Scalable Feature Learning on Huge Knowledge
Graphs for Downstream Machine Learning

Félix Lefebvre Gaél Varoquaux
SODA Team, Inria Saclay SODA Team, Inria Saclay
felix.lefebvre@inria.fr Probabl.ai

gael.varoquaux@inria.fr

Abstract

Many machine learning tasks can benefit from external knowledge. Large knowl-
edge graphs store such knowledge, and embedding methods can be used to distill
it into ready-to-use vector representations for downstream applications. For this
purpose, current models have however two limitations: they are primarily opti-
mized for link prediction, via local contrastive learning, and their application to the
largest graphs requires significant engineering effort due to GPU memory limits.
To address these, we introduce SEPAL: a Scalable Embedding Propagation ALgo-
rithm for large knowledge graphs designed to produce high-quality embeddings for
downstream tasks at scale. The key idea of SEPAL is to ensure global embedding
consistency by optimizing embeddings only on a small core of entities, and then
propagating them to the rest of the graph with message passing. We evaluate
SEPAL on 7 large-scale knowledge graphs and 46 downstream machine learning
tasks. Our results show that SEPAL significantly outperforms previous methods
on downstream tasks. In addition, SEPAL scales up its base embedding model,
enabling fitting huge knowledge graphs on commodity hardware. Our code is
available at: https://github.com/flefebv/sepal.git.

1 Introduction: embedding knowledge for downstream tasks

External knowledge for machine learning Bringing general knowledge to a machine-learning
task revives an old promise of making it easier via this knowledge [Lenat and Feigenbauml, 2000].
Indeed, data science is often about entities of the world —persons, places, organizations— that are well
characterized in general-purpose knowledge graphs. These graphs carry rich information, including
numerical attributes and relationships between entities, and can be connected to string values in
tabular data through entity linking techniques [Mendes et al., 2011} [Foppiano and Romaryl 2020,
Delpeuch,2019]. A thorny challenge, however, is to transform this relational information into features
for downstream tabular machine learning [Kanter and Veeramachaneni, 2015} |Cappuzzo et al., 2025|
Robinson et al.,2025]. To that end, a scalable solution is offered by graph embedding methods that
distill the graph information into node features readily usable by any downstream tabular learner
[[Grover and Leskovec, [2016| |Cvetkov-Iliev et al., [2023| Ruiz et al., [2024].

Knowledge graphs as general knowledge sources The rapid growth of general-purpose knowledge
graphs brings the exciting prospect of a very general feature enrichment. Indeed, a richer knowledge
graph provides more comprehensive coverage and context, thereby bringing greater value to the
downstream analysis [Ruiz et al.;[2024]]. ConceptNet pioneered the distribution of general-knowledge
embeddings, building on a graph of 8 million entities [[Speer et al., 2017]]. Since then, knowledge
graphs have continued to expand rapidly. For instance, as of 2025, Wikidata [Vrandeci¢ and

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/flefebv/sepal.git

Krotzsch, 2014] describes 115M entities and gains around 15M yearly [Wikimedia], and YAGO4
[Pellissier Tanon et al.||2020] gives a curated view on 67M entities.

Optimizing embeddings for the right task In parallel, the sophistication of knowledge-graph
embedding (KGE) models is increasing [Bordes et al.,[2013|,[Yang et al., 2015, Balazevic et al.,[2019a],
capturing better the relational aspect of the data, important for downstream tasks [Cvetkov-Iliev et al.|
2023|. However, most of the KGE literature prioritizes link prediction as the primary benchmark,
despite recent findings showing that strong performance on this task does not correlate with improved
performance on downstream predictive tasks [Ruffinelli and Gemullal 2024]]. One reason may be
that, for link prediction, models typically optimize for local contrasts, resulting in embeddings that
are not calibrated [Tabacof and Costabello, 2020, Arakelyan et al., [2023]]. While prior work has
explored multi-hop reasoning to capture more complex graph patterns [Hamilton et al., [2018| |Ren
and Leskovec| 2020], the standard evaluation paradigm for KGEs still revolves around internal tasks,
rather than how the learned embeddings can transfer knowledge to practical machine-learning tasks
beyond the knowledge graph itself.

The importance of scalability To leverage the full potential of very large knowledge graphs,
embedding methods must be highly scalable. While many methods have been proposed to scale
KGE models, doing so is not trivial. Sophisticated KGE models are typically demonstrated on small
datasets like FB 15k (15k entities) or WN18 (40k entities), which are orders of magnitude smaller than
modern general-purpose or industrial knowledge graphs [Sullivan,2020]. The common solution to
this scalability challenge is either distributed computation across multiple GPUs or machines [Lerer
et al.,[2019} Zhu et al., 2019} Zheng et al., 2020l Dong et al., [2022} [Zheng et al., [2024]], or leveraging
the full memory hierarchy (disk, CPU, and GPU) on a single machine [Mohoney et al., [2021} [Ren
et al.,[2022]]. These approaches require significant engineering effort to manage data partitioning,
optimize data movement, and minimize synchronization overheads.

Contributions In this paper, we aim to bridge the gap between advances in embedding methods
and the goal to create large and reusable general-knowledge embeddings for downstream applications.
We introduce SEPAL, a scalable algorithm that applies as a wrapper to many embedding models. Our
contributions are:

1. We propose a new embedding optimization strategy that enforces global consistency. Instead
of optimizing all embeddings with local contrastive learning, SEPAL first processes a small but
dense core of the graph, to learn relation and core-entity embeddings. It then propagates these
embeddings to the remaining entities using relation-aware message passing. The absence of
negative sampling at this propagation stage accelerates the embedding computation and makes
them better suited for downstream tasks.

2. We provide a theoretical analysis showing that SEPAL’s propagation step, combined with DistMult,
implicitly maximizes the alignment of embeddings within positive triples.

3. We introduce BLOCS, a scalable graph-splitting algorithm that partitions huge, scale-free graphs
into manageable, overlapping subgraphs. This enables fitting the embedding process on a single
GPU, avoiding the engineering complexity of distributed systems. Here, the challenge lies in the
scale-free and connectivity properties of a large knowledge graph: some nodes are connected to a
significant fraction of the graph, while others are hard to reach.

4. We conduct an extensive empirical study on 7 large knowledge graphs and 46 downstream tasks.
Results show that SEPAL significantly outperforms standard methods on downstream tasks and is
generally faster than existing large-scale systems. Moreover, it scales to ultra-large graphs with
little computational resources: we embed WikiKG90Mv2 —91M entities, 601M triples— with a
single 32GB V100 GPU. Our experimental results also highlight that using such large knowledge
graphs is beneficial for downstream tasks in real-world feature enrichment scenarios.

We start by reviewing related work in|section 2| Then, [section 3|describes our contributed method
and gives a theoretical analysis. In we evaluate SEPAL’s performance on
knowledge graphs of increasing size between YAGO3 [2.6M entities, Mahdisoltani et al., 2014]]
and WikiKG90Mv2 [91M entities, Hu et al.| 2020]]; we study the use of the embeddings for feature
enrichment on 46 downstream machine learning tasks, showing that SEPAL makes embedding
methods more tractable while generating better embeddings for downstream tasks. Finally,
discusses the contributions and limitations of SEPAL.

Table 1: Expression of ¢ in some Model Relational operator ¢

embedding models. ® denotes the TransE [Bordes et al., 2013] 0, +w,
Hadamard product, ® the Hamilton MuRE [Balazevic et al[2019a] 0,0 p, —w,
product, and x; the tensor product RotatE [Sun et al})2019] 09, O w,
along mode i. The models we list QuatE [Zhang et al.,[2019] 0, @ w,
here are all compatible with our pro- DistMult [Yang et al.|[2015] 0y, O w,
posed SEPAL approach_ ComplEx [Trouillon et al.}[2016] 0y, © w,

TuckER [Balazevic et al.;[2019b| W X1 0 X2 w,

2 Related work: embedding optimization and scalability

Knowledge graphs are multi-relational graphs storing information as triples (h, r,t), where h is the
head entity, 7 is the relation, and # is the tail entity. We denote) and R respectively the set of entities
and relations, and /C the set of triples of a given knowledge graph (L C V x R x V).

2.1 Optimizing knowledge-graph embeddings

Here, we provide an overview of approaches to generate low-dimensional (typically d = 100)
vector representations for the entities, that can be used in downstream applications. These include
both graph-embedding techniques, that leave aside the relations, and KGE methods accounting for
relations.

Graph embedding A first simple strategy to get very cost-effective vector representations is to
compute random projections. This avoids relying on —potentially costly— optimization, and provides
embeddings preserving the pairwise distances to within an epsilon [Dasgupta and Gupta, 2003].
FastRP [Chen et al.,|2019a]] proposes a scalable approach, with a few well-chosen very sparse random
projections of the normalized adjacency matrix and its powers.

Another family of methods performs explicit matrix factorizations on matrices derived from the
adjacency matrix, for instance GraREP [Cao et al.,2015]] or NetMF [Qiu et al.,|2018]]. These methods
output close embedding vectors for nodes with similar neighborhoods.

Similarly, Skip-Gram Negative Sampling (SGNS), behind word2vec [Mikolov et al., 2013alb],
performs an implicit factorization [Levy and Goldberg, [2014]. It has been adapted to graphs:
DeepWalk [Perozzi et al.| [2014]] and node2vec [|[Grover and Leskovec], 2016] use random walks on the
graph to generate “sentences” fed to word2vec. LINE [Tang et al.l 2015]] explores a similar strategy
varying edge sampling. Here, the loss function is typically a binary logistic regression objective:

p
Lscns = — log 0(9:;00%) - Zlog (1 - U(Oliewt)> (M
i=1

with 8, and 6,,, the embeddings of the target and context nodes (or words), w; the i-th negative
sample drawn from a noise distribution, p the number of negative samples, and ¢ the sigmoid function.

Knowledge-graph embedding RDF2vec [Ristoski and Paulheim| 2016] adapts SGNS to multi-
relational graphs by simply adding the relations to the generated sentences.

More advanced methods model relations as geometric transformations in the embedding space. These
triple-based methods, inspired by SGNS, represent the plausibility of a triple given the embeddings
0, w,, 0, of the entities and relation with a scoring function f(h, r,t) often written as

Scoring function f(h,rt) = —sim(¢(Op, w,), O:) 2)

where ¢ is a model-specific relational operator, and sim a similarity function. The embeddings are
optimized by gradient descent to maximize the score of positive triples, and minimize that of negative
ones. A possible loss function is the binary cross-entropy loss [Ali et al.,2021al]

p
Loce = —logo(f(h,rt)) =Y log (1 - o(f(hi,r 1)) ©)
i=1

which boils down to SGNS for f(h,r,t) = 0, 8. These models strive to align, for positive triples,
the tail embedding 6; with the “relationally” transformed head embedding ¢(8},, w,.). The challenge
is to design a clever ¢ operator to model complex patterns in the data, like hierarchies, compositions,
or symmetries. Indeed some relations are one-to-one (people only have one biological mother), well
represented by a translation [Bordes et al.| 2013]], while others are many-to-one (for instance many
person were BornIn Paris), calling for ¢ to contract distances [Wang et al.,|2017]. Many models
explore different parametrizations, among which MuRE [Balazevic et al.| 2019al], RotatE [Sun et al.,
2019]], or QuatE [Zhang et al.| 2019] have good performance [Ali et al.,2021al]. This framework
also includes models like DistMult [[Yang et al., 2015]], ComplEx [Trouillon et al., 2016]], or TuckER
[Balazevic et al., 2019b], that implicitly perform tensor factorizations.

Embedding propagation To smooth computed embeddings, CompGCN [Vashishth et al., [2020]
introduces the idea of propagating knowledge-graph embeddings using the relational operator ¢,
but couples it with learnable weights and a non-linearity. REP [Wang et al., |2022]] simplifies this
framework by removing weight matrices and non-linearities. [Rossi et al.|[2022] also use Feature
Propagation, but to impute missing node features in graphs. |Albooyeh et al.| [2020] incorporate
propagation within the standard link prediction pipeline, with negative sampling and gradient descent
on standard KGE loss functions.

2.2 Techniques for scaling graph algorithms

Various tricks help scale graph algorithms to the sizes we are interested in —millions of nodes.

Graph partitioning Scaling up graph computations, for graph embedding or more generally, often
relies on breaking down graphs in subgraphs. Appendix [E.T| presents corresponding prior work.

Local subsampling Other forms of data reduction can help to scale graph algorithms (e.g. based on
message passing). Algorithms may subsample neighborhoods, as GraphSAGE [Hamilton et al., 2017]]
that selects a fixed number of neighbors for each node on each layer, or MariusGNN [Walefte et al.|
2023]] that uses an optimized data structure for neighbor sampling and GNN aggregation. Cluster-
GCN [Chiang et al., 2019] restricts the neighborhood search within clusters, obtained by classic
clustering algorithms, to improve computational efficiency. GraphSAINT [Zeng et al., 2020] samples
overlapping subgraphs through random walks, for supervised GNN training via node classification,
optimizing GNN weights without processing the full graph.

Multi-level techniques Multi-level approaches, such as HARP [[Chen et al.,|2018]], GraphZoom
[Deng et al., 2020] or MILE [Liang et al., 2021]], coarsen the graph, compute embeddings on the
smaller graph, and project them back to the original graph.

2.3 Scaling knowledge-graph embedding

Parallel training Many approaches scale triple-level stochastic solvers by distributing training
across multiple workers, starting from the seminal PyTorch-BigGraph (PBG) [Lerer et al., 2019]]
that splits the triples into buckets based on the partitioning of the entities. The challenge is then to
limit overheads and communication costs coming from 1) the additional data movement incurred
by embeddings of entities occurring in several buckets 2) the synchronization of global trainable
parameters such as the relation embeddings. For this, DGL-KE [Zheng et al., 2020] reduces data
movement by using sparse relation embeddings and METIS graph partitioning [Karypis and Kumar,
1997] to distribute the triples across workers. HET-KG [Dong et al., 2022] further optimizes
distributed training by preserving a copy of the most frequently used embeddings on each worker, to
reduce communication costs. These “hot-embeddings" are periodically synchronized to minimize
inconsistency. SMORE [Ren et al.| 2022] leverages asynchronous scheduling to overlap CPU-based
data sampling, with GPU-based embedding computations. Algorithmically, it contributes a rejection
sampling strategy to generate the negatives at low cost. GraphVite [Zhu et al.,[2019] accelerates SGNS
for graph embedding by both parallelizing random walk sampling on multiple CPUs, and negative
sampling on multiple GPUs. Marius [Mohoney et al.,2021]] reduces synchronization overheads by
opting for asynchronous training of entity embeddings with bounded staleness, and minimizes 10
with partition caching and buffer-aware data ordering. GE2 [Zheng et al.,|2024] improves data swap
between CPU and multiple GPUs. Finally, the LibKGE [Broscheit et al., 2020] Python library also

>

1.a. Core selection . 2. Core embedding HS g

with traditional KGE E

core embeddings O,
core subgraph relation embeddings W,

- e |

3. Embedding propagation
. . Qé@ . with message passing
Input graph 7 ,." I'“

L 5 0%7 outer ve---c7 — > EEEE

R subgraphs .- - - :
1.b. BLOCS o ubgrophe -

decomposition Do ﬁo :
: FE : outer
| K RNt / embeddings 0,

Figure 1: SEPAL’s embedding pipeline. First, a core subgraph is extracted from the input knowledge
graph (step /.a). BLOCS then subdivides this input knowledge graph into outer subgraphs (step
1.b). Next, the core subgraph is embedded using traditional KGE models, which generate vector
representations for both core entities and relations (step 2.). Finally, these embeddings are propagated
with message passing to each outer subgraph successively (step 3.).

supports parallel training and includes GraSH [Kochsiek et al., 2022, an efficient hyperparameter
optimization algorithm for large-scale KGE models.

Parameter-efficient methods Other approaches reduce GPU memory pressure by limiting the
number of parameters. NodePiece [Galkin et al.,|2022]] and EARL [[Chen et al.,2023]] embed a subset
of entities and train an encoder to compute the embeddings of the other entities. However, their
tokenization step is costly, and they have not been demonstrated on graphs larger than 2.5M nodes.

3 SEPAL: revisiting knowledge-graph embedding optimization

Most work on scaling knowledge-graph embedding has focused on efficient parallel computing to
speed up stochastic optimization. We introduce a different approach, SEPAL, which changes how
embeddings are computed, enforcing a more global structure, beneficial for downstream tasks, while
avoiding much of the optimization cost. To that end, SEPAL proceeds in three steps (Figure T)):

1. separates the graph in a core and a set of connected overlapping outer subgraphs that cover the
full graph;

2. uses a classic KGE model to optimize the embeddings of the core entities and relations;

3. propagates the embeddings from the core to the outer subgraphs, using a message-passing strategy
preserving the relational geometry and ensuring global embedding consistency, with no further
training.

SEPAL’s key idea is to allocate more computation time to the more frequent entities and then use
message passing to propagate embeddings at low cost to regions of the graph where they have not
been computed yet. It departs from existing embedding propagation methods [Vashishth et al., 2020,
Wang et al., [2022] that compute embeddings on the full graph and use propagation as post-processing
to smooth them. SEPAL is compatible with any embedding model whose scoring function has the

form given by examples of which are provided in

3.1 Splitting large graphs into manageable subgraphs

Breaking up the graph into subgraphs is key to scaling up our approach memory-wise. Specifically,
we seek a set of subgraphs that altogether cover the full graph but are individually small enough to fit
on GPUgs, to enable the subsequent GPU-based message passing.

