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Decoupling Heterogeneous Features for Robust 3D Interacting
Hand Poses Estimation

Anonymous Authors

ABSTRACT
Estimating the 3D poses of interacting hands from a monocular im-
age is challenging due to the similarity in appearance between hand
parts. Therefore, utilizing the appearance features alone tends to re-
sult in unreliable pose estimation. Existing approaches directly fuse
the appearance features with position features, ignoring that the
two types of features are heterogeneous. Here, the appearance fea-
tures are derived from the RGB values of pixels, while the position
features are mapped from the coordinates of pixels or joints. To ad-
dress this problem, we present a novel framework calledDecoupled
Feature Learning (DFL) for 3D pose estimation of interacting hands.
By decoupling the appearance and position features, we facilitate
the interactions within each feature type and those between both
types of features. First, we compute the appearance relationships
between the joint queries and the image feature maps; we utilize
these relationships to aggregate each joint’s appearance and po-
sition features. Second, we compute the 3D spatial relationships
between hand joints using their position features; we utilize these
relationships to guide the feature enhancement of joints. Third,
we calculate appearance relationships and spatial relationships
between the joints and image using the appearance and position
features, respectively; we utilize these complementary relationships
to promote the joints’ location in the image. The two processes
mentioned above are conducted iteratively. Finally, only the refined
position features are used for hand pose estimation. This strategy
avoids the step of mapping heterogeneous appearance features to
hand-joint positions. Our method significantly outperforms state-
of-the-art methods on the large-scale InterHand2.6M dataset. More
impressively, our method exhibits strong generalization ability on
in-the-wild images. The code will be released.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
3D Interacting Hand Poses Estimation, Feature Decoupling

1 INTRODUCTION
Estimating 3D poses of two interacting hands from a monocular
image has great potential for applications in augmented reality (AR),
virtual reality (VR), human-computer interaction, etc. Substantial

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Attentionmaps generated in the feature interaction
between joints and the image are shown: the first row is
from the baseline without the decoupling strategy. In the
second row, attention maps from our method are depicted.
The ground truth joint positions are marked with an orange
cross. DFL precisely localizes the positions of the joints even
in the presence of severe self-similarity.

efforts have been dedicated to this field with the release of the large-
scale interacting hand dataset [37]. Despite these achievements, it
remains challenging due to the confusing appearance caused by
self-similarity between hand parts.

In prior approaches, two main strategies have been employed to
address the challenge of disambiguating similar appearance features.
The first category of methods focuses on exploring the interaction
between appearance features to extract more discriminative repre-
sentations [9, 23, 33, 35, 53, 58]. The second category of solutions
combines both position and appearance features to leverage both
appearance and spatial information [13, 19, 28, 30, 42, 50, 54]. Never-
theless, the position features mapped from the coordinates of pixels
or joints include spatial location and geometric structure informa-
tion, while the appearance features mapped from the RGB values
of pixels comprise color, texture, and other visual information. This
distinction between these two feature types hinders the mutual
facilitation process by direct interaction. Figure 1 demonstrates
how the self-similarity in appearance can confuse the network (row
1) in accurately locating the joints in the image, emphasizing the
challenges posed by the self-similarity of hand appearance.

To address the aforementioned issue, we present a novel frame-
work called Decoupled Feature Learning (DFL) for 3D interacting
hand pose estimation. The main objective is effectively leveraging
complementary heterogeneous features to mitigate the unreliable
pose estimation caused by self-similarity between different hand
parts. This is achieved by explicitly distinguishing between the
appearance and position features and promoting the mutual in-
teraction between different feature types and interaction within
each feature type. As depicted in Figure 1, thanks to our decoupling

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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strategy, the network can accurately focus on the positions of the
joints resulting in a sharp peak in the attention map (row 2).

Specifically, this paper utilizes a series of stackedmodules. Firstly,
it is observed that although each joint should not exhibit position
preference in spatial across different images if the datasets are unbi-
ased, they tend to show similar appearance patterns. Therefore, we
employ queries to learn these appearance patterns. This approach
differs from the design adopted in other studies [3, 13]. We com-
pute the appearance relationship between joint queries and image
feature maps. These relationships then guide aggregations of initial
hand-joint position and appearance features from the feature maps.
The initial features obtained are often unreliable due to appearance
similarity.

