
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE MATCHING UNITS FOR SUPERVISED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an alternative computational unit for feedforward supervised learning
architectures, called Generative Matching Units (GMUs). To understand GMUs,
we start with the standard perceptron unit and view it as an undirected symmetric
measure of computation between the weights W = [w1, w2, ..wd] and each input
datapoint X = [x1, x2, .., xd]. Perceptrons forward WTX + b, which is usually
followed by an activation function. In contrast, GMUs compute a directed asym-
metric measure of computation that estimates the degree of functional dependency
f of the input elements xi of each datapoint to the weights wi in terms of latent
generative variables θ, i.e, f(wi, θ) → xi. In order to estimate the functional de-
pendency, GMUs measure the minimum error

∑
(f(wi, θ)− xi)

2 incurred in the
generation process by optimizing θ for each input datapoint. Subsequently, GMUs
map the error into a functional dependency measure via an appropriate scalar
function, and forward it to the next layer for further computation. In GMUs, the
weights [w1, w2, .., wd] can therefore be interpreted as the generative weights. We
first compare the generalization ability of GMUs and multi-layered-perceptrons
(MLPs) via comprehensive synthetic experiments across a range of diverse set-
tings. The most notable finding is that when the input is a sparse linear combi-
nation of latent generating variables, GMUs generalize significantly better than
MLPs. Subsequently, we evaluate Resnet MLP networks where the first feedfor-
ward layer is replaced by GMUs (GMU-MLP) on 30 tabular datasets and find that
in most cases, GMU-MLPs generalize better than the MLP baselines. We also
compare GMU-MLP to a set of other benchmarks, including TabNet, XGBoost,
etc. Lastly, we evaluate GMU-CNNs on three standard vision datasets and find
that in all cases they generalize better than the corresponding CNN baselines. We
also find that GMU-CNNs are significantly more robust to test-time corruptions.

1 INTRODUCTION AND MOTIVATION

We consider the supervised classification problem, where the objective is to predict the out-
put category y ∈ {1, .., c}, given the input X ∈ Rd, and we are given the sample S =
{(X1, y1), .., (Xm, ym)} ∼ P (X, y). Most supervised learning approaches tackle this problem
via feedforward architectures. A key building block of most feedforward learners has been the per-
ceptron unit, which involves a linear map WTX + b followed by some activation function a(.),
resulting in the outcome a(WTX + b), where X,W, b represent the inputs, weights and biases,
respectively. This computational unit has been quite ubiquitous across various modern architec-
tures, including transformer variants Lin et al. (2022) and convolutional network variants Li et al.
(2021). Even networks which don’t specifically have the perceptron as a unit of computation, end
up using similar feedforward concepts, such as in Capsule networks Patrick et al. (2022) or in the
recently proposed Kolmogorov-Arnold Networks Liu et al. (2024). Multi-layered perceptrons are
also proven universal approximators, so given enough complexity and data, they can indeed learn
the underlying function to an arbitrary degree of accuracy Hornik et al. (1989).

Mechanistically, if each input dimension of X represents causal variables which impact the output
label in a feedforward manner, then the feedforward perceptron unit could potentially end up closely
reflecting the actual mechanism involved in yielding the output. This is because MLPs are good
function approximators, and thus if the underlying mechanism is indeed a function that maps the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

input to the output, they should be preferred. However, what if the underlying mechanism is not
feedforward?

Consider scenarios where the actual causes of the data are hidden, and furthermore, where the
mechanism of the data generation is related to the output category y. More specifically, suppose
each datapoint has been generated as Xi = f(θi,Wyi), where θi ∈ Rk, k < d, f : Rk → Rd

and Wyi ∈ Rk×d represents the generative weights corresponding to the ground truth label yi for
Xi. θi can be interpreted as the latent generating variables for the instance Xi. Note that we will
have a total of c generative weights W1,W2, ..,Wc which corresponding to each output label from
{1, 2, .., c}. The function f represents the structural mechanism via which the hidden variables θi
interact with the generative weights Wyi

. Note that in this scenario, the generative mechanism for
the input X is dependent on its ground truth label y and the latent generating variables θ. If the form
of f is known, we can construct a network with c output units and corresponding learnable weights
W ′

1, ..,W
′
c as follows: for j = 1, 2, · · · c, vj = minθ∥X − f(θ,W ′

j)∥, and the output label esti-
mate is ŷ = argminj∈{1,···c} vj . As the underlying generative weights W1, ..,Wc are unknown, we
would need to optimize W ′

j via gradient descent on some loss function, so that the network would
ideally converge to the case where the weights W ′

j = Wj . This represents the intuitive idea behind
generative matching units (GMU) which we propose, in this paper, as an alternative computational
unit for feedforward supervised learning network architectures.

The previous example illustrates an alternative means to create computational units for supervised
learning, from the perspective of generative error, using a set of generative weights. This can be
beneficial in scenarios where the causal variables that generate the data distribution are hidden, and
also directly relate to the ground truth label. Furthermore, for the optimization minθ∥X−f(θ,W ′

j)∥
to be fully determinable, it needs to hold that dim(θ) < dim(X), as otherwise there will be more
unknowns than equations. In fact, when the data is high dimensional but exists in low dimensional
manifolds (dim(θ) << dim(X)), we can impose the constraint that k << d, which imparts a
natural dimensionality bias in the unit.

Following the above observations, we can now design a simple GMU as an alternative computational
unit. First, we note that it is beneficial to have the GMU output larger values when it is able to better
match the input via the optimization minθ∥X − f(θ,W ′

j)∥. Thus, we design a unit where smaller
minθ∥X − f(θ,W ′

j)∥ yield a larger output and vice-versa. Let X = [x1, .., xd] ∈ Rd be the input,
W = [w1, .., wd] ∈ Rd represent generative weights, B = [b1, .., bd] ∈ Rd represent the generative
bias, θ ∈ R represents the latent generating variable. Then, assuming a linear form for the structural
mechanism f , the output of the GMU, G(X), is given by:

G(X) = exp

(
−min

θ∈R

∑d
t=1 (xt − (wtθ + bt))

2

d

)
(1)

Note that the above minimization is equivalent to a least-squares problem, and has a well-defined
analytical solution. This ensures that G(X) is differentiable w.r.t the weights and a network which
uses GMUs in any of its layers can be trained via back-propagation. This leads us to the main
motivational points for GMUs, which we summarize below:

1. Feedforward computation from a generative perspective: We rethink feedforward computa-
tion from a generative standpoint, where each unit attempts to generate the given input datapoint
using its associated weights and outputs a function of the error incurred in the generation process.
This ensures that our units are primarily computing from a top-down perspective, which is helpful
in scenarios where the latent variables that generate the data also relate to the output class.

