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Abstract

In this paper, we empirically analyze a simple, non-learnable, and nonparametric Nadaraya-
Watson (NW) prediction head that can be used with any neural network architecture. In
the NW head, the prediction is a weighted average of labels from a support set. The
weights are computed from distances between the query feature and support features. This
is in contrast to the dominant approach of using a learnable classification head (e.g., a
fully-connected layer) on the features, which can be challenging to interpret and can yield
poorly calibrated predictions. Our empirical results on an array of computer vision tasks
demonstrate that the NW head can yield better calibration than its parametric counterpart,
while having comparable accuracy and with minimal computational overhead. To further
increase inference-time efficiency, we propose a simple approach that involves a clustering
step run on the training set to create a relatively small distilled support set. In addition
to using the weights as a means of interpreting model predictions, we further present an
easy-to-compute “support influence function,” which quantifies the influence of a support
element on the prediction for a given query. As we demonstrate in our experiments, the
influence function can allow the user to debug a trained model. We believe that the NW
head is a flexible, interpretable, and highly useful building block that can be used in a range
of applications.

1 Introduction

Many state-of-the-art classification models are parametric deep neural networks, which can be viewed as
a combination of a deep feature extractor followed by one or more fully-connected (FC) classification lay-
ers (He et al., 2015; Huang et al., 2016; Dosovitskiy et al., 2020). Two common problems with parametric
deep learning models are that they can be hard to interpret (Li et al., 2021) and often suffer from poor
calibration (Guo et al., 2017).

Nonparametric (and, similarly, attention-based) modeling strategies have been explored extensively in deep
learning (Wilson et al., 2015; Papernot & McDaniel, 2018; Chen et al., 2018; Kossen et al., 2021; Laenen &
Bertinetto, 2020; Iscen et al., 2022; Frosst et al., 2019). In this approach, the prediction for a given test input
(which we will also refer to as a query) is computed as an explicit function of training datapoints. These
models can be more interpretable, since the dependence on other datapoints gives an indication about what
is driving the prediction Hanawa et al. (2021). Yet, they can suffer from significant computational overhead,
can take a hit in performance versus parametric approaches, and/or require complex approximate inference
schemes (Bui et al., 2016; Salimbeni & Deisenroth, 2017).

In this work, we present an analysis of a Nadaraya-Watson (NW) head, a simple, non-learnable, and non-
parametric prediction layer based on the Nadaraya-Watson model (Nadaraya, 1964; Watson, 1964; Bishop,
2006). For a given query, a pre-defined similarity or distance is computed between query features and the
features in a “support set", which can be made up of samples from the training data. These scores are in
turn used to compute a weighted average of the labels in the support set.

As we discuss in this paper, the choice of the support set for the NW head affords the user an additional
degree of freedom in implementation. We demonstrate several ways of constructing the support set, including
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Figure 1: The NW head. Query image and support images are fed through a feature extractor gθ. Pairwise
similarities s(·, ·) (e.g. negative Euclidean distance) are computed between the query and each support fea-
ture. These similarities are normalized and used as weights for computing the weighted sum of corresponding
support labels.

a simple support set distillation approach based on clustering, and discuss the relative advantages and trade-
offs. In our experiments, we show that the NW head can achieve comparable (and sometimes better)
performance than the FC head on a variety of computer vision datasets, with little sacrifice to computation
time. In particular, we find that the NW head exhibits better calibrated predictions.

In addition, we explore two means of interpretability/explainability which fall naturally from the NW head.
The first is interpreting the support set weights, which directly correspond to the degree of contribution a
specific training datapoint has on the prediction. The second is our novel concept of “support influence",
which highlights helpful and harmful support examples and can be used as a diagnostic tool to understand
and explain model behavior. In our experiments, we demonstrate the utility of these methods for purposes
of interpreting, explaining, and potentially intervening in model predictions.

2 Related Work

2.1 Nonparametric Deep Learning and Attention

Nonparametric models in deep learning have received much attention in previous work. Deep Gaussian
Processes (Damianou & Lawrence, 2013), Deep Kernel Learning (Wilson et al., 2015), and Neural Pro-
cesses (Kossen et al., 2021) build upon Gaussian Processes and extend them to representation learning.
Other works have generalized k-nearest neighbors (Papernot & McDaniel, 2018), decision trees (Zhang et al.,
2018), density estimation (Fakoor et al., 2020), and more general kernel-based methods (Nguyen et al., 2021;
Zhang et al., 2021; Ghosh & Nag, 2001) to deep networks and have explored the interpretability that these
frameworks provide.