To further improve the feature quality, the features are then iter-
atively enhanced through the feature interaction among the joints
and between the joints and the image. The 3D spatial relationships
embedded in joint positions are more robust to self-similarity than
the relationships between appearances. So, in the first stage, we
model the local and global spatial relationships between the joints’
position features to guide the enhancement of joints. Subsequently,
we leverage spatial and visual cues that are separately embedded
in appearance and position features to achieve more accurate local-
ization of joints in the image. Instead of directly fusing two types
of features like the previous works [42, 50, 54], we extract and fuse
their intra-relationships to promote the interaction between the
features. These two complementary relationships guide the interac-
tions within each feature type. Finally, the hand pose is regressed
based on the refined position feature of the joints, rather than ap-
pearance features, which avoids the direct mapping between the
appearance feature and hand poses [28, 30, 42, 50, 54]. It is worth
mentioning that we adopt similarities-based computation [48] to
extract intra-relationships.

Experimental results show that our method significantly out-
performs existing state-of-the-art methods on the InterHand2.6M
dataset. At the same time, we demonstrate that our method exhibits
excellent generalization power when compared with state-of-the-
art methods on multiple in-the-wild datasets.

2 RELATEDWORK
2.1 Interacting Hand Pose Estimation.
The research on 3D hand pose estimation and shape reconstruction
has a long history. The 3D hand pose estimation task aims to obtain
joints’ positions [5, 12, 56], while the 3D hand shape reconstruc-
tion task focuses on obtaining more dense representations such
as mesh [6, 41, 55] or neural implicit surfaces [7, 27, 34]. Despite
this distinction, the boundary between them is often unclear due to
the potential for mutual transformation between mesh and joints
through the parametric model [44] and inverse kinematics-based
post-processing [29]. When introducing the parameterized model,
the 3D interacting hand pose estimation approaches can be classi-
fied into model-free and model-based methods. The model-based
approach is generally more robust due to the priors embedding
in the model. However, model-free methods offer customizable
topology and a relatively simpler calibration process for different
individuals. This paper is model-free without relying on priors from
the parametric model.

Pioneering works mainly estimate the single-hand pose based
on depth [8, 18, 36, 49], RGB-D [2, 21, 39], or multi-view images
[4, 11, 22]. Deep learning has enabled direct estimation from eas-
ily accessible monocular images [10, 20, 25]. Following decades
of development, single-hand pose estimation has achieved signif-
icant success. As a result, the attention has shifted towards more
challenging tasks, such as hand-object interaction pose estimation
[15, 17, 32, 57], and interacting hands pose estimation.

Early methods in interacting hand pose estimation track artic-
ulated hands from observations by optimizing a series of defined
energy functions [26, 40, 46]. These optimization-based methods
converge slowly and are prone to get stuck in local minima. There-
fore, hybrid methods integrate learning-based techniques to esti-
mate intermediate visual representations for guiding the optimiza-
tion process [1, 14, 38, 47]. However, these methods are not yet
end-to-end. Besides, they typically cannot solely rely on a single
image as input, leading to high costs and resource consumption.
Thanks to large-scale dataset availability [37], the advancement in
learning-based methods has mitigated these challenges.

Using monocular images as input exacerbates the issues of con-
fusing image appearance caused by self-similarity. Rong et al. [45]
attempted to regress the rough pose from ambiguous appearance
features and further refined the initial pose by incorporating physi-
cal and geometric priors in the hand model. To make the extracted
appearance features more distinctive for the joint regression, Meng
[33] transformed overlapped interacting hand images to a single
hand. Moon et al. [35] used a large-scale outdoor single-hand
dataset with 2D annotations to enhance the backbone’s feature
extraction capability. The following work explores different inter-
mediate representations to enhance appearance features. Kim et al.
[23] used the joints’ visibility to guide the heatmap enhancement.
Fan et al. [9] proposed part segmentation to reduce the ambiguity
of visual volume. Based on this, Yu et al. [53] further proposed var-
ious representations to disentangle two-hand features, such as the
parameter map, hand center map, and cross-hand prior map. Finally,
Zuo et al. [58] proposed the interaction adjacency heatmap which
assigns denser visible features to those invisible joints. However,
the enhanced appearance feature may not be reliable without incor-
porating prior information on skeletal structure. Following the idea
that joints’ appearance features and position features complement
each other, Many methods fuse position into appearance features
during feature interactions to implicitly leverage the relationship
between appearance and inherent spatial information. The common
practice is to obtain appearance features by projecting 3D positions.
Zhang et al. [54] iteratively regressed poses based onmixed features.
Wang et al. [50] utilized vertex-level fine-grained mixed features to
promote mesh-image alignment. Ren et al. [42] completed occluded
appearance features by projecting 3D joint features. Recently, Li
et al. [28] learned noise distributions from fused features to refine
mesh vertices and their projections. Apart from projection, Hampali
et al. [13] proposed using the non-maximum suppression method
to obtain potential 2D positions of joints and sample correspond-
ing appearance features. Subsequently, the features of these joints
interact with each other and are associated with joints to reduce
self-similarity. Li et al. [30] directly used latent features from the
backbone as appearance features and shared them between vertices.
The interaction between the hands and the alignment between pose
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and image is achieved through the proposed module. Jiang et al.
[19] aggregated joints’ appearance and position information using
predefined anchor points.

