received significant001
attention in the multimodal community due to002
its potential to reduce the burden of visualiza-003
tion and promote a more detailed understand-004
ing of charts. However, existing Chart2Code-005
related training datasets suffer from at least006
one of the following issues: (1) limited scale,007
(2) limited type coverage, and (3) inadequate008
complexity. To address these challenges, we009
seek more diverse sources that better align010
with real-world user distributions and con-011
struct a data synthesis pipeline and further cre-012
ated a large-scale Chart2Code training dataset.013
Experimental results demonstrate that even014
with fewer parameters, the model finetuned015
on our dataset achieves state-of-the-art perfor-016
mance on multiple Chart2Code benchmarks017
within open-source models.018

1 Introduction019

With the development of multimodal large lan-020

guage models (MLLMs) (Liu et al., 2023; Wang021

et al., 2024; Chen et al., 2024), an increasing022

amount of research has applied them to Chart-023

related tasks (Meng et al., 2024; Zhang et al.,024

2024a; Han et al., 2023; Huang et al., 2024) .025

Chart2Code is one of them which requires the026

MLLM to receive a chart as input and generat-027

ing source code that accurately replicates the chart.028

The task requires the MLLM not only to perceive029

the content of the chart precisely but also to or-030

ganize the perceived information with appropriate031

code logic (Wu et al., 2024; Shi et al., 2025).032

Chart2Code has recently gained significant at-033

tention because of its potential to assist in data034

visualization (Shi et al., 2025) and promote a035

more detailed understanding of charts (Xu et al.,036

2025). Several benchmarks have been introduced037

to evaluate Chart2Code (Wu et al., 2024; Shi et al.,038

2025). According to the evaluation results, exist-039

ing open-source MLLMs still perform poorly in040

Figure 1: Our work focuses on Chart2Code task. (a)
Different from existing work, we focus on creating
more advanced and complex charts. (b) High-level il-
lustration of our dataset construction pipeline. We use
ChatGPT to rewrite the existing diverse web plotting
code into executable code or directly instruct it to syn-
thesize executable code based on existing chart images.
The charts are obtained by executing the result code.

Chart2Code and exhibit a significant gap when 041

compared with the closed-source models. 042

Currently, all the open-source Chart2Code- 043

related training dataset1 have at least one follow- 044

ing issues: (1) Limited scale: The training sam- 045

ples are not enough for the model to learn the chal- 046

lenge task (He et al., 2024) . (2) Limited Type 047

Coverage: The most diverse dataset includes only 048

31 chart types (Pesaran Zadeh et al., 2024), while 049

matplotlib can generate many more types. (3) Gap 050

Exists with real-world user needs: Text2Vis 051

(Nguyen et al., 2024) points out that the exist- 052

ing datasets do not adequately align with the real- 053

world requirements of the users. For example, 054

current datasets mostly pay attention to single- 055

type charts while ignoring complex and composite 056

1We use Chart2Code-related as there are Text2Chart train-
ing dataset which closely related to Chart2Code.
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Data form # Chart types # Data samples # Matplotlib API types # Different API combinations # Avg code length

ChartLlama Chart2Code 10 11K 83 418 17
ChartMOE Chart2Code <20 800K - - -
ReachQA Chart2Code 15 3K 168 2222 22

Text2Chart31 Text2Chart 31 11.1K 188 1881 12
Ours Chart2Code 53 120K 1219 84214 23

Table 1: Stastics of various Chart2Code-related datasets. ChartLlama (Han et al., 2023), ChartMOE (Xu et al.,
2025) and Text2Chart31 (Pesaran Zadeh et al., 2024) have relatively more training samples but limited complexity
and diversity. ReachQA (He et al., 2024) has enough diveristy and complexity while having limited scale. Our
dataset combines all the

