
A Large-Scale Diverse and Complex Dataset for Enhancing
Chart-to-Code Generation

Anonymous ACL submission

Abstract

Chart2Code has recently received significant001
attention in the multimodal community due to002
its potential to reduce the burden of visualiza-003
tion and promote a more detailed understand-004
ing of charts. However, existing Chart2Code-005
related training datasets suffer from at least006
one of the following issues: (1) limited scale,007
(2) limited type coverage, and (3) inadequate008
complexity. To address these challenges, we009
seek more diverse sources that better align010
with real-world user distributions and con-011
struct a data synthesis pipeline and further cre-012
ated a large-scale Chart2Code training dataset.013
Experimental results demonstrate that even014
with fewer parameters, the model finetuned015
on our dataset achieves state-of-the-art perfor-016
mance on multiple Chart2Code benchmarks017
within open-source models.018

1 Introduction019

With the development of multimodal large lan-020

guage models (MLLMs) (Liu et al., 2023; Wang021

et al., 2024; Chen et al., 2024), an increasing022

amount of research has applied them to Chart-023

related tasks (Meng et al., 2024; Zhang et al.,024

2024a; Han et al., 2023; Huang et al., 2024) .025

Chart2Code is one of them which requires the026

MLLM to receive a chart as input and generat-027

ing source code that accurately replicates the chart.028

The task requires the MLLM not only to perceive029

the content of the chart precisely but also to or-030

ganize the perceived information with appropriate031

code logic (Wu et al., 2024; Shi et al., 2025).032

Chart2Code has recently gained significant at-033

tention because of its potential to assist in data034

visualization (Shi et al., 2025) and promote a035

more detailed understanding of charts (Xu et al.,036

2025). Several benchmarks have been introduced037

to evaluate Chart2Code (Wu et al., 2024; Shi et al.,038

2025). According to the evaluation results, exist-039

ing open-source MLLMs still perform poorly in040

Figure 1: Our work focuses on Chart2Code task. (a)
Different from existing work, we focus on creating
more advanced and complex charts. (b) High-level il-
lustration of our dataset construction pipeline. We use
ChatGPT to rewrite the existing diverse web plotting
code into executable code or directly instruct it to syn-
thesize executable code based on existing chart images.
The charts are obtained by executing the result code.

Chart2Code and exhibit a significant gap when 041

compared with the closed-source models. 042

Currently, all the open-source Chart2Code- 043

related training dataset1 have at least one follow- 044

ing issues: (1) Limited scale: The training sam- 045

ples are not enough for the model to learn the chal- 046

lenge task (He et al., 2024) . (2) Limited Type 047

Coverage: The most diverse dataset includes only 048

31 chart types (Pesaran Zadeh et al., 2024), while 049

matplotlib can generate many more types. (3) Gap 050

Exists with real-world user needs: Text2Vis 051

(Nguyen et al., 2024) points out that the exist- 052

ing datasets do not adequately align with the real- 053

world requirements of the users. For example, 054

current datasets mostly pay attention to single- 055

type charts while ignoring complex and composite 056

1We use Chart2Code-related as there are Text2Chart train-
ing dataset which closely related to Chart2Code.

1

Data form # Chart types # Data samples # Matplotlib API types # Different API combinations # Avg code length

ChartLlama Chart2Code 10 11K 83 418 17
ChartMOE Chart2Code <20 800K - - -
ReachQA Chart2Code 15 3K 168 2222 22

Text2Chart31 Text2Chart 31 11.1K 188 1881 12
Ours Chart2Code 53 120K 1219 84214 23

Table 1: Stastics of various Chart2Code-related datasets. ChartLlama (Han et al., 2023), ChartMOE (Xu et al.,
2025) and Text2Chart31 (Pesaran Zadeh et al., 2024) have relatively more training samples but limited complexity
and diversity. ReachQA (He et al., 2024) has enough diveristy and complexity while having limited scale. Our
dataset combines all the

