
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DOUBLY ROBUST MONTE CARLO TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Doubly Robust Monte Carlo Tree Search (DR-MCTS), a novel algo-
rithm that integrates doubly robust off-policy estimation into MCTS to improve
sample efficiency in computationally expensive environments. Our approach em-
ploys an adaptive hybrid estimator that dynamically balances Monte Carlo rollouts
with doubly robust estimation through variance-minimizing weights computed on-
line from empirical statistics. We provide theoretical guarantees for unbiasedness
and establish conditions for variance reduction. Empirically, DR-MCTS shows
consistent improvements across diverse domains: competitive game playing (9×9
Go), mathematical reasoning (GSM8K), and embodied planning (VirtualHome).
While providing modest gains in traditional domains, DR-MCTS excels in LLM-
augmented environments, achieving 3× higher success rates than standard MCTS
on complex compositional tasks while reducing computational costs by over 50%.
Notably, entropy-based methods (MENTS, BTS, DENTS) fail to complete tasks
within the same computational budgets. These results highlight how variance re-
duction becomes increasingly valuable when simulations involve expensive lan-
guage model queries, making DR-MCTS particularly suited for the growing class
of LLM-guided planning applications.

1 INTRODUCTION

Decision-making in complex, partially observable environments remains a fundamental challenge
in artificial intelligence. Monte Carlo Tree Search (MCTS) has emerged as a powerful approach for
addressing this challenge, demonstrating remarkable success in domains ranging from game playing
to robotics Browne et al. (2012). Recently, MCTS has found applications in enhancing the reasoning
capabilities of Large Language Models (LLMs) Yao et al. (2023); Zhou et al. (2024), enabling more
structured and coherent text generation. However, as environments become increasingly complex
and the cost of sampling increases—particularly in the context of LLMs where each node expansion
may involve expensive model queries Yao et al. (2023)—there is a growing need for more sample-
efficient methods that can make better decisions with fewer simulations.

To address this challenge, we introduce DR-MCTS, a novel algorithm that integrates Doubly Ro-
bust (DR) off-policy estimation into the MCTS framework. Our approach employs an adaptive
hybrid estimator that dynamically balances traditional MCTS rollouts with DR estimation through a
variance-minimizing weighting mechanism. This mechanism computes optimal mixing coefficients
online by tracking empirical variance statistics for each state-action pair, enabling the algorithm to
adaptively adjust its reliance on different estimators based on their observed performance. By lever-
aging the strengths of both Monte Carlo sampling and off-policy evaluation, DR-MCTS achieves
superior sample efficiency and decision quality in complex environments. This improvement is
particularly valuable when computational resources are limited or when each evaluation carries sig-
nificant cost, as is increasingly common in applications that leverage large language models, where
inference costs can range from fractions of a cent to several dollars per query depending on model
size and complexity Luccioni et al. (2024).

Our work makes the following key contributions:

1. We introduce DR-MCTS, a novel algorithm that incorporates Doubly Robust off-policy
estimation into the MCTS framework through an adaptive variance-minimizing hybrid es-
timator that optimally combines Monte Carlo rollouts with DR estimation.
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2. We provide theoretical guarantees proving the unbiasedness of our hybrid estimator and
establish conditions under which it achieves variance reduction relative to standard MCTS,
with our adaptive weighting mechanism designed to minimize the combined estimator’s
variance online.

3. We conduct extensive empirical evaluations across three diverse domains: the fully observ-
able game of 9×9 Go, the GSM8K mathematical reasoning benchmark, and the partially
observable VirtualHome environment. DR-MCTS demonstrates consistent improvements
over baselines across all domains, with the most pronounced gains observed in LLM-
guided reasoning tasks.

1.1 RELATED WORK

Our work draws from two primary research streams: advances in Monte Carlo Tree Search and
off-policy evaluation techniques in reinforcement learning.