charts.057

To address the aforementioned issues, we aim to058

construct a standard Chart2Code training dataset.059

To solve issue(2), we construct a comprehensive060

chart type taxonomy and synthesize data that in-061

clude each type respectively. To solve issue(3),062

we seek the source that may better reflect the user063

needs and propose two synthesis pipelines: Syn-064

thesize based on online plotting code (Kocetkov065

et al., 2022), which predefines certain rules to fil-066

ter relevant code snippts in Web Code and instructs067

GPT4 (OpenAI et al., 2024) to synthesize exe-068

cutable code based on them and Synthesize based069

on web chart images (Li et al., 2024), which di-070

rectly feed the selected chart images to GPT4 to071

synthesize the code.072

We conduct analysis and compare our con-073

structed dataset with other Chart2Code-related074

datasets. Our results demonstrate that our dataset075

encompasses a wider variety of chart types and076

a more diverse distribution of complexity. We077

then fine-tune an open-source MLLM (Chen et al.,078

2024) using our constructed data. Experimental079

results demonstrate that even with relatively small080

parameters (4B), the model fine-tuned on our data081

exhibits significant improvements across various082

Chart2Code benchmarks, achieving state-of-the-083

art performance compared to other open-source084

models.085

2 Dataset construction086

2.1 Task definition087

Given an input chart image I and plotting instruc-088

tion T , a MLLM is required to output an exe-089

cutable code C.090

C = argmax
C

PMLLM (C|T , I) (1)091

By utilizing an external interpreter (e.g., Python),092

the plotting code is executed to generate an image093

I ′.094

I ′ = Interpreter(C) (2)095

The goal is to ensure I ′ and I as close as possible. 096

In this work, we focus on matplotlib based charts, 097

leaving other types for future work. 098

2.2 Dataset construction pipelines 099

2.2.1 Creating chart type taxonomy 100

To address the limited type coverage issue, we first 101

construct a comprehensive chart type taxonomy by 102

first merging the chart types specified in recent 103

works(Xu et al., 2024; He et al., 2024; Hu et al., 104

2024) and then adding additional chart types given 105

by GPT4, which result in 53 chart types. We syn- 106

thesize code that include each type respectively. 107

2.2.2 Synthesize based on online plotting 108

code 109

To synthesize dataset that more align with the 110

real need of users, we first extract plotting 111

code snippets from the Stack dataset following 112

Text2vis(Nguyen et al., 2024). However the ex- 113

tracted snippts have the following issues: (1) Con- 114

tain many lines unrelated to plotting. (2) The plot- 115

ting logic tends to be homogeneous. (3) Most code 116

snippets cannot be directly executed to produce 117

chart image. To address the issues, we divide the 118

synthesis process into three steps: extracting, fil- 119

tering, and rewriting. Each step is designed to 120

resolve issues (1), (2), and (3), respectively. 121

In the extracting step, for each python code 122

file, we extract matplotlib function calls and as- 123

signment statements following text2vis. We retain 124

relevant functions and control statements, and par- 125

tition the results based on the call chain. 126

In the filtering step, for each chart type, we 127

filter relevant code snippets based on predefined 128

rules and use LSH within different API length 129

ranges respectively to select code snippts, ensur- 130

ing coverage of diverse plotting logics. 131

In the rewriting step, we pass the results in 132

filtering to GPT4 to generate complete and exe- 133

cutable plotting code, with the prompt instructing 134
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it to faithfully replicate the user’s plotting logic as135

