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Abstract

We propose a new fast and accurate solution
for coreference resolution, in which the task
is formulated as a span boundary alignment
problem. In this solution, a mention is linked
to another one via two edges modeling how
likely two linked mentions point to the same
entity. Specifically, for each mention, its head
word (left boundary) needs to be well aligned
with the head words of all other mentions that
refer to the same entity, so does its tail word
(right boundary). Such a “head-to-head” and
“tail-to-tail” alignment strategy greatly reduces
the computational complexity of coreference
decisions on any pair of mentions, mitigates
the error propagation problem caused by men-
tion pruning, and encourages the sharing of
features across all mentions that refer to the
same entity. Experimental results show that our
solution achieves close to state-of-the-art per-
formance on the CoNLL-2012 and GAP bench-
marks with much less computational cost.

1 Introduction

Coreference resolution that aims to identify all
the mentions referring to the same entity in a text,
is considered as an important preprocessing step
for various high-level natural language process-
ing (NLP) tasks such as document summarization,
question answering, and information extraction
(Chen and Ng, 2016; Falke et al., 2017; Dhingra
et al., 2018). Despite the significant progress has
been made on the coreference resolution in recent
years, there are still some challenging problems
that need to be resolved.

The first one is mention detection, which is the
task of extracting possible mentions from an input
text, a critical preprocessing step for the corefer-
ence resolution. Previous studies show that the re-
sults of mention detection have a significant impact
on the performance of coreference resolution (Lu
and Ng, 2020). However, such a pipelined solution
may lead to a serious error propagation problem
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Figure 1: An example of the “head-to-head” and “tail-to-
tail” alignment strategy. In this example, “Drug Empo-

rium Inc.”, “this drugstore chain”, “the company”, and

“company’ refer to the same entity. For each mention, its
head word should be well aligned with the head words
of the others, so does its tail word. Taking the mention
of “the company” as an example, its head word “the”
should be aligned with “Drug”, “this”, and “company”,
and its tail word “company” needs to align with “Inc.”,
“chain” and “company”. If one of these mentions, say
“the company”, was not identified at the mention pruning
stage, it has several chances (up to three times in this
example) to be recovered when we align the boundary

words of “Drug Emporium Inc.”, “this drugstore chain”,

and “company” with their coreferent mentions.

(Clark and Manning, 2016; Wiseman et al., 2016):
undetected mentions have no chance to be recon-
sidered and those detected incorrectly can never be
corrected at the following stages. Recently, the end-
to-end framework has been proposed to tackle this
problem, which jointly learns to detect mentions
and cluster them into groups (Lee et al., 2017, 2018;
Joshi et al., 2019a). However, the computational
complexity of such a solution is O(T**), where T is
the length of an input text, because every possible
span needs to be considered, and every pair of those
spans should be evaluated for possible co-referring.
To reduce this intractable complexity, the candidate
spans still need to be pruned. Therefore, the men-
tions filtered out at the pruning stage can never be
recovered, which greatly impairs the performance
of models with the end-to-end framework.
Secondly, how to leverage entity-level features
remains an unresolved problem. Previous stud-



ies either count on the long-term memory (LSTM)
or pre-trained transformer to implicitly capture the
global features (Lee et al., 2017; Zhang et al., 2018)
or incorporate the features of the clusters already
formed to determine whether a mention is corefer-
ent with a preceding cluster (Lee et al., 2018; Kan-
tor and Globerson, 2019). The former might miss
out some important features for specific pairwise
predictions without explicit entity-level features,
while the latter may suffer from error propagation
as false clusters are used to create entity-level fea-
tures when making future predictions.

Recently, Wu et al. (2020) present CorefQA
that provides a new solution to tackle the above-
mentioned problems, in which the coreference res-
olution is formulated as a question answering prob-
lem. Taking a mention (pruned) and its surrounding
context as a query, their model is trained to retrieve
all the mentions that refer to the same entity as the
query. In this way, the mentions filtered out at the
pruning stage gain another chance to be “reborn”.
Their model achieved state-of-the-art performance
on CoNLL-2012 and GAP datasets but requires
considerable computational cost. For each possi-
ble mention, a query needs to be created and then
answered by accessing the entire text.

