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Abstract

We propose a new fast and accurate solution001
for coreference resolution, in which the task002
is formulated as a span boundary alignment003
problem. In this solution, a mention is linked004
to another one via two edges modeling how005
likely two linked mentions point to the same006
entity. Specifically, for each mention, its head007
word (left boundary) needs to be well aligned008
with the head words of all other mentions that009
refer to the same entity, so does its tail word010
(right boundary). Such a “head-to-head” and011
“tail-to-tail” alignment strategy greatly reduces012
the computational complexity of coreference013
decisions on any pair of mentions, mitigates014
the error propagation problem caused by men-015
tion pruning, and encourages the sharing of016
features across all mentions that refer to the017
same entity. Experimental results show that our018
solution achieves close to state-of-the-art per-019
formance on the CoNLL-2012 and GAP bench-020
marks with much less computational cost.021

1 Introduction022

Coreference resolution that aims to identify all023

the mentions referring to the same entity in a text,024

is considered as an important preprocessing step025

for various high-level natural language process-026

ing (NLP) tasks such as document summarization,027

question answering, and information extraction028

(Chen and Ng, 2016; Falke et al., 2017; Dhingra029

et al., 2018). Despite the significant progress has030

been made on the coreference resolution in recent031

years, there are still some challenging problems032

that need to be resolved.033

The first one is mention detection, which is the034

task of extracting possible mentions from an input035

text, a critical preprocessing step for the corefer-036

ence resolution. Previous studies show that the re-037

sults of mention detection have a significant impact038

on the performance of coreference resolution (Lu039

and Ng, 2020). However, such a pipelined solution040

may lead to a serious error propagation problem041
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Figure 1: An example of the “head-to-head” and “tail-to-
tail” alignment strategy. In this example, “Drug Empo-
rium Inc.”, “this drugstore chain”, “the company”, and
“company” refer to the same entity. For each mention, its
head word should be well aligned with the head words
of the others, so does its tail word. Taking the mention
of “the company” as an example, its head word “the”
should be aligned with “Drug”, “this”, and “company”,
and its tail word “company” needs to align with “Inc.”,
“chain” and “company”. If one of these mentions, say
“the company”, was not identified at the mention pruning
stage, it has several chances (up to three times in this
example) to be recovered when we align the boundary
words of “Drug Emporium Inc.”, “this drugstore chain”,
and “company” with their coreferent mentions.

(Clark and Manning, 2016; Wiseman et al., 2016): 042

undetected mentions have no chance to be recon- 043

sidered and those detected incorrectly can never be 044

corrected at the following stages. Recently, the end- 045

to-end framework has been proposed to tackle this 046

problem, which jointly learns to detect mentions 047

and cluster them into groups (Lee et al., 2017, 2018; 048

Joshi et al., 2019a). However, the computational 049

complexity of such a solution is O(T 4), where T is 050

the length of an input text, because every possible 051

span needs to be considered, and every pair of those 052

spans should be evaluated for possible co-referring. 053

To reduce this intractable complexity, the candidate 054

spans still need to be pruned. Therefore, the men- 055

tions filtered out at the pruning stage can never be 056

recovered, which greatly impairs the performance 057

of models with the end-to-end framework. 058

Secondly, how to leverage entity-level features 059

remains an unresolved problem. Previous stud- 060
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ies either count on the long-term memory (LSTM)061