Closely-related but orthogonal to nonparametric models are attention-based models, most notably
self-attention mechanisms popularized in Transformer-based architectures in natural language process-
ing (Vaswani et al., 2017) and, more recently, computer vision (Dosovitskiy et al., 2020; Jaegle et al.,
2021; Parmar et al., 2018). Retrieval models in NLP learn to look up relevant training instances for pre-
diction (Sachan et al., 2021; Borgeaud et al., 2021) in a nonparametric or semiparametric manner. Many
works have recognized the inherent interpretable nature of attention and have leveraged it in vision (Chen
et al., 2018; Guan et al., 2018; Wang et al., 2017; Xu et al., 2015). More recently, nonparametric trans-
formers (NPT) (Kossen et al., 2021) applied attention in a nonparametric setting. NPT leverages self- and
cross-attention between both attributes and datapoints, which are stacked up successively in an alternating
fashion to yield a deep, non-linear architecture.

Building upon and in contrast to these prior works, we present a comparatively simple nonparametric head
which is computationally-efficient and performant, and which additionally lends itself naturally to being
interpretable.
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2.2 Metric Learning

Metric learning seeks to quantify the similarity between datapoints for use in downstream tasks (e.g., unsu-
pervised pretraining (Wu et al., 2018) or retrieval (Chen et al., 2021)). Of particular relevance to our method
is metric learning in the context of low-shot classification (Snell et al., 2017; Vinyals et al., 2016; Sung et al.,
2017; Santoro et al., 2016). In particular, Matching Networks (Vinyals et al., 2016) are most similar to our
model in the sense that it uses an NW-style model to compute predictions, where both the query image and
support set are composed of examples from unseen classes. In contrast, we analyze the NW head from a
nonparametric perspective in the typical, many-shot image classification setting.

2.3 Influence Functions

Following classical work by Cook & Weisberg (1982), Koh & Liang (2017) propose the influence function as
a means of explaining black-box neural network predictions. Let h denote a function parameterized by θ.
D = {zi : (xi, yi)}n

i=1 is a set of training examples and L(hθ(z)) indicates the loss for a training example z. θ∗

is the set of optimal parameters which minimizes the empirical risk. Similarly, the parameter set associated
with up-weighting a training example z by ϵ is found by solving:

arg min
θ

1
n

n∑
i=1

L(hθ(zi)) + ϵL(hθ(z)). (1)

Koh & Liang (2017) define influence as the change in the loss value for a particular test point zt when a
training point z is up-weighted. Using a first-order Taylor expansion and the chain rule, influence can be
approximated by a closed-form expression:

I(zt, z) = −∇L(hθ∗(zt))T H−1
θ∗ ∇L(hθ∗(z)), (2)

where Hθ∗ represents the Hessian with respect to θ∗. I(zt, z)/n is approximately the change in the loss for
the test-sample zt when a training sample z is removed from the training set. However, this result is based
on the assumption that the underlying loss function is strictly convex in θ and that the Hessian matrix
is positive-definite. Follow-up work has questioned the efficacy of influence functions in practical scenarios
where these assumptions are violated (Basu et al., 2020).

In this work, we define the support influence function which follows naturally from the NW head; it computes
the change in the loss directly on the prediction vector itself (and not indirectly through the model parameters
θ). Furthermore, it is easy-to-compute, requires no approximations, and does not require any assumptions
on convexity or differentiability.

3 Methods

3.1 Nadaraya-Watson Head

Consider a “support set” of Ns examples and their associated labels, S = {zi : (xi, yi)}Ns
i=1. This support set

can be a subset, or the whole, of the training dataset. In this paper, we will focus on the image classification
setting, where x’s are images and y’s are integer class labels from a label set C = {1, ..., C}. We will use y⃗ to
denote the one-hot encoded version of y. We note that the NW head can be used with any input data type,
not just images, and can be readily extended to the regression setting.