Inspired by CorefQA (Wu et al., 2020), we for-
mulate the coreference resolution as a span bound-
ary alignment problem. Specifically, for a set of
mentions referring to the same entity, our model is
trained to align their heads (left boundary words)
and tails (right boundary words) as well as possi-
ble. As shown in Figure 1, “Drug Emporium Inc.”,
“this drugstore chain”, “the company”, and “com-
pany” refer to the same entity. For each mention
in this set, its head word should be well aligned
with the head words of the others, so does its tail
word. Taking the mention of “the company” as an
example, its head word “the” should be aligned
with “Drug”, “this”, and “company”, and its tail
word “company’ needs to align with “Inc.”, “chain’
and “company”. If one of these mentions, say “the
company”, was not identified at the mention prun-
ing stage, it has several chances (up to three times
in this example) to be recovered when we align the
boundary words of “Drug Emporium Inc.”, “this
drugstore chain”, and “company” with their coref-
erent mentions. After those “head-to-head” and
“tail-to-tail” pairs have been well aligned, the coref-
erence decision on each mention-pair can base on
such “head-to-head” and “tail-to-tail” alignment

’

scores rather than their mention-level representa-
tions. Besides, the head (or tail) representations
of all possible mentions in a text are produced at
a time and updated together accordingly, which
greatly speeds up the training and inference time
and encourages the sharing of entity-level features
across all mentions referring to the same entity.
Our contributions are threefold: (1) We propose
a new solution to the coreference resolution, which
better leverages entity-level features and deals with
the error propagation problem caused at the men-
tion pruning stage; (2) The solution greatly re-
duces the computational cost by factorizing the
mention-pair scores into “head-to-head” and “tail-
to-tail” alignment scores; (3) Experimental results
show that the proposed framework achieved close
to state-of-the-art performance on two widely-used
benchmarks with minimal computational cost.

2 Related Work

Coreference resolution is a long-standing challeng-
ing task which is considered as a critical step to
process texts semantically for many NLP applica-
tions (Ng, 2010). Existing approaches can roughly
be divided into two categories: mention-pair rank-
ing (Bengtson and Roth, 2008; Stoyanov et al.,
2010; Wiseman et al., 2015) and entity-mention
models (Poon and Domingos, 2008; Bjorkelund
and Kuhn, 2014; Clark and Manning, 2015). The
former makes each coreference decision indepen-
dently without taking entity-level information into
consideration, while the latter addresses the lack of
global information by considering whether a men-
tion is coreferent with a previously formed cluster.
However, how to better capture and leverage global
entity-level information is still not well resolved.
On the other hand, traditional coreference reso-
lution approaches usually involve a preprocessing
step of mention detection, which often uses some
hand-engineered mention proposal algorithms to
identify possible mentions (Raghunathan et al.,
2010; Clark and Manning, 2015; Wiseman et al.,
2016). The errors caused in the mention detection
may propagate to the following step. To tackle this
problem, Lee et al. (2017) designed an end-to-end
solution that takes every possible span (or a se-
quence of words) in a document as a candidate men-
tion, and their model is trained to jointly perform
the mention detection and coreference prediction.
Zhang et al. (2018) improved such a solution by
using a biaffine attention to estimate the probability
of a mention-pair. To reduce the computational cost



of the end-to-end solution, Lee et al. (2018) pro-
posed a coarse-to-fine approach that incorporates
a less accurate but more efficient bilinear approx-
imation, which leads to more aggressive mention
pruning without hurting accuracy too much.