or pre-trained transformer to implicitly capture the062

global features (Lee et al., 2017; Zhang et al., 2018)063

or incorporate the features of the clusters already064

formed to determine whether a mention is corefer-065

ent with a preceding cluster (Lee et al., 2018; Kan-066

tor and Globerson, 2019). The former might miss067

out some important features for specific pairwise068

predictions without explicit entity-level features,069

while the latter may suffer from error propagation070

as false clusters are used to create entity-level fea-071

tures when making future predictions.072

Recently, Wu et al. (2020) present CorefQA073

that provides a new solution to tackle the above-074

mentioned problems, in which the coreference res-075

olution is formulated as a question answering prob-076

lem. Taking a mention (pruned) and its surrounding077

context as a query, their model is trained to retrieve078

all the mentions that refer to the same entity as the079

query. In this way, the mentions filtered out at the080

pruning stage gain another chance to be “reborn”.081

Their model achieved state-of-the-art performance082

on CoNLL-2012 and GAP datasets but requires083

considerable computational cost. For each possi-084

ble mention, a query needs to be created and then085

answered by accessing the entire text.086

Inspired by CorefQA (Wu et al., 2020), we for-087

mulate the coreference resolution as a span bound-088

ary alignment problem. Specifically, for a set of089

mentions referring to the same entity, our model is090

trained to align their heads (left boundary words)091

and tails (right boundary words) as well as possi-092

ble. As shown in Figure 1, “Drug Emporium Inc.”,093

“this drugstore chain”, “the company”, and “com-094

pany” refer to the same entity. For each mention095

in this set, its head word should be well aligned096

with the head words of the others, so does its tail097

word. Taking the mention of “the company” as an098

example, its head word “the” should be aligned099

with “Drug”, “this”, and “company”, and its tail100

word “company” needs to align with “Inc.”, “chain”101

and “company”. If one of these mentions, say “the102

company”, was not identified at the mention prun-103

ing stage, it has several chances (up to three times104

in this example) to be recovered when we align the105

boundary words of “Drug Emporium Inc.”, “this106

drugstore chain”, and “company” with their coref-107

erent mentions. After those “head-to-head” and108

“tail-to-tail” pairs have been well aligned, the coref-109

erence decision on each mention-pair can base on110

such “head-to-head” and “tail-to-tail” alignment111

scores rather than their mention-level representa- 112

tions. Besides, the head (or tail) representations 113

of all possible mentions in a text are produced at 114

a time and updated together accordingly, which 115

greatly speeds up the training and inference time 116

and encourages the sharing of entity-level features 117

across all mentions referring to the same entity. 118

Our contributions are threefold: (1) We propose 119

a new solution to the coreference resolution, which 120

better leverages entity-level features and deals with 121

the error propagation problem caused at the men- 122

tion pruning stage; (2) The solution greatly re- 123

duces the computational cost by factorizing the 124

mention-pair scores into “head-to-head” and “tail- 125

to-tail” alignment scores; (3) Experimental results 126

show that the proposed framework achieved close 127

to state-of-the-art performance on two widely-used 128

benchmarks with minimal computational cost. 129

2 Related Work 130

Coreference resolution is a long-standing challeng- 131

ing task which is considered as a critical step to 132

process texts semantically for many NLP applica- 133

tions (Ng, 2010). Existing approaches can roughly 134

be divided into two categories: mention-pair rank- 135

ing (Bengtson and Roth, 2008; Stoyanov et al., 136

2010; Wiseman et al., 2015) and entity-mention 137

models (Poon and Domingos, 2008; Björkelund 138

and Kuhn, 2014; Clark and Manning, 2015). The 139

former makes each coreference decision indepen- 140

dently without taking entity-level information into 141

consideration, while the latter addresses the lack of 142

global information by considering whether a men- 143

tion is coreferent with a previously formed cluster. 144

However, how to better capture and leverage global 145

entity-level information is still not well resolved. 146

On the other hand, traditional coreference reso- 147

lution approaches usually involve a preprocessing 148

step of mention detection, which often uses some 149

hand-engineered mention proposal algorithms to 150

identify possible mentions (Raghunathan et al., 151

2010; Clark and Manning, 2015; Wiseman et al., 152

2016). The errors caused in the mention detection 153

may propagate to the following step. To tackle this 154

problem, Lee et al. (2017) designed an end-to-end 155

solution that takes every possible span (or a se- 156

quence of words) in a document as a candidate men- 157

tion, and their model is trained to jointly perform 158

the mention detection and coreference prediction. 159

Zhang et al. (2018) improved such a solution by 160

using a biaffine attention to estimate the probability 161

of a mention-pair. To reduce the computational cost 162
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of the end-to-end solution, Lee et al. (2018) pro-163