Despite exploring the mutual assistance between appearance and
positional features, the previous works are typically sub-optimal as
the heterogeneous features hinder interaction between them.

2.2 Heterogeneous feature Disentanglement
In pose estimation tasks, the effective utilization of heterogeneous
features of appearances and position features has not been exten-
sively explored, unlike in tasks such as multi-modal and retrieval.
Kim et al. [24] emphasized the challenge of mapping RGB values of
pixels to heterogeneous joints’ positions in human pose estimation
and proposed using intermediate representations to mitigate this
problem. Similarly, intermediate appearance representations are
commonly employed in many methods for interacting hand pose
estimation [9, 23, 33, 35, 53, 58]. Furthermore, previous methods
often map the joints or pixel coordinates into position features, to
enable the utilization of spatial relationships between them. How-
ever, they tend to overlook the heterogeneity between the two
types of features [13, 19, 28, 30, 42, 50, 54]. In contrast, we decouple
the heterogeneous appearance and position features and alleviate
ambiguous appearances by mutual enhancement between the two
feature types. In each module of our model, we employ different
strategies to utilize the relationship from both types of features.

3 METHODS
This paper proposes a framework calledDecoupled FeatureLearning
(DFL) for 3D interacting hand pose estimation from a single RGB
image. As shown in Figure 2, we adopt an encoder-decoder net-
work structure. The encoder extracts multi-scale visual features
with pixel-wise position features from the input image, see sec-
tion 3.2. Then the decoder effectively utilizes complementary het-
erogeneous features to alleviate self-similarity and achieve accurate
pose estimation, see section 3.3.

3.1 Preliminaries
In the task of 3D interacting hand poses estimation from a single
RGB image, the objective is to predict the 3D positions of joints
denoted as P3D ∈ R2𝐽 ×3 from the image I ∈ R𝐻×𝑊 ×3 where 𝐽 is
the number of joints in one hand. The joints’ 3D representation can
be derived by converting from 2.5D representation or parametric
hand model. Our method adopts the 2.5D representation, which
includes the coordinates in the image plane and the depth relative
to the root joint.

3.2 Feature Extraction Encoder
Given an input image, the pre-trained ResNet50-FPN backbone is
used to first extract multi-scale features {F𝑛 ∈ R𝐻𝑛×𝑊𝑛×𝐶𝐹 }𝑁−1

𝑛=0 ,
where 𝐻𝑛,𝑊𝑛,𝐶𝐹 , 𝑁 represent the height, width of the 𝑛-th feature
map, the channel dimension, the number of feature scales respec-
tively. To make the visual features more distinctive, we estimate
probabilistic segmentation volumes {S𝑛 ∈ R𝐻𝑛×𝑊𝑛×𝐶𝑆 }𝑁−1

𝑛=0 from
the last feature map to represent identity information for each pixel,
inspired by [9]. The low-resolution segmentation map is obtained
by down-sampling the high-resolution segmentation map. Each

volume channel represents the probability of one of the 𝐶𝑆 classes,
where 𝐶𝑆 = 33, including 16 hand part classes for each hand and 1
background class. Following that, multi-scale features and segmen-
tation volumes are concatenated along the channel dimension to
form the image appearance features {F𝑎𝑛 ∈ R𝐻𝑛×𝑊𝑛×(𝐶𝐹 +𝐶𝑆 ) }𝑁−1

𝑛=0 .
Finally, we apply position encoding to appearance features and map
the obtained position embedding to form the image position fea-
tures {F𝑝𝑛 ∈ R𝐻𝑛×𝑊𝑛×𝐶𝑃 }𝑁−1

𝑛=0 . The obtained multi-scale features
supply the decoder with information at varying granularity and
notably reduce the computational burden compared to using only
high-resolution feature maps.