Core subgraph SEPAL first defines the core of a knowledge graph. The quality of the core embed-
dings is particularly important, as they serve as (fixed) boundary conditions during the propagation
phase. Good relation embeddings are also key to structuring the propagation. To optimize this quality,
two key factors must be considered during core selection: /) ensuring a dense core subgraph by
selecting the most central entities and 2) achieving full coverage of relation types. Yet, there can be a
trade-off between these two objectives, hence, SEPAL offers two core selection procedures:

Degree-based selection: This simple approach selects the top entities by degree —with proportion
7, € (0,1)— and keeps only the largest connected component of the induced subgraph. The
resulting core is dense, which boosts performance for entity-centric tasks like feature enrichment
(Appendix [F2.2). However, it does not necessarily contain all the relation types.

Hybrid selection: To ensure full relational coverage, this method combines two sampling strategies.
First, it selects entities with the highest 7,, degrees. Second, for each relation type, it includes entities
involved in edges with the highest 7. degrees (where degree is the sum of the head and tail nodes’
degrees). The union of these two sets forms the core, and if disconnected, SEPAL reconnects it
by adding the necessary entities (details in Appendix . Hyperparameters 7,,, 7. € (0,1) are
proportions of nodes and edges that control the core size.

Compared to degree-based selection, hybrid selection benefits tasks relying on relation embeddings,
such as link prediction. However, its additional relation-specific edge sampling and reconnection
steps can be computationally expensive for knowledge graphs with many relations. For disconnected
input graphs, all connected components other than the largest one are added to the core subgraph.

Outer subgraphs The next class of subgraphs that we generate —the outer subgraphs— aim at
covering the rest of the graph. The purpose of these subgraphs demands the following requirements:

R1: connected the subgraphs must be connected, to propagate the embeddings;

R2: bounded size the subgraphs must have bounded sizes, to fit their embeddings in GPU memory;
R3: coverage the union of the subgraphs must be the full graph, to embed every entity;

R4: scalability extraction must run with available computing resources, in particular memory.

Extracting such subgraphs is challenging on large knowledge graphs. These are scale-free graphs
with millions of nodes and no well-defined clusters [Leskovec et al.| 2009]. They pose difficulties
to partitioning algorithms. For instance, algorithms based on propagation, eigenvalues, or power
iterations of the adjacency matrix [Raghavan et al., 2007, |Shi and Malik, 2000, Newman), 2006]
struggle with the presence of extremely high-degree nodes that make the adjacency matrix ill-
conditioned. None of the existing partitioning algorithms satisfy our full set of constraints, and thus
we devise our own algorithm, called BLOCS and described in detail in Appendix [E] To satisfy the
requirements despite these challenges, BLOCS creates overlapping subgraphs.

We contribute BLOCS, an algorithm designed to break large graphs into Balanced Local Overlapping
Connected Subgraphs. The name summarizes the goals: 1) Balanced: BLOCS produces subgraphs
of comparable sizes. m, the upper bound for subgraph sizes, is a hyperparameter. 2) Local: the
subgraphs have small diameters. This locality property is important for the efficiency of SEPAL’s
propagation phase, as it reduces the number of propagation iterations needed to converge to the global
embedding structure. 3) Overlapping: a given node can belong to several subgraphs. This serves
our purpose because it facilitates information transfer between the different subgraphs during the
propagation. 4) Connected: all generated subgraphs are connected.

BLOCS uses three base mechanisms to grow the subgraphs: diffuse (add all neighboring entities
to the current subgraph), merge (merge two overlapping subgraphs), and dilate (add all unassigned
neighboring entities to the current subgraph). There are two different regimes during the generation of
subgraphs. First, few entities are assigned, and the computationally effective diffusion quickly covers
a large part of the graph, especially entities that are close to high-degree nodes. However, once these
close entities have been assigned, the effectiveness of diffusion drops because it struggles to reach
entities farther away. For this reason, BLOCS switches from diffusion to dilation once the proportion
of assigned entities reaches a certain threshold h (a hyperparameter chosen ~ .6, depending on the
dataset). By adding only unassigned neighbors to subgraphs, dilation drives subgraph growth towards
unassigned distant entities. However, the presence of long chains can drastically slow down this
regime because they make it add entities one by one. Some knowledge graphs have long chains, for

instance YAGO4.5 (see Diameter in [Table 2)). To tackle them, BLOCS switches back to diffusion for
a few steps, with seeds taken inside the long chains.

BLOCS works faster on graphs that have small diameters, where most entities can be reached during
the diffusion regime and fewer dilation steps are required (Appendix [F.T).

3.2 Core optimization with traditional KGE models

Once the core subgraph is defined, SEPAL trains on GPU any compatible triple-based embedding
model (DistMult, TransE, ...). This process generates embeddings for the core entities and relations,
including inverse relations, added to ensure connectedness for the subsequent propagation step.

3.3 Outside the core: relation-aware propagation

Key to SEPAL’s global consistency of embeddings and to computational efficiency is that it does not
use contrastive learning and gradient descent for the outer entities. Instead, the final step involves an
embedding propagation that is consistent with the KGE model (multiplication for DistMult, addition
for TransE, ...) and preserves the relational geometry of the embedding space. To do so, SEPAL
leverages the entity-relation composition function ¢ (given by used by the KGE model, and
the embeddings of the relations w,. trained on the core subgraph. From[Equation 2|one can derive, for
a given triple (h, r,t), the closed-form expression of the tail embedding that maximizes the scoring
function arg maxg, f(h,r,t) = ¢(6p, w,). SEPAL uses this property to compute outer embeddings
as consistent with the core as possible, by propagating from core entities with message passing.

0., if entity u belongs the core subgraph,

First, the embeddings are initialized with 0730) = .
0, otherwise.

Then, each outer subgraph S C K is loaded on GPU, merged with the core subgraph C, and SEPAL
performs 7" steps of propagation (7' is a hyperparameter), with the following message-passing
equations:

Message: mﬁﬁl) = Z gb(@it),wr) @
(v,r,u)€SUC
Aggregation: aﬁf“) = Z mfff) ®)
veN (u)
B(t) Sf""l)
Update: 9£t+1) 0, taa)

" [et
u u 9

where N (u) denotes the set of neighbors of outer entity u, K the set of positive triples of the
graph, and « a hyperparameter similar to a learning rate. During updates, {5 normalization projects
embeddings on the unit sphere. With DistMult, this accelerates convergence by canceling the effect
of neighbors that still have zero embeddings. Normalizing embeddings is a common practice in
knowledge-graph embedding [Bordes et al., 2013 [Yang et al., 2015]], and SEPAL acts accordingly.
During propagation, the core embeddings remain frozen.

4 Theoretical analysis: embedding alignment

SEPAL minimizes a global energy via gradient descent Proposition shows that SEPAL
with DistMult minimizes an energy that only accounts for the positive triples. The more aligned
the embeddings within positive triples, the lower this energy. In self-supervised learning, negative
sampling is needed to prevent embeddings from collapsing to a single point [Hafidi et al., [2022].
However, in our case, this oversmoothing is avoided thanks to the boundary conditions of fixed
core-entities and relations embeddings, which act as “anchors” in the embedding space.

Proposition 4.1 (Implicit Gradient Descent). Let £ be the “alignment energy” defined as
£=— Z <9t7 ¢(0h7w7“)>) (7)
(h,rt)eC

with ¢(0y, w,) = 0}, © w, being the DistMult relational operator. Then, SEPAL’s propagation step
amounts to a mini-batch projected gradient step descending £ under the following conditions:

1. SEPAL uses DistMult as base KGE model;
2. the embeddings of relations and core entities remain fixed, and serve as boundary conditions;
3. the outer subgraphs act as mini-batches.

As a consequence, SEPAL converges towards a stationary point of £ on the unit sphere.

Proof sketch. For an outer entity u, the gradient update of its embedding 93“) = 0;” — n%
boils down to SEPAL’s propagation equation, for a learning rate n = «. See Appendix [D.2] for
O

detailed derivations.

Analogy to eigenvalue problems Appendix [D.I]|shows that SEPAL’s propagation, when combined
with DistMult, resembles an Arnoldi-like iteration, suggesting that entity embeddings converge
toward generalized eigenvectors of an operator that integrates both global graph structure and relation
semantics (via fixed relation embeddings).

Queriability of embeddings Assume that each entity u € V is associated with a set of scalar
features x,, € R™, such that x,, ; denotes the i-th property of u. We say that the embeddings support
queriability with respect to property ¢ € 1,...,m if,

3f; € F suchthat f£i(0,) ~ x,, (®)

where F denotes a class of functions from R? to R constrained by some regularity conditions. This
queriability property is key to the embeddings’ utility to downstream machine learning tasks.

In knowledge graphs, properties x,, ; that are explicitly represented by triples (u, r;, v;) can be recov-
ered via the scoring function ¢ used in the model, under the condition of well-aligned embeddings.
Specifically, when such a relation r; exists, a natural querying function is

firx = ¢z, w,,) ©)
where w,., is the embedding of relation r; (we assume scalar embeddings for simplicity).

Proposition [4.1] shows that SEPAL minimizes an energy that promotes global alignment between
embeddings of positive triples, which we argue leads to embeddings with high queriability. In
contrast, classic KGE methods use negative sampling to incorporate a supplementary constraint of
local contrast between positive and negative triples. This adds discriminative power to the model,
useful for link prediction, but can be detrimental to the global alignment of embeddings, which is
important for queriability.

5 Experimental study: utility to downstream tasks

Knowledge graph datasets To compare large knowledge graphs of different sizes, we use Freebase
[Bollacker et al.,[2008]], WikiKG90Mv?2 [(an extract of Wikidata) Hu et al.,[2020], and three gener-
ations of YAGO: YAGO?3 [Mahdisoltani et al., 2014]], YAGO4 [Pellissier Tanon et al., [2020]], and
YAGO4.5 [Suchanek et al.,[2024]. We expand YAGO4 and YAGO4.5 into a larger version containing
also the taxonomy, i.e., types and classes —which algorithms will treat as entities— and their relations.
We discard numerical attributes and keep only the largest connected component (Appendix [A.T). To
perform an ablation study of SEPAL without BLOCS for which we need smaller datasets, we also
introduce Mini YAGO3, a subset of YAGO3 built with the 5% most frequent entities. Knowledge

graph sizes are reported in

On real-world downstream regression tasks We evaluate the embeddings as node features in
downstream tasks [[Grover and Leskovec, [2016, (Cvetkov-Iliev et al., 2023} [Robinson et al., 2025
Ruiz et al.| [2024]]. Specifically, we incorporate the embeddings in tables as extra features and
measure the prediction improvement of a standard estimator in regression tasks. This setup allows
us to compare the utility of knowledge graphs of varying sizes. Indeed, for a task, a suboptimal
embedding of a larger knowledge graph may be more interesting than a high-quality embedding of a
smaller knowledge graph because the larger graph brings richer information, on more entities. We
benchmark 4 downstream regression tasks [adapted from |Cvetkov-Iliev et al.,|2023|: Movie revenues,
US accidents, US elections, and housing prices. Details are provided in Appendix[A.2]

a) Performance/cost Pareto frontier

Larger knowledge graphs do bring value
[ure 2), as they cover more entities of the down-

stream tasks (Figure 4). For each source graph, o 1o SEPAL V--=------=--1

SEPAL provides the best embeddings and is much ﬁ 0.9 1 P 4>

more scalable (details in [Figure 5). Consider- 2 0.8 - i '

ing performance/cost Pareto optimality across s o P

methods and source graphs (Figure 2h), SEPAL % 0.7 1 PBG

achieves the best performance with reduced cost, 5

but the simple baseline FastRP also gives Pareto- & 0.6 1

optimal results, for smaller costs. Although Fas- & 0.5 -

tRP discards the type of relation, it performs better s NodePiece

than most dedicated KGE methods. Its iterations < 0.4

also solve a more global problem, like SEPAL ™ T T
1min 1lh 1d

(Appendix [D.T).

We used DistMult as base model as it is a classic
and good performer [Ruffinelli et al.| 2020, Kadlec

Embedding computation time

Embeddings computed on:

® YAGO3 A YAGOA4.5 < Freebase
et al., |2017, Jain et al.l 2020]. shows B YAGO4 Y YAGO4S5+T » WikiKGIOMv2
that SEPAL can speed up DistMult over 20 times @ YAGO4+T
for a given training configuration. For other scor- For each source:
ing functions like RotatE and TransE, @ best not best

shows that SEPAL also improves the downstream

performance of its base model b) Critical difference diagram (28 tasks)

3 2 1
1 1 L
PBG — L sSepAL

On WikiDBs tables We also evaluate SEPAL on
tables from WikiDBs [Vogel et al.,2024], a corpus
of databases extracted from Wikidata. We build

42 downstream tables (26 classification tasks, and
16 regression tasks), described in Appendix[A.2]
Four of them are used as validation tasks, to tune
hyperparameters, and the remaining 38 are used as
test tables. [Figure 3|presents the aggregated results
on these 38 test tables, showing that, here also,
applying SEPAL to very large graphs provides
the best embeddings for downstream node regres-
sion and classification, and that SEPAL brings
a decreased computational cost. Regarding the
performance-cost tradeoff, FastRP is once again
Pareto-optimal for small computation times, high-

Figure 2: Statistical performance on real-
world tables. a) Pareto frontiers of averaged
normalized prediction scores with respect to em-
bedding times (log-scale). b) Critical differ-
ence diagrams [Terpilowski, [2019] of average
ranks among the three methods (SEPAL, PBG
and DGL-KE) that scale to every knowledge-
graph dataset. The ranks are averaged over all
tasks; a task being defined as the combination
of a downstream table and a source knowledge
graph. SEPAL gets the best average downstream
performance for each of the 7 source knowledge

lighting the benefits of global methods. graphs. gives the detailed results for

each table. Appendix [B.T]details the metric used.
6 Discussion and conclusion

Benefits of larger graphs We have studied how to build general-knowledge feature enrichment
from huge knowledge graphs. For this purpose, we have introduced a scalable method that captures
more of the global structure than the classic KGE methods. Our results show the benefit of embedding
larger graphs. There are two reasons to this benefit: (1) larger knowledge graphs can result in larger
coverage of downstream entities (another important factor for this is the age of the dataset: recent
ones have better coverage) (2) for two knowledge graphs with equal coverage, the larger one can
result in richer representations because the covered entities have more context to learn from.

Limitations Our work focuses on embeddings for feature enrichment of downstream tables, an
active research field [[Cvetkov-Iliev et al.,[2023| Ruiz et al., 2024, [Robinson et al.,[2025[]. Another
popular use case for embeddings is knowledge graph completion. However, this task is fundamentally
different from feature enrichment: embeddings optimized for link prediction may not perform well
for feature enrichment, and vice versa [Ruffinelli and Gemullal, [2024]]. Nevertheless, we also evaluate
SEPAL on knowledge graph completion, for which we expect lower performances given that SEPAL
does not locally optimize the contrast between positive and negative triples scores. Results reported in
Appendix show that SEPAL sometimes performs lower than existing methods (DGL-KE, PBG)

WikiDBs regression (98 tasks) WikiDBs classification (168 tasks)

a) Critical difference diagrams

3 2 1 3 2 1
1 1 1 1 1
PBG L SEPAL L——sepPaL
PBG
b) Performance/cost Pareto frontiers
i SEPAL) Embeddings
0.8 Woonnennenen 5 SE‘F:_A_':__,» ----- computed on:
o A P ® 0.8 T Tx A ® YAGO3
63 ¢ o To : PBG| m vaGo4
oo 0.6 : ® 9] i »
u N { PBG oA { € YAGO4+T
N'E i o 25 0.6 A i A YAGO4.5
IS i /) SE i
cc 0.4+ NolePi oc ! v YAGO4.5+T
S e olue iece < G;J e 0.4 1 | NodePiece < Freebase
=~ { - : > WikikG9OMv2
0.2 " s | % <
s 0.2- For each source:
T T o g T T MR ML Tt T . best
1min 1h 1d 1min 1h 1d not best
Embedding computation time Embedding computation time

Figure 3: Statistical performance on WikiDBs tables. a) Critical difference diagrams of scalable
methods. Black lines connect methods that are not significantly different. b) Pareto frontiers of
averaged normalized prediction scores with respect to embedding times (log-scale). in
Appendix [C.2] provides the detailed results for each of the 38 test tables.

on this task, although no method is consistently better than the others for all datasets, and statistical
tests show no significant differences (Figure).

Conclusion: embeddings for downstream machine learning In this paper, we show how to
optimize knowledge-graph embeddings for downstream machine learning. We propose a highly
scalable method, SEPAL, and conduct a comprehensive evaluation on 7 knowledge graphs and 46
downstream tables showing that SEPAL both: (1) markedly improves predictive performance on
downstream tasks and (2) brings computational-performance benefits —multiple-fold decreased train
times and bounded memory usage— when embedding large-scale knowledge graphs. Our theoretical
analysis suggests that SEPAL’s strong performance on downstream tasks stems from its global
optimization approach, resulting in better-aligned embeddings compared to classic methods based
on negative sampling. SEPAL improves the quality of the generated node features when used for
data enrichment in external (downstream) tasks, a setting that can strongly benefit from pre-training
embeddings on knowledge bases as large as possible. It achieves this without requiring heavy
engineering, such as distributed computing, and can easily be adapted to most KGE models.