posed a coarse-to-fine approach that incorporates164

a less accurate but more efficient bilinear approx-165

imation, which leads to more aggressive mention166

pruning without hurting accuracy too much.167

Global entity-level information can be incorpo-168

rated by using joint inference algorithms (McCal-169

lum and Wellner, 2003; Poon and Domingos, 2008;170

Haghighi and Klein, 2010) or creating coreference171

clusters incrementally (Luo et al., 2004; Yang et al.,172

2008; Raghunathan et al., 2010). Lee et al. (2018)173

tried to learn an antecedent distribution for each174

span with a span-ranking architecture and to im-175

prove a span representation by integrating features176

from its possible antecedents. Kantor and Glober-177

son (2019) refined the feature representation of a178

span with the information derived from the entire179

cluster to which it belongs. Graph neural networks180

(GNNs) were also introduced to make the global181

information be shared among mentions in both for-182

ward and backward directions (Liu et al., 2020).183

Very recently, Wu et al. (2020) addressed two184

issues in existing coreference resolution systems185

(Lee et al., 2017; Zhang et al., 2018; Lee et al.,186

2018; Joshi et al., 2019a). One is that correct men-187

tions might be filtered out at the mention proposal188

stage, and the relationship between mentions and189

their contexts (including their coreferent mentions)190

has not been well modeled. To resolve these two191

issues, they proposed a new approach in which the192

coreference resolution problem is formulated as a193

span prediction task, akin to the question answer-194

ing. Their model achieved state-of-the-art results195

but at the cost of high computational complexity196

which presents serious scalability and performance-197

per-mention challenges. In this study, we present a198

new solution to leverage entity-level features and to199

recover the mentions filtered out at the mention pro-200

posal stage by factorizing mention-pair scores to201

“head-to-head” and “tail-to-tail” alignments, which202

greatly reduces the computational cost while suf-203

fering little to no performance drop.204

3 Methods205

We describe our solution in this section in which the206

coreference resolution is innovatively formulated207

as a span boundary alignment problem. The idea208

behind this solution is that the left boundary words209

(head) of mentions referring to the same entity210

should be well aligned, and so does the right bound-211

ary words (tail). In this way, span-level matching212

can be factorized into word-level alignments which213

significantly speeds up the training and inference. 214

3.1 Problem Definition 215

Given a document D = {x1, . . . , xn} consists 216

of n words, there are n(n + 1)/2 possible text 217

spans. The goal is to find an antecedent yk for 218

each span k recognized as a mention. Formally, let 219

mk = {xhd(k), . . . , xtl(k)} denotes the k-th span 220

starting with hd(k) word and ending with tl(k) word 221

(included), where 1 ≤ k ≤ N , N = n(n + 1)/2. 222

A set of candidate antecedents for a span mk is 223

denoted as Ymk
= {ϵ,m1, ...,mk−1} that consists 224

of all the preceding spans and a dummy antecedent 225

(denoted as ϵ). A non-dummy antecedent indicates 226

a coreference link between a span and one of its 227

antecedents. If a span is linked to the dummy, we 228

say the span is not an entity mention, or it is an 229

mention but not coreferent with any antecedent. 230

3.2 Input Feature Representation 231

We chose to use SpanBERT (Joshi et al., 2019a) 232

to produce the contextual word embeddings for 233

any input text. SpanBERT only can process text 234

within a limited length. To fit long documents into 235

SpanBERT, we split them into multiple segments 236

of equal length. The last segment will be extended 237

into the same length by padding it at the end. We 238

use non-overlapping segments, each of which is 239

considered as an independent instance. 240

The boundaries of text spans play a critical role 241

in our solution, which largely determine the results 242

of both mention detection and alignment. Note that 243

each word in an input text could become a head of 244

a mention or a tail of another, and their feature rep- 245

resentations should be derived differently. For each 246

word, we project its contextual word embedding 247

produced by SpanBERT to two vector spaces for 248

the cases of being head and tail words as follows. 249

hxi =Wh · exi , txi =Wt · exi (1) 250

where exi is the contextual word embedding of i- 251

th word in an input text, and two matrices of Wh 252

and Wt are trainable parameters used to produce 253

the vector representations of hxi and txi when the 254

word xi is taken as head or tail word. 255

3.3 Span Boundary Alignment 256

We require that all the head and tail words are well 257

aligned if the mentions defined by these head and 258

tail words refer to the same entity. Some scoring 259

functions are required to estimate how well any two 260

words are aligned. We apply a biaffine attention 261
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Figure 2: The main steps of our solution. A document is first fed into SpanBERT to obtain the contextual word
embedding for every word in the document, and these embeddings are further projected to two vector spaces each
for the case of being head or tail words. After the head and tail representations are obtained, “head-to-head” and
“tail-to-tail” alignment scores are calculated and stored in two span boundary alignment matrices H and T . With
these alignment matrices, the mention pruning and coreference linking can be performed. In this way, span-level
matching can be factorized into word-level alignments which significantly speeds up the training and inference.

