Under review as a conference paper at ICLR 2025

GENERATIVE MATCHING UNITS FOR SUPERVISED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an alternative computational unit for feedforward supervised learning
architectures, called Generative Matching Units (GMUs). To understand GMUs,
we start with the standard perceptron unit and view it as an undirected symmetric
measure of computation between the weights W = w1, we, ..wy] and each input
datapoint X = [x1,T9, .., 24]. Perceptrons forward W7 X + b, which is usually
followed by an activation function. In contrast, GMUs compute a directed asym-
metric measure of computation that estimates the degree of functional dependency
f of the input elements z; of each datapoint to the weights w; in terms of latent
generative variables 0, i.e, f(w;, ) — z;. In order to estimate the functional de-
pendency, GMUs measure the minimum error Y ( f(w;, #) — 2;)? incurred in the
generation process by optimizing 6 for each input datapoint. Subsequently, GMUs
map the error into a functional dependency measure via an appropriate scalar
function, and forward it to the next layer for further computation. In GMUs, the
weights [w1, we, .., wy] can therefore be interpreted as the generative weights. We
first compare the generalization ability of GMUs and multi-layered-perceptrons
(MLPs) via comprehensive synthetic experiments across a range of diverse set-
tings. The most notable finding is that when the input is a sparse linear combi-
nation of latent generating variables, GMUs generalize significantly better than
MLPs. Subsequently, we evaluate Resnet MLP networks where the first feedfor-
ward layer is replaced by GMUs (GMU-MLP) on 30 tabular datasets and find that
in most cases, GMU-MLPs generalize better than the MLP baselines. We also
compare GMU-MLP to a set of other benchmarks, including TabNet, XGBoost,
etc. Lastly, we evaluate GMU-CNNs on three standard vision datasets and find
that in all cases they generalize better than the corresponding CNN baselines. We
also find that GMU-CNNs are significantly more robust to test-time corruptions.

1 INTRODUCTION AND MOTIVATION

We consider the supervised classification problem, where the objective is to predict the out-
put category y € {1,..,c}, given the input X € RY and we are given the sample S =
{(X1,11), -, (X, ym)} ~ P(X,y). Most supervised learning approaches tackle this problem
via feedforward architectures. A key building block of most feedforward learners has been the per-
ceptron unit, which involves a linear map W7 X + b followed by some activation function a(.),
resulting in the outcome a(W7 X + b), where X, W, b represent the inputs, weights and biases,
respectively. This computational unit has been quite ubiquitous across various modern architec-
tures, including transformer variants |Lin et al.[ (2022) and convolutional network variants [Li et al.
(2021). Even networks which don’t specifically have the perceptron as a unit of computation, end
up using similar feedforward concepts, such as in Capsule networks [Patrick et al.| (2022)) or in the
recently proposed Kolmogorov-Arnold Networks Liu et al.| (2024). Multi-layered perceptrons are
also proven universal approximators, so given enough complexity and data, they can indeed learn
the underlying function to an arbitrary degree of accuracy Hornik et al.| (1989).

Mechanistically, if each input dimension of X represents causal variables which impact the output
label in a feedforward manner, then the feedforward perceptron unit could potentially end up closely
reflecting the actual mechanism involved in yielding the output. This is because MLPs are good
function approximators, and thus if the underlying mechanism is indeed a function that maps the



Under review as a conference paper at ICLR 2025

input to the output, they should be preferred. However, what if the underlying mechanism is not
feedforward?

Consider scenarios where the actual causes of the data are hidden, and furthermore, where the
mechanism of the data generation is related to the output category y. More specifically, suppose
each datapoint has been generated as X; = f(0;,W,,), where §; € R*, k < d, f : R¥ — R
and W, € R¥*4 represents the generative weights corresponding to the ground truth label y; for
X;. 0; can be interpreted as the latent generating variables for the instance X;. Note that we will
have a total of ¢ generative weights Wy, Wy, .., W, which corresponding to each output label from
{1,2,..,c}. The function f represents the structural mechanism via which the hidden variables 6;
interact with the generative weights W,,. Note that in this scenario, the generative mechanism for
the input X is dependent on its ground truth label y and the latent generating variables 6. If the form
of f is known, we can construct a network with ¢ output units and corresponding learnable weights
Wi, .., W as follows: for j = 1,2,---¢, v; = ming| X — f(6,W])||, and the output label esti-
mate is § = argmin;e ...y v;. As the underlying generative weights W1, .., W, are unknown, we
would need to optimize Wj’ via gradient descent on some loss function, so that the network would
ideally converge to the case where the weights W]’ = W;. This represents the intuitive idea behind
generative matching units (GMU) which we propose, in this paper, as an alternative computational
unit for feedforward supervised learning network architectures.

The previous example illustrates an alternative means to create computational units for supervised
learning, from the perspective of generative error, using a set of generative weights. This can be
beneficial in scenarios where the causal variables that generate the data distribution are hidden, and
also directly relate to the ground truth label. Furthermore, for the optimization ming || X — f(8, WJ)||
to be fully determinable, it needs to hold that dim(0) < dim(X), as otherwise there will be more
unknowns than equations. In fact, when the data is high dimensional but exists in low dimensional
manifolds (dim(0) << dim(X)), we can impose the constraint that k& << d, which imparts a
natural dimensionality bias in the unit.

Following the above observations, we can now design a simple GMU as an alternative computational
unit. First, we note that it is beneficial to have the GMU output larger values when it is able to better
match the input via the optimization ming || X — f(6, W;)||. Thus, we design a unit where smaller

ming|| X — f(6,W7)| yield a larger output and vice-versa. Let X = [y, ..,24] € R? be the input,

W = [wy, .., wq] € R? represent generative weights, B = [by, .., bs] € R represent the generative
bias, @ € R represents the latent generating variable. Then, assuming a linear form for the structural
mechanism f, the output of the GMU, G(X), is given by:

d 2
G(X) = exp ( min 2z (@ = (i + b)) ) (D

6cR d

Note that the above minimization is equivalent to a least-squares problem, and has a well-defined
analytical solution. This ensures that G(X) is differentiable w.r.t the weights and a network which
uses GMUs in any of its layers can be trained via back-propagation. This leads us to the main
motivational points for GMUSs, which we summarize below:

1. Feedforward computation from a generative perspective: We rethink feedforward computa-
tion from a generative standpoint, where each unit attempts to generate the given input datapoint
using its associated weights and outputs a function of the error incurred in the generation process.
This ensures that our units are primarily computing from a top-down perspective, which is helpful
in scenarios where the latent variables that generate the data also relate to the output class.