charts.057

To address the aforementioned issues, we aim to058

construct a standard Chart2Code training dataset.059

To solve issue(2), we construct a comprehensive060

chart type taxonomy and synthesize data that in-061

clude each type respectively. To solve issue(3),062

we seek the source that may better reflect the user063

needs and propose two synthesis pipelines: Syn-064

thesize based on online plotting code (Kocetkov065

et al., 2022), which predefines certain rules to fil-066

ter relevant code snippts in Web Code and instructs067

GPT4 (OpenAI et al., 2024) to synthesize exe-068

cutable code based on them and Synthesize based069

on web chart images (Li et al., 2024), which di-070

rectly feed the selected chart images to GPT4 to071

synthesize the code.072

We conduct analysis and compare our con-073

structed dataset with other Chart2Code-related074

datasets. Our results demonstrate that our dataset075

encompasses a wider variety of chart types and076

a more diverse distribution of complexity. We077

then fine-tune an open-source MLLM (Chen et al.,078

2024) using our constructed data. Experimental079

results demonstrate that even with relatively small080

parameters (4B), the model fine-tuned on our data081

exhibits significant improvements across various082

Chart2Code benchmarks, achieving state-of-the-083

art performance compared to other open-source084

models.085

2 Dataset construction086

2.1 Task definition087

Given an input chart image I and plotting instruc-088

tion T , a MLLM is required to output an exe-089

cutable code C.090

C = argmax
C

PMLLM (C|T , I) (1)091

By utilizing an external interpreter (e.g., Python),092

the plotting code is executed to generate an image093

I ′.094

I ′ = Interpreter(C) (2)095

The goal is to ensure I ′ and I as close as possible. 096

In this work, we focus on matplotlib based charts, 097

leaving other types for future work. 098

2.2 Dataset construction pipelines 099

2.2.1 Creating chart type taxonomy 100

To address the limited type coverage issue, we first 101

construct a comprehensive chart type taxonomy by 102

first merging the chart types specified in recent 103

works(Xu et al., 2024; He et al., 2024; Hu et al., 104

2024) and then adding additional chart types given 105

by GPT4, which result in 53 chart types. We syn- 106

thesize code that include each type respectively. 107

2.2.2 Synthesize based on online plotting 108

code 109

To synthesize dataset that more align with the 110

real need of users, we first extract plotting 111

code snippets from the Stack dataset following 112

Text2vis(Nguyen et al., 2024). However the ex- 113

tracted snippts have the following issues: (1) Con- 114

tain many lines unrelated to plotting. (2) The plot- 115

ting logic tends to be homogeneous. (3) Most code 116

snippets cannot be directly executed to produce 117

chart image. To address the issues, we divide the 118

synthesis process into three steps: extracting, fil- 119

tering, and rewriting. Each step is designed to 120

resolve issues (1), (2), and (3), respectively. 121

In the extracting step, for each python code 122

file, we extract matplotlib function calls and as- 123

signment statements following text2vis. We retain 124

relevant functions and control statements, and par- 125

tition the results based on the call chain. 126

In the filtering step, for each chart type, we 127

filter relevant code snippets based on predefined 128

rules and use LSH within different API length 129

ranges respectively to select code snippts, ensur- 130

ing coverage of diverse plotting logics. 131

In the rewriting step, we pass the results in 132

filtering to GPT4 to generate complete and exe- 133

cutable plotting code, with the prompt instructing 134

2

it to faithfully replicate the user’s plotting logic as135

accurately as possible.136

2.2.3 Synthesize based on online chart images137

To increase the data volume of sparse chart138

types and enhance the diversity of other cate-139

gories, inspired by GPT4’s great performance in140

Chart2Code, we propose to directly synthesizing141

code based on chart image for each chart cate-142

gory. Specifically, we choose Multi-modal arxiv143

dataset(Li et al., 2024) as our image base. We144

first use GPT4 to generate visual feature descrip-145

tions for each chart type. Then we filter the cor-146

responding charts using Siglip (Zhai et al., 2023).147

Finally, we prompt GPT to generate the plotting148

code based on the images.149

2.2.4 Quality control150

We aim to check and control the quality of our data151

both in image aesthetics and code quality.152

For image aesthetics, we follow the multi-153