Although the intermediate representation mentioned above pro-
vides rich visual cues to alleviate appearance ambiguity. However,
the visual features are only enhanced through intermediate rep-
resentations which are estimated by the interaction between ap-
pearance features, such features remain unreliable for regressing
accurate joint positions due to appearance self-similarity. Consid-
ering the complementarity but heterogeneity between appearance
features and position features, exploring appropriate methods for
effectively leveraging them is crucial.

3.3 Decoupling Heterogeneous Feature Decoder
In the previousmethod, the two types of features were directly fused
and then enhanced through feature interactions. The fused features
were subsequently mapped to regress poses. Due to the inherent
differences between the two types of features, such interaction and
mapping processes are challenging.

Based on the above observation, we propose explicitly decou-
pling the two heterogeneous features. Simultaneously, our method
allows for independent modeling of each feature type, taking into
account their respective characteristics. Moreover, it preserves the
exchange of complementary information between the two types of
features. Following this design principle, we employ different strate-
gies to effectively utilize the relationships from both appearance
and position features in each module of our model. Specifically, we
first extract the joints’ initial appearance and position features with
the guidance of appearance relationships from the image appear-
ance and position features. Next, we iteratively update the joints’
appearance and position features with the guidance of the spatial
relationships between joints and complementary relationships of
spatial and appearance between joints and the image. The total
number of iterations is 𝑇 = 𝑁 − 1.

3.3.1 Constructing Initial Joints’ Features. In light of the absence of
a consistent spatial pattern but the presence of similar appearance
patterns of each joint across different images, we compute the ap-
pearance relationship between learnable queries𝑄𝑎 ∈ R2𝐽 ×(𝐶𝐹 +𝐶𝑆 )

and the appearance features of the image without the position fea-
tures. The relationships extraction process can be formalized as
follows:

A𝑎
0 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝐷𝑃 (Q𝑎, F𝑎0 )√
𝐶𝐹 +𝐶𝑆

) . (1)

where 𝐷𝑃 (M1,M2) denotes Dot Product computation representing
the pairwise dot product operation between the row vectors of
matrixM1 and the column vectors of matrixM2. A𝑎 ∈ R2𝐽 ×(𝐻0𝑊 0)

denotes the appearance relationship matrix.
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Figure 2: Illustration of our decoupling heterogeneous feature framework: the multi-scale virtual features extracted from the
backbone. Thanks to the decoupling strategy, initial joints’ features are obtained using appearance relationship embedding in
appearance features (Initialization). Then, the features are enhanced by utilizing the 3D spatial relationships embedded in
position features (J-J). Subsequently, the complementary position and appearance relationships jointly promote the joints’
location in the image (J-I). Finally, position features are refined (SPR) and used for the regression of poses.

Therefore, the joint queries were only to learn the appearance
patterns of joints. The appearance relationships are then used to
guide the aggregation of each joint’s initial appearance and position
features from the image appearance and position feature as

J𝑎1 = A𝑎
0F

𝑎
𝑡 , J

𝑝

1 = A𝑎
0F

𝑝
𝑡 . (2)

3.3.2 Joints-Joints Spatial Relationship Modeling. Compared to
appearance relationships, spatial relationships embedded in po-
sition features are more robust in dealing with situations of severe
self-similarity. Therefore, we model the 3D spatial relationships
A𝑝′

𝑡 ∈ R2𝐽 ×2𝐽 embedded in the position features, similar to 2. These
relationships guide the enhancement of the features, resulting in
improved position and appearance features J𝑎

′
𝑡 ∈ R2𝐽 ×(𝐶𝐹 +𝐶𝑆 ) and

J𝑝
′

𝑡 ∈ R2𝐽 ×𝐶𝑃 , respectively. This enhancement process follows a
similar formulation as described in Equation 2 where the subscript
𝑡 represents 𝑡-th iteration.

We further utilize joints’ position feature in the final iterations
to model local and global skeletal structure priors like [52]. It in-
corporates lightweight GCN and an attention module called the
spatial position refinement module.

3.3.3 Joints-Image Position-Appearance Relationship Modeling. To
better facilitate the localization of joints in the image, we leverage
spatial and visual cues that are separately embedded in appearance
and position features. Instead of directly fusing two types of features

like the previous works [3, 13], we extract spatial relationships
A𝑝
𝑡 ∈ R2𝐽 ×(𝐻𝑡𝑊𝑡 ) and appearance relationships A𝑎

𝑡 ∈ R2𝐽 ×(𝐻𝑡𝑊𝑡 ) ,
respectively. Then, we add the two types of relationships together
to fuse them. These two complementary relationships guide the
interactions within each feature type.