2. Input as a function of the weights: We consider computational units which encode a type of
generative error in matching the input datapoint. Consider the example of a GMU given in
equation[I] Another way to view this relationship is that the generative error encodes whether the
input dimensions x; can be represented as a function of the weights W and the biases b;. This is
in contrast to the perceptron unit which can be roughly interpreted as the projection of the input
on the weights. In our case, the weights may thus be interpreted as the means via which the latent
generating variables project onto the input.

3. Imposing generative complexity constraints: As most high dimensional data in nature likely
has a low dimensional representation due to it existing in low dimensional manifolds, we can



Under review as a conference paper at ICLR 2025

impose complexity constraints on each generative matching unit. An example of such a constraint
is simply choosing only a few latent variables in 6, and equation [I] is such an example where
dim(0) = 1.

Even with these ideas, it is worth noting that as classical multi-layered neural networks are universal
approximators, they should be able to also learn functions which are of the form depicted in equa-
tion |I} However, as we show later on, their ability to interpolate and extrapolate the behaviour of
a GMU like G(X) is significantly lower tha networks with GMUs. Similarly, we also show that
the ability of a GMU to learn functions which are neural network generated is lower than neural
networks. So, via these observations, it is clear that each computational unit has its own inductive
biases that enable it to learn and generalize better when the underlying function follows its assump-
tions. Note that the inductive biases are primarily from a generative standpoint, which in our case
is the assumption that there exists local linear generative models that can explain the data. Next, we
discuss alternative ways to interpret GMUs, to shed more light on their behaviour.

1.1 ALTERNATIVE INTERPRETATIONS OF GMUS

Directed Measure of Functional Dependence: There also exists an alternative interpretation of
a GMU, and this is one which we initially thought of while thinking of this idea, and it is as
follows. First, we realize that the perceptron unit can be considered to be a correlation mea-
sure between the input dimensions and the corresponding weights, in certain conditions. Specif-
ically, consider X € R9, where d is large and the distance of X from the origin is fixed, i.e.
|X|| = Cx. For a trained perceptron with weights W, we will have |W|| = Cy . This then
T

yields WT'X = (WWH> ”f(—HHWHHXH = cos(0)Cx Cw . Here cos(#), which represents the co-
sine of the angle between the two vectors W and X, can be interpreted as a normalized measure of
correlation between the input dimensions and the corresponding weight values.

We first note that this measure is symmetric, i.e., it remains unchanged when we swap W and X.
This leads to the question, why not try a more general, and directed measure of dependency between
W and X? In recent years, many directed functional correlation measures have been proposed of the
form C(X — Y)|Chatterjee| (2021); |/Azadkia & Chatterjee| (2021), which indicate to what degree
the random variable (RV) Y can be represented as a function of X. There are also some examples
from information theory Xu et al. (2020), where the recently proposed V-Information Iy,(X — Y)
estimates a computationally constrained and directed measure of shared information between X
and Y. Although some of these measures are hard to compute, and to differentiate (as they are
rank based), by considering the general idea, we can also arrive at our proposed GMU structure as
follows. As we want to functionally relate the individual dimensions of X denoted by z; to the
corresponding weights w;, we can construct a GMU which is of the form:

d 2
G0X) = exp (_ i D (5 = f(w,60)) ) -

HeRF d

where the function f can come from any function family. For instance, when f is a polynomial of

order k, we can express f as f(w;,0) = S5, wéflﬂj. Later on, we will outline various types
of GMUs, and their use cases. We will also discuss various ways in which we can make GMUSs
behave like functional correlation measures and normalize them, which leads to better training and
performance in many cases. Lastly, note that GMUs are asymmetric by definition as they represent a
top-down directed measure of functional dependence between the generative weights and the input,

as we can see from equation [I]and equation 2]
A Generalization of RBFs: We note that radial basis function units are of the form:

d 2
RBF(X) = exp (—M> 3)

202

where c; represents centers from which the distance to the current datapoint is taken, and o rep-
resents a trainable parameter optimized via gradient descent on an appropriate loss function. Note
that when comparing this form with equation[I] the similarities and differences are apparent. First,
while RBFs depend on the distance between two d dimensional vectors, GMUs estimate the average



Under review as a conference paper at ICLR 2025

of the per-dimension distance, which avoids scaling up as the dimensionality of the data increases
and leads to more stable learning as we show later in this work. For both units, the magnitude of the
response depends inversely on the distance. Second, RBF estimates the distance between the input
and fixed point centers (which are optimized via gradient descent as well) in R%, whereas the GMU
output in equationdepends on the distance between the input datapoint X and a straight line in R%.
Note that the parameters of the straight line are similarly optimized via gradient descent. This shows
that in some ways, GMUs can be interpreted as a more flexible generalization of RBFs. It is well
known that the distance distribution between two points in R? can get significantly uninformative
for large d, which is also called the curse of dimensionality Koppen| (2000). We show that distances
between points and subspaces, which is a component of GMUs, reduce the impact of this curse. We
show in our work, via theory and empirical testing, that GMUs can convey greater information in
high-dimensional spaces, when compared to both RBF units and perceptron units, when the data
distribution is uniform on a spherical surface.

2 CONTRIBUTIONS

This brings us to the overall contributions of our work. We outline them as follows.

* We propose a new computational unit for feedforward supervised learning architectures, called a
generative matching unit. We propose several differentiable variants of GMUs and showcase the
uses of each form on different types of datasets.

* GMU s consider a generative approach to computation, and we show theoretically and empirically
that they can convey more information in high-dimensional spaces, leading to more expressivity.
Much smaller GMUs can be highly expressive and learn the underlying function when the low-
dimensional generative assumptions are met.

* We show that GMU-based networks and multi-layered perceptrons have their own scenarios
where they generalize better than the other. Specifically, in the sparse linear structure predic-
tion problem, and the structure regression problem, we find that GMUs generalize significantly
better than MLPs. Similarly, we find that when the ground truth classifier is Naive Bayesian with
linear dependencies, MLPs outperform GMUs.