function to calculate such an alignment score for262

every pair of words in a document as Equation (2).263

For the “head-to-head” alignment, we obtain a ma-264

trix H ∈ Rn×n whose element at i-th row and j-th265

column H[i, j] is a real valued score that represents266

how well the words xi and xj are aligned as head267

words. Similarly, a matrix T can be obtained for268

the “tail-to-tail” alignment.269

H[i, j] = h⊤
xj
Uhhxi + vhhxi

T [i, j] = t⊤xj
Uttxi + vttxi

(2)270

where Uh, Ut ∈ Rn×n and vh, vt ∈ Rn are train-271

able parameters to be tuned. The first term in each272

biaffine function models the compatibility of two273

words that reflects the possibility of being head or274

tail words, and the second term is used to model275

the prior likelihood of xi as a head or a tail word.276

Refining Representation To encourage the shar-277

ing of features across all mentions that refer to278

the same entity, we refine the head and tail rep-279

resentations of hxi and txi for each word xi by280

aggregating the features from the others according281

to their alignment scores. Taking the head represen-282

tation refinement as an example, we represent each283

word as a node in a graph, and the node of word284

xi is connected to the nodes that have top-K align-285

ment scores with respect to word xi. Graph neural286

networks are applied to aggregate the entity-level287

features and to update the representations.288

αl
ij =

expH[i,j]∑K
r=1 exp

H[i,r]

ali =
∑

j∈N (i)

αl
ijh

l
xj

βl
i = Sigmoid(Wf [h

l
xi
, ali])

hl+1
xi

= βl
i ◦ ali + (1− βl

i) ◦ hl
xi

(3)289

where N (i) is a set of word i’s connected neighbors 290

in the graph, and hlxi
is the head representation of 291

word xi at the l-th layer. After the head and tail rep- 292

resentations are refined with entity-level features, 293

the matrices H and T will be updated by using 294

Equation (2) again with the same parameters. 295

Alignment Loss The model will be trained to 296

increase the alignment scores for those word pairs 297

that are the head (or tail) words of mentions refer- 298

ring to the same entity and to decrease the scores 299

for the others. Thus, the loss function for word 300

alignment can be defined as follows. 301

Lalign(k, g) =ykg log ŷkg + (1− ykg) log(1− ŷkg)

ŷkg =
1

2
(Sigmoid(H[hd(k), hd(g)])

+ Sigmoid(T [tl(k), tl(g)]))

(4) 302

where ykg = 1 if two span mk and mg are corefer- 303

ent mentions, and ykg = 0 otherwise. 304

3.4 Mention Proposal 305

Like (Lee et al., 2017), we consider all possible 306

spans up to a maximum length of Q words. To 307

improve computational efficiency, we prune the 308

candidate spans at the training and inference time. 309

To obtain the scores for mention pruning, we take 310

both the boundary and internal information into 311

account. The spans with scores higher than a given 312

threshold will be selected as candidate mentions. 313

For each span mk, its feature representation is de- 314

rived from its constituent words. 315

φi = FFNNφ(exi)

ψik =
exp(φi)∑tl(k)

r=hd(k) exp(φr)

emk =
∑

i∈{hd(k),...,tl(k)}

φikexi

sd(mk) = FFNNm([exhd(k)
, extl(k)

, emk , ϕ(mk)])

(5) 316

4



where FFNNφ and FFNNm are two feed-forward317

networks used to estimate how important a word318

is to a span and how likely a span is a mention.319

ϕ(mk) is the length of span mk.320

Mention Pruning We want to filter out the spans321

that are unlikely to be mentions and those said to be322

singleton mentions, which have no other coreferent323

mentions in the document. To prune the singleton324

mentions, we consider whether or not a candidate325

mention has other coreferent mentions. Therefore,326

we estimate the the possibility of whether a span in327

question is aligned with others as follows.328

sh(mk) = max
j={1,...,n},j ̸=hd(k)

H[hd(k), j]

st(mk) = max
j={1,...,n},j ̸=tl(k)

T [tl(k), j]

sm(mk) = sd(mk) + γ(sh(mk) + st(mk))