For a query image x, the Nadaraya-Watson prediction is computed as the weighted sum of support labels
y⃗i, where the weights quantify the similarity of the query image with each support image xi:

f(x, S) =
Ns∑
i=1

w(x, xi)y⃗i. (3)

Classically, the weights are defined as a function of handcrafted kernel functions κ:

w(x, xi) = κ(x, xi)∑Ns

j=1 κ(x, xj)
, (4)
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where κ(·, ·) quantifies the non-negative similarity between its two arguments (Bishop, 2006). Higher simi-
larity values correspond to more similar pairs of datapoints.

In the NW head, we define the weights as:

wθ(x, xi) = exp {−∥gθ(x) − gθ(xi)∥2/τ}∑Ns

j=1 exp {−∥(gθ(x) − gθ(xj))∥2/τ}
. (5)

Here, gθ is a feature extractor with parameters θ, which we implement as a neural network. τ is a temperature
hyperparameter. ∥ · ∥2 denotes Euclidean distance. Since

∑Ns

i=1 wθ(x, xi) = 1 and y⃗i’s are one-hot encoded
vectors, the output f of the estimator can be interpreted as a conditional probability for the class label given
the image and support set.

3.2 Loss Function and Training

Let D be a training set of image and label pairs. Our objective to minimize is:

arg min
θ

∑
(x,y)∈D

ES∼D L(fθ(x, S), y), (6)

where L is the cross-entropy loss. This indirectly encourages similar-looking images to have higher similarity
score, since more similar images will tend to have the same labels.

We optimize this objective using stochastic gradient descent (SGD) by sampling a mini-batch size Nb of
query-support pairs and computing gradients with respect to the mini-batch. Note that our model assumes
no dependency between support set samples; indeed, we are free to sample any arbitrary S and query
x, as long as the class of x is within the support classes. Therefore, the support set size Ns = |S| is a
hyperparameter analogous and orthogonal to the batch size Nb.

3.3 Inference

The ability to select and manipulate the support set at inference time unlocks a degree of flexibility not
possible with parametric classification models. In particular, the label set C of the support set directly
determines the label set of the resulting prediction. For example, if the user has prior knowledge of which
classes a particular query is most likely to be, the support set can be restricted to only contain those classes.

Note that we assume the model has been trained with random support sets drawn from the training data for
each mini-batch. To characterize the effect of the support set on inference, in our experiments we implement
the following “inference modes”:

1. Full. Use the entire training set: S = D.

2. Random. Sample uniformly at random over the dataset, such that each class is represented k times:
S ∼ D and |S| = k|C|.

3. Cluster. Given the trained model, we first compute the features for all the training datapoints.
Then, we perform k-means clustering on the features of the training datapoints for each class. These
k cluster centroids are then used as the support features for each class. Note that in cluster mode,
the support set does not correspond to observed datapoints.

4. Closest cluster (CC). Same as Cluster, except the support features correspond to real training
datapoints that are closest to the cluster centroids in terms of Euclidean distance.

Each mode except Full assumes that each class is represented k times in S. One can, obviously, modify this
assumption to reflect any class imbalance that might exist in the training data.
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Figure 2: Model performance across different support set sizes for DenseNet-121. Full mode and parametric
baseline are constant across support set size and are depicted as horizontal lines.

3.4 Support Influence

Koh & Liang (2017) define influence as the change in the loss as a result of upweighting a particular training
point. With an NW head, quantifying the influence of a support image to the given query is straightforward
and can be computed in closed-form. Indeed, the proposed support influence computes the change in the loss
directly on the prediction vector itself (and not indirectly through the model parameters θ), and furthermore
does not require approximations, nor assumptions on convexity or differentiability.

Denote by S−zs
= S \ zs, i.e. the support set with an element removed. For a fixed query x:

f(x, S−zs
) = f(x, S) − w(x, xs)y⃗s

1 − w(x, xs) . (7)

We define the support influence of zs on z as the change in the cross-entropy loss incurred from removing a
support element zs:

I(z, zs) = L(f(x, S−zs
), y) − L(f(x, S), y) = log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
, (8)

where superscript denotes indexing into a vector and 1 is the indicator function. The derivation is provided
in the Appendix.

4 Experiments

4.1 Experimental Setup

Datasets. We experiment with CUB-200-2011 (Bird) (Wah et al., 2011), Stanford Dogs (Dog) (Khosla
et al., 2011), Oxford Flowers (Flower) (Nilsback & Zisserman, 2008), and FGVC-Aircraft (Aircraft) (Maji
et al., 2013).
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Figure 3: Corresponding images of embeddings closest to cluster centroids, for k = 1 and k = 9.