accurately as possible.136

2.2.3 Synthesize based on online chart images137

To increase the data volume of sparse chart138

types and enhance the diversity of other cate-139

gories, inspired by GPT4’s great performance in140

Chart2Code, we propose to directly synthesizing141

code based on chart image for each chart cate-142

gory. Specifically, we choose Multi-modal arxiv143

dataset(Li et al., 2024) as our image base. We144

first use GPT4 to generate visual feature descrip-145

tions for each chart type. Then we filter the cor-146

responding charts using Siglip (Zhai et al., 2023).147

Finally, we prompt GPT to generate the plotting148

code based on the images.149

2.2.4 Quality control150

We aim to check and control the quality of our data151

both in image aesthetics and code quality.152

For image aesthetics, we follow the multi-153

modal self-instruct (Zhang et al., 2024b), using154

LLaVA v1.5 (Liu et al., 2023) to check for con-155

flicts in visual elements and the rationality of the156

layout. We remove the image which fail to pass157

the checking.158

For code quality, we mainly check whether the159

code contains anything that is unrelated to plot the160

chart. We randomly selected 5 samples from each161

chart type and found that fewer than 5% exhibit162

such issues. Given resource limitations, we don’t163

deal with them.164

2.3 Dataset analysis165

We give detailed analysis of our dataset in this sec-166

tion. We show the chart type distribution of our167

constructed dataset in 4 and show qualitive synth-168

sised data in appendix.169

Chart type and combination diversity As170

shown in Table 1, our dataset is the largest171

among existing Chart2Code-related datasets, with172

53 chart types, the most diverse of any related173

dataset. Additionally, due to we take more plot-174

ting resource into consideration, our dataset in-175

cludes 1219 Matplotlib API types and 84,214 API176

combinations, both exceeding the numbers in ex-177

isting datasets. To summarize, our dataset ex-178

hibits much higher chart type and combination179

diveristy.180

Complexity diversity As shown in the Fig 2,181

the distributions of the number of Matplotlib182

APIs and total code length per plotting code183
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Figure 2: Matplotlib api length distribution and code
length distribution.

in the ChartLlama and Text2Chart31 datasets 184

are densely concentrated around specific points, 185

whereas our dataset and ReachQA exhibit a 186

more uniform distribution (although the ReachQA 187

dataset is smaller in scale). This demonstrates 188

that our dataset offers a well-balanced diversity 189

in complexity. 190

3 Experiments 191

3.1 Experimental setup 192

We finetune the InternVL2-4B (Chen et al., 2024) 193

model using our constructed dataset and evaluate 194

the Chart2Code task using ChartMimic (Shi et al., 195

2025) and Plot2Code (Wu et al., 2024) bench- 196

marks. We fully follow their evaluation pipelines. 197

3.2 Main results 198

Table 2 shows the evaluation results. We have the 199

following conclusions. 200

Chart-specific models fail on the benchmark 201

although finetuned on their own Chart2Code 202

data. ChartMOE and TinyChart were trained 203

on a larger-scale Chart2Code dataset and demon- 204

strated their superiority in performing this task. 205

However, when evaluated on these two real- 206

world Chart2Code benchmarks, their performance 207

showed a significant decline. This drop in perfor- 208

mance can primarily be attributed to the insuffi- 209

cient diversity and complexity of the charts in the 210

datasets they were trained on. The dataset we pro- 211

pose can effectively fill the gap. 212

Model Finetuned on our dataset achieve SOTA 213

performance. As shown in Table 2, the InternVL2- 214

4B model, after fine-tuning on our dataset, 215

achieves a significant performance improvement. 216

Moreover, it outperform other open-source model 217

of much larger parameters and achieves SOTA per- 218

formance. This strongly validates the effective- 219

ness of our dataset. On the high-level metric of 220

ChartMimic, the model performs slightly worse 221

than InternVL2-Llama3-76B, despite having a sig- 222

nificantly lower code execution success rate. We 223
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Model Name Params ChartMimic Plot2Code
Execute Rate Low-Level High-Level Overall Execute Rate GPT4v rating

GeminiProVision - 68.2 53.8 53.3 53.55 68.2 3.69
Claude-3-opus - 83.3 60.5 60.1 60.3 84.1 3.8
GPT-4o - 93.2 79 83.5 81.25 88.6 5.71

Qwen2-VL-7B 8.2B 47 32.9 35 33.95 68.2 3.12
InternVL2-4B 4.2B 50.5 33.8 38.4 36.1 66.3 2.52
InternVL2-8B 8.1B 52.5 34.4 38.9 36.65 77.3 2.78
MiniCPM-Llama3-V-2.5 8.4B 67 36.6 42.1 39.35 76.3 2.61
InternVL2-26B 26.0B 69.3 41.4 47.4 44.4 81.3 3.42
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 58.5 83.2 54.1
TinyChart 3B 42.5 26.3 25.9 26.1 43.2 2.19
ChartMOE 7B 52.7 25.3 22.9 24.1 65.2 2.22
InternVL2-4B-Finetune(Ours) 4.2B 78.3 63.4 60.4 61.9 84.8 4.49