Monte Carlo Tree Search. Since its introduction by Coulom Coulom (2006), MCTS has estab-
lished itself as a fundamental algorithm for sequential decision-making, achieving notable success
across diverse domains from game playing to robotics. While the algorithm has powered several
breakthrough systems Silver et al. (2016; 2018); Schrittwieser et al. (2020), our focus lies in recent
methodological innovations that improve MCTS’s sample efficiency without requiring extensive
computational infrastructure.

Several recent approaches have tackled the sample efficiency challenge from different angles. Xiao
et al. Xiao et al. (2019) introduced Maximum Entropy Monte-Carlo Planning (MENTS), which
applies the maximum entropy principle to balance exploration and exploitation. By computing soft-
max values during backpropagation, MENTS achieves exponential convergence rates compared to
UCT’s polynomial rates, though this can occasionally lead to suboptimal policies when the entropy
objective conflicts with reward maximization. Recognizing this limitation, Painter et al. Painter et al.
(2023) developed two variants: Boltzmann Tree Search (BTS), which maintains exploration benefits
while targeting reward-optimal policies, and Decaying ENtropy Tree-Search (DENTS), which grad-
ually reduces entropy’s influence as search progresses, effectively transitioning from exploration to
exploitation.

From a different perspective, Grosse et al. Grosse et al. (2021) proposed Probabilistic DAG Search,
which improves efficiency by exploiting structural similarities between states. Their approach em-
ploys a jointly Gaussian probabilistic model to share information across the search tree, reducing
the number of simulations needed to identify optimal actions. Meanwhile, Borges and Oliveira
Borges & Oliveira (2021) explored how MCTS naturally generates off-policy data during explo-
ration, proposing methods to derive off-policy targets from the search tree itself.

These diverse approaches—entropy regularization, adaptive exploration decay, probabilistic state
modeling, and off-policy data utilization—all pursue the same goal of improving MCTS’s sample
efficiency. Our work contributes a complementary perspective by addressing the fundamental chal-
lenge of variance in value estimation.

Off-Policy Evaluation and Doubly Robust Methods. The doubly robust estimation framework,
originally developed in causal inference and biostatistics Robins & Rotnitzky (1995), has proven
valuable for off-policy evaluation in reinforcement learning. Traditional importance sampling Pre-
cup et al. (2000) suffers from high variance, particularly with long trajectories or significant policy
mismatch. DR methods address this limitation by combining importance sampling with direct value
estimation, providing consistent estimates when either component is accurate.

The adaptation of DR methods to reinforcement learning has progressed through several stages.
Dudik et al. Dudı́k et al. (2011) first applied DR estimation to contextual bandits, demonstrating
significant variance reduction. Jiang and Li Jiang & Li (2016) then extended the framework to
full RL domains, establishing theoretical foundations for sequential decision problems. Subsequent
work has refined these techniques: Thomas and Brunskill Thomas & Brunskill (2016) introduced
weighted DR estimators that achieve better finite-sample performance, Farajtabar et al. Farajtabar
et al. (2018) developed the More Robust Doubly Robust (MRDR) estimator with improved variance
bounds, and Kallus and Uehara Kallus & Uehara (2020) proposed double reinforcement learning for
more efficient evaluation across both state and action spaces.
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Our Contribution. DR-MCTS represents the first direct integration of doubly robust estimation into
the MCTS framework. Unlike previous work that either modifies the exploration strategy (MENTS,
BTS, DENTS) or leverages state similarities (Probabilistic DAG Search), we address variance reduc-
tion through principled off-policy evaluation. Our approach goes beyond simply utilizing off-policy
data generated by MCTS Borges & Oliveira (2021); we fundamentally restructure the value estima-
tion process using DR techniques.

The key innovation lies in our adaptive variance-minimizing hybrid estimator, which dynamically
balances Monte Carlo rollouts with DR estimation based on empirical variance statistics tracked
online. As illustrated in Figure 1, while standard MCTS relies solely on Monte Carlo sampling dur-
ing simulation, DR-MCTS employs this hybrid estimator to achieve more accurate value estimates
with fewer samples. This integration is particularly valuable in domains where each simulation is
computationally expensive, such as complex planning tasks or applications involving large language
models.