* We conduct an exhaustive comparison of performance between GMU-MLPs and MLPs on 30
tabular datasets. Here, GMU-MLPs refer to the architecture that results after replacing the first
layer of the MLP (Resnet) with GMUs. We find that in the majority of cases GMU-MLPs gen-
eralize better than MLPs, and in some cases they yield state-of-the-art results, when compared to
well-known benchmarks.

* We test GMU-MLP and GMU-CNN variants on three standard vision datasets, focusing on other
aspects of performance in addition to test accuracy. Specifically, we find that GMU-MLP and
GMU-CNNSs significantly outperform their vanilla counterparts in terms of robustness to test-time
corruptions.

3 GENERATIVE MATCHING UNITS: DEFINITION AND VARIANTS

We first define the most general form of a GMU as follows.

Definition 1. (Generative Matching Unit:) Let the input to the unit be X = [x1,2,..,24] € R,
where every x; € R. Consider a function family F, such that every function f : R* — R? ¢ F
can be parameterized as (0, W) + b, where § € RF W € R¥* b ¢ RY. k is denoted as the order
of the unit. W and b represent the generative weights and biases of the unit, and 0 represents the
latent generating variables. With this, we define the general form of any generative matching unit
as follows:

(2 min | =2 = 0. @

o/d 6erk || nx

¢ : R — R can be interpreted as an activation function for the GMU. nx represents an optional
normalization measure to ensure that % mingegx || );—;b —(f(0,W)|| is bounded if needed. Lastly,

GX)=¢

o represents an optional smoothing factor.



Under review as a conference paper at ICLR 2025

Table 1: All GMU parameter choices tested in our work
Parameter Choices

0 (RF)

b var(R4); (0,0, ..,0]

W | var(R¥>4); [var(RF=2%4); 1y 4]

f

var

0TW
?(2) e_zz; V1—-2%, —logz
nx | L ooxoy /S, 22/d
o 1

In our work, to ensure faster com/gutation and differentiation, we only work with functions f such
that the minimization mingegr || n;b — f(6,W)|| can be represented as a least squares problem,
which has an analytical solution |Wikipedial (2024). Also, note that in this work we set ¢ = 1, for
reasons that we outline later on. We next outline the GMU variants that we experiment with in this
paper. For notational ease, we denote GMU(k) as a GMU of order k.

Remark 1. Note that when k = 0, a GMU computes G(X) = qs(

ovd nx
z) = e % and nx = 1, this unit becomes similar to an RBF unit with an additional averagin,
n ging
actor d that averages the distance across all dimensions.
8

1 X’bH). When we set

3.1 GMU VARIANTS

We outline all parameter and function choices in equation ] tested in this paper in Table[I} Note that
in Table |1} all real number based entries of the form var(RP*?) denote tensors of size p X g where
all entries are real variables subject to gradient descent. Lastly, .J,, , represents a fixed matrix of all
ones of size p X q.

Remark 2. Note that we only consider linear [ in our work, which enables us to formulate

2 2
% — f(0, W)H = mingegs || 3=2 — (‘JTWH as a linear least squares problem. Lin-

nx

ear least-squares has a fixed analytical solution|\Wikipedia (2024)), which then enables quick compu-
tation and also differentiation from a gradient descent based optimization perspective. We therefore
denote the variants explored in our work as Linear GMUs. Geometrically, the GMU output can
be interpreted as a distance measure between the input point X _and the linear subspace which is
modelled by 8. We showcase this geometric property in Figure (a).

mil’lgemk

3.2 ARE GMUs UNIVERSAL APPROXIMATORS?

A single GMU clearly cannot act as a universal approximator, as it can only model functions of
the form in equation[d] We study linear GMU-MLPs, which consists of a layer containing multiple
linear GMUs followed by a perceptron unit. We study whether GMU-MLPs can be universal ap-
proximators. Note that it is well known that RBFs are universal approximators, and as our GMU
with £ = 0 has a similar form, it is likely that it would be a universal approximator as well. First, let
us define the set of functions LP(R?) such that any f € LP(R?), where f : R? — R, is p*" power
integrable, bounded, continuous and continuous with compact support. LP(R¢) encompasses the set
of all such functions which satisfy these constraints. This leads to our first result.

Proposition 1. (from |Park & Sandberg| (1991)) A linear GMU-MLP with k = 0,nx = 1 and
@(z) being any integrable bounded function such that | ¢(x)dxz # 0 can approximate any function
f e Lr(RY).

We found that showing linear GMU with £ > 0,7x = 1 are universal approximators for any
function f € L?(R?) is non-trivial. We instead provide an intuitive geometrical argument to support
the hypothesis that Linear GMU-MLPs of any order & are universal approximators. which finds that
multiple linear GMUs with £ > 0 can be used to approximate the behaviour of a linear GMU with
k = 0. We provide our argument as follows, for the case of k = 2 and d = 3, which can be extended
to other cases similarly.



Under review as a conference paper at ICLR 2025

First, let X = (x,y,z) and let us consider a linear GMU with £k = 0, which computes
G(X) = exp—3 ((z —a)? + (y — b)® + (2 — ¢)?). We can construct three linear GMUs with
k = 2 in the manner shown in Figure [2| (b) in the Appendix, where the subspaces (2D
planes) are chosen such that G1(X) = exp —(z — a)%,G2(X) = exp —(y — b)? and G3(X) =
exp —(z — c)2. As we are considering GMU-MLPs, we can average the units in the next layer,
to yield: 1 (G1(X)+ G2(X) +G3(X)) = exp—(z —a)? + exp—(y — b)* + exp—(z — ¢).
Note that this unit behaves similar to the original linear GMU G(X), in that it attains its max-
imum value when z = a,y = b,z = ¢, like G(X). Also, points closer to (a,b,c) are likely
to yield larger activations than the ones farther away for the averaged unit, similar to G(X).
Lastly, when [|(z,y,2) — (a,b,c)|| — 0, we can approximate % (G1(X) + G2(X) + G3(X)) ~
exp—3 ((z —a)® + (y — b)? + (2 — ©)?) = G(X). Subsequently, the second layer weights asso-
ciated with G;(X) can all be set to /3 to yield the same function as the GMU-MLP with k£ = 0
and weights W. This argument can be extended to arbitrary k, d in the same manner. This shows
that linear GMU-MLPs with k£ > 0 can potentially approximate GMU-MLPs with k& = 0, but using
more hidden units. As GMU-MLPs with k& = 0 are universal approximators (Proposition [2), this
implies that GMU-MLPs with arbitrary k can potentially be universal approximators as well.