modal self-instruct (Zhang et al., 2024b), using154

LLaVA v1.5 (Liu et al., 2023) to check for con-155

flicts in visual elements and the rationality of the156

layout. We remove the image which fail to pass157

the checking.158

For code quality, we mainly check whether the159

code contains anything that is unrelated to plot the160

chart. We randomly selected 5 samples from each161

chart type and found that fewer than 5% exhibit162

such issues. Given resource limitations, we don’t163

deal with them.164

2.3 Dataset analysis165

We give detailed analysis of our dataset in this sec-166

tion. We show the chart type distribution of our167

constructed dataset in 4 and show qualitive synth-168

sised data in appendix.169

Chart type and combination diversity As170

shown in Table 1, our dataset is the largest171

among existing Chart2Code-related datasets, with172

53 chart types, the most diverse of any related173

dataset. Additionally, due to we take more plot-174

ting resource into consideration, our dataset in-175

cludes 1219 Matplotlib API types and 84,214 API176

combinations, both exceeding the numbers in ex-177

isting datasets. To summarize, our dataset ex-178

hibits much higher chart type and combination179

diveristy.180

Complexity diversity As shown in the Fig 2,181

the distributions of the number of Matplotlib182

APIs and total code length per plotting code183

0 20 40 60 80
APIs in Code

0.00
0.05
0.10
0.15
0.20
0.25

Pr
op

or
tio

n
(%

)

API Length Distribution
Ours
ReachQA
ChartLlama
Text2Chart31

0 20 40 60 80 100 120
Code Lines

0.000

0.025

0.050

0.075

0.100

0.125

Pr
op

or
tio

n
(%

)

Code Length Distribution
Ours
ReachQA
ChartLlama
Text2Chart31

Figure 2: Matplotlib api length distribution and code
length distribution.

in the ChartLlama and Text2Chart31 datasets 184

are densely concentrated around specific points, 185

whereas our dataset and ReachQA exhibit a 186

more uniform distribution (although the ReachQA 187

dataset is smaller in scale). This demonstrates 188

that our dataset offers a well-balanced diversity 189

in complexity. 190

3 Experiments 191

3.1 Experimental setup 192

We finetune the InternVL2-4B (Chen et al., 2024) 193

model using our constructed dataset and evaluate 194

the Chart2Code task using ChartMimic (Shi et al., 195

2025) and Plot2Code (Wu et al., 2024) bench- 196

marks. We fully follow their evaluation pipelines. 197

3.2 Main results 198

Table 2 shows the evaluation results. We have the 199

following conclusions. 200

Chart-specific models fail on the benchmark 201

although finetuned on their own Chart2Code 202

data. ChartMOE and TinyChart were trained 203

on a larger-scale Chart2Code dataset and demon- 204

strated their superiority in performing this task. 205

However, when evaluated on these two real- 206

world Chart2Code benchmarks, their performance 207

showed a significant decline. This drop in perfor- 208

mance can primarily be attributed to the insuffi- 209

cient diversity and complexity of the charts in the 210

datasets they were trained on. The dataset we pro- 211

pose can effectively fill the gap. 212

Model Finetuned on our dataset achieve SOTA 213

performance. As shown in Table 2, the InternVL2- 214

4B model, after fine-tuning on our dataset, 215

achieves a significant performance improvement. 216

Moreover, it outperform other open-source model 217

of much larger parameters and achieves SOTA per- 218

formance. This strongly validates the effective- 219

ness of our dataset. On the high-level metric of 220

ChartMimic, the model performs slightly worse 221

than InternVL2-Llama3-76B, despite having a sig- 222

nificantly lower code execution success rate. We 223

3

Model Name Params ChartMimic Plot2Code
Execute Rate Low-Level High-Level Overall Execute Rate GPT4v rating

GeminiProVision - 68.2 53.8 53.3 53.55 68.2 3.69
Claude-3-opus - 83.3 60.5 60.1 60.3 84.1 3.8
GPT-4o - 93.2 79 83.5 81.25 88.6 5.71

Qwen2-VL-7B 8.2B 47 32.9 35 33.95 68.2 3.12
InternVL2-4B 4.2B 50.5 33.8 38.4 36.1 66.3 2.52
InternVL2-8B 8.1B 52.5 34.4 38.9 36.65 77.3 2.78
MiniCPM-Llama3-V-2.5 8.4B 67 36.6 42.1 39.35 76.3 2.61
InternVL2-26B 26.0B 69.3 41.4 47.4 44.4 81.3 3.42
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 58.5 83.2 54.1
TinyChart 3B 42.5 26.3 25.9 26.1 43.2 2.19
ChartMOE 7B 52.7 25.3 22.9 24.1 65.2 2.22
InternVL2-4B-Finetune(Ours) 4.2B 78.3 63.4 60.4 61.9 84.8 4.49

Table 2: Chart2Code results for various closed-source and open-source models. The highest scores in each model
category are marked in bold. Despite having only 4B parameters, the model fine-tuned on our dataset achieves
state-of-the-art performance across the evaluated benchmarks.