Insights brought by our experiments go further than SEPAL. First, the method successfully exploits
the asymmetry of information between “central” entities and more peripheral ones. Power-law distri-
butions are indeed present on many types of objects, from words [Piantadosi, [2014] to geographical
entities [|Giesen and Siidekum), 201 1]] and should probably be exploited for general-knowledge repre-
sentations such as knowledge-graph embeddings. Second, and related, breaking up large knowledge
graphs in communities is surprisingly difficult: some entities just belong in many (all?) communities,
and others are really hard to reach. Our BLOCS algorithm can be useful for other graph engineering
tasks, such as scaling message-passing algorithms or simply generating partitions. Finally, the embed-
ding propagation in SEPAL appears powerful, and we conjecture it will benefit further approaches.
First, it can be combined with much of the prior art to scale knowledge-based embedding. Second,
it could naturally adapt to continual learning settings [[Van de Ven et al., 2022} |Hadsell et al., [2020,
Biswas et al.,|2023]], which are important in knowledge-graph applications since knowledge graphs,
such as Wikidata, are often continuously updated with new information (Appendix [G.3).

Acknowledgements

GV acknowledges support from ANR via grant TaFoMo (ANR-25-CE23-1822). This work is partly
supported by Hi! PARIS and ANR/France 2030 program (ANR-23-IACL-0005).

10

References

Douglas Lenat and E Feigenbaum. On the thresholds of knowledge. Artificial Intelligence: Critical
Concepts, 2:298, 2000.

Pablo N Mendes, Max Jakob, Andrés Garcia-Silva, and Christian Bizer. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of the 7th international conference on semantic
systems, pages 1-8, 2011.

Luca Foppiano and Laurent Romary. entity-fishing: a dariah entity recognition and disambiguation
service. Journal of the Japanese Association for Digital Humanities, 5(1):22-60, 2020.

Antonin Delpeuch. Opentapioca: Lightweight entity linking for wikidata. arXiv preprint
arXiv:1904.09131, 2019.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pages 1-10. IEEE, 2015.

Riccardo Cappuzzo, Aimee Coelho, Felix Lefebvre, Paolo Papotti, and Gael Varoquaux. Retrieve,
merge, predict: Augmenting tables with data lakes. TMLR, 2025.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep
learning on relational databases. Advances in Neural Information Processing Systems, 37:21330—
21341, 2025.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 855-864, 2016.

Alexis Cvetkov-Iliev, Alexandre Allauzen, and Gaé€l Varoquaux. Relational data embeddings for
feature enrichment with background information. Machine Learning, 112(2):687-720, 2023.

Camilo Ruiz, Hongyu Ren, Kexin Huang, and Jure Leskovec. High dimensional, tabular deep
learning with an auxiliary knowledge graph. Advances in Neural Information Processing Systems,
36, 2024.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78-85, 2014.

Wikimedia. Wikidata growth. https://wikitech.wikimedia.org/wiki/WMDE/Wikidata/
Growth#Number_of_Entities_by_type. [Online; accessed in January 2025].

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. Yago 4: A reason-able knowledge
base. In European Semantic Web Conference, pages 583-596. Springer, 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/1412,
6575,

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embeddings.
Advances in Neural Information Processing Systems, 32, 2019a.

11

https://wikitech.wikimedia.org/wiki/WMDE/Wikidata/Growth#Number_of_Entities_by_type
https://wikitech.wikimedia.org/wiki/WMDE/Wikidata/Growth#Number_of_Entities_by_type
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1412.6575

Daniel Ruffinelli and Rainer Gemulla. Beyond link prediction: On pre-training knowledge graph
embeddings. In Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-
2024), pages 136-162, 2024.

Pedro Tabacof and Luca Costabello. Probability calibration for knowledge graph embedding models.
In International Conference on Learning Representations, 2020. URL https://openreview!
net/forum?id=S1g8K1BFwS.

Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Augenstein. Adapt-
ing neural link predictors for data-efficient complex query answering. Advances in Neural Infor-
mation Processing Systems, 36:27079-27091, 2023.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. Advances in neural information processing systems, 31, 2018.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing Systems, 33:19716-19726, 2020.

Danny Sullivan. A reintroduction to our knowledge graph and knowledge panels. https:
//blog.google/products/search/about-knowledge-graph-and-knowledge-panels/,
2020. Accessed: 2025-01-26.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. Proceedings of Machine
Learning and Systems, 1:120-131, 2019.

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance cpu-gpu
hybrid system for node embedding. In The World Wide Web Conference, pages 2494-2504, 2019.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and
George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In Proceedings of the
43rd international ACM SIGIR conference on research and development in information retrieval,
pages 739-748, 2020.

Sicong Dong, Xupeng Miao, Pengkai Liu, Xin Wang, Bin Cui, and Jianxin Li. Het-kg:
Communication-efficient knowledge graph embedding training via hotness-aware cache. In
2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 1754-1766. IEEE,
2022.

Chenguang Zheng, Guanxian Jiang, Xiao Yan, Peiqi Yin, Qihui Zhou, and James Cheng. Ge2: A
general and efficient knowledge graph embedding learning system. Proceedings of the ACM on
Management of Data, 2(3):1-27, 2024.

Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram Venkataraman.
Marius: Learning massive graph embeddings on a single machine. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21), pages 533-549, 2021.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schuurmans.
Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge graphs. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 1472-1482, 2022.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base from
multilingual wikipedias. In 7th biennial conference on innovative data systems research. CIDR
Conference, 2014.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60-65, 2003.

12

https://openreview.net/forum?id=S1g8K1BFwS
https://openreview.net/forum?id=S1g8K1BFwS
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and
accurate network embeddings via very sparse random projection. In Proceedings of the 28th ACM
international conference on information and knowledge management, pages 399—408, 2019a.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on information
and knowledge management, pages 891-900, 2015.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pages 459-467, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013b.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. Advances
in neural information processing systems, 27, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 701-710, 2014.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pages 1067-1077, 2015.

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=HkgEQnRqYQ.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in
neural information processing systems, 32, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Complex

embeddings for simple link prediction. In International conference on machine learning, pages
2071-2080. PMLR, 2016.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. TuckER: Tensor factorization for knowledge
graph completion. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5185—
5194, Hong Kong, China, November 2019b. Association for Computational Linguistics. doi:
10.18653/v1/D19-1522. URL https://aclanthology.org/D19-1522/,

Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In The
Semantic Web—ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October
17-21, 2016, Proceedings, Part I 15, pages 498-514. Springer, 2016.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Shar-
ifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into the dark: A large-scale
evaluation of knowledge graph embedding models under a unified framework. /IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):8825-8845, 2021a.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE transactions on knowledge and data engineering, 29(12):
2724-2743, 2017.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BylA_C4tPr|

13

https://openreview.net/forum?id=HkgEQnRqYQ
https://aclanthology.org/D19-1522/
https://openreview.net/forum?id=BylA_C4tPr

Huijuan Wang, Siming Dai, Weiyue Su, Hui Zhong, Zeyang Fang, Zhengjie Huang, Shikun Feng,
Zeyu Chen, Yu Sun, and Dianhai Yu. Simple and effective relation-based embedding propagation
for knowledge representation learning. In IJCAI-ECAI, 2022.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. In Learning on graphs conference, pages 11-1. PMLR, 2022.

Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. Out-of-sample representation learning
for knowledge graphs. In Findings of the association for computational linguistics: EMNLP 2020,
pages 2657-2666, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Mariusgnn:
Resource-efficient out-of-core training of graph neural networks. In Proceedings of the Eighteenth
European Conference on Computer Systems, pages 144—161, 2023.

Wei-Lin Chiang, Xuanqging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
257-266, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

Chenhui Deng, Zhigiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A multi-
level spectral approach for accurate and scalable graph embedding. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=r11GOOEKDH.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. In Proceedings of the International AAAI Conference on Web and
Social Media, volume 15, pages 361-372, 2021.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer Gemulla. LibKGE
- A knowledge graph embedding library for reproducible research. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
165-174, 2020. URL https://www.aclweb.org/anthology/2020.emnlp-demos.22,

Adrian Kochsiek, Fritz Niesel, and Rainer Gemulla. Start small, think big: On hyperparameter
optimization for large-scale knowledge graph embeddings. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 138—154. Springer, 2022.

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compositional
and parameter-efficient representations of large knowledge graphs. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=xMJWUKJnFSw,

Mingyang Chen, Wen Zhang, Zhen Yao, Yushan Zhu, Yang Gao, Jeff Z Pan, and Huajun Chen.
Entity-agnostic representation learning for parameter-efficient knowledge graph embedding. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 41824190, 2023.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29-123, 2009.

14

https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=r1lGO0EKDH
https://www.aclweb.org/anthology/2020.emnlp-demos.22
https://openreview.net/forum?id=xMJWUKJnFSw

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. /[EEE Transactions on
pattern analysis and machine intelligence, 22(8):888-905, 2000.

Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006.

Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. Negative sampling strategies
for contrastive self-supervised learning of graph representations. Signal Processing, 190:108310,
2022.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1247-1250, 2008.

Fabian M Suchanek, Mehwish Alam, Thomas Bonald, Lihu Chen, Pierre-Henri Paris, and Jules Soria.
Yago 4.5: A large and clean knowledge base with a rich taxonomy. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 131-140, 2024.

Maksim A Terpilowski. scikit-posthocs: Pairwise multiple comparison tests in python. Journal of
Open Source Software, 4(36):1169, 2019.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkxSm1BFvrl|

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion: Baselines
strike back. In Rep4NLP@ACL, 2017. URL https://api.semanticscholar.org/CorpusID:
7557552,

Prachi Jain, Sushant Rathi, Soumen Chakrabarti, et al. Knowledge base completion: Baseline strikes
back (again). arXiv preprint arXiv:2005.00804, 2020.

Liane Vogel, Jan-Micha Bodensohn, and Carsten Binnig. Wikidbs: A large-scale corpus of relational
databases from wikidata. Advances in Neural Information Processing Systems, 37:41186-41201,
2024.

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21:1112-1130, 2014.

Kristian Giesen and Jens Siidekum. Zipf’s law for cities in the regions and the country. Journal of
economic geography, 11(4):667-686, 2011.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4:1185-1197, 2022.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028-1040, 2020.

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E Jendal, Matteo
Lissandrini, Vanessa Lopez, Eneldo Loza Mencia, Heiko Paulheim, Harald Sack, et al. Knowl-
edge graph embeddings: open challenges and opportunities. Transactions on Graph Data and
Knowledge, 1(1):4-1, 2023.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825-2830, 2011.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge
Graph Embeddings. Journal of Machine Learning Research, 22(82):1-6, 2021b. URL http:
//jmlr.org/papers/v22/20-825.html,

15

https://openreview.net/forum?id=BkxSmlBFvr
https://api.semanticscholar.org/CorpusID:7557552
https://api.semanticscholar.org/CorpusID:7557552
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html

Maintainer Gabor Csardi. Package ‘igraph’. Last accessed, 3(09):2013, 2013.

William Jay Conover and Ronald L Iman. Multiple-comparisons procedures. informal report.
Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1979.

William Jay Conover. Practical nonparametric statistics. john wiley & sons, 1999.

Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of applied mathematics, 9(1):17-29, 1951.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334-334, 1997.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal community
structure. Proceedings of the national academy of sciences, 105(4):1118-1123, 2008.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):5233, 2019.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1222-1230, 2012.

Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. Fennel:
Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th ACM international
conference on Web search and data mining, pages 333-342, 2014.

Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. Distributed power-law graph computing:
Theoretical and empirical analysis. Advances in neural information processing systems, 27, 2014.

Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Giorgio Iacoboni. Hdrf:
Stream-based partitioning for power-law graphs. In Proceedings of the 24th ACM international on
conference on information and knowledge management, pages 243-252, 2015.

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen. Powerlyra:
Differentiated graph computation and partitioning on skewed graphs. ACM Transactions on
Parallel Computing (TOPC), 5(3):1-39, 2019b.

Onur Mutlu, Saugata Ghose, Juan Gémez-Luna, and Rachata Ausavarungnirun. A modern primer on
processing in memory. In Emerging computing: from devices to systems: looking beyond Moore
and Von Neumann, pages 171-243. Springer, 2022.

Joseph Reagle and Lauren Rhue. Gender bias in wikipedia and britannica. International Journal of
Communication, 5:21, 2011.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29, 2016.

Joseph Fisher, Arpit Mittal, Dave Palfrey, and Christos Christodoulopoulos. Debiasing knowledge
graph embeddings. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7332-7345, 2020.

16

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. Both abstract and introduction clearly articulate the paper’s
contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section [0l discusses limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

Answer: [Yes]

Justification: Appendix |D.2|provides a complete proof of the main theoretical result, and
discusses the full set of assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the code necessary to reproduce the results is provided in an anonymized
zip file and will be released by the time of publication.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code is provided in an anonymized zip file and will be released by the
time of publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setting is presented in detail in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Critical difference diagrams associated with statistical significance tests are
provided with the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experimental setup is fully described in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix [G.4]discusses potential societal impacts of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All original papers are cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

21

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

Appendix - Table of Contents
[A"Datasets]

IB.2 Knowledge graph completion|. o 0oL,

IB.3 Experimental setup|

|IC.5 Evaluation on prior benchmark| 00000 0.

|C.6 Evaluation on knowledge graph completion|

[D Theorefical analysis|

ID.1 Analysis of SEPAL’s dynamic and analogies to eigenvalue problems|

ID.2 Formal proot of Propositiond.1|

[E Presentation and analysis of BLOCS|
[E.1 Prior work on graph partitioning|

|[E.2 Detailed algorithm and pseudocode]|.

[E.3 Benchmarking BLOCS against partitioning methods|
|[E.4 Effect of BLOCS’ stopping diffusion threshold|

[FFurther analysis of SEPAL]

IE.2 SEPAL’s hyperparameters|.
[E3 Ablation study: SEPAL without BLOCS|
|[F.4 Speedup over base embedding model|.o L oL

(G Discussion

|G.1 Comparison toprior work|. L oL o

|G.3 Outlook on continual learning| 0.

IG.4 Broaderimpacts|.

24

25
25
25
26

28
28
31
31

32
32
34
34
34
34
35

36
37
39

39
39
40
42
44
44

44
44
45
50
50

Table 2: Additional statistics on the knowledge graph datasets used. MSPL stands for Mean Shortest
Path Length. The LCC column gives the percentage of entities of the graph that are in the largest
connected component.

Maximum degree Average degree MSPL Diameter Density LCC

Mini YAGO3 65711 12.6 3.3 11 le-4 99.98%
YAGO3 934 599 4.0 4.2 23 2e-6 97.6%
YAGO4.5 6434 121 4.5 5.0 502 le-7 99.7%
YAGO4.5+T 6434122 5.0 4.0 5 le-7 100%
YAGO4 8 606 980 129 4.5 28 3e-7 99.0%
YAGO4+T 32127 569 94 34 6 le-7 100%
Freebase 10 754 238 49 4.7 100 6e-8 99.1%
WikiKG90Mv2 37254 176 12.8 3.6 98 le-7 100.0%

Table 3: Number of rows in the downstream tables.

US elections Housing prices US accidents Movie revenues
Number of rows 13 656 22250 20332 7398

A Datasets

A.1 Statistics on knowledge graph datasets

More statistics on the knowledge graph datasets are given in[Table 2] Maximum and average degree
figures highlight the scale-free nature of real-world knowledge graphs. The values for mean shortest
path length (MSPL) and diameter (the diameter is the longest shortest path) are provided for the
largest connected component (LCC). They are remarkably small, given the number of entities in the
graphs. Contrary to other datasets, YAGOA4.5, Freebase, and WikiKG90Mv2 contain ‘long chains’ of
nodes, which account for their larger diameters.

The density D is the ratio between the number of edges | E/| and the maximum possible number of
edges:

2l
D=— "1

VIV = 1)
where |V| denotes the number of nodes.

The LCC statistics show that for each knowledge graph, the largest connected component regroups
almost all the entities.

A.2 Downstream tables

Real-world tables We use 4 real-world downstream tasks adapted from |Cvetkov-Iliev et al.|[2023]]
who also investigate knowledge-graph embeddings to facilitate machine learning. The specific target
values predicted for each dataset are the following:

US elections: predict the number of votes per party in US counties;

Housing prices: predict the average housing price in US cities;

US accidents: predict the number of accidents in US cities;

Movie revenues: predict the box-office revenues of movies.

For each table, a log transformation is applied to the target values as a preprocessing step.
contains the sizes of these real-world downstream tables.

WikiDBs tables WikiDBs contains 100,000 databases (collections of related tables), which alto-
gether include 1,610,907 tables. We extracted 42 of those tables to evaluate embeddings. Here we
describe the procedure used for table selection and processing.

25

Table 4: Regression tables from WikiDBs. The ‘DB number’ is the number of the database in
WikiDBs from which the table was taken. Among these 16 regression tables, 2 are used for validation,
and 14 for test.