(6)329

where is γ a hyperparameter that governs the im-330

portance of two terms.331

We only consider up to λn spans with the highest332

scores, where n is the length of an input document333

and λ ∈ [0, 1]. The loss for the mention detection334

is defined as follows.335

Ldetect(k) = tk log t̂k + (1− tk) log(1− t̂k) (7)336

where t̂k = Sigmoid(sm(mk)), and tk = 1 if mk337

is a truth mention, and tk = 0 otherwise.338

3.5 Coreference Linking339

Given a mention-pair of mk and mg proposed at340

the mention proposal stage, the coreference linking341

module assigns a score s(k, g) to this pair, which342

indicates how likely mk and mg refer to the same343

entity. In our solution, such mention-pair scores344

can be factorized into word-level “head-to-head”345

and “tail-to-tail” alignment scores as follows.346

sa(k|g) = H[hd(k), hd(g)] + T [tl(k), tl(g)]
sa(g|k) = H[hd(g), hd(k)] + T [tl(g), tl(k)]

sa(mk,mg) = sa(k|g) + sa(g|k)
sc(mk,mg) = sm(mk) + sm(mg) + sa(mk,mg)

(8)347

At the coreference linking stage, we recalcu-348

late the span boundary alignment scores using the349

refined representations produced by graph neural350

networks to obtain more accurate alignment results.351

352

Hf [hd(k), hd(g)] = FFNNh(h
L
xhd(k)

, hL
xhd(g)

, ϕ(mk,mg))

Tf [tl(k), tl(g)] = FFNNt(t
L
xtl(k)

, tLxtl(g)
, ϕ(mk,mg))

(9)
353

where hLxhd(k)
and tLxtl(k)

are refined head and tail rep-354

resentations produced by GNNs for words xhd(k)355

and xtl(k) respectively, L is the number of GNN’s 356

layers, and ϕ(mk,mg) are a set of features derived 357

from the attributes of speaker, genre, and the dis- 358

tance between a pair of mentions. The score of 359

coreference resolution sr(mk,mg) can be divided 360

into two parts: word alignment score sc(mk,mg) 361

and pseudo-coreference linking score sf (mk,mg): 362

363

sf (ml,mg) = Hf [hd(k), hd(g)] + Tf [tl(k), tl(g)]
sr(mk,mg) = sc(mk,mg) + sf (mk,mg)

(10) 364

3.6 Training and Inference 365

There are two main stages in our solution: mention 366

pruning and coreference linking. Although they 367

can be trained in a joint manner, to make the train- 368

ing process more stable and speed up the training 369

time, we chose to use a two-stage training strat- 370

egy. The loss functions Lalign and Ldetect are first 371

applied to warm-up a model, and then the loss 372

Lcluster defined below is used to train the model 373

jointly. For each mention mk recommended at the 374

mention proposal stage, the model is trained to 375

optimize the marginal log-likelihood over all the 376

antecedents as follows. 377

Lcluster(mk) = − log
∑

mg∈Ymk
∩GOLD(mk)

p(mg)

p (mg) =
expsr(mk,mg)∑

m
′
g∈Ymk

expsr(mk,m
′
g)

(11) 378

where GOLD(mk) is a set of mentions that mk is 379

coreferent with. If mk is not a mention or does not 380

have any antecedent, then GOLD(mK) = {ϵ}. 381

At the inference time, for each possible mention 382

mk, we take the span mg with the highest score 383

of sr(mk,mg) as its antecedent, and those men- 384

tions that are only linked to the dummy ϵ will be 385

abandoned. The final results of coreference res- 386

olution can be easily derived from such mention- 387

antecedent pairs. 388

4 Experiments 389

4.1 Experimental Settings 390

4.1.1 Datasets 391

We evaluated the proposed solution and an imple- 392

mented model, named Mention Boundary Align- 393

ment (MBA), by comparing it to eight strong com- 394

petitors on two datasets. One is the English por- 395

tion of CONLL-2012 shared task (Pradhan et al., 396

2012), which is widely used for coreference resolu- 397

tion evaluation. Another is GAP dataset (Webster 398
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Table 1: Results on the test set of the English CoNLL-2012 shared task. The scores of “MUC”, “B3”, “CEAFϕ4”
and their average F1-scores (indicated by “Avg. F1”) are used as the evaluation metrics. The symbols of “P”, “R”
and “F1” shown in the second row denote the precision, recall, and F1-scores respectively.