Global entity-level information can be incorpo-
rated by using joint inference algorithms (McCal-
Ium and Wellner, 2003; Poon and Domingos, 2008;
Haghighi and Klein, 2010) or creating coreference
clusters incrementally (Luo et al., 2004; Yang et al.,
2008; Raghunathan et al., 2010). Lee et al. (2018)
tried to learn an antecedent distribution for each
span with a span-ranking architecture and to im-
prove a span representation by integrating features
from its possible antecedents. Kantor and Glober-
son (2019) refined the feature representation of a
span with the information derived from the entire
cluster to which it belongs. Graph neural networks
(GNNs) were also introduced to make the global
information be shared among mentions in both for-
ward and backward directions (Liu et al., 2020).

Very recently, Wu et al. (2020) addressed two
issues in existing coreference resolution systems
(Lee et al., 2017; Zhang et al., 2018; Lee et al.,
2018; Joshi et al., 2019a). One is that correct men-
tions might be filtered out at the mention proposal
stage, and the relationship between mentions and
their contexts (including their coreferent mentions)
has not been well modeled. To resolve these two
issues, they proposed a new approach in which the
coreference resolution problem is formulated as a
span prediction task, akin to the question answer-
ing. Their model achieved state-of-the-art results
but at the cost of high computational complexity
which presents serious scalability and performance-
per-mention challenges. In this study, we present a
new solution to leverage entity-level features and to
recover the mentions filtered out at the mention pro-
posal stage by factorizing mention-pair scores to
“head-to-head” and “tail-to-tail” alignments, which
greatly reduces the computational cost while suf-
fering little to no performance drop.

3 Methods

We describe our solution in this section in which the
coreference resolution is innovatively formulated
as a span boundary alignment problem. The idea
behind this solution is that the left boundary words
(head) of mentions referring to the same entity
should be well aligned, and so does the right bound-
ary words (tail). In this way, span-level matching
can be factorized into word-level alignments which

significantly speeds up the training and inference.

3.1 Problem Definition

Given a document D = {z1,...,x,} consists
of n words, there are n(n + 1)/2 possible text
spans. The goal is to find an antecedent y; for
each span k recognized as a mention. Formally, let
mg = {Tna(k)s - - - > Ta(k)} denotes the k-th span
starting with hd(k) word and ending with tl(k) word
(included), where 1 < k < N, N =n(n+1)/2.
A set of candidate antecedents for a span my, is
denoted as Vy,,, = {€,m1, ..., mp_1} that consists
of all the preceding spans and a dummy antecedent
(denoted as €). A non-dummy antecedent indicates
a coreference link between a span and one of its
antecedents. If a span is linked to the dummy, we
say the span is not an entity mention, or it is an
mention but not coreferent with any antecedent.

3.2 Input Feature Representation

We chose to use SpanBERT (Joshi et al., 2019a)
to produce the contextual word embeddings for
any input text. SpanBERT only can process text
within a limited length. To fit long documents into
SpanBERT, we split them into multiple segments
of equal length. The last segment will be extended
into the same length by padding it at the end. We
use non-overlapping segments, each of which is
considered as an independent instance.

The boundaries of text spans play a critical role
in our solution, which largely determine the results
of both mention detection and alignment. Note that
each word in an input text could become a head of
a mention or a tail of another, and their feature rep-
resentations should be derived differently. For each
word, we project its contextual word embedding
produced by SpanBERT to two vector spaces for
the cases of being head and tail words as follows.

hey =Wh-ez;y to;, = Wi eq,; (D

where e, is the contextual word embedding of -
th word in an input text, and two matrices of W,
and W, are trainable parameters used to produce
the vector representations of h,, and t,, when the
word x; is taken as head or tail word.

3.3 Span Boundary Alignment

We require that all the head and tail words are well
aligned if the mentions defined by these head and
tail words refer to the same entity. Some scoring
functions are required to estimate how well any two
words are aligned. We apply a biaffine attention
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Figure 2: The main steps of our solution. A document is first fed into SpanBERT to obtain the contextual word
embedding for every word in the document, and these embeddings are further projected to two vector spaces each
for the case of being head or tail words. After the head and tail representations are obtained, “head-to-head” and
“tail-to-tail” alignment scores are calculated and stored in two span boundary alignment matrices H and 7. With
these alignment matrices, the mention pruning and coreference linking can be performed. In this way, span-level
matching can be factorized into word-level alignments which significantly speeds up the training and inference.

function to calculate such an alignment score for
every pair of words in a document as Equation (2).
For the “head-to-head” alignment, we obtain a ma-
trix H € R™*™ whose element at i-th row and j-th
column H i, j] is a real valued score that represents
how well the words z; and x; are aligned as head
words. Similarly, a matrix 7' can be obtained for
the “tail-to-tail” alignment.