Run continuously in the allotted time

Selection Expansion Simulation Backpropagation

DR-MCTS: Hybrid Estimator
Vhybrid(h) = βVMCTS(h) + (1− β)VDR(h)

Unexplored Selected path Expanded/visited

Figure 1: Monte Carlo Tree Search phases. Standard MCTS uses pure Monte Carlo rollouts in
the simulation phase, while DR-MCTS employs a hybrid estimator combining MCTS rollouts with
doubly robust off-policy estimation.

1.2 BACKGROUND

1.2.1 MARKOV DECISION PROCESSES

We formalize our problem setting as a Markov Decision Process (MDP), defined by the tuple M =
⟨S,A, P,R, γ⟩. Here, S and A represent the state and action spaces respectively, while P : S×A×
S → [0, 1] captures the transition dynamics, with P (s′|s, a) denoting the probability of transitioning
to state s′ after taking action a in state s. The reward function R : S × A → R assigns immediate
rewards R(s, a) to state-action pairs, and γ ∈ [0, 1] serves as the discount factor for future rewards.

A trajectory through this MDP unfolds as a sequence τ = (s0, a0, r0, s1, a1, r1, . . . , sH), where
each reward rt = R(st, at) follows from the corresponding state-action pair. An agent’s behavior
is governed by a policy π : S → ∆(A), which maps states to probability distributions over actions.
The fundamental objective is to find a policy that maximizes the expected cumulative discounted

3
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reward:

V π(s) = Eπ

[
H∑
t=0

γtrt

∣∣∣∣ s0 = s

]
(1)

Many practical domains, including board games like Go and simulated environments like Virtu-
alHome Puig et al. (2018), exhibit sparse reward structures where feedback occurs primarily at
terminal states. This sparsity presents a significant challenge for value estimation, as intermediate
actions receive no immediate signal about their quality.

1.2.2 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search addresses the challenge of decision-making in large state spaces through
selective sampling and incremental tree construction Browne et al. (2012). Rather than exhaus-
tively exploring all possibilities, MCTS focuses computational resources on promising regions of
the search space through an iterative four-phase process.

The algorithm begins with selection, traversing from the root to a leaf node by balancing exploration
of uncertain branches with exploitation of promising ones. We implement this trade-off using the
Polynomial Upper Confidence Trees (PUCT) criterion Silver et al. (2017):

a∗ = argmax
a

(
Q(s, a) + cπb(a|s)

√
N(s)

1 +N(s, a)

)
(2)

This formula elegantly combines the estimated action value Q(s, a) with an exploration bonus that
decreases as the state-action pair (s, a) is visited more frequently, where N(s) and N(s, a) track
visit counts and c controls the exploration-exploitation balance.

Upon reaching a leaf, the expansion phase adds new child nodes to grow the tree. The crucial
simulation phase then estimates the leaf’s value through Monte Carlo rollouts:

VMCTS(s) =
1

N(s)

N(s)∑
i=1

Ri(s) (3)

where each Ri(s) represents the cumulative reward from an independent simulation starting at state
s. Finally, backpropagation updates the statistics of all nodes along the traversed path, propagating
the new information toward the root.

While this Monte Carlo approach provides unbiased estimates, it can suffer from high variance,
particularly when simulations are expensive or limited.

1.3 OFF-POLICY EVALUATION METHODS

The challenge of estimating a policy’s value using data collected under a different policy arises
naturally in MCTS, where the tree policy used for exploration differs from the target policy we
ultimately wish to evaluate. Off-policy evaluation methods provide principled approaches to this
mismatch.