Model Text Layout Type Color Avg

GPT-4o 81.5 89.8 77.3 67.2 79
InternVL2-26B 39.2 58.7 35.9 31.8 41.4
InternVL2-Llama3-76B 54.1 74.5 49.2 41.5 54.8
ChartMOE 24.4 42.05 18.61 16.1 25.3
InternVL2-4B-Finetune(Ours) 61.6 74.9 62.9 54 63.4

Table 3: Model performance across different dimen-
sions in ChartMimic.

3d ba
r CB

gra
ph

sca
tte

r
bo

x

err
orb

ar pie

he
atm

ap

err
orp

oin
t
line are

a
qu

ive
r
vio

lin his
t

tre
e

de
nsi

ty PIP HR

mult
idif

f

con
tou

r
rad

ar
0.0

0.2

0.4

0.6

0.8

1.0
InternVL2-8B
Ours

Value Error51.5%

Syntax Error
36.2%

Type Error

3.8%

Index Error

3.8%

Others

4.6%

Value Error
Syntax Error
Type Error
Index Error
Others

13

54

Value Error Breakdown

Other Error
Length/Shape/Dimension Error

Figure 3: Matplotlib api length distribution and code
length distribution.

believe that this performance gap is more likely224

due to the inherent limitations in code generation225

capabilities of the 4B parameter base model itself.226

3.3 Analysis227

We use our finetuned model to conduct in-depth228

analysis based on ChartMimic in this section.229

The model shows consistent significant perfor-230

mance improvements across different categories.231

As shown in the figure 3 left, our model demon-232

strates significant performance gains across all233

chart types, including complex types such as CB234

and HR which are not explicitly specified in our235

chart taxonomy. This suggests that our dataset is236

well-balanced, enabling the model to better adapt237

to diverse and complex real-world scenarios.238

The models ability to capture chart details and239

handle complex logic needs improvement. As240

shown in Table 3, our model shows a notable gap241

in text performance compared to GPT-4o. Addi-242

tionally, all models score much lower on the color 243

metric, indicating weaker capture of low-level de- 244

tails. We also find that samples with for-loops 245

perform nearly 10% worse, suggesting the model 246

struggles with complex plotting logic. 247

Most coding error of the model are Syntax er- 248

rors and variable planning errors. As shown in 249

the figure 3 right, coding errors are primarily syn- 250

tax and value errors, with the latter mainly due to 251

dimension mismatches of the variables defined be- 252

fore the they are used. This indicates that apart 253

from general coding abilities, variable planning 254

is an important ability for Chart2Code task that 255

might be considered to be further improved, which 256

may be challenging due to the auto-regressive na- 257

ture of current MLLMs. 258

4 Conclusion 259

This paper addresses the limitations of exist- 260

ing Chart2Code-related datasets, including insuf- 261

ficient quantity, diversity, and complexity. We pro- 262

pose a data synthesis pipeline to create a large- 263

scale Chart2Code training dataset and conduct 264

fine-tuning experiments on an open-source model. 265

The results show that the model achieves SOTA 266

performance with fewer parameters. However, the 267

analysis reveals that even after large-scale fine- 268

tuning, the model’s ability to perceive chart de- 269

tails and generate code remains a limiting factor. 270

We hope our dataset will inspire further research 271

in this area. 272

Limitations 273

The primary limitation of this study lies in the 274

training dataset, which is currently restricted to the 275

matplotlib library. While this covers a wide range 276

4

of common visualizations, it restricts the diversity277

of charts that can be generated, as other libraries278

such as seaborn, plotly, or ggplot are not included.279

Future work could expand the dataset to include280

these libraries, allowing for a broader variety of281

visualization code generation.282

References283

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,284
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi285
Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang,286
Xiao wen Dong, Hang Yan, Hewei Guo, Con-287
ghui He, Zhenjiang Jin, Chaochao Xu, Bin Wang,288
Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang,289
Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, and290
Yu Qiao. 2024. How far are we to gpt-4v? clos-291
ing the gap to commercial multimodal models with292
open-source suites. ArXiv, abs/2404.16821.293