The process outlined above can be implemented as (please refer
to the Appendix for details):

Q𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (J𝑎
′

𝑡 , J𝑝
′

𝑡 ),K𝑡 = V𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (F𝑎𝑡 , F
𝑝
𝑡 ),

J𝑎𝑡+1, J
𝑝

𝑡+1 = 𝑆𝑝𝑙𝑖𝑡 (𝐴𝑡𝑡𝑛(Q𝑡 ,K𝑡 ,V𝑡 )).
(3)

Finally, the enhanced position features are used for regressing
the pose P2.5D ∈ R2𝐽 ×3 by a linear layer.

3.3.4 Further Discussion. Ourmethod extracts relationships within
each feature type as proxies for the interaction between the features.
Different relationships are utilized in the three modules mentioned
above:

AM1 =Q𝑇
𝑎K𝑎,

AM2 =Q𝑇
𝑝K𝑝 ,

AM3 =Q𝑇
𝑎K𝑎 + Q𝑇

𝑝K𝑝 .
(4)

where Q and K represent the feature matrices.M𝑛 represents the
𝑛-th module. Subscripts 𝑎 and 𝑝 respectively denote the appear-
ance and position features. By exchanging relationships within the
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features, mutual promotion between features is facilitated. Then
these relationships guide the interaction within the features. This
is quite different from the previous work, as they involve direct
interactions or mutual mappings between heterogeneous features
to implement the mutual promotion, such as:

C𝑓 𝑢𝑠𝑖𝑜𝑛 = Q𝑎 ⊕ K𝑝 ;
C𝑝 = F𝑎−>𝑝 (Q𝑎).

(5)

where C𝑛 represents the output of the n-th class operation. The
symbol ⊕ represents various computational operations such as
matrix addition, matrix multiplication, etc. These operations are
utilized to fuse two features. F𝑎−>𝑝 denotes the function that maps
appearance features to position features.

3.4 Loss Functions
The loss function can divided into two groups, including the joint
loss and pixel-wise loss.

3.4.1 Joints Loss. Following [19], we use the combination of two
𝑠𝑚𝑜𝑜𝑡ℎL1 losses to supervise the final predicted joints as:

L2.5D = 𝛼L𝜏1 (P̂𝑢𝑣 − P𝑢𝑣) + 𝛽L𝜏2 (P̂𝑑 − P𝑑 ). (6)

where P𝑢𝑣 and P𝑑 denotes in-plane and depth coordinate of joints,
respectively. The parameter 𝛼 is set to 0.5, and the parameter 𝛽 is set
to 1. Besides, .̂ denotes the predicted values. Assuming X ∈ R𝑚×𝑛 ,
the term L𝜏 is defined as [43]:

L𝜏 (X) =


1
2𝜏

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑥2
𝑖 𝑗
, for

��𝑥𝑖 𝑗 �� < 𝜏,

𝑚∑
𝑖=1

𝑛∑
𝑗=1

��𝑥𝑖 𝑗 �� − 𝜏
2 , otherwise.

(7)

where 𝜏1, 𝜏2 are set to 1, 3 for better smoothing the depth value.
We also employ L2D to supervise intermediate results at each

iteration. Here, 𝛼, 𝛽 and 𝜏1 are set to 1, 0, 1, respectively.

3.4.2 Pixel-wise Loss. We employ the multi-class focal loss [31]
and soft dice loss to supervise part segmentation to reduce feature
ambiguity. The multi-class focal loss is defined as:

L𝐹𝑜𝑐𝑎𝑙 = −
𝐻𝑁 −1∑︁
𝑚=1

𝑊𝑁 −1∑︁
𝑛=1

𝐶𝑆∑︁
𝑗=1

T𝑚𝑛;𝑗 (1 − 𝜎 (S𝑚𝑛;𝑗 )𝛾 ) log(𝜎 (S𝑚𝑛;𝑗 ) ) . (8)

where T𝑚𝑛 ∈ R𝐶𝑆 is one-hot vector and T𝑚𝑛;𝑗 = 1 when 𝑗 is
true label. 𝜎 (·) is a softmax operation. The parameter 𝛾 makes the
model focus more on challenging samples. If 𝛾 = 0, focal loss equals
cross-entropy loss. 𝛾 is set to 2.