H[i, ] = ha,Unha, + vaha,

)
T(i, 5] = to, Utte, + vita,

where Up,U; € R™" and vy, vy € R™ are train-
able parameters to be tuned. The first term in each
biaffine function models the compatibility of two
words that reflects the possibility of being head or
tail words, and the second term is used to model
the prior likelihood of x; as a head or a tail word.

Refining Representation To encourage the shar-
ing of features across all mentions that refer to
the same entity, we refine the head and tail rep-
resentations of h;, and t,, for each word z; by
aggregating the features from the others according
to their alignment scores. Taking the head represen-
tation refinement as an example, we represent each
word as a node in a graph, and the node of word
x; is connected to the nodes that have top-K align-
ment scores with respect to word x;. Graph neural
networks are applied to aggregate the entity-level
features and to update the representations.

L expttlid]
Qi = K Hla
ZT:I exp (7]
1 AN
a; = Z ijhg; 3)
JEN (i)
B! = Sigmoid(W;[h., , al])
hitt = Bloal+ (1 —Bi)ohl,

where N (i) is a set of word 7’s connected neighbors
in the graph, and hﬁci is the head representation of
word z; at the [-th layer. After the head and tail rep-
resentations are refined with entity-level features,
the matrices H and T will be updated by using
Equation (2) again with the same parameters.

Alignment Loss The model will be trained to
increase the alignment scores for those word pairs
that are the head (or tail) words of mentions refer-
ring to the same entity and to decrease the scores
for the others. Thus, the loss function for word
alignment can be defined as follows.

La“gn(k»g) =Ykg 10g Jrg + (1 - ykg) log(l - ng)
Ukg :%(Sigmoid(H[hd(k:), hd(g)]) @)
+ Sigmoid(T[tl(k), t1(g)]))

where yi, = 1 if two span my, and m, are corefer-
ent mentions, and y, = 0 otherwise.

3.4 Mention Proposal

Like (Lee et al., 2017), we consider all possible
spans up to a maximum length of () words. To
improve computational efficiency, we prune the
candidate spans at the training and inference time.
To obtain the scores for mention pruning, we take
both the boundary and internal information into
account. The spans with scores higher than a given
threshold will be selected as candidate mentions.
For each span my, its feature representation is de-
rived from its constituent words.

i = FFNN, (e, )
exp(pi)

Yik = =i
Ztr(:h)d(k) exp(er)

S
e {hd(k),..,0(k)}
sa(my) = FFNNm([exhd(k) ) Cay(gey s Emis ¢(mr)])

(&)

Pik€x;



where FFNN,, and FFNN,,, are two feed-forward
networks used to estimate how important a word
is to a span and how likely a span is a mention.
¢(my,) is the length of span my,.

Mention Pruning We want to filter out the spans
that are unlikely to be mentions and those said to be
singleton mentions, which have no other coreferent
mentions in the document. To prune the singleton
mentions, we consider whether or not a candidate
mention has other coreferent mentions. Therefore,
we estimate the the possibility of whether a span in
question is aligned with others as follows.
J= {1, TG hd (k) Hlhd(k). J]

selmi) = max TR ] ©)
sm(mk) = sa(mx) +v(sn(mx) + si(mx))

sh(mk)

where is 7y a hyperparameter that governs the im-
portance of two terms.

We only consider up to An spans with the highest
scores, where n is the length of an input document
and A € [0, 1]. The loss for the mention detection
is defined as follows.

Lgetect(k) = trlogty + (1 —t)log(1 — &)  (7)

where t;, = Sigmoid(s,,(mz)), and tg = 1 if my
is a truth mention, and ¢; = 0 otherwise.