2. Input as a function of the weights: We consider computational units which encode a type of
generative error in matching the input datapoint. Consider the example of a GMU given in
equation 1. Another way to view this relationship is that the generative error encodes whether the
input dimensions xj can be represented as a function of the weights Wj and the biases bj . This is
in contrast to the perceptron unit which can be roughly interpreted as the projection of the input
on the weights. In our case, the weights may thus be interpreted as the means via which the latent
generating variables project onto the input.

3. Imposing generative complexity constraints: As most high dimensional data in nature likely
has a low dimensional representation due to it existing in low dimensional manifolds, we can

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

impose complexity constraints on each generative matching unit. An example of such a constraint
is simply choosing only a few latent variables in θ, and equation 1 is such an example where
dim(θ) = 1.

Even with these ideas, it is worth noting that as classical multi-layered neural networks are universal
approximators, they should be able to also learn functions which are of the form depicted in equa-
tion 1. However, as we show later on, their ability to interpolate and extrapolate the behaviour of
a GMU like G(X) is significantly lower tha networks with GMUs. Similarly, we also show that
the ability of a GMU to learn functions which are neural network generated is lower than neural
networks. So, via these observations, it is clear that each computational unit has its own inductive
biases that enable it to learn and generalize better when the underlying function follows its assump-
tions. Note that the inductive biases are primarily from a generative standpoint, which in our case
is the assumption that there exists local linear generative models that can explain the data. Next, we
discuss alternative ways to interpret GMUs, to shed more light on their behaviour.

1.1 ALTERNATIVE INTERPRETATIONS OF GMUS

Directed Measure of Functional Dependence: There also exists an alternative interpretation of
a GMU, and this is one which we initially thought of while thinking of this idea, and it is as
follows. First, we realize that the perceptron unit can be considered to be a correlation mea-
sure between the input dimensions and the corresponding weights, in certain conditions. Specif-
ically, consider X ∈ Rd, where d is large and the distance of X from the origin is fixed, i.e.
∥X∥ = CX . For a trained perceptron with weights W , we will have ∥W∥ = CW . This then

yields WTX =
(

W
∥W∥

)T
X

∥X∥∥W∥∥X∥ = cos(θ)CXCW . Here cos(θ), which represents the co-
sine of the angle between the two vectors W and X , can be interpreted as a normalized measure of
correlation between the input dimensions and the corresponding weight values.

We first note that this measure is symmetric, i.e., it remains unchanged when we swap W and X .
This leads to the question, why not try a more general, and directed measure of dependency between
W and X? In recent years, many directed functional correlation measures have been proposed of the
form C(X → Y) Chatterjee (2021); Azadkia & Chatterjee (2021), which indicate to what degree
the random variable (RV) Y can be represented as a function of X . There are also some examples
from information theory Xu et al. (2020), where the recently proposed V-Information IV(X → Y)
estimates a computationally constrained and directed measure of shared information between X
and Y . Although some of these measures are hard to compute, and to differentiate (as they are
rank based), by considering the general idea, we can also arrive at our proposed GMU structure as
follows. As we want to functionally relate the individual dimensions of X denoted by xi to the
corresponding weights wi, we can construct a GMU which is of the form:

G(X) = exp

(
− min

θ∈Rk

∑d
i=1 (xj − f(wj , θ))

2

d

)
, (2)

where the function f can come from any function family. For instance, when f is a polynomial of
order k, we can express f as f(wj , θ) =

∑k
i=1 w

i−1
j θj . Later on, we will outline various types

of GMUs, and their use cases. We will also discuss various ways in which we can make GMUs
behave like functional correlation measures and normalize them, which leads to better training and
performance in many cases. Lastly, note that GMUs are asymmetric by definition as they represent a
top-down directed measure of functional dependence between the generative weights and the input,
as we can see from equation 1 and equation 2.

A Generalization of RBFs: We note that radial basis function units are of the form:

RBF (X) = exp

(
−
∑d

i=1 (xj − cj)
2

2σ2

)
, (3)

where cj represents centers from which the distance to the current datapoint is taken, and σ rep-
resents a trainable parameter optimized via gradient descent on an appropriate loss function. Note
that when comparing this form with equation 1, the similarities and differences are apparent. First,
while RBFs depend on the distance between two d dimensional vectors, GMUs estimate the average

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of the per-dimension distance, which avoids scaling up as the dimensionality of the data increases
and leads to more stable learning as we show later in this work. For both units, the magnitude of the
response depends inversely on the distance. Second, RBF estimates the distance between the input
and fixed point centers (which are optimized via gradient descent as well) in Rd, whereas the GMU
output in equation 1 depends on the distance between the input datapoint X and a straight line in Rd.
Note that the parameters of the straight line are similarly optimized via gradient descent. This shows
that in some ways, GMUs can be interpreted as a more flexible generalization of RBFs. It is well
known that the distance distribution between two points in Rd can get significantly uninformative
for large d, which is also called the curse of dimensionality Köppen (2000). We show that distances
between points and subspaces, which is a component of GMUs, reduce the impact of this curse. We
show in our work, via theory and empirical testing, that GMUs can convey greater information in
high-dimensional spaces, when compared to both RBF units and perceptron units, when the data
distribution is uniform on a spherical surface.

2 CONTRIBUTIONS

This brings us to the overall contributions of our work. We outline them as follows.

• We propose a new computational unit for feedforward supervised learning architectures, called a
generative matching unit. We propose several differentiable variants of GMUs and showcase the
uses of each form on different types of datasets.

• GMUs consider a generative approach to computation, and we show theoretically and empirically
that they can convey more information in high-dimensional spaces, leading to more expressivity.
Much smaller GMUs can be highly expressive and learn the underlying function when the low-
dimensional generative assumptions are met.

• We show that GMU-based networks and multi-layered perceptrons have their own scenarios
where they generalize better than the other. Specifically, in the sparse linear structure predic-
tion problem, and the structure regression problem, we find that GMUs generalize significantly
better than MLPs. Similarly, we find that when the ground truth classifier is Naive Bayesian with
linear dependencies, MLPs outperform GMUs.