4 GMUS AND THE CURSE OF DIMENSIONALITY

We first define the notion of information factor, which represents the normalized variability of any
similarity measure S(X;, X3) in d dimensional space, where X, Xo € R? We only consider
distance measures in this analysis.

Definition 2. (Information Factor) We are given a similarity measure S(X1, Xs), where X1, X5 €
R, Let I, represent the identity matrix of size d x d. Then, information factor vs(d) of S in
d-dimensional space is estimated as:

_ ]EX17X2~N(0,Id) [U ((S(Xla X2))]
Ex,, xs~N(0,10) [ ((S(X1, X2))]

where o(z) and p(x) denote the standard deviation and the mean of x respectively.

vs(d) 5)

With this, we undergo a series of experiments where we estimate the information factor of multiple
measures, including Euclidean distance and the distance measured in GMUs, which is the distance
between a linear subspace of dimensionality k£ and the input point. We denote this as the k-subspace
distance. But before that, we first provide some theoretical results that compare the information
factor of Euclidean distance and k-subspace distances

Theoretical Results: We outline our first result for Euclidean distances as follows:
Proposition 2. Let E(X1, X5) = || X1 — Xal|, we can show that yg(d + 1) < yg(d).

Next, we outline the analogous result for k-subspace distances.

Proposition 3. We define the k-subspace distance from X; to Xo as Spw(X1,X2) =
mingegre | Xo — (0TW + X1)|| With this, first, we note that vs, ., (d) = vg(d), where E denotes
the Euclidean distance. Then, we have that s, .,  (d) > s, y (d), and thus s, ,, (d) > vye(d).

Remark 3. Propositions[3|and[2|highlight a few interesting points. First, we see that the information
factor of Euclidean distance decreases with dimensionality, which is another way to interpret the
curse of dimensionality. Variation in distance reduces in high dimensional spaces, leading to loss of
structure and thus making it harder for distance based approaches such as nearest-neighbor or RBFs
to work with the data. However, as proposition |3| shows, the information factor of the k-subspace
distance, which is measured in GMUS, is strictly larger than of Euclidean distance. Furthermore,
we see that the information factor increases as the order of the GMU, k, increases. This shows that
high-order GMUs may be helpful in extracting more structural information in high-dimensional
datasets, than just Euclidean distance.

Empirical verification: We verify the results in Propositions [3| and [2| by simulating X7, X ~
N (0, 1;) and estimating the information factor for the Euclidean distance vz (d) and the k-subspace
distance 7g, ,, (d), as a function of the dimensionality d. We summarize all our empirical findings

in Figure|[T]



Under review as a conference paper at ICLR 2025

054 \

24\ — k=0

Information Factor
(Euclidean Distance)
=
=
Information Factor
(k-subspace distance)
=
Y
Information Factor Gain
(k-subspace over Euclidean)

0 20 40 60 80 100 10 20 30 40 50 10 20 30 40 50
Dimensionality Dimensionality Dimensionality

(a) (b (©

Figure 1: Information Factor v/s Dimensionality: (a) For Euclidean Distance (b) for k-subspace
Distance and (c) Information Factor Gain (vs,, ,,, (d)/vE(d)).

Takeaways: We find that our observations agree with the propositions. Specifically, we see that
the Euclidean distance information factor first shows a significant decrease with increase in data
dimensionality, reaching values very close to 0. The same is observed for the k-subspace distance,
however, we see that as k increases, the information factor increases. Figure|l|(c) shows the gain in
the information factor (s, ,, (d)/vr(d)) as a function of d and k. This plot shows a clear improve-
ment in the information factor when using k-subspace distance as opposed to Euclidean distance.

5 SYNTHETIC EXPERIMENTS

In this section, we conduct experiments where the data distribution is artificially generated. Each
experiment showcases a different type of distribution. We discuss the takeaways from these experi-
ments at the end of this section.

5.1 SPARSE LINEAR STRUCTURE PREDICTION

Problem Outline: We argue that most sampled data in nature have a sparse set of causes (latent
generating variables) that are active in each instance. This concept has already been studied in sparse
representation learning Lee et al.|(2006), however, we create a scenario where the set of active causes
corresponding to any instance also indicates the underlying output label of that instance. In this way,
given a total of N, latent generating variables, the set of active variables for each instance can be
construed as a sparse linear structure for the ground truth label of that instance. We formally outline
the sampling process as follows.

Definition 3. (Sparse Linear Structure Sampling:) We are given the input RV X ~ R? and
the ground truth label RV y ~ {1,2..,N,}, such that (X,y) ~ P(X,y). W ~ RNeXd rep.
resent the set of generative weights for the N, latent variables {01,02,..0n_}. Lastly, for each
label vy, let the set of active latent variables for each instance corresponding to that label be de-
noted by 0, (1),01,(2)--01,(y.) 1 < Ye < Nimaxz, where Nyaq denotes the maximum number of
generating variables active for any instance. With this, we can outline the generative process as
follows. First we sample y ~ Unif{1,2,..,N,}, and then we sample an instance for that y as
x(y) = D20 01,y Wi, (i)« + € where € ~ N'(0,0°1).

Experiments: We conduct a series of experiments with different choices of parameters involved in
the sparse linear structure sampling process. The elements of the generative weights W are sampled
according to the standard normal distribution A/(0, 1), and 7, is chosen uniformly at random from
the valid range. The number of training data samples is fixed at 1000 and the number of test data
samples at 3000. We compare a two layer MLP with 512 hidden units (relu-activated), a Resnet
with 2 groups with 1 block per group and 512 units in each layer, and a Resnet with 2 groups
with 2 blocks per group and 512 units in each layer. We denote them as MLP-512, Resnet-512-
[2,1], Resnet-512-[2,2] respectively (abbreviated in the Table for space). We provide the results for
Resnet-512-[2,2] variants in the Supplementary Materials. We compare these baselines with a single
GMU layer consisting of d inputs and IV, outputs, denoted as GMU(k), where k is its order. The
results are summarized in Table 2] Note that the *Test Config” column represents whether the test
data is generated out-of-distribution, i.e., whether the range of the latent generating variables 0; (;



Under review as a conference paper at ICLR 2025

Setup Test MLP R-[1,1]
N, N. d o Npas | Config GMU(1) GMU(2) GMU(3) GMU4) GMU(5) GMU(6) MLP (norm.) R-[1,1] (norm.)