Yucheng Han, China. Xiaoyan Zhang, Xin Chen,294
Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and295
Hanwang Zhang. 2023. Chartllama: A multimodal296
llm for chart understanding and generation. ArXiv,297
abs/2311.16483.298

Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen299
Ding, Zifei Shan, Tao Gui, Qi Zhang, and Xuanjing300
Huang. 2024. Distill visual chart reasoning ability301
from llms to mllms. Preprint, arXiv:2410.18798.302

Linmei Hu, Duokang Wang, Yiming Pan, Jifan Yu,303
Yingxia Shao, Chong Feng, and Liqiang Nie. 2024.304
Novachart: A large-scale dataset towards chart un-305
derstanding and generation of multimodal large lan-306
guage models. In Proceedings of the 32nd ACM307
International Conference on Multimedia, MM ’24,308
page 39173925, New York, NY, USA. Association309
for Computing Machinery.310

Kung-Hsiang Huang, Hou Pong Chan, Yi R. Fung,311
Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu312
Chang, and Heng Ji. 2024. From pixels to in-313
sights: A survey on automatic chart understanding314
in the era of large foundation models. Preprint,315
arXiv:2403.12027.316

Denis Kocetkov, Raymond Li, Loubna Ben Allal,317
Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,318
Yacine Jernite, Margaret Mitchell, Sean Hughes,319
Thomas Wolf, Dzmitry Bahdanau, Leandro von320
Werra, and Harm de Vries. 2022. The stack: 3321
tb of permissively licensed source code. Preprint,322
arXiv:2211.15533.323

Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong324
Feng, Lingpeng Kong, and Qi Liu. 2024. Multi-325
modal ArXiv: A dataset for improving scientific326
comprehension of large vision-language models. In327
Proceedings of the 62nd Annual Meeting of the As-328
sociation for Computational Linguistics (Volume 1:329
Long Papers), pages 14369–14387, Bangkok, Thai-330
land. Association for Computational Linguistics.331

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 332
Lee. 2023. Improved baselines with visual instruc- 333
tion tuning. 2024 IEEE/CVF Conference on Com- 334
puter Vision and Pattern Recognition (CVPR), pages 335
26286–26296. 336

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, 337
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char- 338
tAssistant: A universal chart multimodal language 339
model via chart-to-table pre-training and multitask 340
instruction tuning. In Findings of the Association for 341
Computational Linguistics: ACL 2024, pages 7775– 342
7803, Bangkok, Thailand. Association for Computa- 343
tional Linguistics. 344

Hy Nguyen, Xuefei He, Andrew Reeson, Cecile Paris, 345
Josiah Poon, and Jonathan K. Kummerfeld. 2024. 346
Do text-to-vis benchmarks test real use of visuali- 347
sations? In Proceedings of the 2024 Conference on 348
Empirical Methods in Natural Language Processing, 349
pages 7433–7441, Miami, Florida, USA. Associa- 350
tion for Computational Linguistics. 351

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar- 352
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni 353
Aleman, Diogo Almeida, Janko Altenschmidt, 354
Sam Altman, Shyamal Anadkat, Red Avila, Igor 355
Babuschkin, Suchir Balaji, Valerie Balcom, Paul 356
Baltescu, Haiming Bao, Mohammad Bavarian, 357
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel 358
Bernadett-Shapiro, Christopher Berner, Lenny Bog- 359
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa 360
Brakman, Greg Brockman, Tim Brooks, Miles 361
Brundage, Kevin Button, Trevor Cai, Rosie Camp- 362
bell, Andrew Cann, Brittany Carey, Chelsea Carl- 363
son, Rory Carmichael, Brooke Chan, Che Chang, 364
Fotis Chantzis, Derek Chen, Sully Chen, Ruby 365
Chen, Jason Chen, Mark Chen, Ben Chess, Chester 366
Cho, Casey Chu, Hyung Won Chung, Dave Cum- 367
mings, Jeremiah Currier, Yunxing Dai, Cory De- 368
careaux, Thomas Degry, Noah Deutsch, Damien 369
Deville, Arka Dhar, David Dohan, Steve Dowling, 370
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna 371
Eloundou, David Farhi, Liam Fedus, Niko Felix, 372
Simón Posada Fishman, Juston Forte, Isabella Ful- 373
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 374
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 375
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 376
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 377
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff 378
Harris, Yuchen He, Mike Heaton, Johannes Hei- 379
decke, Chris Hesse, Alan Hickey, Wade Hickey, 380
Peter Hoeschele, Brandon Houghton, Kenny Hsu, 381
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, 382
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, 383
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, 384
Heewoo Jun, Tomer Kaftan, ukasz Kaiser, Ali Ka- 385
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 386
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 387
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, 388
Jamie Kiros, Matt Knight, Daniel Kokotajlo, ukasz 389
Kondraciuk, Andrew Kondrich, Aris Konstantinidis, 390
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael 391
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Le- 392
ung, Daniel Levy, Chak Ming Li, Rachel Lim, 393