• We conduct an exhaustive comparison of performance between GMU-MLPs and MLPs on 30
tabular datasets. Here, GMU-MLPs refer to the architecture that results after replacing the first
layer of the MLP (Resnet) with GMUs. We find that in the majority of cases GMU-MLPs gen-
eralize better than MLPs, and in some cases they yield state-of-the-art results, when compared to
well-known benchmarks.

• We test GMU-MLP and GMU-CNN variants on three standard vision datasets, focusing on other
aspects of performance in addition to test accuracy. Specifically, we find that GMU-MLP and
GMU-CNNs significantly outperform their vanilla counterparts in terms of robustness to test-time
corruptions.

3 GENERATIVE MATCHING UNITS: DEFINITION AND VARIANTS

We first define the most general form of a GMU as follows.

Definition 1. (Generative Matching Unit:) Let the input to the unit be X = [x1, x2, .., xd] ∈ Rd,
where every xi ∈ R. Consider a function family F , such that every function f : Rk → Rd ∈ F
can be parameterized as f(θ,W) + b, where θ ∈ Rk W ∈ Rk×d b ∈ Rd. k is denoted as the order
of the unit. W and b represent the generative weights and biases of the unit, and θ represents the
latent generating variables. With this, we define the general form of any generative matching unit
as follows:

G(X) = ϕ

(
1

σ
√
d
min
θ∈Rk

∥∥∥∥X − b

ηX
− f(θ,W)

∥∥∥∥) (4)

ϕ : R → R can be interpreted as an activation function for the GMU. ηX represents an optional
normalization measure to ensure that 1√

d
minθ∈Rk∥X−b

ηX
−(f(θ,W))∥ is bounded if needed. Lastly,

σ represents an optional smoothing factor.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: All GMU parameter choices tested in our work
Parameter Choices

θ var(Rk)
b var(Rd) ; [0, 0, .., 0]
W var(Rk×d); [var(Rk−1×d); J1,d];
f θTW

ϕ(z) e−z2

;
√
1− z2; − log z

ηX 1; σX−b;
√∑d

i=1 x
2
i /d

σ 1

In our work, to ensure faster computation and differentiation, we only work with functions f such
that the minimization minθ∈Rk∥X−b

ηX
− f(θ,W)∥ can be represented as a least squares problem,

which has an analytical solution Wikipedia (2024). Also, note that in this work we set σ = 1, for
reasons that we outline later on. We next outline the GMU variants that we experiment with in this
paper. For notational ease, we denote GMU(k) as a GMU of order k.

Remark 1. Note that when k = 0, a GMU computes G(X) = ϕ
(∥∥∥ 1

σ
√
d
X−b
ηX

∥∥∥). When we set

ϕ(z) = e−z2

and ηX = 1, this unit becomes similar to an RBF unit with an additional averaging
factor d that averages the distance across all dimensions.

3.1 GMU VARIANTS

We outline all parameter and function choices in equation 4 tested in this paper in Table 1. Note that
in Table 1, all real number based entries of the form var(Rp×q) denote tensors of size p× q where
all entries are real variables subject to gradient descent. Lastly, Jp,q represents a fixed matrix of all
ones of size p× q.
Remark 2. Note that we only consider linear f in our work, which enables us to formulate

minθ∈Rk

∥∥∥X−b
ηX

− f(θ,W)
∥∥∥2 = minθ∈Rk

∥∥∥X−b
ηX

− θTW
∥∥∥2 as a linear least squares problem. Lin-

ear least-squares has a fixed analytical solution Wikipedia (2024), which then enables quick compu-
tation and also differentiation from a gradient descent based optimization perspective. We therefore
denote the variants explored in our work as Linear GMUs. Geometrically, the GMU output can
be interpreted as a distance measure between the input point X and the linear subspace which is
modelled by θX . We showcase this geometric property in Figure 2 (a).

3.2 ARE GMUS UNIVERSAL APPROXIMATORS?

A single GMU clearly cannot act as a universal approximator, as it can only model functions of
the form in equation 4. We study linear GMU-MLPs, which consists of a layer containing multiple
linear GMUs followed by a perceptron unit. We study whether GMU-MLPs can be universal ap-
proximators. Note that it is well known that RBFs are universal approximators, and as our GMU
with k = 0 has a similar form, it is likely that it would be a universal approximator as well. First, let
us define the set of functions Lp(Rd) such that any f ∈ Lp(Rd), where f : Rd → R, is pth power
integrable, bounded, continuous and continuous with compact support. Lp(Rd) encompasses the set
of all such functions which satisfy these constraints. This leads to our first result.
Proposition 1. (from Park & Sandberg (1991)) A linear GMU-MLP with k = 0, ηX = 1 and
ϕ(z) being any integrable bounded function such that

∫
ϕ(x)dx ̸= 0 can approximate any function

f ∈ Lp(Rd).

We found that showing linear GMU with k > 0, ηX = 1 are universal approximators for any
function f ∈ Lp(Rd) is non-trivial. We instead provide an intuitive geometrical argument to support
the hypothesis that Linear GMU-MLPs of any order k are universal approximators. which finds that
multiple linear GMUs with k > 0 can be used to approximate the behaviour of a linear GMU with
k = 0. We provide our argument as follows, for the case of k = 2 and d = 3, which can be extended
to other cases similarly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

First, let X = (x, y, z) and let us consider a linear GMU with k = 0, which computes
G(X) = exp− 1

3

(
(x− a)2 + (y − b)2 + (z − c)2

)
. We can construct three linear GMUs with

k = 2 in the manner shown in Figure 2 (b) in the Appendix, where the subspaces (2D
planes) are chosen such that G1(X) = exp−(x− a)2,G2(X) = exp−(y − b)2 and G3(X) =
exp−(z − c)2. As we are considering GMU-MLPs, we can average the units in the next layer,
to yield: 1

3 (G1(X) +G2(X) +G3(X)) = exp−(x− a)2 + exp−(y − b)2 + exp−(z − c)2.
Note that this unit behaves similar to the original linear GMU G(X), in that it attains its max-
imum value when x = a, y = b, z = c, like G(X). Also, points closer to (a, b, c) are likely
to yield larger activations than the ones farther away for the averaged unit, similar to G(X).
Lastly, when ∥(x, y, z) − (a, b, c)∥ → 0, we can approximate 1

3 (G1(X) +G2(X) +G3(X)) ≈
exp− 1

3

(
(x− a)2 + (y − b)2 + (z − c)2

)
= G(X). Subsequently, the second layer weights asso-

ciated with Gi(X) can all be set to W/3 to yield the same function as the GMU-MLP with k = 0
and weights W . This argument can be extended to arbitrary k, d in the same manner. This shows
that linear GMU-MLPs with k > 0 can potentially approximate GMU-MLPs with k = 0, but using
more hidden units. As GMU-MLPs with k = 0 are universal approximators (Proposition 2), this
implies that GMU-MLPs with arbitrary k can potentially be universal approximators as well.