20 25 10 0.01 same 0.8997 0.9311 0.9654 0.9794 0.9694 0.966 | 0.9505 0.9728 0.9622 0.9714
20 25 10 0.01 ood 0.685 0.84525 0.9735 0.8922  0.928  0.9442 | 0.5725 0.7087 0.631 0.6525
20 25 100 0.1 same 0.944  0.9271 09348 0.9488 0.9482 0.9482 | 0.9197 0.9451 0.946  0.9462
20 25 100 0.1 ood 0.8785 0.9005 0.926  0.848  0.8592 0.9092 | 0.6457 0.733 0.681 0.724
20 25 100 0.01 same 0.9471 09494 09814 0.9874 09862 0.9825 | 0.9545 0.9754 0.9654 0.9788
20 25 100 0.01 ood 0.892 09215 0.981 0.9335 09365 0.9612 | 0.6282 0.7492  0.693 0.7522
20 25 100 0 same 0.9474 09565 0.9962 0.9951 0.9974 0.9991 | 0.9548 0.9797 0.9622 0.9868
20 25 100 O ood 0.892  0.925 0.9977 09915 0.9835 0.9905 | 0.6275 0.7495 0.6842 0.7432

20 25 500 0.01
20 25 500 0.01
20 25 1000 0.01
20 25 1000 0.01
20 25 1000 0.01
20 25 1000 0.01
50 10 1000 0.01

same 0.9502 0.9434 09831 0.9891 0.9894 0.9874 | 0.9537 0.9771 0.9685 0.9845
ood 0.9087 0.9215 09845 0.9395 0948  0.9655 | 0.59725 0.7677 0.6467 0.7665
same 09111 0.9502 0.9834 0.9957 0.9914 0.996 | 0.9662 0.9814 0.9762 0.9845
ood 0.8657 0.9017 0.975 0.9537 0987  0.983 0.517  0.7525 0.6572 0.7837
same 0.978 09385 0.9791 0.9908 0.9885 0.9951 | 0.9637 0.9882 0.9757 0.9882
ood 09272 0.6867 0.9462 0.9462 0.9905 0.9997 | 0.6407 0.9107 0.641 0.904

ood 0.5752  0.743 0.8997 0.9077 0.891 0.8712 | 0.5492 0.5575 0.4132 0.5352

WA WL L L L L L L L L W

Table 2: Test accuracy results on the sparse linear structure prediction experiments.

Setup (N, =10, 00 = 0.1) | GMU(0) GMU(l) GMU(22) GMU@B) GMU@) GMU(G5) GMU6) GMU(7) GMU(B) MLP R- R-
d A Train Test -MLP -MLP -MLP -MLP -MLP -MLP -MLP -MLP -MLP [1,1] [2,2]
10 0.5548 0.564 0.5608 0.5574 0.5608 0.5597 0.5605 0.5568 0.5571 0.576  0.5188  0.502

0.4362 0.4371 0.4277 0.4248 0.4265 0.4331 0.4342 0.44 0.4394 | 0.4345 0.3657 0.3525
0.6943 0.9286 0.9371 0.9420 0.9394 0.9403 0.9406 0.9394 0.9440 | 0.7965 0.8128  0.758
0.6403 0.8471 0.8686 0.8617 0.8649 0.8680 0.8651 0.8714 0.8686 | 0.7048 0.7194 0.6802
0.4503 0.9623 0.9703 0.9769 0.9769 0.9806 0.9797 0.9797 0.9783 | 0.7617 0.7931 0.7568
0.2371 0.9991 0.9991 0.9983 0.9980 0.9989 0.9997 0.9994 1.0000 | 0.7437 0.8102  0.772
0.3980 0.7154 0.7829 0.5966 0.7009 0.7806 0.7777 0.8477 0.8917 | 0.4157 0.4122 0.3448
GM1 0.1583 0.7760 0.8054 0.7783 0.7883 0.7463 0.7963 0.8374 0.8374 029 02691 0.2317
GM2 0.2237 0.9929 0.9960 0.9954 0.9960 0.9943 0.9954 0.9971 0.9983 | 0.6531 0.6974 0.6551
MGN 0.2071 0.9657 0.9586 0.9697 0.9551 0.9771 0.9789 0.9740 0.9803 | 0.6394 0.6471 0.6

aaaoaaaq

S

(=]
00 00 00 00 00 00 00 4 i I
EooQoooooon

Table 3: Test accuracy results on the dynamic tree structure prediction experiments.

at test-time is different from the corresponding range at training time. More details are provided in
the appendix.

5.2 DYNAMIC TREE STRUCTURE PREDICTION

Problem QOutline: In this section, we consider the setting when the underlying generative model
of the data does not depend on unseen latent variables as before, but is present within the data
dimensions itself. More specifically, we assume tree based generative models, where every node of
the tree corresponds to a specific data dimension. We outline the generative process as follows.

Definition 4. (Dynamic Tree Structure Sampling) We are given X = [r1,79,..,14] € R? and
y € {1,2,..,N,}. We have N, trees denoted as the undirected graphs {G1,Gs,..,GN, } where
G; = {V;, E;} and |V;| = d Vi. The vertices of every G; correspond to the dimensions of X, and
all trees have the same maximum degree . Define o € R%. We outline the generative process as
follows. First, we sample y ~ Unif{l,2,..., Ny} and then we sample a datapoint by tracing the
graph Gy as: T; = q;Tpa(i,c,) + €, where all €; are randomly generated for each x; according to
some fixed distribution P., and pa(i, G,) denotes the parent of ©; considering the tree G,. The root
node of Gy denoted as 1(G) is sampled as .,y ~ N (0, 09).

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. Note that g = 0.1 and N, = 10 is fixed
for all cases. The tree graphs {G1,G?,..,Gy,} are created randomly, and each one is assigned
to the corresponding class in y for each run. Unless otherwise specified, we set a; = 1. The
results are shown in Table 3] For the Table abbreviations, G: Gaussian ¢;, GS: Skewed Gaussian ¢;
(Shape parameter 4), GM1: Gaussian ¢; and o; ~ N(0,1), GM2: Gaussian ¢; and o;; ~ N(0,4)
(randomly sampled each time), MG: Gaussian ¢;, a; ~ mathcalN(0,1) (Fixed), MGN: Gaussian
€, ;T ~ N(0, 1) where al"*™ is the «; set at training time.