Table name DB number Value to predict Nyows Set
Historical Figures 62 826 Birth date 3000 Val
Geopolitical Regions 66 610 Land area 2324 Val
Eclipsing Binary Star Instances 3977 Apparent magnitude 3000 Test
Research Article Citations 14 012 Publication date 3000 Test
Drawings Catalog 14 976 Artwork height 3000 Test
Municipal District Capitals 19 664 Population count 2846 Test
Twinned Cities 28 146 Population 1194 Test
Ukrainian Village Instances 28 324 Elevation (meters) 3000 Test
Dissolved Municipality Records 46 159 Dissolution date 3000 Test
Research Articles 53353 Publication date 3 000 Test
Territorial Entities 82939 Population count 3000 Test
Artworks Inventory 88 197 Artwork width 3000 Test
Business Entity Locations 89 039 Population count 3000 Test
WWI Personnel Profiles 89 439 Birthdate 3000 Test
Registered Ships 90930 Gross tonnage 3000 Test
Poet Profiles 94 062 Death date 3000 Test

Table selection: Most of the WikiDBs tables are very small —typically a few dozen samples— so our
first filtering criterion was the table size, which must be large enough to enable fitting an estimator.
Therefore, we randomly sampled 100 tables from WikiDBs with sufficient sizes (Vyows > 1, 000).
Then we looked at each sampled table individually and kept those that could be used to define a
relevant machine learning task (either regression or classification). We ended up with 16 regression
tasks and 26 classification tasks.

Table processing: We removed rows with missing values, and reduced the size of large tables to keep
evaluation tractable. For regression tables, we simply sampled 3,000 rows randomly (if the table had
more than 3,000). We applied a log transformation to the target values to remove the skewness of
their distributions. Before that, dates were converted into floats (by first converting them to fractional
years, and then applying the transform ¢ — 2025 — t). For classification tables, to reduce the dataset
sizes while preserving both class diversity and balance, we downsampled the tables with the following
procedure:

1. Class filtering: we set a threshold » = min(50,0.9Ns), where Ns is the cardinality of the
second most populated class, and retained only the classes with more than r occurrences.

2. Limit number of classes: if more than 30 classes remained after filtering, only the 30 most
frequent were kept.

3. Downsampling: if the resulting table contained more than 3,000 rows, we sampled rows such
that: (a) if 7 - Nepasses < 3, 000, at least rows were sampled per class, (b) if 7 - Ngjasses >
3,000, we sampled an approximately equal number of rows per class, fitting within the
3,000-row limit.

The specifications of the 42 tables extracted are given in[Table 4] and [Table 3]

A.3 Entity coverage of downstream tables

Entity coverage We define the coverage of table T' by knowledge graph K as the proportion of
downstream entities in T that are described in K. gives the empirically measured coverage
of the 46 downstream tables by the 8 different knowledge graphs used in our experimental study. It
shows that larger and more recent knowledge graphs yield greater coverage.

Entity matching Leveraging knowledge-graph embeddings to enrich a downstream tabular predic-
tion task requires mapping the table entries to entities of the knowledge graph. We call this process
entity matching.

26

WikiDBs ST

classification tables W hl st
Artist Copyright Representation - 0:5 9:6 613
Artworks Catalog - 0.0 0.0 0.0

Creative Commons Authors - 1.3 7.5 3.6
Decommissioned Transport Stations - 0.2 23} 2.4
Defender Profiles - 10.9 13.4

Forward Players - 22.4

Geographer Profiles - 0.6 16.1 W 724 [727 |
Historic Buildings - 0.0 1.4 0.7
Historical Figures - 2.7

Island Details - 0.1 5.7 3.7

Kindergarten Locations - 0.0 0.0 0.0

Magic Narrative Motifs - 0.0 0.0 0.1

Museum Details - 0.0 12.0 4.9

Music Albums Published In Us - 0.0 9

Noble Individuals - 12.3 4

Notable Trees Information - 0.0 0.1 0.4

Parish Church Details - 0.0 1.3 1.4
Philosopher Profiles - 2.8 29.4

Rafael Individuals - 1.8 11.6 7.8

Researcher Profile - 4.6 8.0

Sculpture Instances - 0.0 0.4 1.0

Spring Locations - 0.0 0.1 0.0

State School Details - 0.0 2.0 0.0 12.7

Striatum Scientific Articles - 0.0 0.0 0.0 100.0 | 100.0 0.7
00.0 | 1 .

Sub Post Office Details - 0.0 0.0 0.0
Surname Details - 0.0 0.2 0.1
(ST PR CENINYNN 660 | 751 | 767 | 815 | 657 | g
(3]
<)
WikiDBs o
regression tables z
Artworks Inventory - 0.0 0.0 CLE) 9:8 ©
Business Entity Locations - 98.0
Dissolved Municipality Records - 0. O 1. 4 2, 0 9.6 82

Drawings Catalog- 0.0 0.0 0.0
Eclipsing Binary Star Instances - 0.0 0.0 0.0

Geopolitcal Regions —

Historical Figures - 0. 5 14 0
Municipal District Capitals - 12.1
Poet Profiles - 1.3
Registered Ships - 0.0 0.0 0. 3
Research Article Citations - 0.0 0.0 0.0
Research Articles - 0.0 0.0
Territorial Entities -

Twinned Cities

Ukrainian Village Instances - 0.0

1.0 1.1

Wwi Personnel Profiles - 2.1 16.6 -20
Average | 118
Real-world
regression tables
Housing prices - 19.1 -
Movie revenues -; 9
us acmdents - 211 6 98. 9
US elections
Validation table
Tost table ORI 55 555 | 570 | o5 | 991 | 939 | 939 | 951 [N

Figure 4: Entity coverage of downstream tables. Over the 46 downstream tables 4 are used for
validation (in blue), and 42 are used for test (in maroon).

27

Table 5: Classification tables from WikiDBs. The ‘DB number’ is the number of the database
in WikiDBs from which the table was taken. Among these 26 classification tables, 2 are used for
validation, and 24 for test.

Table name DB number Class to predict Nyows Nelasses Set
Creative Commons Authors 9510 Gender 2999 2 Val
Historical Figures 73376 Profession 1044 5 Val
Historic Buildings 473 Country 2985 30 Test
Striatum Scientific Articles 2053 Journal name 2 986 30 Test
Researcher Profile 7136 Affiliated institution 237 7 Test
Decommissioned Transport Stations 7310 Country 2983 30 Test
Artist Copyright Representation 7900 Artist occupation 2 986 27 Test
Forward Players 15 542 Team 2985 30 Test
Rafael Individuals 29 832 Nationality 2 966 12 Test
Artworks Catalog 30417 Artwork type 2991 17 Test
Magic Narrative Motifs 36 100 Cultural origin 2 993 12 Test
Geographer Profiles 42562 Language 2992 14 Test
Surname Details 47746 Language 1420 5 Test
Sculpture Instances 56 474 Material used 2 985 30 Test
Spring Locations 63 797 Country 2981 30 Test
Noble Individuals 64 477 Role 2987 30 Test
Defender Profiles 65 102 Defender position 2 998 5 Test
Kindergarten Locations 66 643 Country 2998 4 Test
Sub Post Office Details 67 195 Administrative territory 2 986 30 Test
State School Details 70 780 Country 2995 12 Test
Notable Trees Information 70 942 Tree species 2 992 19 Test
Parish Church Details 87 283 Country 2993 15 Test
Museum Details 90 741 Country 2986 30 Test
Island Details 92 415 Country 2986 30 Test
Philosopher Profiles 97 229 Language 2985 29 Test
Music Albums Published in the US 97 297 Music Genre 2 984 30 Test

For the 4 real-world tables, we performed the entity matching ‘semi-automatically’, following
Cvetkov-Iliev et al.|[2023]]. The entries of these tables are well formatted and a small set of simple
rules is sufficient to match the vast majority of entities. Human supervision was required for some
cases of homonymy, for instance.

For the WikiDBs tables, we used the Wikidata Q identifiers (QIDs) included in the WikiDBs dataset
to straightforwardly match the entities to WikiKG9OMv2F_1 YAGO4, and YAGOA4.5, which all provide
the QIDs for every entity. YAGO4 also offers a mapping to the Freebase entities, which we used to
match the Freebase entities to the WikiDBs tables. Additionally, both YAGO3 and YAGO4 provide
mappings to DBpedia, which enabled us to obtain the matching for YAGO3.

B Evaluation methodology

B.1 Downstream tasks

Setting For each dataset, we use scikit-learn’s Histogram-based Gradient Boosting Regression
(resp. Classification) Tree [Pedregosa et al.L[2011] as regression (resp. classification) estimator to
predict the target value. The embeddings are the only features fed to the estimator, except for the
US elections dataset for which we also include the political party. For embedding models outputting
complex embeddings, such as RotatE, we simply concatenate real and imaginary parts before feeding
them to the estimator.

The rows of the tables corresponding to entities not found in the knowledge graph are filled with
NaNs as features for the estimator. This enables to compare the scores between different knowledge
graphs (see[Figure 2] and [Figure 3)) of different sizes to see the benefits obtained from embedding
larger graphs, with better coverage of downstream entities (Figure 4).

"Entity mapping for WikiKG90Mv2 is provided here!

28

https://groups.google.com/g/open-graph-benchmark/c/R0SKtj9qQyE

YAGO3 (2.6M entities, 5.6M triples)

SEPAL { mr————eessssse— 15 min
RIS A e [m— — — 42s
DIC] I G R — — — 21 min
DistMult 4 E—=———————— 14 min
PyTorch-BigGraph - e 2h
NodePiece pio=————— | ; ; ,21 min
YAGOA4.5 (32M entities, 75M triples)
SEPAL { s 4 h
FastRP - e 17 min
DGL-KE - sy 2 h
dePiece mmsr———————r— 4 h
PyTorch-BigGraph - e 17 h
IstMult 4 ! Out of memlory GPU (> 3|}2GB) ;
YAGOA4.5 + taxonomy (50M entities, 128M triples)
SEPAL | e 3 h
FastRP Bl ——— 48 min
DGL-KE - sy 4h
PyTorch- BDgGraph 1 e 29 h
Mult 4 i Out of memory GPU (> 32GB)
NodePiece 1 ! Out of memlory GPU (> 3IZGB) ; ;
YAGO4 (38M entities, 250M triples)
SEPAL - s e 7h
FastRP AEE——————T—— 28 min
GL-KE - s 8h
PyTorch- BDgGraph B e ——— 21h
Mult 4 Out of memory GPU (> 32GB)

NodePiece 4.t Out of memory GPU (> 32GB)
T

YAGO4 + taxonomy (67M entities, 320M triples)

EPAL { e e 7h
P B — —— 55 h
yTorch- B|BGraEh] o
FastRP - i Out of memory CPU (> 400GB)
DIStMuIt - { Out of memory GPU (> 32GB)
NodePiece -} Out of memory GPU (> 32GB)

Freebase (85M entities, 338M triples)

10 h
34 h
11 h

i

e
yTorch-BigGraph 1
BFglsTEFE{E 4 i Out of memory CPU (> 400GB)

DistMult 4 i Out of memory GPU (> 32GB)
NodePiece 1 | Out of memory GPU (> 3ZGB)

WikiKG90Mv2 (91M entities, 601M triples)
21h
89 h
17 h

1

PyTorch-Bi SGEPAk
orch-BigGraph
Y BGL-EE
FastRP - i Out of memory CPU (> 400GB)
DistMult - i Out of memory GPU (> 32GB)
NodePiece 4 l Out of memory GPU (> 32GB)
1 2 3 4
Cumulative normalized mean cross-validation score

o 4

Evaluation dataset
I Movie revenues [US elections
[US accidents [Housing prices

Figure 5: Detailed results on real-world tables. The "Cumulative normalized mean cross-validation
score" reported is obtained by summing the normalized mean cross-validation scores. For an
evaluation dataset, 1 corresponds to the best R2 score across all models; as there are 4 evaluation
datasets, the highest possible score for a model is 4 (getting a score of 4 means that the model beats
every model on every evaluation dataset). SEPAL, PyTorch-BigGraph, DGL-KE, and NodePiece use
DistMult as base model. Embedding computation times are provided on the right-hand side of the
figure. [Figure 7]extends this figure with other embedding models.

29

Regression (14 tables) Classification (24 tables)

low-coverage tables high-coverage tables
\
SEPAL (15min) — SEPAL (15min)
mean score
DistMult (14min) PBG (2h)
YAGO3 FastRP (425) DGL-KE (21min)
2.6M entities
5.6M triples DGL-KE (21min) FastRP (42s)
PBG (2h) DistMult (14min)
NodePiece (21min) NodePiece (21min)

SEPAL (7h) —— RS- SEPAL (7h)
YAGO4 FastRP (28min) s | SR - FastRP (28min)
38M entities
250M triples PBG (21h) —ss— RS- PBG (21h)
DGL-KE (8h) R s —— DGL-KE (8h)

SEPAL (7h) —* SEPAL (7h)
YAGO4+T
67M entities PBG (55h) - P5G (55h)
320M triples
DGL-KE (17h) e B ———- DGL-KE (17h)

SEPAL (4h)] PBG (17h)
YAGO4.5 FastRP (17min) _«— SEPAL (4h)
32M entities DGL-KE (2h) e [0 = FastRP (17min)
75M triples PBG (17h) e I DGL-KE (2h)
NodePiece (4h) *—- NodePiece (4h)

SEPAL (3h) - —— - L NED)
YAGO4.5+T FastRP (48min) -* ——-—*— PBG (29h)
50M entities .
128M triples DGL-KE (4h) s ool 22T FastRP (48min)
PBG (29h) -* :_— DGL-KE (4h)
SEPAL (10h) SEPAL (10h)
Freebase
85M entities PBG (34h) PBG (34h)
338M triples DGL-KE (11h) DGL-KE (11h)

- SEPAL (21h) eS8 SEPAL (21h)
WikiKG90Mv2
91M entities PBG (89h) = [EB)- PEG (89h)

601M triples DGL-KE (17h) | DGL-KE (17h)

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Normalized R2 score Normalized weighted F1 score

Figure 6: Detailed results on WikiDBs tables. Each black dot represents a downstream table. Red
vertical lines indicate the mean score over all the tables. The methods appear in decreasing order of
average score.

Metrics The metric used for regression is the R2 score, defined as:

Zi\il(yi — 9;)?
SN (i — 5)?

where N is the number of samples (rows) in the target table, y; is the target value of sample ¢, §; is
the value predicted by the estimator, and ¥ is the mean value of the target variable.

RZ=1-

For classification, we use the weighted F1 score, defined as:

K

Uz
F]-weighted = — - F;
— N

1=

where K is the number of classes, n; is the number of true instances for class i, N = Zfil n; is the
total number of samples, and F'1; is the F1 score for class i.

To get the "Mean score (normalized)" reported on|Figure 2| and [Figure 3| we proceed as follows:

30

1. Mean cross-validation score: for each modeﬂ and evaluation table, the scores (R2 or
weighted F1, depending on the task) are averaged over 5 repeats of 5-fold cross-validations.

2. Normalized: for each evaluation table, we divide the scores of the different models by the
score of the best-performing model on this table. This makes the scores more comparable
between the different evaluation tables.

3. Average: for each model, we average its scores across every evaluation table. The highest
possible score for a model is 1. Getting a score of 1 means that the model beats every other
model on every evaluation table.

Validation/test split and hyperparameter tuning We use 4 of the 42 WikiDBs tables as validation
data—2 for regression and 2 for classification tasks (see [Figure 4). The remaining 38 WikiDBs tables,
along with the 4 real-world tables, are used exclusively for testing.

The validation tables are used to tune hyperparameters and select the best-performing configuration
for each method and each knowledge graph. Unless otherwise specified, all reported results are
obtained on the test tables using these optimized configurations.

B.2 Knowledge graph completion

We detail our experimental setup for the link prediction task:

Setting: We evaluate models under the transductive setting: the missing links to be predicted connect
entities already seen in the train graph. The task is to predict the tail entity of a triple, given
its head and relation.

Stratification: We randomly split each dataset into training (90%), validation (5%), and test (5%)
subsets of triples. During stratification, we ensure that the train graph remains connected by
moving as few triples as required from the validation/test sets to the training set.

Sampling: Given the size of our datasets, sampling is required to keep link prediction tractable.
For each evaluation triple, we sample 10,000 negative entities uniformly to produce 10,000
candidate negative triples by corrupting the positive.

Filtering: For tractability reasons, we report unfiltered results: we do not remove triples already
existing in the dataset (which may score higher than the test triple) from the candidates.

Ranking: If several triples have the same score, we report realistic ranks (i.e., the expected ranking
value over all permutations respecting the sort order; see PYKEEN documentation [Ali et al.}
2021b]).

Metrics: We use three standard metrics for link prediction: the mean reciprocal rank (MRR), hits
at k (for k € {1,10,50}) and mean rank (MR). Given the rankings 71, ...,r, of the n
evaluation (validation or test) triples:

MRR = %Z% Hits@kz%eriSk, MR:;;ri.

i=1 i=1
B.3 Experimental setup

Baseline implementations In our empirical study, we compare SEPAL to DistMult, NodePiece,
PBG, DGL-KE, and FastRP. We use the PyKEEN [Ali et al.,|2021b] implementation for DistMult
and NodePiece, and the implementations provided by the authors for the others. PBG was trained on
20 CPU nodes, and DGL-KE was allocated 20 CPU nodes and 3 GPUs; both methods were run on a
single machine. The version of NodePiece we use for datasets larger than Mini YAGO3 is the ablated
version, where nodes are tokenized only from their relational context (otherwise, the method does not
scale on our hardware). For PBG, DGL-KE, NodePiece, and FastRP we used the hyperparameters
provided by the authors for datasets of similar sizes. SEPAL and DistMult’s hyperparameters were
tuned on the validation sets presented in Appendix and Appendix [B.2]

For all the baseline clustering algorithms, we used the implementations from the igraph pack-
age [Csardil [2013]] except for METIS, HDRF and Spectral Clustering. For METIS, we used the

*We define “model” as the combination of a method (e.g. DistMult, DGL-KE, etc.) and a knowledge graph
on which it is trained.