4 GMUS AND THE CURSE OF DIMENSIONALITY

We first define the notion of information factor, which represents the normalized variability of any
similarity measure S(X1, X2) in d dimensional space, where X1, X2 ∈ Rd. We only consider
distance measures in this analysis.
Definition 2. (Information Factor) We are given a similarity measure S(X1, X2), where X1, X2 ∈
Rd. Let Id represent the identity matrix of size d × d. Then, information factor γS(d) of S in
d-dimensional space is estimated as:

γS(d) =
EX1,X2∼N (0,Id) [σ ((S(X1, X2))]

EX1,X2∼N (0,Id) [µ ((S(X1, X2))]
, (5)

where σ(x) and µ(x) denote the standard deviation and the mean of x respectively.

With this, we undergo a series of experiments where we estimate the information factor of multiple
measures, including Euclidean distance and the distance measured in GMUs, which is the distance
between a linear subspace of dimensionality k and the input point. We denote this as the k-subspace
distance. But before that, we first provide some theoretical results that compare the information
factor of Euclidean distance and k-subspace distances

Theoretical Results: We outline our first result for Euclidean distances as follows:
Proposition 2. Let E(X1, X2) = ∥X1 −X2∥, we can show that γE(d+ 1) < γE(d).

Next, we outline the analogous result for k-subspace distances.
Proposition 3. We define the k-subspace distance from X1 to X2 as Sk,W (X1, X2) =
minθ∈Rk∥X2 − (θTW + X1)∥ With this, first, we note that γS0,W

(d) = γE(d), where E denotes
the Euclidean distance. Then, we have that γSk+1,W

(d) > γSk,W
(d), and thus γSk,W

(d) > γE(d).
Remark 3. Propositions 3 and 2 highlight a few interesting points. First, we see that the information
factor of Euclidean distance decreases with dimensionality, which is another way to interpret the
curse of dimensionality. Variation in distance reduces in high dimensional spaces, leading to loss of
structure and thus making it harder for distance based approaches such as nearest-neighbor or RBFs
to work with the data. However, as proposition 3 shows, the information factor of the k-subspace
distance, which is measured in GMUs, is strictly larger than of Euclidean distance. Furthermore,
we see that the information factor increases as the order of the GMU, k, increases. This shows that
high-order GMUs may be helpful in extracting more structural information in high-dimensional
datasets, than just Euclidean distance.

Empirical verification: We verify the results in Propositions 3 and 2 by simulating X1, X2 ∼
N (0, Id) and estimating the information factor for the Euclidean distance γE(d) and the k-subspace
distance γSk,W

(d), as a function of the dimensionality d. We summarize all our empirical findings
in Figure 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: Information Factor v/s Dimensionality: (a) For Euclidean Distance (b) for k-subspace
Distance and (c) Information Factor Gain (γSk,W

(d)/γE(d)).

Takeaways: We find that our observations agree with the propositions. Specifically, we see that
the Euclidean distance information factor first shows a significant decrease with increase in data
dimensionality, reaching values very close to 0. The same is observed for the k-subspace distance,
however, we see that as k increases, the information factor increases. Figure 1 (c) shows the gain in
the information factor (γSk,W

(d)/γE(d)) as a function of d and k. This plot shows a clear improve-
ment in the information factor when using k-subspace distance as opposed to Euclidean distance.

5 SYNTHETIC EXPERIMENTS

In this section, we conduct experiments where the data distribution is artificially generated. Each
experiment showcases a different type of distribution. We discuss the takeaways from these experi-
ments at the end of this section.

5.1 SPARSE LINEAR STRUCTURE PREDICTION

Problem Outline: We argue that most sampled data in nature have a sparse set of causes (latent
generating variables) that are active in each instance. This concept has already been studied in sparse
representation learning Lee et al. (2006), however, we create a scenario where the set of active causes
corresponding to any instance also indicates the underlying output label of that instance. In this way,
given a total of Nc latent generating variables, the set of active variables for each instance can be
construed as a sparse linear structure for the ground truth label of that instance. We formally outline
the sampling process as follows.

Definition 3. (Sparse Linear Structure Sampling:) We are given the input RV X ∼ Rd and
the ground truth label RV y ∼ {1, 2.., Ny}, such that (X, y) ∼ P (X, y). W ∼ RNc×d rep-
resent the set of generative weights for the Nc latent variables {θ1, θ2, ..θNc

}. Lastly, for each
label y, let the set of active latent variables for each instance corresponding to that label be de-
noted by θly(1), θly(2)..., θly(yc), 1 ≤ yc ≤ Nmax, where Nmax denotes the maximum number of
generating variables active for any instance. With this, we can outline the generative process as
follows. First we sample y ∼ Unif{1, 2, .., Ny}, and then we sample an instance for that y as
x(y) =

∑yc

i=1 θly(i)Wly(i),∗ + ϵ, where ϵ ∼ N (0, σ2Id).