(2

5.3 PREDICTION ON POLYNOMIAL NAIVE BAYES SAMPLED DATA

Problem outline: We consider the scenario where the ground truth labels y are generated in a naive
Bayesian manner as P(y|X) o I1;Q(y|X;), where the distribution Q(z) is of the form e~¢(*) /Z.
We formally outline the sampling process as follows.



Under review as a conference paper at ICLR 2025

Setup

GMU(0)

GMU(1

) GMU(Q2)

GMU(@3)

5 GMUO)  GMU()  GMU@)  GMUG) | “ 0" Py p” “yn s’ ypp | Linear  MLP

[ | 08223 08406 08583 08643 | 09843 09763 09743 097 | 0983 09823
2 | 09363 09363 09363 09363 | 09816 09873 098 0982 | 09763 0.9801
3 | 07916 0803 0816 08336 | 09596 0975 0974 09746 | 0.9456 0.9606

Table 4: Test accuracy results on the polynomial naive Bayes sampling experiments.

Setup GMU(0) GMU(I) GMU() GMU®) | ;. _ R- R-

N, d o, -MLP -MLP -MLP  -MLp | Mrear MLP o, o
2 10 001 | 09942 009888 09914 09825 | 0.6474 09848 09817 0782
10 10 001 | 02714 02608 0244 02405 | 0.1262 0.1908 0.1582 0.1462
10 10 0.1 | 08888 08511 08254  0.8091 | 03862 0.7685 0.7585 0.7511
2100 001 | 07151 0704 06902  0.6851 | 0.5577 0.6077 0.5694 0.559%4

2100 0.1 | 09414 09428 09462  0.946 | 0.782 09248 09031  0.89
10 100 0.1 | 05145 04985 04897 04897 | 02234 04068 03214 02674
2500 0.1 | 07377 07411 07388 07454 | 0.6751 0.7285 0.6905 0.6848
2500 1 | 098 09911 099514 09951 | 0.9891 0.9928 0.972 0.9794

Table 5: Test accuracy results on the class-conditioned Gaussian experiments.

Definition 5. (Polynomial Naive Bayes Sampling) We are given X € R? ~ Unif(0,1)9,
and y € {1,2,3,..N,}. We consider a naive Bayesian sampling of P(y|X) LILP(y| X5),
where P(y|X;) = e~ CWXi), Let the polynomial order of the sampling be denoted as p. De-
fine a set of weight matrices {W1, W, .., W}, where W; € RNv*P. We consider G(y;|X;) =
Wji[Xj,ij, ..,X;’]T. With this, we outline the sampling as follows. First, we sample X ~
Unif(0,1)%, and then we compute

d
yx = argmax Il;logP(y=14|X)= argmax ZWJ-Z-[XJ-,XJZ,..,X;]T,
i€{1,2,3,..N,} i€{1,2,3,..N, }

(6)

j=1
where yx denotes the output label for the sampled X.

Remark 4. Note that the expression ijl WyilX;, X3, ., Xf]T can also be interpreted as the
logits in the sampling process, as when p = 1, they are simply linear functions of the input, and thus
should be solvable via a single linear layer followed by a softmax operator.

Experiments: Every element of all W; matrices are sampled randomly from A/ (0, 1). We only vary
the polynomial order p. d is fixed at 10. We compare the following networks: GMU(k), GMU(k)-
MLP-512 (GMU layer with 512 hidden units followed by a linear layer), single Linear layer and
MLP-512. Results are shown in Table[dl

5.4 PREDICTION ON CLASS-CONDITIONED GAUSSIAN DISTRIBUTIONS

Problem outline: We conduct a simple experiment where the conditional distributions P(X |y) are
Gaussian, where X € R? and y € {1,2,.., N, }. Specifically, we generate P(X|y) ~ N (u,, ).
For each dataset, we choose the class-wise mean values by randomly generating them as j, ~
N (O,Uild). Similarly, we pick a randomly generated covariance matrix via ¥ = AT A where

A~ Unif(0,1)%x4,

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. The results are shown in Table@

5.5 OVERALL TAKEAWAYS

Overall, we find that the GMU variants show significantly better generalization, especially to out-
of-distribution test data. Also, we observe that in the cases where the inputs are structured via a
common causal framework, such as the sparse and tree structure prediction experiments, more input
dimensionality becomes a blessing rather than a curse. This is simply because of the law of large
numbers. When high dimensional inputs all share the same cause, with the correct assumptions
one can obtain a more accurate estimate of the underlying generating variables, unlike the low-
dimensional case. Therefore, it is notable that we see larger dimensionality help performance in the
structure prediction experiments, while doing the opposite in the Gaussian experiment.



Under review as a conference paper at ICLR 2025

GMU- GMU- GMU- GMU- GMU-
Resnet Dataset | Resnet Resnet Dataset | Resnet Resnet Dataset | Resnet Resnet Dataset Resnet Resnet
anneal | 0.8525 0.861 | phoneme | 0.8940 0.8882 | jasmine | 0.7419 0.7520 | jungle | 0.9615 0.9773 | miniboone | 0.8322 0.9048

kr-vs-kp | 0.9969  0.9969 cnae 0.9259 09398 | sylvine | 0.9161 0.9268 | volkert | 0.6796 0.7003 | walking | 0.6246 0.6322

Dataset | Resnet

mfeat | 0.9750 0.9800 blood 0.6265 0.6718 | adult | 0.7717 0.7735 | helena | 0.2207 0.2206 Idpa 0.6980 0.6777
credit | 0.7298 0.7036 | australian | 0.8596 0.8726 | nomao | 0.9591 0.9599 | connect | 0.7346 0.7535 aloi 0.9666  0.9684
vehicle | 0.8266 0.8793 car 1.0 1.0 bank | 0.7371 0.7382 | higgs | 0.6718 0.6781 | skin-seg | 0.9997 0.9996

kel 0.6789  0.6866 | segment | 0.9221 0.9307 | shuttle | 0.9870 0.9823 | numerai | 0.5045 0.5146 | arrhythmia | 0.2918 0.3259

Table 6: Balanced Accuracy on 30 Tabular datasets from OpenML.