5

https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:269362546
https://api.semanticscholar.org/CorpusID:265466206
https://api.semanticscholar.org/CorpusID:265466206
https://api.semanticscholar.org/CorpusID:265466206
https://arxiv.org/abs/2410.18798
https://arxiv.org/abs/2410.18798
https://arxiv.org/abs/2410.18798
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://doi.org/10.1145/3664647.3680790
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://doi.org/10.18653/v1/2024.acl-long.775
https://api.semanticscholar.org/CorpusID:263672058
https://api.semanticscholar.org/CorpusID:263672058
https://api.semanticscholar.org/CorpusID:263672058
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.findings-acl.463
https://doi.org/10.18653/v1/2024.emnlp-main.423
https://doi.org/10.18653/v1/2024.emnlp-main.423
https://doi.org/10.18653/v1/2024.emnlp-main.423

Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa394
Lopez, Ryan Lowe, Patricia Lue, Anna Makanju,395
Kim Malfacini, Sam Manning, Todor Markov, Yaniv396
Markovski, Bianca Martin, Katie Mayer, Andrew397
Mayne, Bob McGrew, Scott Mayer McKinney,398
Christine McLeavey, Paul McMillan, Jake McNeil,399
David Medina, Aalok Mehta, Jacob Menick, Luke400
Metz, Andrey Mishchenko, Pamela Mishkin, Vin-401
nie Monaco, Evan Morikawa, Daniel Mossing, Tong402
Mu, Mira Murati, Oleg Murk, David Mély, Ashvin403
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind404
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long405
Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex406
Paino, Joe Palermo, Ashley Pantuliano, Giambat-407
tista Parascandolo, Joel Parish, Emy Parparita, Alex408
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-409
man, Filipe de Avila Belbute Peres, Michael Petrov,410
Henrique Ponde de Oliveira Pinto, Michael, Poko-411
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-412
ell, Alethea Power, Boris Power, Elizabeth Proehl,413
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,414
Cameron Raymond, Francis Real, Kendra Rim-415
bach, Carl Ross, Bob Rotsted, Henri Roussez,416
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani417
Santurkar, Girish Sastry, Heather Schmidt, David418
Schnurr, John Schulman, Daniel Selsam, Kyla Shep-419
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,420
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie421
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,422
Benjamin Sokolowsky, Yang Song, Natalie Stau-423
dacher, Felipe Petroski Such, Natalie Summers, Ilya424
Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.425
Thompson, Phil Tillet, Amin Tootoonchian, Eliz-426
abeth Tseng, Preston Tuggle, Nick Turley, Jerry427
Tworek, Juan Felipe Cerón Uribe, Andrea Vallone,428
Arun Vijayvergiya, Chelsea Voss, Carroll Wain-429
wright, Justin Jay Wang, Alvin Wang, Ben Wang,430
Jonathan Ward, Jason Wei, CJ Weinmann, Ak-431
ila Welihinda, Peter Welinder, Jiayi Weng, Lilian432
Weng, Matt Wiethoff, Dave Willner, Clemens Win-433
ter, Samuel Wolrich, Hannah Wong, Lauren Work-434
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,435
Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-436
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-437
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang438
Zhuang, William Zhuk, and Barret Zoph. 2024. Gpt-439
4 technical report. Preprint, arXiv:2303.08774.440

Fatemeh Pesaran Zadeh, Juyeon Kim, Jin-Hwa Kim,441
and Gunhee Kim. 2024. Text2Chart31: Instruc-442
tion tuning for chart generation with automatic feed-443
back. In Proceedings of the 2024 Conference on444
Empirical Methods in Natural Language Processing,445
pages 11459–11480, Miami, Florida, USA. Associa-446
tion for Computational Linguistics.447