3.5 Coreference Linking

Given a mention-pair of my and m, proposed at
the mention proposal stage, the coreference linking
module assigns a score s(k, g) to this pair, which
indicates how likely m, and m, refer to the same
entity. In our solution, such mention-pair scores
can be factorized into word-level “head-to-head”
and “tail-to-tail” alignment scores as follows.

sa(klg) = Hhd(k),hd(g)] + T[t(k), t(g)]
sa(g|k) = Hhd(g), hd(k)] + Ttl(g), d(k)] ®
sa(mi, mg) = sa(k|g) + sa(g]k)
se(mr, mg) = sm(mi) + sm(mg) + sa(mw, my)

At the coreference linking stage, we recalcu-
late the span boundary alignment scores using the
refined representations produced by graph neural
networks to obtain more accurate alignment results.

Hy[hd(k), hd(g)] = FENNG (b 0 s By, » S0k, 1))
Ty[tl(k), t(g)] = FENN(tz, . bz, » S(mi, mg))
©)

L L .
where hy; | " and ¢, i are refined head and tail rep-

resentations produced by GNNs for words zpqx)

and zy ) respectively, L is the number of GNN’s
layers, and ¢(my, mgy) are a set of features derived
from the attributes of speaker, genre, and the dis-
tance between a pair of mentions. The score of
coreference resolution s, (my, my) can be divided
into two parts: word alignment score s.(my, mg)
and pseudo-coreference linking score s (1, my):

sg(mu, mg) = Hylhd(k), hd(g)] + Tr[tl(k), tl(g)]

10
Sr(mg,mg) = sc(mi, mg) + sp(mi, my) (10)

3.6 Training and Inference

There are two main stages in our solution: mention
pruning and coreference linking. Although they
can be trained in a joint manner, to make the train-
ing process more stable and speed up the training
time, we chose to use a two-stage training strat-
egy. The loss functions Lgj;gn and Lgetect are first
applied to warm-up a model, and then the loss
Ljuster defined below is used to train the model
jointly. For each mention mj recommended at the
mention proposal stage, the model is trained to
optimize the marginal log-likelihood over all the
antecedents as follows.

Lcluster(mk) = - log Z

Mg E€Ym,;, NGOLD(my)

p(my)
exp (i) an

Zm/g €Vmy, exp

p(mg) =

7
S’V‘(mk7mg)

where GOLD(my,) is a set of mentions that my, is
coreferent with. If m; is not a mention or does not
have any antecedent, then GOLD(my) = {¢}.

At the inference time, for each possible mention
my, we take the span m, with the highest score
of s.(my, mgy) as its antecedent, and those men-
tions that are only linked to the dummy e will be
abandoned. The final results of coreference res-
olution can be easily derived from such mention-
antecedent pairs.

4 Experiments
4.1 Experimental Settings

4.1.1 Datasets

We evaluated the proposed solution and an imple-
mented model, named Mention Boundary Align-
ment (MBA), by comparing it to eight strong com-
petitors on two datasets. One is the English por-
tion of CONLL-2012 shared task (Pradhan et al.,
2012), which is widely used for coreference resolu-
tion evaluation. Another is GAP dataset (Webster



Table 1: Results on the test set of the English CoONLL-2012 shared task. The scores of “MUC”, “Bs”, “CEAF 44”
and their average F1-scores (indicated by “Avg. F1”) are used as the evaluation metrics. The symbols of “P”, “R”

and “F1” shown in the second row denote the precision, recall, and F1-scores respectively.