Table 1: Accuracy ↑ / ECE ↓ (%). Bold is best and underline is second best. k = 1 for NW models.
Model Bird Dog Flower Aircraft

ResNet-18 FC 50.23 / 20.23 62.58 / 16.02 53.00 / 22.26 50.59 / 24.55
NW, Random 48.55 / 7.762 54.67 / 5.583 56.14 / 19.59 58.24 / 12.16
NW, Cluster 53.40 / 6.051 61.90 / 4.025 57.13 / 19.83 60.06 / 12.12
NW, CC 52.24 / 6.224 61.00 / 4.757 56.30 / 20.09 60.01 / 11.66
NW, Full 53.02 / 3.327 61.93 / 4.256 57.03 / 19.10 60.07 / 9.235

DenseNet-121 FC 54.32 / 17.67 67.38 / 12.74 46.46 / 26.79 50.26 / 25.03
NW, Random 55.41 / 10.74 61.53 / 10.26 55.02 / 21.89 54.67 / 12.40
NW, Cluster 56.77 / 10.78 66.58 / 8.709 55.64 / 22.27 57.58 / 11.23
NW, CC 56.32 / 10.23 66.04 / 9.535 55.44 / 22.11 56.98 / 11.39
NW, Full 56.67 / 7.997 66.93 / 4.892 55.72 / 21.39 57.73 / 8.248

Network Architecture and Hyperparameters. For the feature extractor gθ, we use a convolutional
neural network (CNN) followed by a linear projection to an embedding space of dimension d. In this work,
we experiment with the ResNet-18 (He et al., 2015) and DenseNet-121 (Huang et al., 2016) architectures
and set d = 128 and τ = 1.

Table 3: GPU inference times ↓ for ResNet-18.

Model Time (10−3 sec)
FC 4.00
NW, k = 1 4.05
NW, k = 10 4.78
NW, Full1 7.76

We train each model 3 times with different random
initializations. During training, we set the randomly
sampled support size to be Ns = 10 for all datasets,
and the mini-batch size to be Nb = 4. Empirically,
we find that Ns > 5 is necessary in order to have a
sufficient number of “negative” samples to compare
against. We use SGD with momentum 0.9, weight
decay 1e-4, and an initial learning rate of 1e-3. The
learning rate is divided by 10 after 20K and 30K
gradient steps, and training stops after 40K gradi-
ent steps. We use the standard data augmentation
technique of random flipping and cropping. All training and inference is done on an Nvidia A6000 GPU and
all code is written in Pytorch2.

Baseline. We compare the NW head to a standard parametric model with a fully-connected (FC) head.
For the parametric model, all hyperparameters are identical to NW except we train for 200 epochs, use an
initial learning rate of 0.1, and divide the learning rate by 10 after epochs 100 and 150. We found that this
setting yielded better results for the baseline models.

1Computed on Bird dataset, where k = 5994.
2Code to be provided upon publication.

6



Under review as submission to TMLR

Table 2: Accuracy ↑ / ECE ↓ (%) for label smoothing (LS) and temperature scaling (TS) for ResNet-18.
Bold is best. Cluster and k = 1 for NW models.
Model Bird Dog Flower Aircraft
FC-LS 54.64 / 15.83 62.42 / 10.79 53.65 / 3.84 51.28 / 7.16
NW-LS 54.90 / 2.097 61.71 / 2.24 56.77 / 1.99 54.24 / 3.61
FC-TS 50.23 / 2.711 62.58 / 2.208 53.00 / 4.426 50.59 / 4.423
NW-TS 53.40 / 2.460 61.90 / 1.911 57.13 / 2.693 60.06 / 5.191

4.2 Model Performance

We measure performance using accuracy (the fraction of correctly classified test cases) and expected cali-
bration error (ECE) (Guo et al., 2017; Naeini et al., 2015). ECE approximates the difference in expectation
between confidence and accuracy, computed by partitioning the model predictions into bins and taking a
weighted average of each bins’ difference between confidence and accuracy. Table 1 shows these metrics
for all models and datasets, and Fig. 4 further shows reliability diagrams. We generally observe that the
NW head achieves an accuracy that is comparable and at times better than its parametric counterpart, and
always with improved calibration.

Table 3 shows inference times for both parametric and the NW-head models, where we assume that all
support embeddings, cluster centroids, and closest cluster embeddings have been precomputed. We observe
that inference times are nearly identical to the FC head, except Full.