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie448
Wang, Mohan Jing, Linran XU, Xinyu Zhu, Siheng449
Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng450
Cai, and Yujiu Yang. 2025. Chartmimic: Evaluating451
LMM’s cross-modal reasoning capability via chart-452
to-code generation. In The Thirteenth International453
Conference on Learning Representations.454

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-455

hao Fan, Jinze Bai, Ke-Yang Chen, Xuejing Liu, 456
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, 457
Mengfei Du, Xuancheng Ren, Rui Men, Dayi- 458
heng Liu, Chang Zhou, Jingren Zhou, and Junyang 459
Lin. 2024. Qwen2-vl: Enhancing vision-language 460
model’s perception of the world at any resolution. 461
ArXiv, abs/2409.12191. 462

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, 463
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo. 464
2024. Plot2code: A comprehensive benchmark 465
for evaluating multi-modal large language models 466
in code generation from scientific plots. ArXiv, 467
abs/2405.07990. 468

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, 469
Chun Yuan, and Jian Guo. 2024. Chartbench: A 470
benchmark for complex visual reasoning in charts. 471
Preprint, arXiv:2312.15915. 472

Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, 473
Chengjin Xu, Chun Yuan, and Jian Guo. 2025. 474
Chartmoe: Mixture of diversely aligned expert con- 475
nector for chart understanding. In The Thirteenth 476
International Conference on Learning Representa- 477
tions. 478

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, 479
and Lucas Beyer. 2023. Sigmoid loss for lan- 480
guage image pre-training. 2023 IEEE/CVF Inter- 481
national Conference on Computer Vision (ICCV), 482
pages 11941–11952. 483

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, 484
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang. 485
2024a. TinyChart: Efficient chart understanding 486
with program-of-thoughts learning and visual token 487
merging. In Proceedings of the 2024 Conference on 488
Empirical Methods in Natural Language Processing, 489
pages 1882–1898, Miami, Florida, USA. Associa- 490
tion for Computational Linguistics. 491

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna 492
Wang, Yongliang Shen, Zeqi Tan, Guiyang Hou, 493
Mingqian He, Yanna Ma, Weiming Lu, and Yuet- 494
ing Zhuang. 2024b. Multimodal self-instruct: Syn- 495
thetic abstract image and visual reasoning instruc- 496
tion using language model. In Proceedings of the 497
2024 Conference on Empirical Methods in Natural 498
Language Processing, pages 19228–19252, Miami, 499
Florida, USA. Association for Computational Lin- 500
guistics. 501

A Appendix 502

6

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://doi.org/10.18653/v1/2024.emnlp-main.640
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://api.semanticscholar.org/CorpusID:272704132
https://api.semanticscholar.org/CorpusID:272704132
https://api.semanticscholar.org/CorpusID:272704132
https://api.semanticscholar.org/CorpusID:269757000
https://api.semanticscholar.org/CorpusID:269757000
https://api.semanticscholar.org/CorpusID:269757000
https://api.semanticscholar.org/CorpusID:269757000
https://api.semanticscholar.org/CorpusID:269757000
https://arxiv.org/abs/2312.15915
https://arxiv.org/abs/2312.15915
https://arxiv.org/abs/2312.15915
https://openreview.net/forum?id=o5TsWTUSeF
https://openreview.net/forum?id=o5TsWTUSeF
https://openreview.net/forum?id=o5TsWTUSeF
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://api.semanticscholar.org/CorpusID:257767223
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072
https://doi.org/10.18653/v1/2024.emnlp-main.1072

Figure 4: category distribution

Figure 5: synthesised chart

Figure 6: synthesised chart

Figure 7: synthesised chart

Figure 8: synthesised chart

7

Figure 9: synthesised chart

Figure 10: synthesised chart

Figure 11: synthesised chart

Figure 12: synthesised chart

Figure 13: synthesised chart

8

Figure 14: synthesised chart

9

	Introduction
	Dataset construction
	Task definition
	Dataset construction pipelines
	Creating chart type taxonomy
	Synthesize based on online plotting code
	Synthesize based on online chart images
	Quality control

	Dataset analysis

	Experiments
	Experimental setup
	Main results
	Analysis

	Conclusion
	Appendix