MUC Bs CEAT,,
Model P R Tl P R FI P R Fr ] Ave Fl
E2E-Coref 784 734 758 | 686 618 650 | 627 59.0 608 | 67.2
E2E-Coref + MD 79.4 738 765 | 69.0 623 655 | 649 583 614 | 67.8
C2F-Coref 81.4 795 804 | 722 695 708 | 682 67.1 67.6 | 73.0
C2F-Coref + RL 85.4 77.9 814 | 77.9 664 717|706 663 684 | 738
EE + BERT-large 82.6 84.1 834 | 733 761 747|724 711 718 | 766
C2F-Coref (BERT-base) 80.2 824 81.3|69.6 738 716 |69.0 686 688 | 739
C2F-Coref (SpanBERT-base) | 83.5 85.5 84.5 | 75.0 76.2 75.6 | 73.8 722 73.0 | 77.7
CorefQA (SpanBERT-base) | 85.2 87.4 86.3 | 78.7 765 77.6 | 760 756 758 | 79.9
MBA (SpanBERT-base) 340 858 849 | 756 766 761 | 739 727 733 | 781

et al., 2018) consisting of manually labeled ambigu-
ous pronoun-name pairs extracted from Wikipedia
snippets. We used the standard splits of the En-
glish CoNLL-2012 dataset for training, develop-
ment, and testing. Following the protocol estab-
lished in (Webster et al., 2018; Joshi et al., 2019b),
we used the coreference resolvers trained on the
CoNLL-2012 dataset to test (without fine-tuning)
their performance on the GAP test set'.

4.1.2 Evaluation Metrics

Strictly following the evaluation convention estab-
lished in the CoNLL-2012 shared task, we use
the link-based MUC (Vilain et al., 1995), mention-
based B3 (Bagga and Baldwin, 1998), entity-based
CEAF (Luo, 2005), and their unweighted average
as evaluation metrics. The scores of these metrics
are calculated by using an official toolkit of the
CoNLL-2012 evaluation scripts?.

4.1.3 The Choice of Hyper-parameters

We tuned the hyper-parameters by trying only a
few different settings on the validation sets. The
dimensionality of head and tail representations was
set to the same size as the hidden layers of Span-
BERT. The maximum length of candidate mentions
was set to 30 words, the ratio A used to prune pos-
sible mentions to 0.4, and the length of segments
for splitting long documents to 384 as Joshi et al.
(2019a). We used the Adam optimizer for the train-
ing and used a learning rate of 0.1 x 1075 to up-
date the weights of SpanBERT and another rate
of 0.2 x 107° to update the other parameters. A
two-layer graph neural network (L = 2) was used

'This is motivated by the fact that there are only 4, 000
name-pronoun pairs in the GAP dataset, which was not created
for full-scale training.

http://conll.cemantix.org/2012/
software.html

Table 2: Results on the test set of GAP dataset. We
reported F1-scores on masculine (indicated by “M”) and
feminine (indicated by “F”) examples as well as their
bias factors (indicated by “B”) calculated by F1-scores
on feminine examples divided by those on masculine
ones and overall F1-scores (indicated by “O”) on all the
test examples. tThe results of CorefQA were excerpted
from the numbers reported by Wu et al. (2020).

Model M F B o

E2E-Coref 67.2 62.2 0.92 64.7
C2F-Coref 75.8 71.1 0.94 73.5
C2F-Coref (BERT-base) 84.4 81.2 0.96 82.8
C2F-Coref (SpanBERT-base) 88.5 84.1 0.95 86.3
CorefQA (SpanBERT-large) ¥ | 88.9 86.1 0.97 87.5
MBA (SpanBERT-base) 88.5 84.9 0.96 86.7

Table 3: Inference speed (the number of samples per
second) of the three most competitive models evaluated
on the test set of two datasets. All the three models
evaluated were built upon the SpanBERT-base.

Inference Speed

Model CoNLL-2012 GAP
CorefQA 0.11 0.58
C2F-Coref 4.95 19.70
MBA 5.04 (x45.82 1) 20.69 (x35.67 1)

to refine the head and tail representations by aggre-
gating the features from their top-5 neighbors.

4.2 Baseline Models

The eight representative models with the end-to-
end framework were used for comparison.

* E2E-Coref is the first coreference resolution
model built with the end-to-end framework (Lee
etal., 2017).

* E2E-Coref + MD extends E2E-Coref by using a
biaffine attention to estimate the probability of
each possible mention-pair (Zhang et al., 2018).