Model MUC B3 CEAFϕ4 Avg. F1P R F1 P R F1 P R F1
E2E-Coref 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
E2E-Coref + MD 79.4 73.8 76.5 69.0 62.3 65.5 64.9 58.3 61.4 67.8
C2F-Coref 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
C2F-Coref + RL 85.4 77.9 81.4 77.9 66.4 71.7 70.6 66.3 68.4 73.8
EE + BERT-large 82.6 84.1 83.4 73.3 76.1 74.7 72.4 71.1 71.8 76.6
C2F-Coref (BERT-base) 80.2 82.4 81.3 69.6 73.8 71.6 69.0 68.6 68.8 73.9
C2F-Coref (SpanBERT-base) 83.5 85.5 84.5 75.0 76.2 75.6 73.8 72.2 73.0 77.7
CorefQA (SpanBERT-base) 85.2 87.4 86.3 78.7 76.5 77.6 76.0 75.6 75.8 79.9
MBA (SpanBERT-base) 84.0 85.8 84.9 75.6 76.6 76.1 73.9 72.7 73.3 78.1

et al., 2018) consisting of manually labeled ambigu-399

ous pronoun-name pairs extracted from Wikipedia400

snippets. We used the standard splits of the En-401

glish CoNLL-2012 dataset for training, develop-402

ment, and testing. Following the protocol estab-403

lished in (Webster et al., 2018; Joshi et al., 2019b),404

we used the coreference resolvers trained on the405

CoNLL-2012 dataset to test (without fine-tuning)406

their performance on the GAP test set1.407

4.1.2 Evaluation Metrics408

Strictly following the evaluation convention estab-409

lished in the CoNLL-2012 shared task, we use410

the link-based MUC (Vilain et al., 1995), mention-411

based B3 (Bagga and Baldwin, 1998), entity-based412

CEAF (Luo, 2005), and their unweighted average413

as evaluation metrics. The scores of these metrics414

are calculated by using an official toolkit of the415

CoNLL-2012 evaluation scripts2.416

4.1.3 The Choice of Hyper-parameters417

We tuned the hyper-parameters by trying only a418

few different settings on the validation sets. The419

dimensionality of head and tail representations was420

set to the same size as the hidden layers of Span-421

BERT. The maximum length of candidate mentions422

was set to 30 words, the ratio λ used to prune pos-423

sible mentions to 0.4, and the length of segments424

for splitting long documents to 384 as Joshi et al.425

(2019a). We used the Adam optimizer for the train-426

ing and used a learning rate of 0.1 × 10−6 to up-427

date the weights of SpanBERT and another rate428

of 0.2 × 10−5 to update the other parameters. A429

two-layer graph neural network (L = 2) was used430

1This is motivated by the fact that there are only 4, 000
name-pronoun pairs in the GAP dataset, which was not created
for full-scale training.

2http://conll.cemantix.org/2012/
software.html

Table 2: Results on the test set of GAP dataset. We
reported F1-scores on masculine (indicated by “M”) and
feminine (indicated by “F”) examples as well as their
bias factors (indicated by “B”) calculated by F1-scores
on feminine examples divided by those on masculine
ones and overall F1-scores (indicated by “O”) on all the
test examples. †The results of CorefQA were excerpted
from the numbers reported by Wu et al. (2020).

Model M F B O
E2E-Coref 67.2 62.2 0.92 64.7
C2F-Coref 75.8 71.1 0.94 73.5
C2F-Coref (BERT-base) 84.4 81.2 0.96 82.8
C2F-Coref (SpanBERT-base) 88.5 84.1 0.95 86.3
CorefQA (SpanBERT-large) † 88.9 86.1 0.97 87.5
MBA (SpanBERT-base) 88.5 84.9 0.96 86.7

Table 3: Inference speed (the number of samples per
second) of the three most competitive models evaluated
on the test set of two datasets. All the three models
evaluated were built upon the SpanBERT-base.