Experiments: We conduct a series of experiments with different choices of parameters involved in
the sparse linear structure sampling process. The elements of the generative weights W are sampled
according to the standard normal distribution N (0, 1), and yc is chosen uniformly at random from
the valid range. The number of training data samples is fixed at 1000 and the number of test data
samples at 3000. We compare a two layer MLP with 512 hidden units (relu-activated), a Resnet
with 2 groups with 1 block per group and 512 units in each layer, and a Resnet with 2 groups
with 2 blocks per group and 512 units in each layer. We denote them as MLP-512, Resnet-512-
[2,1], Resnet-512-[2,2] respectively (abbreviated in the Table for space). We provide the results for
Resnet-512-[2,2] variants in the Supplementary Materials. We compare these baselines with a single
GMU layer consisting of d inputs and Ny outputs, denoted as GMU(k), where k is its order. The
results are summarized in Table 2. Note that the ’Test Config’ column represents whether the test
data is generated out-of-distribution, i.e., whether the range of the latent generating variables θly(i)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Setup Test
Config GMU(1) GMU(2) GMU(3) GMU(4) GMU(5) GMU(6) MLP MLP

(norm.) R-[1,1] R-[1,1]
(norm.)Ny Nc d σ Nmax

20 25 10 0.01 3 same 0.8997 0.9311 0.9654 0.9794 0.9694 0.966 0.9505 0.9728 0.9622 0.9714
20 25 10 0.01 3 ood 0.685 0.84525 0.9735 0.8922 0.928 0.9442 0.5725 0.7087 0.631 0.6525
20 25 100 0.1 3 same 0.944 0.9271 0.9348 0.9488 0.9482 0.9482 0.9197 0.9451 0.946 0.9462
20 25 100 0.1 3 ood 0.8785 0.9005 0.926 0.848 0.8592 0.9092 0.6457 0.733 0.681 0.724
20 25 100 0.01 3 same 0.9471 0.9494 0.9814 0.9874 0.9862 0.9825 0.9545 0.9754 0.9654 0.9788
20 25 100 0.01 3 ood 0.892 0.9215 0.981 0.9335 0.9365 0.9612 0.6282 0.7492 0.693 0.7522
20 25 100 0 3 same 0.9474 0.9565 0.9962 0.9951 0.9974 0.9991 0.9548 0.9797 0.9622 0.9868
20 25 100 0 3 ood 0.892 0.925 0.9977 0.9915 0.9835 0.9905 0.6275 0.7495 0.6842 0.7432
20 25 500 0.01 3 same 0.9502 0.9434 0.9831 0.9891 0.9894 0.9874 0.9537 0.9771 0.9685 0.9845
20 25 500 0.01 3 ood 0.9087 0.9215 0.9845 0.9395 0.948 0.9655 0.59725 0.7677 0.6467 0.7665
20 25 1000 0.01 3 same 0.9111 0.9502 0.9834 0.9957 0.9914 0.996 0.9662 0.9814 0.9762 0.9845
20 25 1000 0.01 3 ood 0.8657 0.9017 0.975 0.9537 0.987 0.983 0.517 0.7525 0.6572 0.7837
20 25 1000 0.01 6 same 0.978 0.9385 0.9791 0.9908 0.9885 0.9951 0.9637 0.9882 0.9757 0.9882
20 25 1000 0.01 6 ood 0.9272 0.6867 0.9462 0.9462 0.9905 0.9997 0.6407 0.9107 0.641 0.904
50 10 1000 0.01 3 ood 0.5752 0.743 0.8997 0.9077 0.891 0.8712 0.5492 0.5575 0.4132 0.5352

Table 2: Test accuracy results on the sparse linear structure prediction experiments.

Setup (Ny = 10, σ0 = 0.1) GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP

GMU(4)
-MLP

GMU(5)
-MLP

GMU(6)
-MLP

GMU(7)
-MLP

GMU(8)
-MLP MLP R-

[1,1]
R-

[2,2]d ∆ Train Test
10 2 G G 0.5548 0.564 0.5608 0.5574 0.5608 0.5597 0.5605 0.5568 0.5571 0.576 0.5188 0.502
10 4 G G 0.4362 0.4371 0.4277 0.4248 0.4265 0.4331 0.4342 0.44 0.4394 0.4345 0.3657 0.3525
50 4 G G 0.6943 0.9286 0.9371 0.9420 0.9394 0.9403 0.9406 0.9394 0.9440 0.7965 0.8128 0.758
50 8 G G 0.6403 0.8471 0.8686 0.8617 0.8649 0.8680 0.8651 0.8714 0.8686 0.7048 0.7194 0.6802

100 8 G G 0.4503 0.9623 0.9703 0.9769 0.9769 0.9806 0.9797 0.9797 0.9783 0.7617 0.7931 0.7568
500 8 G G 0.2371 0.9991 0.9991 0.9983 0.9980 0.9989 0.9997 0.9994 1.0000 0.7437 0.8102 0.772
500 8 GS G 0.3980 0.7154 0.7829 0.5966 0.7009 0.7806 0.7777 0.8477 0.8917 0.4157 0.4122 0.3448
500 8 G GM1 0.1583 0.7760 0.8054 0.7783 0.7883 0.7463 0.7963 0.8374 0.8374 0.29 0.2691 0.2317
500 8 G GM2 0.2237 0.9929 0.9960 0.9954 0.9960 0.9943 0.9954 0.9971 0.9983 0.6531 0.6974 0.6551
500 8 MG MGN 0.2071 0.9657 0.9586 0.9697 0.9551 0.9771 0.9789 0.9740 0.9803 0.6394 0.6471 0.6

Table 3: Test accuracy results on the dynamic tree structure prediction experiments.

at test-time is different from the corresponding range at training time. More details are provided in
the appendix.

5.2 DYNAMIC TREE STRUCTURE PREDICTION

Problem Outline: In this section, we consider the setting when the underlying generative model
of the data does not depend on unseen latent variables as before, but is present within the data
dimensions itself. More specifically, we assume tree based generative models, where every node of
the tree corresponds to a specific data dimension. We outline the generative process as follows.
Definition 4. (Dynamic Tree Structure Sampling) We are given X = [x1, x2, .., xd] ∈ Rd and
y ∈ {1, 2, .., Ny}. We have Ny trees denoted as the undirected graphs {G1, G2, .., GNy

} where
Gi = {Vi, Ei} and |Vi| = d ∀i. The vertices of every Gi correspond to the dimensions of X , and
all trees have the same maximum degree ∆. Define α ∈ Rd. We outline the generative process as
follows. First, we sample y ∼ Unif{1, 2, ..., Ny} and then we sample a datapoint by tracing the
graph Gy as: xi = αixpa(i,Gy) + ϵi, where all ϵi are randomly generated for each xi according to
some fixed distribution Pϵ, and pa(i, Gy) denotes the parent of xi considering the tree Gy . The root
node of Gy denoted as r(Gy) is sampled as xr(Gy) ∼ N (0, σ2

0).