31

Table 6: Results for link prediction. Best in bold, second underlined.

. g

& i & < T 2 =

Q o) < S g 2 S
) 3 3 6] Q o @) Average

5 Z Q < 2 £ Z

> < > - =

=

a. MRR

DistMult 0.8049 -
NodePiece 0.2596 0.4456 - - - - - -
PBG 0.5581 0.5539 0.5688 0.6406 0.6224 0.7389 0.6325 | 0.6165
DGL-KE 0.7284 0.6200 0.6469 0.2372 0.2570 0.3017 0.3202 | 0.4445
SEPAL 0.6501 0.5537 0.5646 0.4726 0.477 0.5378 0.5291 0.5407

b. Hits@1

DistMult 0.7400 -
NodePiece 0.1735 0.3449 - - - - -
PBG 0.5000 0.4939 0.4977 0.5494 0.5416 0.7015 0.5568 | 0.5487
DGL-KE 0.6663 0.5511 0.5733 0.1642 0.1892 0.2498 0.2416 | 0.3765
SEPAL 0.5412 0.4913 0.4922 0.3746 0.3755 0.4824 0.4502 | 0.4582

c. Hits@10

DistMult 0.9059 -
NodePiece 0.4388 0.6379 - - - - - -
PBG 0.6562 0.6642 0.7021 0.803 0.7662 0.8053 0.7693 | 0.7380
DGL-KE 0.8293 0.7446 0.7821 0.3786 0.3842 0.3964 0.4694 | 0.5692
SEPAL 0.8394 0.6650 0.6871 0.6573 0.6778 0.6398 0.6739 | 0.6915

d. Hits@50

DistMult 0.9504 - - - - - - -
NodePiece 0.7358 0.8112 - - - - - -
PBG 0.7259 0.7734 0.8136 0.8891 0.8514 0.8541 0.8531 | 0.8229
DGL-KE 0.8873 0.8171 0.8748 0.6037 0.5968 0.5547 0.654 | 0.7126
SEPAL 0.9204 0.7698 0.7786 0.7661 0.8068 0.7476 0.7805 | 0.7957

e. MR
DistMult 64.19 - - - - - - -
NodePiece 154.7 263.2 - - - - - -
PBG 820.9 408.0 300.3 117.1 203.5 243.4 227.3 331.5
DGL-KE 187.7 624.1 219.9 224.9 271.5 227.0 186 277.3
SEPAL 95.87 270.4 206.0 553.0 363.2 357.3 365.5 315.9

torch-sparse implementation, for Spectral Clustering, the scikit-learn [Pedregosa et al., 2011]] imple-
mentation, and for HDRF, we used the C++ implementation from this repository.

Computer resources For PBG and FastRP, experiments were carried out on a machine with 48
cores and 504 GB of RAM. DistMult, DGL-KE, NodePiece, and SEPAL were trained on Nvidia
V100 GPUs with 32 GB of memory, and 20 CPU nodes with 252 GB of RAM. The clustering
benchmark was run on a machine with 88 CPU nodes and 504 GB of RAM.

C Additional evaluation of SEPAL

C.1 Table-level downstream results on real-world tables

shows the detailed prediction performance on the downstream tasks. SEPAL not only scales
well to very large graphs (computing times markedly smaller than Pytorch-BigGraph), but also creates
more valuable node features for downstream tasks.

32

https://github.com/dickynovanto1103/HDRF

Pl-\ + ETIE
DlstMu + %LEI?%
sepap wishput BLOCS
TransE +D|SItEPﬁE
DistMult + RyTorch Bi %r
tE + L
atE
DistMult + Nod @Igge
DIStMANE + M§§§E
Dlr‘?li\:/?utlfr D(EL-KE
nsE +dS PAL
Dist HD P ﬁlt+h|§’ efp'ec
SUNEbAL Without BLOE
DistMult
Transk
RotatE

DistMult + %Es
DlstMuIt + DGL.
otatE + SEP
DistMult + PyTorch-Bi
SEPAL W|t']1ou

ran
DistMult + Nodﬁg %tE
T

SEPAL + ME

DistMult
ta

1S
Ro

E

*M‘ﬁﬁ
DistMult + P
EPAL

tMu g
rans

A
DistMult + B%rﬁﬁ Blggpé
C

~
1

&
SEPAL without Bff)

DistMult + Nodelﬁa
SEPAL + M

DistMult + SEPA|
A

. r%nsE +
DistMult + Pylorch-Bi
otatE +

DistMult + D L-

SEPAL without B C
Dist uF
. ranskE
DistMult + NodsPlec
ota

SEPAL + METI

'|'I

D|stMuIt
R

DistMult + P%/T%

F
SEPAL without BE@I(E.{
DistMult

DistMult + Nodeﬁgég
SEPAL + METI

I Movie revenues

YAGO3 (2.6M entities, 5.6M triples)

Out of memory GPU (> 32GB)
Out of memory CPU > 100GB)
1

i Out of memory CPU (> 400GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU %> 32GB)
1

| (

T

e —— e ———— 13 min
_=——————— 15 min
e) E— 42 s
e e e — E——— 9 min
e — (e — — 21 min
e —— e ——— 11 min
e —— —— — 14 min
e — ——————————— — 2 h
e —— e —— 17 min
=T 12 h
[——— — 21 min
| P 21 min
T T T T T
YAGO4.5 (32M entities, 75M triples)
1h
E 4 h
[17 min
e ——— e — E— 4 h
73— 2 h
e —— (e —E— 4h
e ——— 4h
e —— e — | 17 h
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
{ Out of memory GPU (> 3ZGB)
T T T T T T
YAGO4.5 + taxonomy (50M entities, 128M triples)
e e | 3h
e B | 48 min
5y 4h
e ——————>37——7 3h
73— 29 h
2h
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory CPU (> 100GB)
t T T T T T T T
YAGO4 (38M entities, 250M triples)
e e e | 7h
_y 7h
28 min
4 h
s p—————>3— 8 h
e e | 21 h
1 Out of memory GPU (> 3ZGB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 326)
1 Out of memory GPU (> 32GB)
1 Out of memory CPU (> 100GB)
t T T T T T
YAGO4 + taxonomy (67M entities, 320M triples)
7 h
E 6 h
i 9h
e —— e E— 55 h
e e ——— e ——— 17 h
I Out of memory CPU (> 400GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
1 Out of memory GPU (> 32GB)
{ Out of memory CPU (> 100GB)
T T T T T
Freebase (85M entities, 338M triples)
e e B | 10 h
e B | 5h
73— 34 h
e ————————7—— 5h
57— 11 h

WikiKG90Mv2 (91M entities, 601M triples)

HOUINN
NONWH
SIIST

Out of memory CPU (> 4OOGB)
Out of memory GPU (> 3

Out of memory GPU (> BZGB
Out of memory GPU (> 32GB
Out of memory GPU (> 32GB
Out of memory GPU (> 32GB
Out of memory CPU (> IOOGB)

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cumulative normalized mean cross-validation score

Evaluation dataset
[US accidents [US elections

Figure 7: Performance on real-world downstream tables.

33

4.0

[Housing prices

Table 7: Comparison to additional baselines on Freebase. Normalized mean cross-validation
scores on real-world downstream tasks, along with total training time. SEPAL outperforms all
baselines while being the fastest to train.

Method Housing prices Movie revenues US accidents US elections Time

PBG 0.513 0.723 0.742 0.957 33h 42m
DGL-KE 0.445 0.610 0.686 0.962 10h 50m
SMORE 0.160 0.332 0.410 0.926 6h 15m
GraSH 0.601 0.862 0.810 0.961 32h 33m
SEPAL 0.868 0.880 0.953 1.000 5h 58m

C.2 Table-level downstream results on WikiDBs tables

shows the detailed downstream tasks results for the WikiDBs test tables. For regression,
SEPAL is the best performer on average for all of the 7 knowledge graphs. For classification, SEPAL
is the best method on 6 of 7 knowledge graphs (narrowly beaten by PBG on YAGO4.5). Interestingly,
FastRP, despite being very simple and not even accounting for relations, is a strong performer and
beats more sophisticated methods like PBG and DGL-KE on many tasks. This is consistent with our
queriability analysis in [section 4] concluding that global methods, such as FastRP and SEPAL, are
more suitable for downstream tasks, than local methods (such as PBG and DGL-KE).

For some knowledge graphs (especially Freebase and YAGO3), we can see two modes in the scores
distribution, corresponding to the tables with low and high coverages (Figure 4).

C.3 SEPAL combined with more embedding models

Figure 7] extends the results of by adding TransE and RotatE, alone and combined with
SEPAL, as well as ablation studies results of SEPAL combined with METIS or ablated from BLOCS.
These results show that SEPAL systematically improves upon its base model, whether it be DistMult
RotatE or TransE. For a fair comparison, we ran RotatE with embedding dimension d = 50, as it
outputs complex embeddings having twice as many parameters. For other models, we use d = 100.

C.4 More baselines on the Freebase dataset

The Freebase dataset has been used in several previous works. To further validate SEPAL’s perfor-
mance, we compare it to additional baselines from the large-scale KGE literature: GraSH [Kochsiek
et al., 2022], an efficient hyperparameter optimization framework for large-scale KGEs, and SMORE
[Ren et al.| [2022], a scalable KGE method supporting single-GPU training and multi-hop reasoning.

We train both of these baselines with DistMult as the base embedding method, on Freebase, using
the authors’ released configurations for this dataset. [Table 7| reports the normalized scores on four
real-world regression tasks, along with total training time.

We trained SMORE for 1 million iterations on one GPU, following the authors’ configuration. Its
relatively low performance here suggests that longer training could improve results, but under a
6-hour budget, SEPAL is substantially better.

GraSH optimizes hyperparameters for link prediction using successive halvings to discard unpromis-
ing configurations at low cost. Results show that, after 33 hours of hyperparameter search on one
GPU, GraSH produces better embeddings than other baselines. However, SEPAL remains the best
performer on all tasks, and also the fastest method.

C.5 Evaluation on prior benchmark

Ruffinelli and Gemulla) [2024]] propose a benchmark for evaluating KGE methods on downstream
classification and regression. It includes several KGE baselines, with varying training procedures,
and the graph neural network KE-GCN for entity classification. For each knowledge graph (FB15k-
237, YAGO3-10, WikidataSM), they evaluate embeddings on downstream tasks created from entity
attributes of the knowledge graph.

34

Table 8: Evaluation on Ruffinelli et al.’s benchmark. Classification and regression results on
FB15k-237 (14k entities, 272k triples), YAGO3-10 (123k entities, 1M triples), and WikidataSM
(4.8M entities, 21M triples). Best results for each task are in bold.

Dataset Method Classification weighted F1 T Regression RSE |
ComplEx (MTT) 0.858 0.394
RotatE (MTT) 0.890 0.573
FBISK-237 yg gen 0.829 0.501
SEPAL 0.853 0.492
DistMult (MTT) 0.746 0.472
TransE (MTT) 0.723 0.441
YAGO3-10 KE-GCN 0.700 0.398
SEPAL 0.762 0.386
o TransE (STD) - 0.596
WikidataSM SEPAL _ 0.568

We put the evaluation on this benchmark in appendix because our goal in this paper is to evaluate
external, real-world tasks that are independent of a specific knowledge graph, to compare
the benefits of diverse knowledge graphs. In contrast, the Ruffinelli et al. tasks are created artificially
and associated with specific knowledge graphs, that are orders of magnitude smaller than those of our
main study.

However, evaluating SEPAL on these datasets complements our main experiments and enables direct
comparison with prior work. Thus, we used 128-dimensional embeddings to match one of the
dimensions in Ruffinelli et al.’s hyperparameter search space. We also used the authors’ released
evaluation script for comparable results. For each knowledge graph, [Table §|reports:

1. The best KGE method for classification from Ruffinelli and Gemullal [2024]];
2. The best KGE method for regression from Ruffinelli and Gemullal [2024];

3. KE-GCN results from |Ruffinelli and Gemullal[[2024]];

4. SEPAL results.

The results show that, on YAGO3-10 and Wikidata5SM, SEPAL achieves the best performance for
both regression and classification, consistent with our main results on much larger knowledge graphs.
On FB15k-237, SEPAL has weaker results, but this may be due to the dataset size (FB15k-237 has
14k entities, 185 to 6,500 times smaller than the graphs considered in our main evaluation). For these
tiny graphs, which fall outside SEPAL’s intended scope, SEPAL may not be adapted because the core
becomes too small to learn good representations for the relations and core entities.

C.6 Evaluation on knowledge graph completion
C.6.1 Link prediction results

provides the link prediction results for the different metrics. It shows that, depending on the
dataset, SEPAL is competitive with existing methods (DGL-KE, PBG) or not. However, none of the
methods is consistently better than the others for all datasets. Following the analysis in
these results are expected given that SEPAL does not enforce local contrast between positive and
negative triples through contrastive learning with negative sampling, like other KGE methods do, but
rather focuses on global consistency of the embeddings. Link prediction is, by essence, a local task,
asking to discriminate efficiently between positives and negatives. For this purpose, it seems that the
negative sampling, absent from SEPAL’s propagation, plays a crucial role.

Nevertheless, shows that a Friedman test followed by Conover’s post-hoc analysis [Conover]
and Imanl |1979| |Conover, |[1999] reveal no statistically significant differences (at significance level
o = 0.05) among the three methods that scale to all the knowledge graphs (SEPAL, PBG, and
DGL-KE), as indicated by the critical difference diagrams where all methods are connected by a
black line.

35

Mean Reciprocal Rank Hits@10 Mean Rank
3.0 25 2.0 1.5 1.0 3.0 25 2.0 15 1.0 30 25 20 15 1.0
L L L " L L L L L L L L L

SEPAL PBG __‘— PBG ——l— SEPAL

SEPAL —mMm PBG

Figure 8: Critical difference diagrams on link prediction metrics. Statistical tests show no
significant difference between methods at significance level o = 0.05.

Regression vs Link Prediction Classification vs Link Prediction
] 1.00 A
10 v Y v
el
] g 0.95 4 = “:- Datasets
© 0.8 2 N =] ® YAGO3 v YAGO4.5+T
£ o5 0.90 = B YAGO4 < Freebase
£ N4 o @ YAGOA+T > WikiKGIOMv2
voe] B R?2=0.17 £ 0851 A YAGO4.5
S Slope =.0:33 .% 5
@
o 2L 0.80 Methods
© 0.4 5 i
c = © ® SEPAL ® NodePiece
© & 2 0751 :
2 YO = e PBG DistMult
02 0704,

Figure 9: Downstream task performance against link prediction performance, on validation sets.
Linear regression, with a 95% confidence interval. We plot the performance of models that share
the same hyperparameters on the train graph (used for link prediction) and the full graph (used for
downstream tasks).

From a hyperparameter perspective, contrary to downstream tasks, the hybrid core selection strategy
(with both node and relation sampling) yields better results than its simpler degree-based counterpart.
This highlights different trade-offs between downstream tasks and link prediction. For link prediction,
good relational coverage seems to count most, whereas for downstream tasks, the core density matters

most (Figure 20).

C.6.2 Downstream and link prediction performance weakly correlate

shows that embeddings performing well on downstream tasks do not necessarily perform
well on link prediction, and vice versa. There is only a small positive correlation between these two
performances: R? ~ 0.1.

D Theoretical analysis
Notations We use the following notations:
« ©Y ¢ R4 js the embedding matrix at step ¢, where each row is the embedding of an

entity. Without loss of generality, we assume that the entities are ordered core first, then

e,) . .
outer, so we can write ot — [G(t)] with ©, € R"*d the embedding matrix of core

(fixed) entities, and @Sf) € R %4 the embedding matrix of outer (updated) entities at step
t. n. and n, denote the number of core and outer entities, respectively, and n. + n, = n is
the total number of entities.

» w, € R% embedding of relation r € R (fixed).

n,l»

-

e) = vec(@®) = [@ﬁf)l,...,@“) @ﬁfg,...,eﬁf}%...,@ﬁ}l,...,@ff}d} € R
vectorization of the embedding matrix.

s P ¢ R"¥*1d: g]obal linear propagation matrix.

+ Q € R"*"d: permutation matrix to reorder z into core and outer blocks.

36

-
o y) = Qx® = {OlT; cels Oﬂ € R": reordered vector of embeddings. y*) can also be
written as y(*) = [yy(?)].

« M = QI +aP)Q " € R"*"?: reordered update matrix. M can be written by block
M = %Cc %CO} where M ,, and M . are submatrices representing outer-to-outer

and core-to-outer influences.

D.1 Analysis of SEPAL’s dynamic and analogies to eigenvalue problems

This section presents a theoretical analysis of the SEPAL propagation algorithm. We provide a series
of intuitive and structural analogies to classic iterative methods in numerical linear algebra. Our goal
is to contextualize the algorithm’s behavior under various assumptions and shed light on its dynamic
properties. The analysis is carried out in the case of DistMult, which simplifies the propagation rule
due to its element-wise multiplication structure.