Model Inference Speed
CoNLL-2012 GAP

CorefQA 0.11 0.58
C2F-Coref 4.95 19.70
MBA 5.04 (×45.82 ↑) 20.69 (×35.67 ↑)

to refine the head and tail representations by aggre- 431

gating the features from their top-5 neighbors. 432

4.2 Baseline Models 433

The eight representative models with the end-to- 434

end framework were used for comparison. 435

• E2E-Coref is the first coreference resolution 436

model built with the end-to-end framework (Lee 437

et al., 2017). 438

• E2E-Coref + MD extends E2E-Coref by using a 439

biaffine attention to estimate the probability of 440

each possible mention-pair (Zhang et al., 2018). 441

• C2F-Coref also extends E2E-Coref by combining 442
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a coarse-to-fine pruning strategy with a higher-443

order inference mechanism (Lee et al., 2018).444

• C2F-Coref + RL further extents C2F-Coref by445

introducing reinforcement learning to directly446

optimize the evaluation metrics of coreference447

resolution (Fei et al., 2019).448

• EE (BERT-large) refines the vector representa-449

tion of a mention by taking all the other mentions450

that most likely refer to the same entity into ac-451

count (Kantor and Globerson, 2019).452

• C2F-Coref (BERT-base) extends C2F-Coref by453

replacing the LSTM-based encoder with a pre-454

trained transformer (Joshi et al., 2019b).455

• C2F-Coref (SpanBERT-base) uses SpanBERT to456

obtain representations of spans in a document for457

coreference resolution (Joshi et al., 2019a).458

• CorefQA (SpanBERT-base) formulates the prob-459

lem of coreference resolution as a span prediction460

task, like question answering (Wu et al., 2020).461

4.3 Experimental Results462

We report in Table 1 the results of our model and463

other competitors on the CoNLL-2012 benchmark464

dataset. We only give the results yielded by the465

models built on the base version of SpanBERT,466

which greatly reduces the computational resources467

required for training. As we can see from Table 1,468

our model (indicating by “MBA”) outperforms all469

the other competitors except CorefQA. Although470

our model slightly performs worse than CorefQA,471

it performs comparably and runs more than 45472

times faster than CorefQA on the CoNLL-2012473

shared dataset and about 35 times faster on the474

GAP dataset (see Table 3 for details). Although475

CorefQA achieved the highest average F1-scores476

on the two datasets, yet at the cost of great com-477

putational time and resources. For each possible478

mention, a query must be constructed and answered479

by processing the entire document again and again480

with a large architecture (i.e., BERT or SpanBERT),481

which makes it hard for CorefQA to scale to long482

documents as the number of candidate mentions483

increases. As shown in Table 3, MBA runs much484

faster on the CoNLL-2021 shared task than on the485

GAP dataset, comparing to CorefQA model be-486

cause the length of documents in the former dataset487

(about 454 words) is more than that in the latter488

(around 71 words) on average.489

The results on the GAP are reported in Tables490

2 and 3, and we found similar trends as that on491

the CoNLL-2012 shared task. The results on the492

two benchmark datasets show that MBA achieves493

Table 4: Ablation study on the development set of
CoNLL-2012 dataset. The experiment results show that
all the components contribute to the overall system.

Model Avg. F1 ∆
MBA 78.1
w/o Replacing SpanBERT 74.3 −3.8
w/o Updating alignment score 75.7 −2.4
w/o Pruning singleton 77.6 −0.5
w/o Refining representation 77.7 −0.4

consistently both higher performance and lower 494

computational cost over the competitors except 495

CoreQA. The two issues raised by Wu et al. (2020) 496

are well addressed in our proposed solution. Firstly, 497

the mentions filtering out at the mention pruning 498

stage will be given at least one chance (usually mul- 499

tiple chances) to be recovered when we try to align 500

the boundary words with their coreferent mentions. 501

Such an alignment strategy enables us to perform 502

a more aggressive pruning, which helps to speed 503

up the training and inference time. Secondly, our 504

solution encourages the sharing of features among 505

the mentions referring to the same entity by forc- 506

ing their head and tail words to be aligned with 507

each other in the form of mutually refined vector 508

representations via graph neural networks. 509

5 Ablation Study and Qualitative 510

Analysis 511

We performed comprehensive ablation study and 512

some analysis on the development set of the 513

CoNLL-2012 dataset. We remove one component 514

at a time to understand the contribution of the re- 515

moved component to the overall system by observ- 516

ing the changes in the performance. The results of 517

the ablation study are reported in Table 4. 518

5.1 Impacts of Different Components 519

Replacing SpanBERT The model exhibits 3.7 520

degradation in F1-score after replacing the Span- 521

BERT with a vanilla BERT, which confirms the 522

importance of span-level pre-training for corefer- 523

ence resolution and is consistent with the previous 524

findings of (Joshi et al., 2019a). 525

Refining Representation GNNs were employed 526

to refine head and tail representations to encour- 527

age the sharing of features among the mentions 528

referring to the same entity, which brings about a 529

moderate improvement in F1-score. 530

Pruning Singleton At the mention pruning stage, 531

we filter out both the spans that are most unlikely to 532
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Figure 3: The percentage of correct “head-to-head” and
“tail-to-tail” alignments when the words are ranked at
1, 2-3, 4-10, 11-20, and 20+ positions by the estimated
alignment scores on the CoNLL-2012 development set.