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. Note that σ0 = 0.1 and Ny = 10 is fixed
for all cases. The tree graphs {G1, G2, .., GNy} are created randomly, and each one is assigned
to the corresponding class in y for each run. Unless otherwise specified, we set αi = 1. The
results are shown in Table 3. For the Table abbreviations, G: Gaussian ϵi, GS: Skewed Gaussian ϵi
(Shape parameter 4), GM1: Gaussian ϵi and αi ∼ N (0, 1), GM2: Gaussian ϵi and αi ∼ N (0, 4)
(randomly sampled each time), MG: Gaussian ϵi, αi ∼ mathcalN(0, 1) (Fixed), MGN: Gaussian
ϵi, αiα

train
i ∼ N (0, 1) where αtrain

i is the αi set at training time.

5.3 PREDICTION ON POLYNOMIAL NAIVE BAYES SAMPLED DATA

Problem outline: We consider the scenario where the ground truth labels y are generated in a naive
Bayesian manner as P (y|X) ∝ ΠiQ(y|Xi), where the distribution Q(x) is of the form e−G(x)/Z.
We formally outline the sampling process as follows.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Setup GMU(0) GMU(1) GMU(2) GMU(3) GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP Linear MLP

p
1 0.8223 0.8406 0.8583 0.8643 0.9843 0.9763 0.9743 0.97 0.983 0.9823
2 0.9363 0.9363 0.9363 0.9363 0.9816 0.9873 0.986 0.982 0.9763 0.9801
3 0.7916 0.803 0.816 0.8336 0.9596 0.975 0.974 0.9746 0.9456 0.9606

Table 4: Test accuracy results on the polynomial naive Bayes sampling experiments.

Setup GMU(0)
-MLP

GMU(1)
-MLP

GMU(2)
-MLP

GMU(3)
-MLP Linear MLP R-

[1,1]
R-

[2,2]Ny d σµ

2 10 0.01 0.9942 0.9888 0.9914 0.9825 0.6474 0.9848 0.9817 0.9782
10 10 0.01 0.2714 0.2608 0.244 0.2405 0.1262 0.1908 0.1582 0.1462
10 10 0.1 0.8888 0.8511 0.8254 0.8091 0.3862 0.7685 0.7585 0.7511
2 100 0.01 0.7151 0.704 0.6902 0.6851 0.5577 0.6077 0.5694 0.5594
2 100 0.1 0.9414 0.9428 0.9462 0.946 0.782 0.9248 0.9031 0.89

10 100 0.1 0.5145 0.4985 0.4897 0.4897 0.2234 0.4068 0.3214 0.2674
2 500 0.1 0.7377 0.7411 0.7388 0.7454 0.6751 0.7285 0.6905 0.6848
2 500 1 0.986 0.9911 0.99514 0.9951 0.9891 0.9928 0.972 0.9794

Table 5: Test accuracy results on the class-conditioned Gaussian experiments.

Definition 5. (Polynomial Naive Bayes Sampling) We are given X ∈ Rd ∼ Unif(0, 1)d,
and y ∈ {1, 2, 3, ..Ny}. We consider a naive Bayesian sampling of P (y|X) = 1

ZΠiP (y|Xi),
where P (y|Xi) = e−G(y|Xi). Let the polynomial order of the sampling be denoted as p. De-
fine a set of weight matrices {W1,W2, ..,Wd}, where Wi ∈ RNy×p. We consider G(yi|Xj) =
Wji[Xj , X

2
j , .., X

p
j]

T . With this, we outline the sampling as follows. First, we sample X ∼
Unif(0, 1)d, and then we compute

y∗ = argmax
i∈{1,2,3,..Ny}

Πi logP (y = i|X) = argmax
i∈{1,2,3,..Ny}

d∑
j=1

Wji[Xj , X
2
j , .., X

p
j]

T , (6)

where y∗ denotes the output label for the sampled X .

Remark 4. Note that the expression
∑d

j=1 Wji[Xj , X
2
j , .., X

p
j]

T can also be interpreted as the
logits in the sampling process, as when p = 1, they are simply linear functions of the input, and thus
should be solvable via a single linear layer followed by a softmax operator.

Experiments: Every element of all Wi matrices are sampled randomly from N (0, 1). We only vary
the polynomial order p. d is fixed at 10. We compare the following networks: GMU(k), GMU(k)-
MLP-512 (GMU layer with 512 hidden units followed by a linear layer), single Linear layer and
MLP-512. Results are shown in Table 4.

5.4 PREDICTION ON CLASS-CONDITIONED GAUSSIAN DISTRIBUTIONS

Problem outline: We conduct a simple experiment where the conditional distributions P (X|y) are
Gaussian, where X ∈ Rd and y ∈ {1, 2, .., Ny}. Specifically, we generate P (X|y) ∼ N (µy,Σ).
For each dataset, we choose the class-wise mean values by randomly generating them as µy ∼
N (0, σ2

µId). Similarly, we pick a randomly generated covariance matrix via Σ = ATA where
A ∼ Unif(0, 1)d×d.

Experiments: We pick a range of parameter choices for the sampling process, and compare the
following networks: GMU(k)-MLP-512 (GMU layer with 512 hidden units followed by a linear
layer), MLP-512, Resnet-512-[2,1] and Resnet-512-[2,2]. The results are shown in Table 5.

5.5 OVERALL TAKEAWAYS

Overall, we find that the GMU variants show significantly better generalization, especially to out-
of-distribution test data. Also, we observe that in the cases where the inputs are structured via a
common causal framework, such as the sparse and tree structure prediction experiments, more input
dimensionality becomes a blessing rather than a curse. This is simply because of the law of large
numbers. When high dimensional inputs all share the same cause, with the correct assumptions
one can obtain a more accurate estimate of the underlying generating variables, unlike the low-
dimensional case. Therefore, it is notable that we see larger dimensionality help performance in the
structure prediction experiments, while doing the opposite in the Gaussian experiment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset Resnet GMU-
Resnet Dataset Resnet GMU-

Resnet Dataset Resnet GMU-
Resnet Dataset Resnet GMU-

Resnet Dataset Resnet GMU-
Resnet

anneal 0.8525 0.861 phoneme 0.8940 0.8882 jasmine 0.7419 0.7520 jungle 0.9615 0.9773 miniboone 0.8322 0.9048
kr-vs-kp 0.9969 0.9969 cnae 0.9259 0.9398 sylvine 0.9161 0.9268 volkert 0.6796 0.7003 walking 0.6246 0.6322

mfeat 0.9750 0.9800 blood 0.6265 0.6718 adult 0.7717 0.7735 helena 0.2207 0.2206 ldpa 0.6980 0.6777
credit 0.7298 0.7036 australian 0.8596 0.8726 nomao 0.9591 0.9599 connect 0.7346 0.7535 aloi 0.9666 0.9684

vehicle 0.8266 0.8793 car 1.0 1.0 bank 0.7371 0.7382 higgs 0.6718 0.6781 skin-seg 0.9997 0.9996
kc1 0.6789 0.6866 segment 0.9221 0.9307 shuttle 0.9870 0.9823 numerai 0.5045 0.5146 arrhythmia 0.2918 0.3259

Table 6: Balanced Accuracy on 30 Tabular datasets from OpenML.