The multi-class soft dice loss is defined as:

L𝐷𝑖𝑐𝑒 = 1 − 1
𝐶𝑆

𝐶𝑆∑︁
𝑗=1

∑𝐻𝑁 −1
𝑚=1

∑𝑊𝑁 −1
𝑛=1 2T𝑚𝑛;𝑗𝜎 (S𝑚𝑛;𝑗 ) + 𝜖∑𝐻𝑁 −1

𝑚=1
∑𝑊𝑁 −1
𝑛=1 T𝑚𝑛;𝑗 + 𝜎 (S𝑚𝑛;𝑗 ) + 𝜖

. (9)

The 𝜖 is a smoothing coefficient that ensures numerical stability
and can also smooth the loss.

The final segmentation loss is:

L𝑠𝑒𝑔 = L𝐹𝑜𝑐𝑎𝑙 + L𝐷𝑖𝑐𝑒 . (10)

3.4.3 Total Loss. The total loss is the weighted sum of the individ-
ual losses mentioned above and can formulated as:

L𝑡𝑜𝑡𝑎𝑙 = L2𝐷 + 𝜆1L2.5𝐷 + 𝜆2L𝑠𝑒𝑔 . (11)

where 𝜆1 and 𝜆2 are set to 3 and 1 to balance losses.

4 EXPERIMENTS
4.1 Datasets and Metrics
4.1.1 Datasets. We primarily evaluate our method on the Inter-
hand2.6M. Interhand2.6M is the only published large-scale dataset
for monocular interactive hand pose estimation tasks, which in-
clude complex interactive hand pose. It contains 1.36M training data
and 849K testing data, including single-hand (SH) and interacting
hand (IH) images. For a fair comparison, we train our model and
report the results on 5 FPS SH+IH subsets with H+M annotations
following the model-free common practice [19, 37] compared to
model-free methods. When comparing with model-based methods,
we train and test our model in a filtered dataset following their
setting [30, 42].

Because the Interhand2.6M dataset has minimal background
variations, we evaluate the model’s generalization capability in the
HIC dataset from Tzionas et al. [16]. To the best of our knowledge,
this is the only publicly available RGB dataset that provides 3D
joint annotations for hands engaged in strong interactions under
natural lighting conditions. Following [35], 732 images were used.
We also conducted qualitative experiments on the RGB2Hands [51]
dataset.

4.1.2 Metrics. Firstly, the Mean Per Joint Position Error (MPJPE)
is adopted for evaluation. It is defined as the Euclidean distance
between the predicted and ground truth 3D positions after aligning
two hands with their respective root joints. Following common
practices in model-free methods, we use the wrist joint as the root
joint and do not scale the estimated pose using the gt bone lengths
when computing MPJPE. Second, we report the Percentage of Cor-
rect Keypoints (PCK) and Area Under the Curve (AUC) between 0
and 50 millimeters. Besides, FPS is used to evaluate the inference
speed. All methods are tested on a single TitanV GPU.

4.2 Implementation Details
All implementations are based on PyTorch. The Adam optimizer
with an initial learning rate of 1e-4 is used to train our network.
The model was trained for 50 epochs with a batch size 64 using four
NVIDIA Titan V GPUs. The learning rate decayed at the 24th and
35th epochs. We perform data augmentation, including random
horizontal flipping, random rotation, random scaling, and random
translation. Following [19, 42], we crop out the region of the hand
based on their bounding box and resize it to 256×256.

4.3 Ablation Study
We conduct ablation experiments on the interhand2.6m dataset.
In the following experiments, the number of iterations is set to 3,
unless otherwise specified.

4.3.1 Baseline. We first explore several network variations that
can serve as baselines. In these baseline variations, we do not em-
ploy the proposed feature decoupling strategy in the decoder. As
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Figure 3: Qualitative results of A2J [19] and ours on InterHand2.6M dataset. The ground truth of 2D and 3D poses are represented
in black color. For better visualization, we present the left and right hands separately and align the root nodes of both hands.
Besides, the lighting is adjusted for better display (not model input).

Table 1: Ablation study on baseline. J-I and J-J denote Joints-
Image interaction and Joints-Joints interaction, respectively.
SPR means Spatial Position Refinement module.