Table 5: The precision, recall and F1-scores of mention
detection on the CoNLL-2012 development set.

Model Precision Recall F1
C2F-Coref 86.2 83.7 84.9
C2F-Coref + RL 89.6 82.2 85.7
C2F-Coref (SpanBERT-base) 87.2 87.5 87.4
MBA (SpanBERT-base) 87.0 88.4 87.7

be mentions and the singleton mentions by consid-533

ering whether a candidate mention has other coref-534

erent mentions. The experimental results demon-535

strate that distinguishing between singleton and536

non-singleton mentions helps to improve the per-537

formance of coreference resolution.538

Updating Alignment Score We will recalculate539

the span boundary alignment scores using the re-540

fined feature representations produced by GNNs541

as Equation (9), which boosts the F1-score by a542

significant margin.543

5.2 Analysis and Discussion544

5.2.1 Alignment Matrices545

We would like to know how well the alignment546

scores estimated by using Equation (2) reflect the547

ground truth of coreferent mentions. For each men-548

tion mk, we sort its alignment scores of H[hd(k)]549

and T [tl(k)] in descending order, and compute the550

percentage of correct alignments when they are551

ranked at 1, 2-3, 4-10, 11-20, and 20+ positions re-552

spectively. As we can see in Figure 3, the alignment553

scores generally can be used to differentiate the cor-554

rect “head-to-head” and “tail-to-tail” word align-555

ment from the incorrect ones. More than 40% of556

top-1 predictions are the ground truth alignments.557

5.2.2 Mention Detection558

It is well known that the results of mention detec-559

tion greatly impact the performance of the corefer-560

ence resolution system. We individually evaluated561

the performance of models on this task and reported 562

the experimental results in Table 5. Since we con- 563

sider whether or not a candidate mention has other 564

coreferent mentions by their alignment scores to 565

prune the mentions, MDA achieved the best F1- 566

scores in the mention detection task, comparing to 567

existing representative models. 568

5.2.3 Qualitative Analysis 569

We show in Table 6 three examples that C2F-Coref 570

fails to resolve, by correctly predicted by the pro- 571

posed MBA. In Examples 1 and 2, “Greg Lefevre” 572

and “the speech that ...” were not identified as can- 573

didate mentions at the mention pruning stage, but 574

they were successfully recovered by MBA at the 575

coreference linking step by searching for the an- 576

tecedents for the mentions of “its release” and “that 577

speech”. As shown in Example 3, C2F-Coref incor- 578

rectly merged {“The followers”} and {“Some Phar- 579

isees”, “They”} into the same cluster. Although it 580

is plausible to select “They” as the antecedent of 581

“The followers”, there is a conflict between “The 582

followers” and “Some Pharisees”. Our MBA can 583

alleviate this problem by taking the entity-level 584

features into consideration. 585

Table 6: Example coreferent mentions that correctly
predicted by our MBA, but incorrectly predicted by
C2F-Coref (SpanBERT-base). The coreferent mentions
are indicated by the same colors.

1
As Greg Lefevre reports, many stores have sold out of
the game even before its release.

2
We’re all getting, this news in from the speech that ...
... Might get more information from Secretary Tom
Ridge when he delivers that speech over at the press ...

3
Some Pharisees came to Jesus. They tried to make him
say something wrong ... The followers said to Jesus ...

6 Conclusion 586

We proposed a new solution to the coreference 587

resolution task, which is formulated as a problem 588

of span boundary alignment. In this solution, the 589

models are trained to align the heads (left bound- 590

ary words) and tails (right boundary words) of the 591

mentions referring to the same entity. From the 592

alignment results, entity mentions and the corefer- 593

ence relations between them can be easily derived. 594

In this way, the mentions filtered out in the men- 595

tion proposal stage can be recovered at the coref- 596

erence linking stage and the entity-level features 597

can be well leveraged. Experimental results show 598

that our solution delivers close to state-of-the-art 599

performance with much less computational costs. 600
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