Dataset: MNIST
Network Standard brightness canny dotted fog glass identity impulse motion shot spatter zigzag
CNN 0.9949 0.2274 0.6149 0.9791 0.1188 0.541 0.9949 0.4529 0.9675 0.9226 0.9834 0.7826
GMU-CNN 0.9954 0.9913 0.8998 0.9896 0.9234 0.8141 0.9956 0.9377 0.9614 0.9449 0.9759 0.9447

Dataset: Fashion-MNIST
CNN 0.9329 0.4535 0.3709 0.8786 0.2712 0.6518 0.9329 0.2056 0.7188 0.5959 0.8835 0.8131
GMU-CNN 0.9356 0.8250 0.7058 0.9118 0.7442 0.5817 0.9298 0.6703 0.6831 0.48964 0.8868 0.8806

Table 7: Test Accuracy of networks trained on MNIST and Fashion-MNIST.

6 EXPERIMENTS ON REAL DATASETS:

6.1 TABULAR DATASETS

Outline: We test and compare performance on 30 datasets from openML. Specifically, we test on
a subset of the datasets tested in Kadra et al. (2021). For the Resnet-512-[1,1] architecture, which
performed well across our synthetic experiments overall, we replace the first layer with four types
of GMU units: k = 0, 1, 2, 3. For each k, we thus have 128 units in the first layer, yielding a total of
512 output units for the first layer, same as the Resnet. We denote this network as the GMU-Resnet-
512-[1,1] architecture.

Takeaways: We find that overall, in 25 out of 30 cases, GMU-Resnet-512-[1,1] showcases better
or on-par balanced accuracy. Furthermore, the GMU-Resnet-512-[1,1] performs favorably against
most other approaches in Kadra et al. (2021) (excluding MLP+C and MLP+Dropout) when com-
pared one-to-one via the Wins/Losses/Ties criterion. Our results re-inforce the observation that while
GMU units can impart a better inductive bias in many cases, it can also suffer in other scenarios.

6.2 VISION DATASETS

We construct convolutional GMUs, using which we create GMU-CNN architectures, where the first
layer is a convolutional GMU and the rest of the network comprises traditional convolutional layers
followed by a fully connected layer. We mainly focus on out-of-distribution generalization, by
introducing unseen corruptions at test-time, to see if the GMU-CNN recognizes the concept of the
vision classes better overall. We report our findings across three datasets: MNIST, Fashion-MNIST,
CIFAR-10 and their corrupted versions. Results are summarized in Table 7. We find that GMU-
CNNs show significant improvements to test-time corruptions. In general, we observe that trained
GMU-CNNs are naturally more robust to distribution shifts.

7 CONCLUSION

Our work demonstrates the potential advantages of an alternative computational unit that computes
from a generative perspective, imposing a low-complexity constraint on the generation process.
Generative Matching Units showcase better generalization and demonstrates a significantly higher
ability to identify dynamic causal structures in the inputs. On real tabular datasets, Resnets replaced
with GMU layers in the first layer show signifcant performance improvements. Many possibilities
remain open for incorporating GMUs in larger networks across other domains, and also find ways
to cascade multiple GMU layers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. The Annals of
Statistics, 49(6):3070–3102, 2021.

Sourav Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association,
116(536):2009–2022, 2021.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
timization at scale. In International conference on machine learning, pp. 1437–1446. PMLR,
2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Mario Köppen. The curse of dimensionality. In 5th online world conference on soft computing in
industrial applications (WSC5), volume 1, pp. 4–8, 2000.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neu-
ral networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999–7019, 2021.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI open, 3:
111–132, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function net-
works. Neural computation, 3(2):246–257, 1991.

Mensah Kwabena Patrick, Adebayo Felix Adekoya, Ayidzoe Abra Mighty, and Baagyire Y Edward.
Capsule networks–a survey. Journal of King Saud University-computer and information sciences,
34(1):1295–1310, 2022.

Wikipedia. Linear least squares — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Linear%20least%20squares&oldid=1245891861,
2024. [Online; accessed 02-October-2024].

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable
information under computational constraints. arXiv preprint arXiv:2002.10689, 2020.

11

http://en.wikipedia.org/w/index.php?title=Linear%20least%20squares&oldid=1245891861
http://en.wikipedia.org/w/index.php?title=Linear%20least%20squares&oldid=1245891861

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Supplementary Materials

Figure 2: (a) shows an example of a GMU with non-zero bias, no normalization, ϕ(z) = e−z2

and
f(θ,W) = θTW and (b) highlights our argument that higher order GMUs can be constructed to
mimic a GMU of order zero (RBF).

A THEORETICAL PROOFS

Proposition 4. (From Park & Sandberg (1991)) A linear GMU-MLP with k = 0, ηX = 1 and
ϕ(z) being any integrable bounded function such that

∫
ϕ(x)dx ̸= 0 can approximate any function

f ∈ Lp(Rd).

Proof. We note that when we set σ′2 = σ2d, k = 0 and ηX = 1 the GMU unit essentially becomes
an RBF unit. As σ here is the same across all hidden units, it implies σ′ is the same as well, and the
results from Theorem 1 inPark & Sandberg (1991) apply. This completes the proof.

Proposition 5. Let E(X1, X2) = ∥X1 −X2∥, we can show that γE(d+ 1) < γE(d).

Proof. Using the statistics of the chi-squared distribution, it is trivial to show that γE(d) =
dΓ(d

2)
2

Γ(d+1
2)2

− 1. This ultimately leads to the fact that we need to show that

Γ(d+1
2)Γ(d−1

2)

Γ(d2)
2

>
d

d− 1
(7)

This is an identity and can be showed through empirical simultation. In fact, we see that when

d → ∞, Γ(d+1
2)Γ(d11

2)

Γ(d
2)

2 = 1.