ID J-I J-J SPR MPJPE (mm)↓
Single Two All

1 9.25 14.27 11.94
2

√
8.30 11.78 10.16

3
√ √

8.05 11.18 9.72
4

√ √ √
7.98 11.05 9.62

shown in Table 1, the basic method (ID 1), which directly estimates
pose from the average pooled features extracted by the encoder,
performs poorly. Subsequently, we introduce learnable queries and
iteratively perform feature interaction between joints and the multi-
scale virtual features using cross-attention (ID 2). Since the spatial
relationships between joints are crucial for alleviating the self-
similarity issue, we further add the joints-joints interaction module,
thus forming the two-stage pipeline (ID 3). The empirical results
demonstrate that both stages enhance the network’s performance;
therefore, we adopt them in all subsequent experiments by default.
To further capture both local and global spatial relationships, we
employ a spatial position refinement module (ID 4).

4.3.2 Decoupling Strategy in Different Module. In this section, we
experiment with different decoupling strategies in each module.
The first row in Table 3 is our final model with the best feature de-
coupling strategy in each module. Compared to the model without
any feature decoupling strategy in the last row of Table 1, DFL sig-
nificantly improves by 0.63mm, 1.23mm, and 0.95mm. Subsequent
experiments will employ DFL as the baseline method.

The second row of Table 3 demonstrates the impact of learning
different joint patterns using learnable queries to guide the con-
struction of initial joints’ features from the image. Here, the query
interacts with different features to learn the corresponding pattern.
The results suggest that learning joint position patterns hinders

Table 2: Ablation study on decoupling strategy in different
stages.

Stage A P MPJPE (mm)↓
Single Two All

Best Model - - 7.35 9.82 8.67

Initialization
√

7.36 10.19 8.93√ √
7.57 10.05 8.89

J-I Iteration
√

7.68 10.19 9.02√
7.59 10.20 8.98

J-J Iteration
√

7.60 10.22 9.00√ √
7.49 10.11 8.89

Regression
√

7.76 9.99 8.94√ √
7.45 9.89 8.75

Table 3: Ablation study on the number of iterations.

Count MPJPE (mm)↓
Single Two All

2 7.56 9.86 8.78
3 7.35 9.82 8.67
4 7.36 9.78 8.65
5 7.30 9.78 8.62

network performance. This observation may be attributed to the
prior positions of the joints do not exhibit spatial preference.

The third row of Table 3 presents the impact of using different
relationships in joint-image interaction processes. It shows that
both spatial and appearance relationships contribute to the accurate
localization of joints in the image.

The fourth row of Table 3 shows the performance of using dif-
ferent relationships during joint-joints interaction processes. We
observed a slight decrease in performance when introducing ap-
pearance relationships. These results suggest that appearance rela-
tionships are ineffective in enhancing features due to self-similarity.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Decoupling Heterogeneous Features for Robust 3D Interacting Hand Poses Estimation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Comparison with state-of-the-art model-based and
model-free methods on InterHand2.6M. MPJPE, FPS, and
model size are reported.†denotes the result of the model in
the filtered IH dataset following the model-based method.

Methods MPJPE(mm)↓ FPS↑ Model ↓
Single Two All (s) Size(M)

Model-based

IntagHand [30] † - 15.74 - 19.46 39
DIR [42] † - 12.69 - 13.67 55

Model-free

InterHand [37] 12.16 16.02 14.22 58.26 47
DIGIT [9] 11.32 15.57 - 15.36 41
KPT [13] 10.99 14.34 12.78 25.57 48
A2J [13] 8.10 10.96 9.63 19.21 42
Ours 7.35 9.82 8.67 20.01 42
A2J [13]† - 11.90 - 19.21 42
Ours† - 10.68 - 20.01 42

Table 5: Comparison with state-of-the-art model-free meth-
ods on HIC. MPJPE is reported.

Methods MPJPE (mm)↓
Interhand [37] 29.75
DIGIT [9] 20.98
KPT [13] 26.38
A2J [13] 23.51
Ours 20.71

The last row of Table 3 presents the impact of employing different
features to regress pose. The findings indicate the successful decou-
pling of the two feature types, with decoupled appearance features
exhibiting no discernible positive impact on the pose regression.

4.3.3 Ablation Study On the Number of Iterations. Table 3 demon-
strates that there is limited performance improvement when in-
creasing the number of iterations beyond three times. Considering
that more iterations lead to larger model sizes and higher compu-
tational costs, the network iterates three times in total to strike a
balance between performance and efficiency.