SEPAL as power iteration (no normalization, no boundary conditions) We begin by analyzing
the case without normalization or fixed embeddings. In this setting, with the vectorized embedding
matrix () € R, the propagation equation (Equation 6)) becomes:

) = (I + aP)z®, (10)

where P € R™4*"? encodes the linear update based on the knowledge graph structure and DistMult
composition rule. The matrix P is block diagonal:

P O --- 0
o P® ... 0
P= .] .] c]Rndxnd7 (11)
6 () pkd)

where each block P*) corresponds to the k-th embedding dimension and has:

P = > [wl (12)

(v, u)eX

P®) canbe seen as a weighted adjacency matrix of the graph, whose weights are the k-th coefficients
of the relation embeddings of the corresponding edges. Here, each (v, r,u) € K contributes a rank-1
update to P based on w,.

Therefore, in this setting, the problem is separable with respect to the dimensions, so each dimension
can be studied independently.

The recurrence in defines a classical power iteration. In general, it diverges unless the
spectral radius p(I + aP) < 1. In our setting, norms can grow arbitrarily because P contains
non-normalized adjacency submatrices whose eigenvalues are only bounded by the maximum degree
of the graph. In practice, the normalization (studied below) prevents the algorithm from diverging.

With boundary conditions: non-homogeneous recurrence Now, we consider the SEPAL’s setting
where core entity embeddings are fixed and only outer embeddings evolve, still without normalization.
We use the reordered vector of embeddings y(*) = Qz(*) € R™?, which can be written as follows:

0
y® = 2 - Bﬁg)]’ (13)
g&t)

where GS) is the embedding of entity u. The reordered update matrix M = Q(I + aP)Q~* has the
following block structure:
My -+ My,
M = c Rndxnd’ (14)
Mnl to Mnn

where each block M, € R?*4 encodes how the embedding of entity v contributes to the update of
entity u. In the case of the DistMult scoring function, this block is diagonal and takes the form:

M — {Z(v,r,u)eic Q- dlag(wr) if u 7& v,

15
Lo+ Z(v,r,u)elc a - diag(w,) otherwise, 15)

where diag(w,) is the diagonal matrix with the relation embedding w,. € R? on the diagonal.

Thus, M is a sparse block matrix, with each non-zero block being diagonal, and it linearly propagates
information across entity embeddings via dimension-wise interactions determined by the DistMult

model. Grouping core and outer entities together, we can also write M = [MCC CO}
oc 00

This allows us to rewrite the propagation equation to account for the boundary conditions. We obtain:
Yot = Mooyl + Mocy,, (16)

where M ,, represents signal propagation between outer nodes, and M ,. encodes injection from the
core nodes.

This is a non-homogeneous linear recurrence. If p(M ,,) > 1, the outer embeddings diverge in norm.
Nonetheless, the structure is analogous to forced linear systems such as:

Yip1 = Ay, + b,

where the long-term behavior is driven by the balance between eigenvalues of A and direction of b.

Normalization and Arnoldi-type analogy SEPAL applies {5 normalization after each update:
t+1
(t+1) _ 0 + aal™"

“ ||0£f) Jr()zangl)Hz7

7)

which constrains every embedding to the unit sphere. This couples dimensions and prevents simple
linear analysis.

However, the recurrence
Yt = Mooyl + Moy, (18)

followed by blockwise normalization of y™®) (with a {5~ mixed norm), shares structural similarities
with the Arnoldi iteration [[Arnoldi, [1951]]:

* Successive embeddings span a Krylov subspace: after iteration ¢, without normalization, ygt)
belongs to K; (A, b) = span {b, Ab, A®b, ..., A" 'b}, with A = M ,, and b= M.y,
given that ySP) =0.

* Core embeddings define the forcing direction (b = M ,.y,.).

* Normalization serves as a regularizer, preventing divergence in norm.

The Arnoldi iteration is used to compute numerical approximations of the eigenvectors of general
matrices, for instance, in ARPACK [Lehoucq et al.,[1998]]. This analogy suggests that the direction
of outer embeddings stabilizes over time and aligns with a form of dominant generalized eigenvector
of the propagation operator M, conditioned on the core. Therefore, the embeddings produced by
SEPAL’s propagation encapsulate global structural information on the knowledge graph.

38

D.2 Formal proof of Proposition 4.1

Gradient descent on £ updates the embedding parameters 6,, of an entity u with

o€
(t+1) _ g(t) _

where 7 is the learning rate.

The mini-batch gradient satisfies

0(6", (6, w,))

o€
n Z t
00y i hes 08y

061", 5(6!0

u wy)>
- Z By - Z
(h,r,t)EB u (h,r,t)EB
h=u t=u
where B is the mini-batch. Note that the previous identity is still true if the knowledge graph contains
self-loops, due to DistMult’s scoring function being a product. Plugging the DistMult relational
operator function ¢(6,w,) = 0}, ® w, in the previous equation gives

o(6,0(6),w.))
BLIR

?

T T
% _ ¥ 90 (w, ©0") 20} (w, © 6)
(t) (t) (t)
aau (h,r,t)eB 80u (h,r,t)EB 80u
h=u t=u
= _ Z w, O Ogt) — Z 9%) ® w,
(h,r,t)EB (h,r,t)EB
h=u t=u
=— Z w, © 0?) - Z QS(OS), wy).
(h,rt)eB (h,r,t)EB
h=u t=u
Therefore, going back to[Equation 19] we get that
ot =00+ > 60 w)+n Y w06 (20)
(h,r,t)EB (h,r,t)EB
t=u h=u

embedding propagation update for n=c« and B=SUC

We can see that the embedding propagation update only differs by a term that corresponds to the
message passing from the tails to the heads. We did not include this term in our message-passing
framework because we wanted SEPAL to adapt to any model whose scoring function has the form
given by In practice, the propagation direction tail to head is already handled by the
addition of inverse relations.

Therefore, a parallel can be drawn between: 1) the outer subgraphs and mini-batches, 2) the number
of propagation steps 1" and the number of epochs, 3) the hyperparameter v and the learning rate.

After each gradient step, we normalize the entity embeddings to enforce the unit norm constraint.
This procedure corresponds to projected gradient descent on the sphere [Bertsekas, [1997]], where
each update is followed by a projection (via £2 normalization) back onto the feasible set. The energy
function £ is composed of inner products and element-wise multiplications of smooth
functions, thus it is smooth, and its gradient is Lipschitz continuous on the unit sphere. Under
these conditions, the algorithm is guaranteed to converge to a stationary point of the constrained
optimization problem [Bertsekas| [1997, Proposition 2.3.2]. The limit points of the optimization thus
satisfy the first-order optimality conditions on the sphere.

E Presentation and analysis of BLOCS

E.1 Prior work on graph partitioning

Scaling up computation on graph, for graph embedding or more generally, often relies on breaking
down graphs in subgraphs. METIS [Karypis and Kumar, 1997, a greedy node-merging algorithm, is

39

a popular solution. A variety of algorithms have also been developed to detect “communities”, groups
of nodes more connected together, often with applications on social networks: Spectral Clustering
(SC) [Shi and Malikl 2000], the Leading Eigenvector (LE) method [Newman) 2006]], the Label
Propagation Algorithm (LPA) [Raghavan et al.; 2007], the Louvain method [Blondel et al.| | 2008]], the
Infomap method [Rosvall and Bergstrom, |2008]], and the Leiden method [Traag et al.,|2019] which
guarantees connected communities. LDG [Stanton and Kliot, [2012]] and FENNEL [Tsourakakis et al.|
2014] are streaming algorithms for very large graphs. Some algorithms have also been specifically
tailored for power-law graphs: DBH [Xie et al.| 2014 leverages the skewed degree distributions to
reduce the communication costs, HDRF [Petroni et al., 2015] is a streaming partitioning method that
replicates high-degree nodes first, and Ginger [Chen et al.| [2019b] is a hybrid-cut algorithm that uses
heuristics for more efficient partitioning on skewed graphs.

E.2 Detailed algorithm and pseudocode

Algorithm [T] describes BLOCS pseudocode. Below, we provide more details on subparts of the
algorithm.

Algorithm 1 BLOCS

Input: Graph G = (V, E) with nodes V' and edges F, hyperparameters h and m
Output: List of overlapping connected subgraphs
S+ 0 > list of subgraphs
U~V > set of unassigned nodes
Step 1: Create subgraphs from super-spreaders’ neighbors
for each node v € V do

if deg(v) > 0.2m then

S,U < SplitNeighbors(v, max_size = 0.2m)

end if
end for
Step 2: Assign nodes to subgraphs by diffusion
while |U| > (1 — h)|V| do

E«0 ; So<« {argmax,c; deg(v)} > start with unassigned node v with highest degree
while |Si| < 0.8 m do
Sk41 < Diffuse(Si) ; k<« k+1
end while
Append S_1 to S, and update U > Sk_1 is the last subgraph smaller than 0.8 m
end while

Step 3: Merge small overlapping subgraphs
S,U < MergeSmallSubgraphs(S, min_size = m/2)
Step 4: Dilation and diffusion until all entities are assigned
p+0 > create new subgraphs by diffusion every 5 rounds, to tackle long chains
while |U| > 0 do
if 5 divides p and p > 0 then

10
repeat
E+0 ; So< {argmax,c; deg(v)}
while |Sx| < 0.8 m do
Sk41 < Diffuse(Si) ; k<« k+1
end while
Append Si—1 to S, and update U ; i< i+1
until : = 10
end if
S < Dilate(S) ; p<«p+1
end while

Step 5: Merge small overlapping subgraphs again
S,U + SystematicMerge(S, min_size = 0.4m)
Step 6: Split subgraphs larger than m

S,U < SplitLargeSubgraphs(S, max_size = m)
S,U < MergeSmallSubgraphs(S, min_size = m/2)
Return: S, the set of overlapping subgraphs covering G

40

BLOCS —8— METIS Leiden —#— Louvain —— LE —&— Infomap —4— LPA —=— HDRF

300 o
«
~ CPU RAM capacit;
M 250 = ————= L A - —_—— 102 4
S -
= 200 o ' g
[0) i — g 10" 4
=)}
& 150 1 o’ & =
%) : . Qo]
; 1004 /0 g 10°;
L]
106 e A &
2 T 107]
O B
106 107 108 106 107 108
Number of triples Number of triples

Figure 10: Scalability of partitioning methods. Memory usage and time for 8 knowledge graphs
of various sizes. The “CPU RAM capacity” dashed line represents the CPU RAM of the machine
we used to run SEPAL (we used a different machine with more RAM to run this benchmark, see
Appendix [B.3)). Partitioning methods going beyond this limit thus cannot be combined with SEPAL
on our hardware. BLOCS is the only method to scale up to WikiKG90Mv2, a knowledge graph with
601M triples. Leiden and METIS both caused memory errors on WikiKG90Mv2, while HDRF was
too long for graphs larger than YAGO4 (our time limit was set to 333 minutes).

BLOCS —e— METIS —#— Leiden —=— Louvain —+— LE —— Infomap —+— LPA —=— HDRF

R1: connectedness R2: bounded size

107 4 le6

\
)
\

GPU capacity

components

19119(ST I9MOT
max/min size ratio
g
ToT15q S 1Mo
Largest size

\
1
i

|
1

\l
1
1
1
1

®

A .
i

o
!

106 107 108 106 107 108 106 107 108
Number of triples Number of triples Number of triples

Figure 11: Quality of partitioning methods. Maximum number of connected components in one
partition, ratio between the largest and smallest partition sizes, and size (number of entities) of
the largest partition produced for knowledge graphs of various sizes. The “GPU capacity” dashed
line represents the typical number of entities that can be loaded onto the GPU before causing a
memory error. Methods producing partitions larger than this cannot be combined with SEPAL, since
the partition’s embeddings must fit in GPU memory. BLOCS and Leiden are the only methods to
consistently return connected partitions (requirement R1). BLOCS, METIS, and HDRF are the only
methods to control the partition size (requirement R2).

The function SplitNeighbors is designed to manage high-degree nodes by distributing their
neighboring entities into smaller subgraphs. For each node whose degree exceeds a certain threshold,
it groups its neighbors into multiple subgraphs smaller than this threshold. These new subgraphs
also include the original high-degree node to maintain connectedness. By assigning the neighbors
of the very high-degree nodes first, BLOCS ensures that subgraphs grow more progressively in the
subsequent diffusion step.

The function MergeSmallSubgraphs takes a list of subgraphs and a minimum size threshold as
input. It identifies subgraphs that are smaller than this given minimum size and merges them into
larger subgraphs if they share nodes and if the size of their union remains below the maximum size
m.

The function SystematicMerge is very similar to MergeSmallSubgraphs, but it does not check
that the resulting subgraphs are smaller than m. Its objective is to eliminate all the subgraphs whose
size is smaller than a given threshold (set to 0.4 m in Algorithm T). The subgraphs produced that are
larger than m are then handled by the function SplitLargeSubgraphs.

41

The function SplitLargeSubgraphs processes the list of subgraphs to break down overly large
subgraphs while preserving connectivity. The function iterates over the subgraphs having more
than m nodes, subtracts the core, and computes the connected components. Then, it creates new
subgraphs by grouping these connected components until the size limit m is reached. As a result,
outer subgraphs can be disconnected at this stage, but merging them with the core ensures their
connectedness during embedding propagation.

E.3 Benchmarking BLOCS against partitioning methods

First, we compare BLOCS to other graph partitioning, clustering, and community detection methods.
[Figure 10{and [Figure 11|report empirical evaluation on eight knowledge graphs. BLOCS, METIS, and
Leiden are the only approaches that scale to the largest knowledge graphs. Others fail due to excessive
runtimes —our limit was set to 2 - 10% seconds. Compared to METIS, BLOCS is more efficient in
terms of RAM usage while having similar computation times (Figure 10). Experimental results also
show that classic partitioning methods fail to meet the connectedness and size requirements. Indeed,
knowledge graphs are prone to yield disconnected partitions due to their scale-free nature: they
contain very high-degree nodes. Such a node is hard to allocate to a single subgraph, and subgraphs
without it often explode into multiple connected components. Our choice of overlapping subgraphs
avoids this problem.

Classic methods do not meet the requirements of SEPAL Here, we provide qualitative obser-
vations on the partitions produced by the different methods. We explain why they fail to meet our
specific requirements.

METIS is based on a multilevel recursive bisection approach, which coarsens the graph, partitions
it, and then refines the partitions. It produces partitions with the same sizes; however, due
to the graph structure, they often explode into multiple connected components, which is
detrimental to the embedding propagation (see Appendix [E.3)).

Louvain is based on modularity optimization. It outputs highly imbalanced communities, often
with one community containing almost all the nodes and a few very small communities.
This imbalance is incompatible with our approach, which requires strict control over the
size of the subgraphs so that their embedding fits in GPU memory. Moreover, some of
the communities are disconnected. On the two largest graphs, YAGO4 + taxonomy and
Freebase, Louvain exceeds the time limit (2 - 10* seconds).

Leiden modifies Louvain to guarantee connected communities and more stable outputs. It has
very good scaling capabilities (Figure 10) but shares with Louvain the issue of producing
highly-imbalanced communities.

LE is arecursive algorithm that splits nodes based on the sign of their corresponding coefficient in the
leading eigenvector of the modularity matrix. If these signs are all the same, the algorithm
does not split the network further. Experimentally, LE returns only one partition (containing
all the nodes) for YAGO3, YAGO4, YAGO4 + taxonomy, and Freebase. For YAGO4.5
+ taxonomy, it hits our pre-set time limit (2 - 10* seconds). Therefore, we only report
its performance for Mini YAGO3 and YAGO4.5, for which it outputs 2 and 4 partitions,
respectively. It is important to note that the more communities it returns, the longer it takes
to run because the algorithm proceeds recursively.

Infomap uses random walks and information theory to group nodes into communities. Experimen-
tally, it produces a lot of small communities with no connectedness guarantee. Additionally,
it is too slow to be used on large graphs.

LPA propagates labels across the network iteratively, allowing densely connected nodes to form
communities. Similarly to Louvain and Leiden, the downside is that it does not control the
size of the detected communities. It is also too slow to run on the largest graphs.

SC uses the smallest eigenvectors of the graph Laplacian to transform the graph into a low-
dimensional space and then applies k-means to group nodes together. However, the expensive
eigenvector computation is a bottleneck that does not allow this approach to be used on huge
graphs.

HDREF is a streaming algorithm that produces balanced edge partitions (vertex cut) and minimizes
the replication factor. However, it produces disconnected partitions, and it is too slow to run
on the largest graphs.

42

4 ™ SEPAL...
® with BLOCS
31 x with METIS

Aggregated performance
N
o

-‘g Knowledge graph
14 &l ® Mini YAGO3

2 # YAGO3
0 ; ; B m YAGOA4.5

10° 10! 107
CPU RAM usage (GiB)

Figure 12: Ablation study: replacing BLOCS with METIS. Normalized R2 scores (same as
aggregated across evaluation datasets (movie revenues, US accidents, US elections, housing
prices) for SEPAL with BLOCS and METIS are plotted against CPU RAM usage. BLOCS necessi-
tates significantly less memory than METIS. We were not able to run SEPAL + METIS on knowledge
graphs larger than YAGOA4.5, hitting CPU RAM limits during the partitioning stage.

