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Abstract

Neural machine translation (NMT) quality sig-001
nificantly depends on large parallel corpora,002
making low-resource language translation a003
challenge. This paper introduces a novel ap-004
proach that leverages cross-lingual alignment005
knowledge from multilingual pre-trained lan-006
guage models (PLMs) to enhance low-resource007
NMT. Our method segments the translation008
model into source encoding, target encoding,009
and alignment modules, each initialized with010
different pre-trained BERT models. Experi-011
ments on four translation directions with two012
low-resource language pairs demonstrate sig-013
nificant BLEU score improvements, validating014
the efficacy of our approach.015

1 Introduction016

The quality of neural machine translation (NMT)017

heavily depends on rich parallel corpora, making018

NMT perform poorly with low-resource languages019

(Arivazhagan et al., 2019; Haddow et al., 2022).020

The key challenge in handling low-resource lan-021

guages lies in acquiring monolingual semantics022

and bilingual alignment knowledge. Traditional023

NMT systems, reliant on large parallel datasets,024

often fail to capture these knowledge under data025

scarcity. Pre-trained language models (PLMs), by026

acquiring knowledge from extensive monolingual027

corpora, offer a promising solution to this prob-028

lem (Liu et al., 2020; Baziotis et al., 2020). By029

leveraging PLMs pre-trained on large monolingual030

corpora, we can inject valuable linguistic knowl-031

edge into NMT systems, indirectly alleviating the032

lack of resources.033

Previous research has explored combining PLMs034

with translation models to better utilize the prior035

knowledge in PLMs. Guo et al. (2020) proposed to036

use BERT models for source and target languages037

as the encoder and decoder respectively, and em-038

ploy adapters to learn bilingual alignment for high-039

quality non-autoregressive translation. Weng et al.040

(2022) initialized the encoder of the translation 041

model with mBERT, and used a Layer-wise Coordi- 042

nation Structure and multi-task learning to enhance 043

autoregressive translation. Duan and Zhao (2023) 044

split the decoder into separate history encoding 045

and generation prediction modules to effectively 046

utilize target language BERT for improved autore- 047

gressive translation. Pang et al. (2024) modularized 048

the translation model into encoder, decoder, and 049

transfer modules, and explored to efficiently use 050

monolingual and bilingual knowledge while miti- 051

gating catastrophic forgetting. 052

However, these methods primarily focus on 053

monolingual knowledge from PLMs, failing to 054

effectively utilize cross-lingual alignment knowl- 055

edge from multilingual PLMs (Muller et al., 2021). 056

To address this issue, we propose a low-resource 057

NMT model that leverages cross-lingual alignment 058

knowledge learned from multilingual PLMs to im- 059

prove translation quality. This knowledge is crucial 060

in resource-scarce settings as models struggle to 061

learn high-quality alignments from limited parallel 062

corpora. Specifically, we partition the translation 063

model into source encoding, target encoding, and 064

alignment modules, initializing them with differ- 065

ent pre-trained models according to their functions. 066

Source and target encoding modules are initialized 067

with respective language BERT models to obtain 068

monolingual encoding capabilities, while the align- 069

ment module is initialized with multilingual BERT 070

to utilize cross-lingual alignment knowledge. Ex- 071

periments on four translation directions of two low- 072

resource parallel corpora show significant BLEU 073

score improvements, validating the effectiveness of 074

our approach. 075

2 Related Work 076

2.1 Two-part Decoder 077

Previous efforts combining PLMs with NMT mod- 078

els have primarily focused on utilizing monolingual 079
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knowledge from the source language, with limited080