Dataset: MNIST
Network Standard | brightness canny  dotted fog glass identity impulse motion shot spatter ~ zigzag
CNN 0.9949 0.2274 0.6149 09791 0.1188 0.541  0.9949 0.4529 09675 09226  0.9834 0.7826
GMU-CNN | 0.9954 0.9913 0.8998 0.9896 0.9234 0.8141 0.9956 0.9377 09614 09449  0.9759 0.9447
Dataset: Fashion-MNIST
CNN ‘ 0.9329 ‘ 0.4535 0.3709 0.8786 0.2712 0.6518 0.9329  0.2056  0.7188 0.5959  0.8835 0.8131

GMU-CNN | 0.9356 0.8250 0.7058 09118 0.7442 0.5817 0.9298 0.6703  0.6831 0.48964 0.8868 0.8806

Table 7: Test Accuracy of networks trained on MNIST and Fashion-MNIST.

6 EXPERIMENTS ON REAL DATASETS:

6.1 TABULAR DATASETS

QOutline: We test and compare performance on 30 datasets from openML. Specifically, we test on
a subset of the datasets tested in Kadra et al.| (2021). For the Resnet-512-[1,1] architecture, which
performed well across our synthetic experiments overall, we replace the first layer with four types
of GMU units: £ = 0, 1,2, 3. For each k, we thus have 128 units in the first layer, yielding a total of
512 output units for the first layer, same as the Resnet. We denote this network as the GMU-Resnet-
512-[1,1] architecture.

Takeaways: We find that overall, in 25 out of 30 cases, GMU-Resnet-512-[1,1] showcases better
or on-par balanced accuracy. Furthermore, the GMU-Resnet-512-[1,1] performs favorably against
most other approaches in |[Kadra et al. (2021) (excluding MLP+C and MLP+Dropout) when com-
pared one-to-one via the Wins/Losses/Ties criterion. Our results re-inforce the observation that while
GMU units can impart a better inductive bias in many cases, it can also suffer in other scenarios.

6.2 VISION DATASETS

We construct convolutional GMUs, using which we create GMU-CNN architectures, where the first
layer is a convolutional GMU and the rest of the network comprises traditional convolutional layers
followed by a fully connected layer. We mainly focus on out-of-distribution generalization, by
introducing unseen corruptions at test-time, to see if the GMU-CNN recognizes the concept of the
vision classes better overall. We report our findings across three datasets: MNIST, Fashion-MNIST,
CIFAR-10 and their corrupted versions. Results are summarized in Table [/} We find that GMU-
CNNss show significant improvements to test-time corruptions. In general, we observe that trained
GMU-CNNSs are naturally more robust to distribution shifts.

7 CONCLUSION

Our work demonstrates the potential advantages of an alternative computational unit that computes
from a generative perspective, imposing a low-complexity constraint on the generation process.
Generative Matching Units showcase better generalization and demonstrates a significantly higher
ability to identify dynamic causal structures in the inputs. On real tabular datasets, Resnets replaced
with GMU layers in the first layer show signifcant performance improvements. Many possibilities
remain open for incorporating GMUs in larger networks across other domains, and also find ways
to cascade multiple GMU layers.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. The Annals of
Statistics, 49(6):3070-3102, 2021.

Sourav Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association,
116(536):2009-2022, 2021.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
timization at scale. In International conference on machine learning, pp. 1437-1446. PMLR,
2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359-366, 1989.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928-23941, 2021.

Mario Koppen. The curse of dimensionality. In 5th online world conference on soft computing in
industrial applications (WSCS5), volume 1, pp. 4-8, 2000.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neu-
ral networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999-7019, 2021.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. Al open, 3:
111-132, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljadic,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function net-
works. Neural computation, 3(2):246-257, 1991.

Mensah Kwabena Patrick, Adebayo Felix Adekoya, Ayidzoe Abra Mighty, and Baagyire Y Edward.
Capsule networks—a survey. Journal of King Saud University-computer and information sciences,
34(1):1295-1310, 2022.

Wikipedia. Linear least squares — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Linear%20least%20squares&oldid=1245891861,
2024. [Online; accessed 02-October-2024].

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable
information under computational constraints. arXiv preprint arXiv:2002.10689, 2020.

11


http://en.wikipedia.org/w/index.php?title=Linear%20least%20squares&oldid=1245891861
http://en.wikipedia.org/w/index.php?title=Linear%20least%20squares&oldid=1245891861

Under review as a conference paper at ICLR 2025

Supplementary Materials

d2 N — (x—-a)?
G(X,)=e 3 ~0.01 Gy(X) = e~ 0D ‘ G (X) = e~

%

2
G(X)=e 3 ~0.5

G =e 5209 | o o

GMU Parameters:

k=2,d=3,

- - y
o S =t G600 +6,00 _
3 3

(@ (b)

Figure 2: (a) shows an example of a GMU with non-zero bias, no normalization, ¢(z) = e=%" and
F(0,W) = §TW and (b) highlights our argument that higher order GMUs can be constructed to
mimic a GMU of order zero (RBF).

A THEORETICAL PROOFS

Proposition 4. (From |Park & Sandberg| (1991)) A linear GMU-MLP with k = 0,nx = 1 and
@(z) being any integrable bounded function such that | ¢(x)dx # 0 can approximate any function

f € LrP(RY).

Proof. We note that when we set 0/ = 02d, k = 0 and nx = 1 the GMU unit essentially becomes
an RBF unit. As o here is the same across all hidden units, it implies ¢’ is the same as well, and the
results from Theorem 1 inPark & Sandberg|(1991) apply. This completes the proof. O

Proposition 5. Let E(X1, X2) = || X1 — X2

, we can show that vg(d + 1) < yg(d).

Proof. Using the statistics of the chi-squared distribution, it is trivial to show that yg(d) =
dr(g)*
L(5+)?

— 1. This ultimately leads to the fact that we need to show that

P(EHC(4E) - d

>
rge T d-t

(7

This is an identity and can be showed through empirical simultation. In fact, we see that when

reEHrh 0

d — 00, REE

Proposition 6. We define the k-subspace distance from Xq to Xo as Spw(X1,X2) =
mingepe | Xo — (0TW + X1)|| With this, first, we note that s, ., (d) = vg(d), where E denotes
the Euclidean distance. Then, we have that s, , ., (d) > s, v (d), and thus vs, . (d) > ve(d).