* C2F-Coref also extends E2E-Coref by combining
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a coarse-to-fine pruning strategy with a higher-
order inference mechanism (Lee et al., 2018).

* C2F-Coref + RL further extents C2F-Coref by
introducing reinforcement learning to directly
optimize the evaluation metrics of coreference
resolution (Fei et al., 2019).

* EE (BERT-large) refines the vector representa-
tion of a mention by taking all the other mentions
that most likely refer to the same entity into ac-
count (Kantor and Globerson, 2019).

e C2F-Coref (BERT-base) extends C2F-Coref by
replacing the LSTM-based encoder with a pre-
trained transformer (Joshi et al., 2019b).

* C2F-Coref (SpanBERT-base) uses SpanBERT to
obtain representations of spans in a document for
coreference resolution (Joshi et al., 2019a).

* CorefQA (SpanBERT-base) formulates the prob-
lem of coreference resolution as a span prediction
task, like question answering (Wu et al., 2020).

4.3 Experimental Results

We report in Table 1 the results of our model and
other competitors on the CoNLL-2012 benchmark
dataset. We only give the results yielded by the
models built on the base version of SpanBERT,
which greatly reduces the computational resources
required for training. As we can see from Table 1,
our model (indicating by “MBA”) outperforms all
the other competitors except CorefQA. Although
our model slightly performs worse than CorefQA,
it performs comparably and runs more than 45
times faster than CorefQA on the CoNLL-2012
shared dataset and about 35 times faster on the
GAP dataset (see Table 3 for details). Although
CorefQA achieved the highest average F1-scores
on the two datasets, yet at the cost of great com-
putational time and resources. For each possible
mention, a query must be constructed and answered
by processing the entire document again and again
with a large architecture (i.e., BERT or SpanBERT),
which makes it hard for CorefQA to scale to long
documents as the number of candidate mentions
increases. As shown in Table 3, MBA runs much
faster on the CoNLL-2021 shared task than on the
GAP dataset, comparing to CorefQA model be-
cause the length of documents in the former dataset
(about 454 words) is more than that in the latter
(around 71 words) on average.

The results on the GAP are reported in Tables
2 and 3, and we found similar trends as that on
the CoNLL-2012 shared task. The results on the
two benchmark datasets show that MBA achieves

Table 4: Ablation study on the development set of
CoNLL-2012 dataset. The experiment results show that
all the components contribute to the overall system.

Model Avg. F1 A
MBA 78.1

w/o Replacing SpanBERT 74.3 -3.8
w/o Updating alignment score 75.7 —24
w/o Pruning singleton 77.6 -0.5
w/o Refining representation 7.7 —-0.4

consistently both higher performance and lower
computational cost over the competitors except
CoreQA. The two issues raised by Wu et al. (2020)
are well addressed in our proposed solution. Firstly,
the mentions filtering out at the mention pruning
stage will be given at least one chance (usually mul-
tiple chances) to be recovered when we try to align
the boundary words with their coreferent mentions.
Such an alignment strategy enables us to perform
a more aggressive pruning, which helps to speed
up the training and inference time. Secondly, our
solution encourages the sharing of features among
the mentions referring to the same entity by forc-
ing their head and tail words to be aligned with
each other in the form of mutually refined vector
representations via graph neural networks.

S Ablation Study and Qualitative
Analysis

We performed comprehensive ablation study and
some analysis on the development set of the
CoNLL-2012 dataset. We remove one component
at a time to understand the contribution of the re-
moved component to the overall system by observ-
ing the changes in the performance. The results of
the ablation study are reported in Table 4.

5.1 Impacts of Different Components

Replacing SpanBERT The model exhibits 3.7
degradation in F1-score after replacing the Span-
BERT with a vanilla BERT, which confirms the
importance of span-level pre-training for corefer-
ence resolution and is consistent with the previous
findings of (Joshi et al., 2019a).

Refining Representation GNNs were employed
to refine head and tail representations to encour-
age the sharing of features among the mentions
referring to the same entity, which brings about a
moderate improvement in F1-score.