success in using target language PLMs to improve081

translation quality (Weng et al., 2022). To address082

this issue, the Two-part Decoder method (Duan and083

Zhao, 2023) reconstructs the translation model’s de-084

coder into two independent components: a history085

encoding module and a generation module. The086

history encoding module encodes previously gener-087

ated information, while the generation module gen-088

erates translations token by token. This approach089

aligns the history encoding module more closely090

with the target language BERT, enabling the model091

to better utilize monolingual knowledge from tar-092

get language, thereby improving translation quality.093

Additionally, auxiliary tasks like MLM (Devlin094

et al., 2018) and knowledge distillation (Yang et al.,095

2020) provide extra training signals to reinforce096

learned representations, further enhancing model097

performance.098

2.2 MoNMT099

Fine-tuning PLMs can lead to catastrophic forget-100

ting, where models lose previously learned domain-101

specific and monolingual knowledge (French,102

1999). To mitigate this, the MoNMT approach103

(Pang et al., 2024) modularizes the translation104

model into encoder, decoder, and transfer modules.105

The encoder and decoder are trained on monolin-106

gual data to learn monolingual encoding and gen-107

eration knowledge, while the transfer module is108

trained on parallel corpora to learn bilingual align-109

ment knowledge. This modular approach helps110

retain pre-trained knowledge and allows indepen-111

dent updates and improvements for each module,112

which is particularly beneficial for low-resource113

languages by enabling models to adapt and inte-114

grate new data without extensive retraining, main-115

taining efficiency and effectiveness.116

3 Methodology117

3.1 Model Architecture118

To better leverage cross-lingual knowledge from119

PLMs, we propose a low-resource NMT model120

that utilizes bilingual knowledge from pre-trained121

models. Inspired by the Two-part Decoder method122

(Duan and Zhao, 2023), our architecture partitions123

the translation model into source encoding, target124

encoding, and alignment modules. As shown in125

Figure 1, both source and target encoding mod-126

ules consist of multiple layers, each containing127

a self-attention sublayer and a feed-forward sub-128
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Figure 1: Architecture of the proposed low-resource
NMT model, partitioned into three modules: source en-
coding, target encoding, and alignment. These modules
are initialized with BERTS, BERTT, and BERTm respec-
tively.

layer. The alignment module also consists of mul- 129

tiple layers, each containing a cross-attention sub- 130

layer and a feed-forward sublayer. The source 131

and target encoding modules focus on obtaining 132

the monolingual knowledge of their respective lan- 133

guages, while the alignment module ensures ef- 134

fective alignment of representations learned from 135

both languages. This architecture ensures that each 136

part of the model is dedicated to its specific task, 137

thereby improving overall performance. 138

3.2 Initialization with Pre-Trained BERT 139

Models 140

We use different BERT models to provide the nec- 141

essary prior knowledge for each module. Specif- 142

ically, source language BERT(BERTS) and target 143

language BERT(BERTT) initialize the source and 144

target encoding modules, respectively, capturing 145

richer contextual information and semantic relation- 146

ships for better monolingual representations. The 147

alignment module is initialized with multilingual 148

BERT(BERTm), whose cross-lingual alignment 149

knowledge serves as prior knowledge for transla- 150

tion alignment, improving low-resource translation 151

quality. This initialization strategy ensures that 152

each module is equipped with the most relevant 153

linguistic knowledge from the start, enabling the 154

model to effectively utilize this knowledge during 155

training and translation. Using multilingual BERT 156

for the alignment module is particularly important 157

as it brings valuable cross-lingual alignment knowl- 158
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Dataset Train Valid Test
En-Nb 142,906 2,000 2,000
De-Nb 110,248 2,000 2,000

Table 1: The size of datasets

edge critical for low-resource translation tasks.159

3.3 Training Objective160

We fine-tune our model on bilingual parallel cor-161

pora, focusing on comparing the impact of cross-162

lingual alignment knowledge from BERTm on163

translation performance. Therefore, we did not164

incorporate complex multi-task training like (Duan165

and Zhao, 2023). The training objective is defined166

as:167

L = − logP (y|x, θBERTS , θBERTT , θBERTm)168

where (x, y) denotes a pair of parallel sentences.169

4 Experiments170

4.1 Datasets171

We evaluate our model on two low-resource lan-172

guage pair datasets. For English-Norwegian(en-173

nb), we use OPUS-100 data (Zhang et al., 2020),174

following the default data split. For German-175

Norwegian(de-nb), we use the KDE4 dataset176

(Tiedemann, 2012). Since KDE4 does not divide177

the default test set, we randomly selected 2000178

items as the validation set and 2000 items as the179

test set. Table 1 provides detailed data statistics.180

4.2 Model Configurations181

For the monolingual BERT models, we use bert-182

base-cased 1 for English, bert-base-german-cased183
2 for German, and nb-bert-base 3 for Norwegian.184

For the multilingual BERT model, we use bert-185

base-multilingual-cased 1.186

Our model parameters are consistent with those187

of the pre-trained models, using their tokenizers188

and vocabularies without modification. Note that189

when we initialize the alignment module with190

mBERT, we will replace the vocabulary used for191

the final prediction with the vocabulary of BERTm192

to ensure that cross-lingual knowledge is fully uti-193

lized.194

1https://github.com/google-research/bert
2https://www.deepset.ai/german-bert
3https://github.com/NBAiLab/notram