In Fig. 2, we plot various metrics across support set size k. Generally, performance improves as support
set size increases. This could be explained by the fact that more support images leads to more robust
predictions, as more support examples per class can average out potential errors. At the limit, Full mode
typically performs the best, at the cost of inference time.

Cluster mode often improves over Random mode and is on par with Full mode (at larger k) while having
favorable inference time. However, this comes at the cost of loss of interpretability, since the cluster centroids
do not correspond to actual images in the support set. Closest cluster addresses this deficiency, often with
minimal sacrifice to performance compared to Cluster.

Fig. 3 visualizes the support images used in Closest cluster for two classes, with k = 1 and k = 9. These
images are the prototypical examples of the class and can be interpreted as a summary or compression of
the class and dataset. We observe that for k = 1, the support image is a prototypical example of the class.
For k = 9, the images have a variety of poses and backgrounds, allowing the model to have a higher chance
of computing similarities with a wide range of class prototypes. Further research might explore leveraging
these prototypes.

Overall, our experiments indicate that the NW head has advantages in accuracy and calibration in the
datasets we tested. These datasets are small-medium in size and are relatively fine-grained; it remains to be
seen whether these results will hold on larger, diverse datasets, which we leave to future work.

4.2.1 Improving Calibration

In this experiment, we explore whether existing calibration techniques originally proposed for parametric
models can further improve calibration. We explore two popular and effective techniques: label smoothing
(LS) and temperature scaling (TS). Label smoothing (Szegedy et al., 2015) uses soft labels that are a weighted
average of the one-hot labels and the uniform distribution. We choose the weight used in the original paper,
0.1. Temperature scaling (Guo et al., 2017) is a post-training technique which optimizes the temperature
τ in the softmax computation. Following the original paper, τ is optimized with respect to the loss on the
validation set.
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Figure 4: Reliability diagrams for ResNet-18. DenseNet-121 in Appendix.

We show the results in Table 2. In general, we find that the NW head outperforms the FC head under both
LS and TS techniques. In particular, the simple, post-training technique of TS is a simple strategy that
further improves our calibration performance.

4.3 Interpretability and Explainability

In the following section, we restrict our attention to Full mode and explore the interpretability and explain-
ability aspects of the NW head.

4.3.1 Interpreting the Weights

Visualizing the support images ranked by weight w can give insight to users about how the model is making
a prediction. For cases where the model is unsure, visualizing the support images along with confidence
scores can uncover where the model is unsure and potentially allow for user intervention.

In Fig. 5, we plot three examples of a query image and the top support set images ranked by weight w, along
with the top 3 softmax predictions. We notice significant visual similarity between the query image and the
top support set images. Notably, the second query of a “cardinal" is incorrectly classified by the model. We
notice that the model is confused between the top 2 classes in the support set. The model thinks the third
query of “barbeton daisy" is most similar to “sunflowers", possibly due to the similarity in color and shape.
A user can look at the support set and potentially intervene, either by correcting the model’s prediction
or removing confounding elements from the support set. An automated method for flagging conspicuous
predictions could be based on confidence scores.

Additional visualizations are provided in Appendix A.3. In Appendix A.4, we compare against ranking
images by Euclidean distance in the feature space for the baseline FC model, and show that the degree of
semantic similarity between the query and top most similar images is lower than the NW head.

4.3.2 Explaining Model Behavior with Support Influence

Support influence can be used to debug and diagnose issues in otherwise black-box neural networks. In
this section, we explore the use of support influence in helping to determine helpful and harmful training
examples. Note that the support influence requires knowledge of the ground truth label for the query image
and thus cannot be used during inference/test time.

By ranking and visualizing the support set by support influence, we can see the support images which are
most helpful (highest I(z, zs) values) and most harmful (lowest I(z, zs) values) in predicting the given query
z. In Fig. 6, we visualize three query images and their top 5 most helpful and top 5 most harmful support
images. The top images are “helpful" in the sense that they belong to the same class as the query and look
visually similar. The bottom images are “harmful" since, despite the fact that they are visually similar, they
are a different class. For the first dog example, we see that “redbone" and “walker hound" breeds are harmful
examples for the “beagle" query image.
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Figure 5: Examples of correctly (dog) and incorrectly (bird and flower) classified query images and their top
support images ranked by w. Ordering is left to right, top to bottom.