Proof. The proof directly follows by realizing that for a fixed k-subspace, the closest distance to a
point is equivalent to the squared root of sum of square of d — k dimensions x1, x3, .., Z4— in the
Euclidean space, where each dimension x; ~ N'(0,1) as the original data is also distributed this
way.

12



Under review as a conference paper at ICLR 2025

This holds simply because one can rotate the space to align its unit vectors with the orthogonal
directions of the k-subspace, leaving only the other d — & to have degrees of freedom.

With this, it directly follows that g, ,, (d) = ve(d — k) < ye(d —k — 1) = 75, (d). And it
naturally follows that g, ;. (d) = ve(d — k) > ye(d). O

B ADDITIONAL EMPIRICAL DETAILS

B.1 SYNTHETIC EXPERIMENTS

Sparse Linear Structure Prediction: For the GMU(k) variants, we used a unit without nor-
malization and bias. ¢(z) = —logz (to counter-act the softmax function that follows) and
W = var(R**?). For the out-of-distribution (0od) columns, we set the training 6, ;) ranges to
either between Unif(0,0.5) or Unif(0.5,1) chosen at random. For the test data, we change the
range for each 6; (;) in such a manner that if its training configuration was Uni f (0,0.5) it is set
to Unif(0.5,1) and vice-versa. This ensures that at test-time the network sees values of the latent
generating variables which it hasn’t seen before.

Dynamic Tree Structure Prediction: For the GMU(k)-MLP variants, for the GMU units, we used
units with normalization 7x = o(X) and bias. ¢(z) = /1 — z and W = [var(RF=1*4); J; 4]. To
have a fair comparison, each datapoint was also normalized using zero-mean and unit variance for
the MLP variants.

Prediction on Polynomial Naive Bayes Sampled Data: For both the GMU(k)-MLP and the
GMU(k) variants, for the GMU units, we used units without normalization, but non-zero bias.

#(z) = e and W = var(RF*9).

Prediction on Gaussian Distributed Data: For the GMU(k)-MLP variants, for the GMU units, we
used units without normalization, but non-zero bias. ¢(z) = e~* and W = var(RF*?).

B.2 TABULAR EXPERIMENTS

The networks were trained in the same manner as in Kadra et al.| (2021), using weighted cross-
entropy loss, and for evaluation we also report the balanced accuracy, same as them. We com-
pare GMU-Resnet-512-[1,1] with Resnet-512-[1,1]. We set the same hyperparameters for all ex-
periments, and don’t perform any additional hyperparameter optimization. Note that the other ap-
proaches’ results are after extensive hyperparameter optimization using BOHB [Falkner et al.|(2018).
Note that |[Kadra et al.| (2021) uses a different Shaped Resnet architecture and therefore we don’t
directly compare with their MLP results, and we find in some datasets our Resnet performs signif-
icantly better than theirs and vice-versa. Furthermore the MLP+C approach in [Kadra et al.| (2021)
employs an extensive suite of regularization approaches, including data augmentation, so we don’t
include their results for this study.

We add a single dropout layer (of 0.2) at the penultimate layer for both Resnet-512-[1,1] variants, as
we found it led to more stable training overall. Note that the MLP-Dropout in Kadra et al.|(2021)) also
uses hyperparameter optimization for the dropout levels and locations for each dataset. Apart from
this, there is no regularization or data augmentation performed, and networks are trained in the same
manner for all datasets. Note that although our GMU units use more parameters than conventional
neural network units, the overall GMU-Resnet has roughly the same number of parameters, as the
increase is negligible. To put in context, in most cases, the additional number of parameters is less
than if we added ten hidden neurons to each layer (522 instead of 512).

The categorical variables within the data were one-hot encoded, and the other variables were nor-
malized to the range (0,1), with the statistics computed only from the training split. The training-test
splits are exactly the same as in |[Kadra et al.| (2021), which is an 80-20 split. This was made pos-
sible by the code shared by them, and the fact that each dataset corresponded to a specific task as
numbered in Table 9 in |[Kadra et al.| (2021).

13



Under review as a conference paper at ICLR 2025

Dataset: CIFAR-10

Network Standard | brightn  contrast defocus elastic fog gauss_blur  glass impulse motion pixelate saturate shot_noise spatter
VGG-16 0.9949 0.83642 0.5952  0.68148 0.71436 0.74422 0.5929 0.44146  0.59338 0.6211 0.6826  0.8147  0.6366 0.7440
GMU(3)-VGG | 0.9954 0.8540  0.7489  0.7811  0.7493  0.8176  0.741 0.4665  0.6003  0.7142 0.7192  0.8211  0.6372 0.7861
GMU(8)-VGG | 0.9954 0.86188 0.75478 0.7977  0.7534  0.8311  0.7620 0.4383  0.5608  0.7325 0.7273  0.8298  0.6163 0.7874

Table 8: Test Accuracy of networks trained on CIFAR-10 on standard and corrupted data.

B.3 VISION EXPERIMENTS

We train a four layered CNN for MNIST and Fashion MNIST, with the architecture 64C-2MP-128C-
2MP-128C-2MP(Padding=1)-128C-4MP-FC128-FC10, where C denotes convolutional layers, MP
denotes max pooling layers and FC denotes fully connected layers. For CIFAR-10 we used VGG-16
as our base network and only replaced the first convolutional layer with convolutional GMU units
instead, keeping the same number of output nodes. No data augmentation or any other regularization
was performed in any of the experiments. We provide the CIFAR-10 results in Table 8]

14



	Introduction and Motivation
	Alternative Interpretations of GMUs

	Contributions
	Generative Matching Units: Definition and Variants
	GMU Variants
	Are GMUs Universal Approximators?

	GMUs and the Curse of Dimensionality
	Synthetic Experiments
	Sparse Linear Structure Prediction
	Dynamic Tree Structure Prediction
	Prediction on Polynomial Naive Bayes Sampled Data
	Prediction on Class-Conditioned Gaussian Distributions
	Overall Takeaways

	Experiments on Real Datasets:
	Tabular Datasets
	Vision Datasets

	Conclusion
	Theoretical Proofs
	Additional Empirical Details
	Synthetic Experiments
	Tabular Experiments
	Vision Experiments