Therefore, none of the above methods readily produces subgraphs suitable for SEPAL. Indeed
shows that BLOCS is the only method that returns subgraphs that are both connected and
bounded in size, while being competitive in terms of scalability (Figure 10).

BLOCS cannot be replaced with METIS To demonstrate the benefits of BLOCS over existing
methods, we try to replace BLOCS with METIS in our framework. The results are presented in

Two important points differentiate these methods:

1. Contrary to BLOCS, METIS outputs disconnected partitions (see [Figure TT). Given the
structure of SEPAL, this results in zero-embeddings for entities not belonging to the core
connected component at propagation time. Interestingly, the presence of zero-embeddings
affects downstream scores very little, likely because most downstream entities belong to the
core connected component and are thus not impacted by this.

2. METIS does not scale as well as BLOCS in terms of CPU memory. On our hardware,
SEPAL + METIS could not scale to graphs larger than YAGO4.5 (32M entities), and
therefore, BLOCS is indispensable for very large knowledge graphs.

—8— YAGO3 YAGO4 —=— YAGO4.5 —&#— YAGO4 + taxonomy —— YAGOA4.5 + taxonomy —4+— Freebase WikiKG90Mv2
104 -
@ #+ = 10.0
€ N &]
£ e e °1 L &
=1 x
g g so £
2 =
¢ 102 5y «®
i o o g 55 S ‘1_'_.--.- ;
Sgeagee® sose et e geteeeyg
T T T T T T T T
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8
h h h

Figure 13: Sensitivity analysis to parameter h. Effect of varying h on BLOCS’ execution time,
replication factor (average number of outer subgraphs containing a given entity), and maximum
subgraph size. A lower bound of the domain of A values to explore for a dataset is given by the
proportion of nodes that are neighbors to super-spreaders. Indeed, as BLOCS’ first step is to assign
super-spreaders neighbors, if / is smaller than this value, BLOCS completely skips the diffusion
phase. For YAGO4.5 and YAGO4, this results in sharp variations of the replication factor or the
maximum subgraph size, respectively. The maximum size parameter m was set to 400k for YAGO3,
and 4M for others.

43

®
o
-

o
=}

N
o
>

40

._.
8
+ z
| =
N(é)
% of core-connecting edges
=
o
o

% of core-connected entities

Figure 14: Outer subgraphs are well connected to the core. The left plot gives the percentage of
outer entities that are directly connected to the core subgraph. The right plot gives the percentage
of edges that come from the core subgraph among all the edges coming to a given outer subgraph,
showing the amount of information transferred from the core to outer subgraphs relative to outer-outer
communication.

E.4 Effect of BLOCS’ stopping diffusion threshold

In the BLOCS algorithm, the hyperparameter h controls the moment of the switch from diffusion to
dilation. For h € (0, 1), BLOCS stops diffusion once the proportion of entities of the graph assigned
to a subgraph is greater than or equal to h.

shows that increasing h tends to increase the execution time and the overlap between sub-
graphs. Higher overlaps can be preferable to enable the information to travel between outer subgraphs
during embedding propagation. However, a high overlap also incurs additional communication costs
because the embeddings are moved several times from CPU to GPU, increasing SEPAL’s overall
execution time.

E.5 How distant from the core are the outer entities?

Figure T4]shows that outer entities are in average very close to the core subgraph. This is due to the
fact that the core contains the most central entities, and to the scale-free nature of knowledge graphs.

F Further analysis of SEPAL

F.1 Execution time breakdown

Here, we present the contribution of each part of the pipeline to the total execution time. Specifically,
we break down our method into four parts:

core subgraph extraction;

outer subgraphs generation (BLOCS);

core embedding;

el o

embedding propagation.

shows the execution time of the different components of SEPAL. It includes six large-scale
knowledge graphs, for which the execution times have the same order of magnitude. The results
reveal that most of the execution time is due to the core embedding and embedding propagation
phases, while the core extraction time is negligible.

Four key factors influence SEPAL’s execution time during the four main steps of the pipeline:
1. The core selection strategy: the degree-based selection is faster than the hybrid selection.

For the hybrid selection, the factor that influences the speed the most is the number of
distinct relations.

2. The diameter of the knowledge graph: graphs with large diameters call for more dilation
steps during BLOCS’ subgraph generation, and dilation is more costly than diffusion because

44

it requires checking node assignments. This explains why adding the taxonomies to YAGO4
and YAGO4.5 drastically reduces the time required to run BLOCS, as shown on [Figure 13}

3. The core subgraph size: the more triples in the core subgraph, the longer the core embed-
ding. This explains the wide disparities between the core embedding times on |[Figure 15}
despite all the core subgraphs having roughly the same number of entities: YAGO4 core
subgraph is more dense (33M triples), compared to YAGO4.5 (7M triples), for instance.
The core embedding time also depends on hyperparameters such as the number of training
epochs.

4. The total number N of entities in the graph: this number determines the size of the
embedding matrix. The communication cost of moving embedding matrices from CPU to
GPU, and vice versa, accounts for most of the propagation time, and increases with N. It
also increases with the amount of overlap between the outer subgraphs produced by BLOCS,
explaining the differences in propagation time between YAGO4.5 and YAGO4.5 + taxonomy
for instance.

The number of propagation steps 7" has little impact on the embedding propagation time. The reason
for this is that much of this time stems from the communication cost of loading the embeddings onto
the GPU, and not from performing the propagation itself.

F.2 SEPAL’s hyperparameters
F.2.1 List of SEPAL’s hyperparameters

Here, we list the hyperparameters for SEPAL, and discuss how they can be set. gives the
values of those that depend on the dataset.

* Proportion of core nodes 7),,: the idea is to select it large enough to ensure good core
embeddings, but not too large so that core embeddings fit in the GPU memory.
shows the experimental effect of varying this parameter;

* Proportion of core edges 7.: increasing it at the expense of 7, (to keep the core size
within GPU memory limits) improves the relational coverage, but reduces the density of
the core. Sparser core subgraphs tend to deteriorate the quality of SEPAL’s embeddings for
feature enrichment (Figure 20). However a good relational coverage is essential for better
link-prediction performance;

* Stopping diffusion threshold h: it depends on the graph structure, and tuning is done
empirically by monitoring the proportion of unassigned entities during the BLOCS algorithm:

i
7/

Core subgraph Core
extraction = embedding

Outer subgraphs Embedding
= generation (BLOCS) r= propagation

YAGO4.5 ==

YAGO4.5+T

YAGO4
YAGO4+T
Freebase
WikiKG90Mv?2
I~~~ %]
0 1 2 16 17

4 5
Time (hours)

Figure 15: SEPAL’s execution time breakdown. Execution time of SEPAL’s different components,
for the best-performing configurations of SEPAL on downstream tasks (see for hyperparame-
ters values).

45

()

e 4 .

1.

S 34 °] Knowledge graph
g ¢ ® YAGO3
5 21 YAGO4
I ® YAGO4.5
(@]

o

[®)]

[®)]

<

0.02 0.04 0.06 0.08 0.10
Core proportion n

Figure 16: Effect of core proportion 7,, on SEPAL’s performance, with the degree-based core selection

strategy.

4 -
3 -
Knowledge graph
* b M M * ® Mini YAGO3
YAGO3

Aggregated performance
N

0.55 0.60 065 0.70 0.75 0.80
h

Figure 17: Effect of stopping diffusion threshold h on SEPAL’s performance.

h is chosen equal to the proportion of assigned entities at which BLOCS starts to stagnate
during its diffusion regime. In practice, [Figure 13|and|[Figure 17|shows that as long as h
is chosen greater than the proportion of entities that are neighbors of super-spreaders, the
algorithm is not too sensitive to this parameter (otherwise, it skips the diffusion phase, which
can be detrimental);

Number of propagation steps 7': it is chosen high enough to ensure reaching the remote
entities (otherwise, they will have zeros as embeddings). Taking 7" equal to the graph’s
diameter guarantees that this condition is fulfilled. However, for graphs with long chains,
this may slow down SEPAL too much. In practice, setting 7" at 2-3 times the Mean Shortest
Path Length (MSPL) usually embeds most entities effectively;

Propagation learning rate «: it controls the proportion of self-information relatively to
neighbor-information during propagation updates. For the DistMult model, this parameter
has no effect during the first propagation step, when an entity is reached for the first
time because outer embeddings are initialized with zeros and the neighbors’ message is
normalized. In practice, the embedding of an outer entity can reach in one step a position
very close to its fix point, and thus this parameter does not have much effect (Figure T8).
For our experiments we typically use o = 1;

Subgraph maximum size m: the idea is to use the largest value for which it is possible to
fit the subgraph’s embeddings in the GPU memory. We use 4 - 10* for Mini YAGO3, 4 - 10°
for YAGO3, 2 - 106 for WikiKG90Mv2, and 4 - 10 for the other knowledge graphs;

Embedding dimension d: we use d = 100 (except for complex embedings, where d = 50
to keep the same number of parameters);

Number of epochs for core training np.cn: see(Table 9
Batch size for core training b: see
Optimizer for core training: we use the Adam optimizer with learning rate Ir = 1 - 1073;

Number p of negative samples per positive for core training: we use p = 100 (Table 9).

46

Dataset Parameter Grid (best in bold)

Nn/Ne 0.05/—, 0.2/—, 0.025/0.005, 0.3/0.05
h 0.6, 0.65, 0.7, 0.75, 0.8
. T 2,5,10, 15,25
Mini YAGO3 | 12,25, 50, 60, 75
b 512
» 1, 100, 1000
NniMe 0.05/—, 0.1/—, 0.025/0.015, 0.3/0.05
h 0.55, 0.6, 0.65, 0.7, 0.75, 0.77
T 2,5,10, 15,25
YAGO3 Tlegoch 16, 18, 25, 45, 50, 75
b 2048, 4096, 8192
p 1, 100, 1000
NniMe 0.03/—, 0.015/0.01, 0.05/0.03
h 0.4,0.5, 0.6
T 2,5,10, 15, 25, 50
YAGO4.5 - 16,2475
b 8192, 16384
1,100
Table 9: Hyperparameter P
search space for SEPAL, Tnlne 0.03/—, 0.015/0.005, 0.04/0.015
and best values (in bold) ;ﬂ 5 5.10.15.20 02'8
for each knowledge graph YAGO4.5+T 5,10, 15, 3 72
on downstream tasks. The Zep"“h 8i92
best values are those that P 100
gave the best average perfor-
mance on the 4 validation ta- Tale 0.03/—, 0.015/0.005, 0.012/0.025
bles and that were used to ;ﬂ 5 5.10. 15 2(?32
get the results in [Figure 2| YAGO4 " 28 s
epoch 5 5
and[Figure 5 b 8192, 65536
P 1, 100
NniMe 0.02/—, 0.01/0.005
h 0.45, 0.8
T 10, 20
YAGO4+T - 3275
b 8192, 65536
p 1,100
No/ne 0.02/—, 0.01/0.005
h 0.55
T 15
Freebase Hegoch 24
b 8192
P 100
Nn/MNe 0.02/—
h 0.92
WikiKGOOMv2 L~ 10
epoch 12
b 8192
p 100

F.2.2 Experimental study of hyperparameter effect

[Figure 16| [Figure 17| [Figure 18| and [Figure 19|investigate the sensitivity of SEPAL to different
hyperparameters. The hyperparameter that seems to impact the most SEPAL’s performance is the
core proportion 7,,. Indeed, shows that increasing 7,, tends to improve embedding quality
for downstream tasks. However, the effect seems to be plateauing relatively fast for YAGO3 (not
much improvement between 7,, = 5% and 7,, = 10%). For other datasets (YAGO4.5, YAGO4), it
is not possible to explore larger values of 7,, because the core subgraph would not fit in the GPU

47

44 s Knowledge graph

3 e M] e ® Mini YAGO3
YAGO3

24 e ° o ° ° ® YAGO4

® YAGO4 + taxonomy
1 YAGO4.5
YAGO4.5 + taxonomy

Aggregated performance

1072 107t
Propagation learning rate

Figure 18: Effect of propagation learning rate v on SEPAL’s downstream performance.

()
e a °
©
g 3 ° ° Knowledge graph
£ ® Mini YAGO3
2, YAGO3
kel L] (4 ®
2 ® YAGO4
q‘S} 1 ® YAGO4.5
5
20+ ;
0 10 20 30 40 50

Number T of propagation steps

Figure 19: Effect of number 7" of propagation steps on SEPAL’s downstream performance.

memory. Moreover, decreasing 7,, makes SEPAL run faster, as the core embedding phase accounts
for a substantial share of the total execution time (Figure T5). There is, therefore, a trade-off between
time and performance.

Core selection strategy Degree-based selection: The simple degree-based core selection strategy
is convenient for two reasons:

1. Degree is inexpensive to compute, ensuring the core extraction phase to be fast (see
fure I3):

2. Ityields very dense core subgraphs. Indeed, while they contain 7,,% of the entities of the
full graph, they gather around 47,,% of all the triples (Table 10). This allows the training on
the core to process a substantial portion of the knowledge-graph triples, resulting in richer
representations.

Hybrid selection: However, a problem with the degree-based selection is that some relation types
may not be included in the core subgraph. To deal with this issue, SEPAL also proposes a more
complex hybrid method for selecting the core subgraph, that incorporates the relations. It proceeds in
four main steps:

1. Degree selection: Sample the nodes with the top 7,, degrees.

2. Relation selection: Sample the edges with the top 7. degrees (sum of degrees of head and
tail) for each relation type, and keep the corresponding entities.

3. Merge: Take the union of these two sets of entities.

4. Reconnect: If the induced subgraph has several connected components, add entities to make
it connected. This is done using a breadth-first search (BFS) with early stopping from the
node with the highest degree of each given connected component (except the largest) to the
largest connected component. For each connected component (except the largest), a path
linking it to the largest connected component is added to the core subgraph.

This way, each relation type is guaranteed to belong to the core subgraph, by design. [Table 10|
confirms this experimentally, even for Freebase and its 14,665 relation types. This method features

48

Table 10: Effect of core selection strategies. Number of entities and triples inside the core subgraph
and proportion of the full graph they represent (in parentheses). 7,, and 7. are the hyperparameters
for nodes and edges, respectively. Column #Rel gives the number of relation types present in the
core compared to the total number of relation types in the knowledge graph. We highlight in red the
cases where some relations are missing. Column 7ime gives the measured computation time for core

selection.

Strategy 7. Ne #Rel #Entities #Triples Time
Degree 5% - 37/37 126k (4.9%) 1.0M (18.5%) 17s
YAGO3 Hybrid 25% 1.5% 37/37 121k (4.7%) 733k (13.1%) 20s
Degree 3% - 62/62 932k (2.9%) 7.2M (9.6%) 2min
YAGO4.5 Hybrid 1.5% 1% 62/62 1.1M (3.3%) 5.7M (7.5%) 6min
Degree 3% - 61/76 1.1IM (3.0%) 33M (13.4%) 8min
YAGO4 Hybrid 1.5% 0.5% 76/76 1.4M (3.8%) 28M (11.1%) 11min
Degree 3% - 64/64 1.5M (3.0%) 13M (9.9%) 4min
YAGO4.5+T Hybrid 1.5% 0.5% 64/64 1.2M (2.5%) 8.3M (6.5%) Smin
Degree 2% - 64/78 1.3M (2.0%) 41M (12.8%) 9min
YAGO4+T Hybrid 1% 0.5% 78/78 1.5M (2.3%) 32M (10.1%) 12min
Degree 2% - 5,363/14,665 1.7M (2.0%) 15M (4.4%) 9min
Freebase Hybrid 1% 0.5% 14,665/14,665 1.9M (2.3%) 14M (4.1%) 4h
Degree 2% - 886/1,387 1.8M (2.0%) 62M (10.4%) 17min
WikiKG90Mv2 Hybrid 04% 0.7% 1,387/1,387 2.0M (2.2%) 37M (6.2%) 48min

two hyperparameters 7,, and 7)., the proportions for node and edge selections, controlling the size of
its output subgraph. The values we used are provided in for each dataset.

Regarding performance, shows that the hybrid strategy slightly underperforms the degree-
based approach on four real-world downstream tasks. Indeed, the hybrid approach enhances relational
coverage but, as a counterpart, yields a sparser core subgraph (see #7riples in[Table 10), which is
detrimental to downstream performance. However, one can adjust the values of 7,, and 7, to control
the trade-off between downstream performance and relation coverage, depending on the use case.
For instance, for the link prediction task, a better relational coverage (greater 7.) improves the
performance (Appendix [C.6).

Exploring other centrality measures Here, we compare degree with PageRank as a centrality
measure for the core selection (keeping all other hyperparameters unchanged). Like the degree, the
PageRank can be computed very efficiently on huge graphs using sparse matrix multiplications.

[Table TT|reports results on the real-world downstream tasks. Regarding performance, it seems that the
difference between degree and PageRank depends on the graph’s structure. Specifically, we observe
that for YAGO4, YAGO4+T, Freebase, and WikiKG90Mv2, PageRank improves the performance.
This echoes the results of which show that in these four specific KGs, contrary to the

Table 11: Effect of core selection strategy: PageRank vs Degree. We compare the performance
of SEPAL+DistMult on real-world downstream tasks when using either degree or PageRank as a
centrality measure for core selection. We report the average normalized R2 score across the four
downstream tasks, along with the total execution time (in parentheses).