The bird and flower queries are the same query images from Fig. 5, this time ranked by influence. For the
bird, we see that helpful and harmful support images separates the two classes that had the highest weight
and were confusing the model in Fig. 5. For the flower, we notice that the most helpful support images are
from the correct class but have different colors, whereas the images which the model thinks are most similar
to the query are in fact the most harmful. From this analysis, it is evident that the model is using the shape
and color to reason about the query image, which are confounding features for this query.

5 Conclusion

We presented the Nadaraya-Watson (NW) head as a general-purpose, flexible, and interpretable building
block for deep learning. The NW head predicts the label for a given query by taking the weighted sum of
labels in a support set. We show that the NW head can be an efficient replacement for the fully-connected
layer and offer good accuracy with excellent calibration. Additionally, the NW head is interpretable in the
sense that the weights correspond to the contribution of each support image on the query image. Finally, we
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Figure 6: Query images and support images separated by most helpful influence (top row) and most harmful
influence (bottom row).

define support influence, and show that this can be used as a tool to explain model behavior by highlighting
helpful and harmful support images.
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A Appendix

A.1 Derivation of Support Influence

We derive the expression in Eq. (8). For brevity, let f = f(x, S) and f− = f(x, S−zs).

I(z, zs) = L(f−, y) − L(f, y) =
C∑

c=1
y⃗c log f c −

C∑
c=1

y⃗c log f c
−

= log fy − log fy
−.

If y = ys, then w(x, xs) must be subtracted from fy and re-normalized to a valid probability. Otherwise, fy

is simply re-normalized:

fy
− =

{
fy−w(x,xs)
1−w(x,xs) , if y = ys

fy

1−w(x,xs) , else.

Thus,

I(z, zs) = log fy − log
(

fy − w(x, xs)1{y=ys}

1 − w(x, xs)

)
= log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
.

A.2 Connection between Support Influence and Weights

We prove that ranking by helpful/harmful examples via the support influence is equivalent to ranking by
the weights for correct and incorrect classes. Let us start from the definition of support influence in Eq. (8):

I(z, zs) = L(f(x, S−zs
), y) − L(f(x, S), y) = log

(
fy − fyw(x, xs)

fy − w(x, xs)1{y=ys}

)
.

where 0 ≤ w ≤ fy ≤ 1. Note that w ≤ fy because they are related by Eq. (3).

Separate into two cases:

I(z, zs) =
{

log
(

1−w(x,xs)
1−w(x,xs)/fy

)
, if y = ys

log(1 − w(x, xs)), else.

In the first case where y = ys, I(z, zs) increases as w increases, with the constraints on w and fy.

In the second case where y ̸= ys, I(z, zs) decreases as w increases.

In words, the support influence increases as the weight increases for the correct class, and decreases as the
weight increases for the incorrect class. Thus, the support influence can be interpreted as simply ranking by
the weights for correct and incorrect classes.
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A.3 More NW Visualizations

Figure 7: Query image, top 3 predicted probabilities, and top support ranked by weight for Bird dataset.
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Figure 8: Query image, top helpful support images, and top harmful support images ranked via support
influence for Bird dataset.
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Figure 9: Query image, top 3 predicted probabilities, and top support ranked by weight for Flower dataset.
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Figure 10: Query image, top helpful support images, and top harmful support images ranked via support
influence for Flower dataset.
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Figure 11: Query image, top 3 predicted probabilities, and top support ranked by weight for Dog dataset.
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Figure 12: Query image, top helpful support images, and top harmful support images ranked via support
influence for Dog dataset.
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A.4 Ranking FC Images By Euclidean Distance in Feature Space

Figure 13: Query image and top images ranked by Euclidean distance in feature space of FC model for Bird
dataset. The degree of semantic similarity between the query and the top images is lower than the NW
model (see differences in class labels).
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Figure 14: Query image and top images ranked by Euclidean distance in feature space of FC model for
Flower dataset. The degree of semantic similarity between the query and the top images is lower than the
NW model (see differences in class labels).
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Figure 15: Query image and top images ranked by Euclidean distance in feature space of FC model for Dog
dataset. The degree of semantic similarity between the query and the top images is lower than the NW
model (see differences in class labels).
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A.5 Performance vs. support set size on ResNet-18

A.6 Reliability diagram on DenseNet-121
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