Pruning Singleton At the mention pruning stage,
we filter out both the spans that are most unlikely to
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Figure 3: The percentage of correct “head-to-head” and
“tail-to-tail” alignments when the words are ranked at

1, 2-3, 4-10, 11-20, and 20+ positions by the estimated
alignment scores on the CoNLL-2012 development set.

Table 5: The precision, recall and F1-scores of mention
detection on the CoNLL-2012 development set.

Model Precision Recall F1

C2F-Coref 86.2 83.7 84.9
C2F-Coref + RL 89.6 82.2 85.7
C2F-Coref (SpanBERT-base) 87.2 87.5 87.4
MBA (SpanBERT-base) 87.0 88.4 87.7

be mentions and the singleton mentions by consid-
ering whether a candidate mention has other coref-
erent mentions. The experimental results demon-
strate that distinguishing between singleton and
non-singleton mentions helps to improve the per-
formance of coreference resolution.

Updating Alignment Score We will recalculate
the span boundary alignment scores using the re-
fined feature representations produced by GNNs
as Equation (9), which boosts the F1-score by a
significant margin.

5.2 Analysis and Discussion
5.2.1 Alignment Matrices

We would like to know how well the alignment
scores estimated by using Equation (2) reflect the
ground truth of coreferent mentions. For each men-
tion my, we sort its alignment scores of H [hd(k)]

and T'[tl(k)] in descending order, and compute the
percentage of correct alignments when they are
ranked at 1, 2-3, 4-10, 11-20, and 20+ positions re-
spectively. As we can see in Figure 3, the alignment
scores generally can be used to differentiate the cor-
rect “head-to-head” and “tail-to-tail” word align-
ment from the incorrect ones. More than 40% of
top-1 predictions are the ground truth alignments.

5.2.2 Mention Detection

It is well known that the results of mention detec-
tion greatly impact the performance of the corefer-
ence resolution system. We individually evaluated

the performance of models on this task and reported
the experimental results in Table 5. Since we con-
sider whether or not a candidate mention has other
coreferent mentions by their alignment scores to
prune the mentions, MDA achieved the best F1-
scores in the mention detection task, comparing to
existing representative models.

5.2.3 Qualitative Analysis

We show in Table 6 three examples that C2F-Coref
fails to resolve, by correctly predicted by the pro-
posed MBA. In Examples 1 and 2, “Greg Lefevre”
and “the speech that ...” were not identified as can-
didate mentions at the mention pruning stage, but
they were successfully recovered by MBA at the
coreference linking step by searching for the an-
tecedents for the mentions of “its release” and “that
speech”. As shown in Example 3, C2F-Coref incor-
rectly merged {“The followers”} and {“Some Phar-
isees”, “They”} into the same cluster. Although it
is plausible to select “They” as the antecedent of
“The followers”, there is a conflict between “The
followers” and “Some Pharisees”. Our MBA can
alleviate this problem by taking the entity-level
features into consideration.

Table 6: Example coreferent mentions that correctly
predicted by our MBA, but incorrectly predicted by
C2F-Coref (SpanBERT-base). The coreferent mentions
are indicated by the same colors.

As Greg Lefevre reports, many stores have sold out of
the game even before its release.

We’re all getting, this news in from the speech that ...
2| ... Might get more information from Secretary Tom
Ridge when he delivers that speech over at the press ...

Some Pharisees came to . They tried to make
say something wrong ... The followers said to

6 Conclusion

We proposed a new solution to the coreference
resolution task, which is formulated as a problem
of span boundary alignment. In this solution, the
models are trained to align the heads (left bound-
ary words) and tails (right boundary words) of the
mentions referring to the same entity. From the
alignment results, entity mentions and the corefer-
ence relations between them can be easily derived.
In this way, the mentions filtered out in the men-
tion proposal stage can be recovered at the coref-
erence linking stage and the entity-level features
can be well leveraged. Experimental results show
that our solution delivers close to state-of-the-art
performance with much less computational costs.
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