The consistency in model parameters and tok- 195

enization ensures that our initialization process is 196

seamless and that the pre-trained knowledge is ef- 197

fectively transferred to the translation model. This 198

setup also facilitates reproducibility and compara- 199

bility of results across different experiments. 200

4.3 Results 201

We compared the BLEU values of the randomly 202

initialized alignment module (Random Init) and the 203

alignment module initialized with BERTm (BERTm 204

Init). For the baseline model, we built a Trans- 205

former (Transformer) (Vaswani et al., 2017) based 206

on the hyper-parameters of BERT-base and modi- 207

fied the number of Decoder layers from 12 to 24 to 208

keep the parameter scale close. 209

Our experimental results are shown in Table 2. 210

The results show that module partitioning and ini- 211

tialization of source and target encoding modules 212

can effectively improve the quality of low-resource 213

translation, even if the alignment module is ran- 214

domly initialized, because it can learn alignment 215

knowledge from bilingual data. This indicates that 216

the monolingual knowledge from source BERT and 217

target BERT effectively improves the encoding rep- 218

resentation quality of both languages, showcasing 219

the effectiveness of module partitioning. On this 220

basis, using BERTm to initialize the alignment mod- 221

ule further improves the translation quality. This 222

shows that our model can effectively utilize the 223

cross-language alignment knowledge from BERTm, 224

indicating the importance of utilizing prior align- 225

ment knowledge for low-resource translation. 226

To further verify the effectiveness of cross- 227

lingual knowledge from BERTm, we initialized 228

the alignment module with English BERT (BERTS 229

Init) and Norwegian BERT (BERTT Init) separately 230

for the en-nb task. 231

The results shown in Table 3. Using the BERTS 232

to initialize the alignment module is even harm- 233

ful to the model, because the knowledge of the 234

source language is not helpful for the generation 235

of the target language. Using the BERTT to initial- 236

ize the alignment module can also help the model 237

because it can provide knowledge of generating 238

the target language, indicating the rationality of 239

decomposing the Decoder into two parts: encoding 240

and generation, which verifies the view of (Duan 241

and Zhao, 2023). However, it is still lower than 242

the result of initialization with BERTm, indicating 243

that alignment knowledge is more important for 244

low-resource translation tasks because it is difficult 245
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Model En ⇔ Nb De ⇔ Nb

En ⇒ Nb Nb ⇒ En De ⇒ Nb Nb ⇒ De
Transformer 12.69 23.20 23.59 21.98
Random Init 18.04 30.67 25.13 24.23
BERTm Init 27.79 35.58 31.41 29.59

Table 2: BLEU scores of the baseline and our model on the OPUS-100 En-Nb and the KDE4 De-Nb task. Random
Init and BERTm Init represent initializing the alignment module randomly or using BERTm, respectively.

Model En ⇒ Nb
Random Init 18.04
BERTS Init 17.15
BERTT Init 26.99
BERTm Init 27.79

Table 3: BLEU scores of our model in the En-Nb direc-
tion. Random Init, BERTS Init, BERTT Init, and BERTm

Init represent different ways to initialize the alignment
module. When using BERTS Init, the final predicted
vocabulary is the vocabulary of BERTm vocabulary.

for the model to learn them from resource-scarce246

bilingual data.247

5 Conclusion248

Existing methods of enhancing NMT with PLMs249

fail to effectively utilize cross-lingual alignment250

knowledge from multilingual PLMs. To address251

this, we propose a low-resource NMT model that252

leverages bilingual knowledge from pre-trained253

models. By initializing different parts of the model254

according to the functions of BERT, our approach255

effectively utilizes monolingual semantic knowl-256

edge and cross-lingual alignment knowledge from257

PLMs, significantly improving translation quality258

for low-resource languages. Our method not only259

demonstrates the potential of cross-lingual align-260

ment knowledge but also lays the foundation for261

future research in effectively combining different262

types of PLMs for various NLP tasks.263

6 Limitations264

Although our work has achieved some success,265

there are still existing the following limitations:266

• Model Variety Our current approach is lim-267

ited to BERT-type pre-trained models, which268

may not be easily adaptable to seq2seq pre-269

trained models like BART. Future work will270

explore ways to utilize knowledge from vari-271

ous PLMs, maximizing both monolingual and 272

bilingual knowledge. 273

• Dataset Variety Due to constraints on dataset 274

availability and PLM accessibility, our exper- 275

iments are currently limited to low-resource 276

languages within specific language families. 277

Further validation is needed to determine the 278

effectiveness of our approach across different 279

language families and cross-language transla- 280

tion tasks. 281

• Large Models Large models contain richer 282

knowledge and possess capabilities not found 283

in smaller models. However, due to computa- 284

tional resource limitations, we have yet to ex- 285

plore enhancing low-resource translation with 286

large models. Future research will investigate 287

leveraging large models to further improve 288

low-resource translation if conditions permit. 289
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