Table 2: Chart2Code results for various closed-source and open-source models. The highest scores in each model
category are marked in bold. Despite having only 4B parameters, the model fine-tuned on our dataset achieves
state-of-the-art performance across the evaluated benchmarks.

Model Text Layout Type Color Avg

GPT-4o 81.5 89.8 77.3 67.2 79
InternVL2-26B 39.2 58.7 35.9 31.8 41.4
InternVL2-Llama3-76B 54.1 74.5 49.2 41.5 54.8
ChartMOE 24.4 42.05 18.61 16.1 25.3
InternVL2-4B-Finetune(Ours) 61.6 74.9 62.9 54 63.4

Table 3: Model performance across different dimen-
sions in ChartMimic.
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Figure 3: Matplotlib api length distribution and code
length distribution.

believe that this performance gap is more likely224

due to the inherent limitations in code generation225

capabilities of the 4B parameter base model itself.226

3.3 Analysis227

We use our finetuned model to conduct in-depth228

analysis based on ChartMimic in this section.229

The model shows consistent significant perfor-230

mance improvements across different categories.231

As shown in the figure 3 left, our model demon-232

strates significant performance gains across all233

chart types, including complex types such as CB234

and HR which are not explicitly specified in our235

chart taxonomy. This suggests that our dataset is236

well-balanced, enabling the model to better adapt237

to diverse and complex real-world scenarios.238

The models ability to capture chart details and239

handle complex logic needs improvement. As240

shown in Table 3, our model shows a notable gap241

in text performance compared to GPT-4o. Addi-242

tionally, all models score much lower on the color 243

metric, indicating weaker capture of low-level de- 244

tails. We also find that samples with for-loops 245

perform nearly 10% worse, suggesting the model 246

struggles with complex plotting logic. 247

Most coding error of the model are Syntax er- 248

rors and variable planning errors. As shown in 249

the figure 3 right, coding errors are primarily syn- 250

tax and value errors, with the latter mainly due to 251

dimension mismatches of the variables defined be- 252

fore the they are used. This indicates that apart 253

from general coding abilities, variable planning 254

is an important ability for Chart2Code task that 255

might be considered to be further improved, which 256

may be challenging due to the auto-regressive na- 257

ture of current MLLMs. 258

4 Conclusion 259

This paper addresses the limitations of exist- 260

ing Chart2Code-related datasets, including insuf- 261

ficient quantity, diversity, and complexity. We pro- 262

pose a data synthesis pipeline to create a large- 263

scale Chart2Code training dataset and conduct 264

fine-tuning experiments on an open-source model. 265

The results show that the model achieves SOTA 266

performance with fewer parameters. However, the 267

analysis reveals that even after large-scale fine- 268

tuning, the model’s ability to perceive chart de- 269

tails and generate code remains a limiting factor. 270

We hope our dataset will inspire further research 271

in this area. 272

Limitations 273

The primary limitation of this study lies in the 274

training dataset, which is currently restricted to the 275

matplotlib library. While this covers a wide range 276
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of common visualizations, it restricts the diversity277

of charts that can be generated, as other libraries278

such as seaborn, plotly, or ggplot are not included.279

Future work could expand the dataset to include280

these libraries, allowing for a broader variety of281

visualization code generation.282
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Figure 4: category distribution

Figure 5: synthesised chart

Figure 6: synthesised chart

Figure 7: synthesised chart

Figure 8: synthesised chart
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Figure 9: synthesised chart

Figure 10: synthesised chart

Figure 11: synthesised chart

Figure 12: synthesised chart

Figure 13: synthesised chart
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Figure 14: synthesised chart
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