Proposition 6. We define the k-subspace distance from X1 to X2 as Sk,W (X1, X2) =
minθ∈Rk∥X2 − (θTW + X1)∥ With this, first, we note that γS0,W

(d) = γE(d), where E denotes
the Euclidean distance. Then, we have that γSk+1,W

(d) > γSk,W
(d), and thus γSk,W

(d) > γE(d).

Proof. The proof directly follows by realizing that for a fixed k-subspace, the closest distance to a
point is equivalent to the squared root of sum of square of d − k dimensions x1, x2, .., xd−k in the
Euclidean space, where each dimension xi ∼ N (0, 1) as the original data is also distributed this
way.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

This holds simply because one can rotate the space to align its unit vectors with the orthogonal
directions of the k-subspace, leaving only the other d− k to have degrees of freedom.

With this, it directly follows that γSk,W
(d) = γE(d − k) < γE(d − k − 1) = γSk+1,W

(d). And it
naturally follows that γSk,W

(d) = γE(d− k) > γE(d).

B ADDITIONAL EMPIRICAL DETAILS

B.1 SYNTHETIC EXPERIMENTS

Sparse Linear Structure Prediction: For the GMU(k) variants, we used a unit without nor-
malization and bias. ϕ(z) = − log z (to counter-act the softmax function that follows) and
W = var(Rk×d). For the out-of-distribution (ood) columns, we set the training θly(i) ranges to
either between Unif(0, 0.5) or Unif(0.5, 1) chosen at random. For the test data, we change the
range for each θly(i) in such a manner that if its training configuration was Unif(0, 0.5) it is set
to Unif(0.5, 1) and vice-versa. This ensures that at test-time the network sees values of the latent
generating variables which it hasn’t seen before.

Dynamic Tree Structure Prediction: For the GMU(k)-MLP variants, for the GMU units, we used
units with normalization ηX = σ(X) and bias. ϕ(z) =

√
1− z and W = [var(Rk−1×d); J1,d]. To

have a fair comparison, each datapoint was also normalized using zero-mean and unit variance for
the MLP variants.

Prediction on Polynomial Naive Bayes Sampled Data: For both the GMU(k)-MLP and the
GMU(k) variants, for the GMU units, we used units without normalization, but non-zero bias.
ϕ(z) = e−z2

and W = var(Rk×d).

Prediction on Gaussian Distributed Data: For the GMU(k)-MLP variants, for the GMU units, we
used units without normalization, but non-zero bias. ϕ(z) = e−z2

and W = var(Rk×d).

B.2 TABULAR EXPERIMENTS

The networks were trained in the same manner as in Kadra et al. (2021), using weighted cross-
entropy loss, and for evaluation we also report the balanced accuracy, same as them. We com-
pare GMU-Resnet-512-[1,1] with Resnet-512-[1,1]. We set the same hyperparameters for all ex-
periments, and don’t perform any additional hyperparameter optimization. Note that the other ap-
proaches’ results are after extensive hyperparameter optimization using BOHB Falkner et al. (2018).
Note that Kadra et al. (2021) uses a different Shaped Resnet architecture and therefore we don’t
directly compare with their MLP results, and we find in some datasets our Resnet performs signif-
icantly better than theirs and vice-versa. Furthermore the MLP+C approach in Kadra et al. (2021)
employs an extensive suite of regularization approaches, including data augmentation, so we don’t
include their results for this study.

We add a single dropout layer (of 0.2) at the penultimate layer for both Resnet-512-[1,1] variants, as
we found it led to more stable training overall. Note that the MLP-Dropout in Kadra et al. (2021) also
uses hyperparameter optimization for the dropout levels and locations for each dataset. Apart from
this, there is no regularization or data augmentation performed, and networks are trained in the same
manner for all datasets. Note that although our GMU units use more parameters than conventional
neural network units, the overall GMU-Resnet has roughly the same number of parameters, as the
increase is negligible. To put in context, in most cases, the additional number of parameters is less
than if we added ten hidden neurons to each layer (522 instead of 512).

The categorical variables within the data were one-hot encoded, and the other variables were nor-
malized to the range (0,1), with the statistics computed only from the training split. The training-test
splits are exactly the same as in Kadra et al. (2021), which is an 80-20 split. This was made pos-
sible by the code shared by them, and the fact that each dataset corresponded to a specific task as
numbered in Table 9 in Kadra et al. (2021).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dataset: CIFAR-10
Network Standard brightn contrast defocus elastic fog gauss blur glass impulse motion pixelate saturate shot noise spatter
VGG-16 0.9949 0.83642 0.5952 0.68148 0.71436 0.74422 0.5929 0.44146 0.59338 0.6211 0.6826 0.8147 0.6366 0.7440
GMU(3)-VGG 0.9954 0.8540 0.7489 0.7811 0.7493 0.8176 0.741 0.4665 0.6003 0.7142 0.7192 0.8211 0.6372 0.7861
GMU(8)-VGG 0.9954 0.86188 0.75478 0.7977 0.7534 0.8311 0.7620 0.4383 0.5608 0.7325 0.7273 0.8298 0.6163 0.7874

Table 8: Test Accuracy of networks trained on CIFAR-10 on standard and corrupted data.

B.3 VISION EXPERIMENTS

We train a four layered CNN for MNIST and Fashion MNIST, with the architecture 64C-2MP-128C-
2MP-128C-2MP(Padding=1)-128C-4MP-FC128-FC10, where C denotes convolutional layers, MP
denotes max pooling layers and FC denotes fully connected layers. For CIFAR-10 we used VGG-16
as our base network and only replaced the first convolutional layer with convolutional GMU units
instead, keeping the same number of output nodes. No data augmentation or any other regularization
was performed in any of the experiments. We provide the CIFAR-10 results in Table 8.

14

	Introduction and Motivation
	Alternative Interpretations of GMUs

	Contributions
	Generative Matching Units: Definition and Variants
	GMU Variants
	Are GMUs Universal Approximators?

	GMUs and the Curse of Dimensionality
	Synthetic Experiments
	Sparse Linear Structure Prediction
	Dynamic Tree Structure Prediction
	Prediction on Polynomial Naive Bayes Sampled Data
	Prediction on Class-Conditioned Gaussian Distributions
	Overall Takeaways

	Experiments on Real Datasets:
	Tabular Datasets
	Vision Datasets

	Conclusion
	Theoretical Proofs
	Additional Empirical Details
	Synthetic Experiments
	Tabular Experiments
	Vision Experiments