4.4 Comparisons to State-of-the-arts Methods
4.4.1 Comparisons on Interhand2.6M. Wefirst compare ourmethod
with the most relevant model-free methods. We follow the official
data split to train and test our model. Table 4 shows that DFL signif-
icantly outperforms the state-of-the-art model-free 3D interacting
hand pose estimation method [19] under all scenarios. Specifically,
compared to the SOTA model-free methods, the improvement of
DFL is 0.75mm, 1.14mm, and 0.96mm respectively. In addition, we
have comparable FPS and model sizes compared to SOTA meth-
ods. When comparing the model-based approaches, we retrain and
retest both DFL and [19] following their dataset setting to ensure a
fair comparison. Furthermore, since the predicted bone length is

Figure 4: Comparison with SOTA model-free and model-
based methods on InterHand2.6M dataset.

meaningful for the pose estimation task, we follow the model-free
practice and do not use ground truth bone length information dur-
ing evaluation. We get the result by running their released code
and checkpoints. Results show that our results significantly surpass
SOTA model-based methods [42] by 2.01mm while having faster
inference speed and a smaller model size.

In addition, we compared our method with SOTA model-free
and model-based approaches using both PCK and AUC metrics.
Figure 4 shows that our method outperforms them at almost all
error thresholds and achieves the highest AUC score.

4.4.2 Comparisons on HIC. To evaluate the generalization of our
method, we test it on in-the-wild images. Table 5 shows the su-
periority of our method compared to other approaches. Although
DFL was not specifically designed for generalization, it achieves
state-of-the-art results. Notably, [9] demonstrates strong general-
ization ability compared to previous model-free methods. But we
still outperform it by 0.27mm, demonstrating the robustness of our
approach.

4.5 Qualitative Results
4.5.1 Qualitative results on Interhand2.6M. We present the qualita-
tive results of our method on the Interhand2.6M in Figure 3. Com-
pared to [9], our method significantly reduces ambiguity caused by
self-similarity hand appearance. On one hand, the spatial relation-
ships between joints promote a more reasonable spatial hand pose
configuration. On the other hand, the complementary position and
appearance relationship between joints and image promote better
joint-image alignment. Even under challenging poses, our method
achieves accurate pose estimation (row 2, row 4).

4.5.2 Qualitative results on in-the-wild image. Similar to [9], we
also qualitatively tested the generalization ability of our method
on in-the-wild images. It is worth mentioning we only trained our
model on the interhand2.6M dataset without fine-tuning it on any
other datasets. As shown in Figure 5, ourmethod demonstrates good
generalization under various lighting conditions and backgrounds.
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Figure 6: The first row displays the 3-iteration attention map
from the baseline without the decoupling strategy. The sec-
ond and last rows respectively demonstrate the 3-iteration
attention maps of the appearance features and position fea-
tures.

Due to the introduction of spatial relationship modeling between
joints, our method is less likely to generate unreasonable poses
although we do not explicitly use physical constraints. Further-
more, our method demonstrates robustness against self-similarity
in appearance in cases where both hands are in close interaction
compared to the previous SOTA method [9].

4.5.3 Qualitative Analysis. We investigate how the decoupled ap-
pearance and position features work together to reduce appearance
ambiguity in interacting hand pose estimation. Figure 6 shows
attention maps generated from the feature interaction between
joints and the image. The first row displays the 3-iteration atten-
tion map from the baseline without the decoupling strategy. Due to
the heterogeneity between position features and appearance, it is

challenging to achieve mutual enhancement between them. There-
fore, when there is severe self-similarity in appearance patterns,
it is hard to accurately focus on the location of joints. With the
proposed decoupling strategy, the position features utilize spatial
cues, while the appearance features employ visual cues to jointly
promote the joints’ location in the image. The second and last row
in Figure 6 respectively demonstrate the 3-iteration attention maps
of the appearance features and position features. The two types of
features mutually enhance each other, resulting in both appearance
and position features being able to independently and accurately
localize the positions of the joints in the last iteration (Please refer
to the supplementary materials for more visualizations).

5 CONCLUSION
This paper proposes the DFL framework to effectively leverage
complementary heterogeneous features to mitigate self-similarity
between different hand parts. In DFL, we explicitly decouple ap-
pearance and position features, which facilitate the interactions
within each feature type and those between both types of fea-
tures. Thanks to such a decoupling strategy, initial features are
first obtained with the guidance of appearance relationships. Next,
the features are enhanced by the guidance of spatial relationships.
Then, complementary appearance and position relationships are
fused to promote the location of joints in the image. Finally, only
positional features are used to regress the pose. The experiments
conducted on InterHand2.6M indicate that our method significantly
outperforms the previous state-of-the-art approach. Moreover, the
evaluation of images captured in the wild scenarios highlights the
robust generalization ability of our method.
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