Dataset Core defined by Degree Core defined by PageRank
YAGO3 0.783 (11m 20s) 0.742 (9m 23s)
YAGO4 0.817 (6h 20m) 0.861 (4h 53m)
YAGO4+T 0.815 (10h 9m) 0.881 (8h 16m)
YAGO4.5 0.949 (4h 11m) 0.925 (4h 3m)
YAGO4.5+T 0.923 (2h 47m) 0.912 (2h 40m)
Freebase 0.917 (5h 58m) 0.919 (5h 58m)
WikiKG90Mv2 0.898 (20h 31m) 0.902 (23h 59m)

49

YAGO3 (2.6M entities, 5.6M triples)
Hybrid A -:_ 9 min
Degree { BN 23 min
IYAGO4.5 (32M Ientities, 75M tlriples)
Degree - _:_ 2h
Hybrid { N e 4h
I YAGO4.I5 + taxonomyl(SOM entities, I128M triples) I

Degree _:_ 3h Evaluation dataset
Hybrid { T 3h I Movie revenues
' YAGO4 (38M entities, 250M trl“iples) ' 0 US accidents
Degree { [N I —— 12n | [USelections
Hybrid { I 7h B Housing prices

YAGO4 + taxonomy (67M entities, 320M triples)

Degree 1 [N] 4h
Hybrid 1 N] 7h

Freebase (85M entities, 338M triples)
Degree { T 6h
Hybrid - I 10 h

0 1 2 3 4
Cumulative normalized mean cross-validation score (R2)

Figure 20: Performance of SEPAL+DistMult for the two different core selection strategies. We
use the hyperparameters of The simpler degree-based selection strategy runs faster and
performs better on downstream tasks.

others, the degree-based core selection yields cores that are connected through fewer edges to some
outer subgraphs. We can therefore conjecture that for these KGs, PageRank improves information
flow and mitigates issues like oversquashing during propagation, ultimately increasing performance.
Regarding computational cost, we see that SEPAL with PageRank usually runs slightly faster than
with degree. This is because PageRank yields slightly sparser cores, leading to faster core training.

F.3 Ablation study: SEPAL without BLOCS

Here, we study the effect of removing BLOCS from our proposed method. On smaller knowledge
graphs, SEPAL can be used with a simple core subgraph extraction and embedding followed by the
embedding propagation. This ablation reveals the impact of BLOCS on the model’s performance.
shows that adding BLOCS to the pipeline on graphs that would not need it (because they are
small enough for all the embeddings to fit in GPU memory) does not alter performance. Additionally,
BLOCS brings scalability. By tuning the maximum subgraph size m hyperparameter, one can move
the blue points horizontally on[Figure 21| and choose a value within the GPU memory constraints.
There is a trade-off between decreasing GPU RAM usage (i.e., moving the blue points to the left) and
increasing execution time, as fewer entities are processed at the same time.

F.4 Speedup over base embedding model

demonstrates that SEPAL can accelerate its base embedding model by more than a factor
of 20, while also boosting its performance on downstream tasks.

Moreover, the speedup increases with the number of training epochs, as SEPAL’s constant-cost steps
(core extraction, BLOCS, and propagation) are amortized when core training gets longer. Indeed,
each additional epoch is cheaper with SEPAL than with DistMult, since training is done only on the
smaller core rather than the full graph.

50

4 1 + + ® with BLOCS
- // 0 without BLOCS
31 x ® without BLOCS (extrapolated)

H

Aggregated performance
N
o

E= % Knowledge graph
§//// ® Mini YAGO3
o K % YAGO3
0 IR . % m YAGO4
102 103 104 105 + YAGO4.5

GPU RAM usage (MiB)

Figure 21: Ablation study: BLOCS scales SEPAL memory-wise. Normalized R2 scores aggregated
across evaluation datasets (movie revenues, US accidents, US elections, housing prices) for SEPAL
with and without BLOCS are plotted against GPU RAM usage. BLOCS preserves performance for a
given knowledge graph while drastically reducing memory pressure on GPU RAM. Without BLOCS,
the GPU runs out of memory for YAGO4 and YAGO4.5.

a) Lower training time E} Higher performance

X Mini YAGO3 §

. ® YAGO3 27.9% =

v 1h3 faster € 0.8 A SEPAL

o 15

€ R = S/

e . [V . Pty 30.3% | RSV

> . 3@3@ _____ s 203K L 0.6 X 0

= 1mi r a

c 1lmin g s,

= et (’:\C‘ 0.4+ # Epochs|
6.6x % SEPAL c 75

10s o (faster.-=="¥ © @)
100 10! 102 10s 1min 1h
Number of epochs Training time (s)

Figure 22: Comparison between SEPAL and its base embedding model. a) Computation time
per training iteration. For a given training configuration, SEPAL is up to 30 times faster than its
base embedding algorithm DistMult. b) Learning curves. SEPAL achieves strong downstream
performance much quicker than DistMult. For both plots, we only vary the number of epochs and fix
the following parameters for DistMult’s training and SEPAL’s core training: p = 1,1r = 1- 1073,
b = 512 for Mini YAGO3 and b = 2048 for YAGO3. For SEPAL, we use the degree-based core
selection with 1, = 5%.

G Discussion

G.1 Comparison to prior work
G.1.1 Comparison to DistMult-ERAvg

Albooyeh et al.| [2020] propose an aggregation that is similar to SEPAL’s aggregation during the
propagation phase, however the two methods optimize the embeddings in two very distinct ways:

* |Albooyeh et al.|[2020] introduce propagation within the standard link prediction pipeline:
during training, for each triple (v, r, u), they occasionally (with probability p) replace one
entity’s embedding with an aggregated version (e.g., 0,, -6,.) before computing the plausibility
score. However, training still relies on negative sampling and a classic link prediction loss,
and thus optimizes for local triple-level contrasts like traditional KGE methods.

* SEPAL, in contrast, explicitly separates the optimization objective: embeddings for a small
core are trained with a classic KGE objective, and then relation-aware propagation is used
across the rest of the graph, without negative sampling. This distinction is crucial: SEPAL

51

Table 12: Comparison between SEPAL and DistMult-ERAvg on Mini YAGO3. We report the
normalized mean cross-validation score (R2) across the four real-world downstream tasks, along with
the total training time. SEPAL outperforms DistMult-ERAvg while being significantly faster.

Method Housing prices Movie revenues US accidents US elections Time
DistMult-ERAvg 0.149 0.124 0.444 0916 2h41m
SEPAL 0.276 0.159 0.548 0.929 5m

removes the need for negative sampling on typically 95 to 99% of the graph, enabling both
improved scalability and alignment properties beneficial for downstream tasks.

Moreover, DistMult-ERAvg is not designed for very large graphs. On the datasets considered in this
paper, it fails with out-of-memory errors on all the graphs except Mini YAGO3 (129k entities, 1.1M
triples).

[Table T12|reports performance and runtime on Mini YAGO3, showing that SEPAL is 32 times faster
than DistMult-ERAvg while achieving consistently better scores. This is expected since DistMult-
ERAvg follows the classic optimization loop with negative sampling, gradient computations, and
parameter updates, and therefore inherits the limitations of traditional KGE methods. The strength of
DistMult-ERAvg lies in out-of-sample embedding computation, which SEPAL also supports (see
Appendix [G.3), but with greater scalability.

G.1.2 Comparison to NodePiece

SEPAL shares with NodePiece the fact that it embeds a subset of entities. Parallels can be drawn
between: a) the anchors of NodePiece and the core entities of SEPAL; b) the encoder function of
NodePiece and the embedding propagation of SEPAL. Yet, our approach differs from NodePiece in
several ways.

Neighborhood context handling Both methods handle completely differently the neighborhood of
entities. NodePiece tokenizes each node into a sequence of k anchors and m relation types, where k
and m are fixed hyperparameters shared by all nodes. If the node degree is greater than m, NodePiece
downsamples randomly the relation tokens, and if it is lower than m, [PAD] tokens are appended; both
seem sub-optimal. In contrast, SEPAL accommodates any node degree and uses all the neighborhood
information, thanks to the message-passing approach that handles the neighborhood context naturally.

Additionally, NodePiece’s tokenization relies on an expensive BFS anchor search, unsuitable for
huge graphs. On our hardware, we could not run the vanilla NodePiece (PyKEEN implementation)
on graphs bigger than Mini YAGO3 (129k entities). For YAGO3 and YAGO4.5, we had to run an
ablated version where nodes are tokenized only from their relational context (i.e., £ = 0, studied in
the NodePiece paper with good results), to skip the anchor search step.

Training procedure At train time, NodePiece goes through the full set of triples at each epoch to
optimize both the anchors’ embeddings and the encoder function parameters, necessitating many
gradient computes and resulting in long training times for large graphs. On the contrary, SEPAL
performs mini-batch gradient descent only on the triples of the core subgraph, which provides
significant time savings. To illustrate this, [Figure 23| compares the performance of SEPAL and vanilla
NodePiece on Mini YAGO3, showing that SEPAL outperforms NodePiece on downstream tasks
while being nearly two times quicker.

Embedding propagation to non-anchor/non-core entities To propagate to non-anchor entities,
NodePiece uses an encoder function (MLP or Transformer) that has no prior knowledge of the
relational structure of the embedding space, and has to learn it through gradient descent. On the
contrary, SEPAL leverages the model-specific relational structure to compute the outer embeddings
with no further training needed.

52

Mini YAGO3 (129k entities, 1.1M triples)

. i ; Evaluation dataset

: 3 US accidents
. I US elections
isthiu odePiece 1 EE Housing prices
0 1 2 3 4
Cumulative normalized mean cross-validation score (R2)

Figure 23: Comparing SEPAL with NodePiece on Mini YAGO3.

G.2 Communication costs of SEPAL

SEPAL optimizes data movement In modern computing architectures, memory transfer costs are
high, amounting to much computation, and the key to achieve high operation efficiency is to reduce
data movement [Mutlu et al., [2022].

For distributed methods such as PBG or DGL-KE, parallelization incurs additional communication
costs due to two factors: /) Learned parameters shared across workers (relation embeddings) require
frequent synchronization 2) Entities occurring in several triples belonging to different buckets have
their embeddings moved several times from CPU to GPU, and this for every epoch. This latter effect
can be mitigated by better partitioning, but remains significant.

SEPAL avoids much of the communication costs by keeping the core embeddings on GPU memory
throughout the process. These core embeddings are the ones that would move the most in distributed
settings, because they correspond to high-degree entities involved in many triples. Moreover, SEPAL’s
propagation loads each outer subgraph only once on the GPU, contrary to other methods that perform
several epochs. This significantly reduces data movement for outer embeddings: empirically, they
only cross the CPU/GPU boundary twice on average (see[lable 13|.

Estimating I/O Communication costs occur in SEPAL during the Table 13: Empirical av-
propagation phase, where the embeddings of each of the subgraphs erage number of memory
generated by BLOCS have to be loaded on the GPU, subgraph after transfers between CPU and
subgraph. We analyze the number x of back-and-forth of a given GPU for outer embeddings
embedding between CPU and GPU memory. The optimal value is across datasets.

x = 1, meaning the embeddings are transferred only once. A detailed pataset Touter
breakdown follows: .

Mini YAGO3 1.20

* For core embeddings: core embeddings remain at all times ~ YAGO3 3.07

on the GPU memory. They are only moved to the CPU once ~ YAGO4.5 747

at the end, to be saved on disk with the rest of the embeddings. YAGO4.5+T 1.94

"alj"herefi)ri:, the data movement of core embeddings is optimal: ¥2383+T %53

core = =+ Freebase 2.09

* For outer embeddings: SEPAL loads each outer subgraph wikikG9oMv?2 1.84
only once to the GPU. Consequently, the average number
Zouter Of memory transfers for outer embeddings corresponds
to the average number of subgraphs in which a given outer
entity appears. reports empirical values of xouter across datasets, ranging from
1.20 to 7.47, with an overall average of 2.65. This redundancy arises from subgraph overlap,
which is directly influenced by the h hyperparameter in BLOCS: smaller values of A yield
fewer diffusion steps (and more dilation steps), leading to reduced subgraph overlap and,
hence, fewer memory transfers per embedding.

Average 2.65

The optimal value of = 1 can only be achieved in the case where the entire graph fits in GPU
memory. Every approach that scales beyond GPU RAM limits has its communication overheads, i.e.,
x> 1

For comparison, distributed training schemes that load buckets of triples to GPU iteratively exhibit
significantly higher communication costs. In such settings, the number of memory transfers for the
embedding of an entity u is given by = Npyckets (1) X Nepochs Where Npyckets () is the number
of buckets that contain a triple featuring entity u, and nepochs 1S the number of epochs. That is at

53

least one or two orders of magnitude greater than what SEPAL achieves in terms of data movement.
Indeed, knowledge-graph embedding methods are usually trained for a few tens if not a few hundreds
of epochs, so x is much bigger than 10, not even taking into account npyckets (1) that can be large,
depending on the graph structure and on the quality of the graph partitioning.

G.3 Outlook on continual learning

The modular nature of SEPAL makes it Table 14: Statistics of the two versions of YAGO3 used

well-suited for continual learning scenar- (o illustrate SEPAL’s suitability for continual learning.
i0s, where new entities are added to the

. Version #Entities #Relations #Triples
knowledge graph over time. Indeed, new
embeddings can be computed without re- ~ YAGO3-2014 2,570,716 37 5,585,004
training from scratch, via a few additional YAGO3-2022 4,546,966 37 14,691,781

propagation steps, as long as the relations
remain unchanged. To demonstrate this, we use two versions of the YAGO3 knowledge graph: the
original 2014 release, and the 2022 revived version. gives the statistics of these two datasets.

We adapt SEPAL to this continual learning setting by: (1) initializing the embeddings of YAGO3-2022
using embeddings precomputed on YAGO3-2014, (2) propagating embeddings for 5 additional steps
to update existing nodes and embed new entities. We denote this method SEPAL-CL in the results.

[Table 15]lshows that:

* For downstream applications, YAGO3-2022 brings value compared to YAGO3-2014. Indeed,
for all the methods considered, the embeddings learned on the 2022 dataset score higher
than the strongest method on YAGO3-2014, SEPAL.

* SEPAL trained from scratch is 10 x faster than DistMult on YAGO3-2022.

e SEPAL-CL is 57 x faster than SEPAL trained from scratch on YAGO3-2022, and 587 X
faster than DistMult.

* SEPAL-CL clearly outperforms DistMult, and almost matches the performance of SEPAL
trained from scratch, even in this very challenging scenario (8 years between the two versions
of the graph), where the size of the graph has doubled in terms of entities, and tripled in terms
of triples. In a real-life application, we could imagine embeddings recomputed monthly at
very low cost.

G.4 Broader impacts

SEPAL may reflect the biases present in the training data. For instance, Wikipedia, from which
YAGO is derived, under-represents women [Reagle and Rhuel |2011]]. We did not evaluate how much
our method captures such biases. We note that the abstract nature of embeddings may make the
biases less apparent to the user; however, this problem is related to embeddings and not specific to
our method. It may be addressed by debiasing techniques [Bolukbasi et al.l 2016, |Fisher et al., 2020]
for which SEPAL could be adapted.

Table 15: Continual learning experiment on YAGO3. Average normalized R2 scores across the
four real-world downstream regression tasks (movie revenues, US accidents, US elections, housing
prices) and total runtime for different methods. SEPAL-CL denotes SEPAL in the continual learning
setting, where new entities are embedded via propagation.

YAGO3 version Method Average performance Runtime
2014 SEPAL 0.836 Oh 11m 20s
2022 DistMult 0.884 11h 05m 36s
2022 SEPAL 0.988 1h 05m 07s
2022 SEPAL-CL 0962 OhO0lm 08s

54

	Introduction: embedding knowledge for downstream tasks
	Related work: embedding optimization and scalability
	Optimizing knowledge-graph embeddings
	Techniques for scaling graph algorithms
	Scaling knowledge-graph embedding

	SEPAL: revisiting knowledge-graph embedding optimization
	Splitting large graphs into manageable subgraphs
	Core optimization with traditional KGE models
	Outside the core: relation-aware propagation

	Theoretical analysis: embedding alignment
	Experimental study: utility to downstream tasks
	Discussion and conclusion
	Datasets
	Statistics on knowledge graph datasets
	Downstream tables
	Entity coverage of downstream tables

	Evaluation methodology
	Downstream tasks
	Knowledge graph completion
	Experimental setup

	Additional evaluation of SEPAL
	Table-level downstream results on real-world tables
	Table-level downstream results on WikiDBs tables
	SEPAL combined with more embedding models
	More baselines on the Freebase dataset
	Evaluation on prior benchmark
	Evaluation on knowledge graph completion

	Theoretical analysis
	Analysis of SEPAL's dynamic and analogies to eigenvalue problems
	Formal proof of prop:implicit-sgd

	Presentation and analysis of BLOCS
	Prior work on graph partitioning
	Detailed algorithm and pseudocode
	Benchmarking BLOCS against partitioning methods
	Effect of BLOCS' stopping diffusion threshold
	How distant from the core are the outer entities?

	Further analysis of SEPAL
	Execution time breakdown
	SEPAL's hyperparameters
	Ablation study: SEPAL without BLOCS
	Speedup over base embedding model

	Discussion
	Comparison to prior work
	Communication costs of SEPAL
	Outlook on continual learning
	Broader impacts