1.3.1 IMPORTANCE SAMPLING

Importance Sampling (IS) corrects for the distribution mismatch between behavior policy πb and
target policy πe through density ratios Precup et al. (2000). For each timestep, we compute the
importance weight ρt = πe(at|st)/πb(at|st), which reweights the observed data to match what
would have been observed under the target policy. The step-wise IS estimator accumulates these
weighted rewards:

Vstep-IS(s) =

H−1∑
t=0

γtρ1:trt (4)

where ρ1:t =
∏t

k=1 ρk represents the cumulative importance weight. While this approach provides
unbiased estimates under mild conditions, the variance can become prohibitive when the behavior
and target policies diverge significantly.
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1.3.2 DOUBLY ROBUST ESTIMATION

Doubly Robust estimation elegantly addresses the high-variance limitation of IS by incorporating a
baseline function that reduces variance without introducing bias Jiang & Li (2016). The key insight
is to combine importance sampling with direct value function approximation:

VDR(s) = V̂ (s) +

H−1∑
t=0

γtρ1:t

(
rt + γV̂ (st+1)− Q̂(st, at)

)
(5)

This formulation starts with a baseline estimate V̂ (s) and adds a correction term that accounts for
the discrepancy between observed rewards and predicted values. Crucially, the estimator remains
unbiased if either the importance weights are correct or the value function approximations are ac-
curate—hence the term “doubly robust.” This robustness property makes DR estimation particularly
attractive for complex domains where perfect models are unattainable.

To further reduce bias in finite-sample settings, we employ cross-validation when estimating
Q̂(st, at) Chernozhukov et al. (2018), preventing overfitting to the limited data available within
each MCTS node. This combination of robustness and practical bias reduction techniques forms the
foundation of our DR-MCTS algorithm.

2 METHODS

2.1 DOUBLY ROBUST MONTE CARLO TREE SEARCH

Our DR-MCTS algorithm enhances the standard MCTS framework by introducing a variance-
minimizing hybrid estimator that adaptively combines Monte Carlo rollouts with doubly robust off-
policy evaluation. The core innovation lies in dynamically adjusting the mixture weights based on
empirical variance statistics, allowing the algorithm to optimally balance different sources of value
information.

The hybrid estimator takes the form:

Vhybrid(s) = β(s, a)VMCTS(s) + (1− β(s, a))VDR(s) (6)

where β(s, a) ∈ [0, 1] determines the relative contribution of each component. Rather than us-
ing a fixed or heuristically-decaying weight, we compute β(s, a) online to minimize the combined
estimator’s variance.

The key to our approach is the adaptive computation of β(s, a) based on observed variance statistics.
For each state-action pair, we maintain online estimates of the variances and covariance of the two
estimators. The variance-minimizing weight is then computed as:

β∗(s, a) =
Var(VDR)− Cov(VMCTS, VDR)

Var(VMCTS) + Var(VDR)− 2Cov(VMCTS, VDR)
(7)

where the variance and covariance terms are estimated online using a sliding window of recent
samples. When insufficient data is available for reliable variance estimation (typically in the first
few visits), we fall back to an exponentially decaying heuristic:

βfallback(s, a) = βbase · exp(−λ ·N(s, a)) (8)

This ensures reasonable behavior during the initial exploration phase while transitioning to optimal
variance-based weighting as data accumulates.

To compute the hybrid estimator in practice, we first calculate the value function estimate V̂ (s)

using Equation 10 and the Q-value estimates Q̂(st, at) using Equation 11. These estimates are then
substituted into the doubly robust estimator VDR(s) in Equation 5. Finally, the hybrid estimator
Vhybrid(s) in Equation 6 combines the standard MCTS rollout value VMCTS(s) with the doubly robust
estimate VDR(s) using the adaptive weighting parameter β(s, a).

The target policy πe for importance sampling is derived from current Q-value estimates using a
softmax distribution:

πe(a|s) =
exp(Q(s, a))∑
a′ exp(Q(s, a′))

(9)

5
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The behavior policy πb(a|s) varies by domain as detailed in Appendix C.

We estimate the value function as a weighted average over child nodes:

V̂ (s) =
∑
a

πe(a|s) ·
1

N(s, a)

N(s,a)∑
i=1

Ri(s, a) (10)

where Ri(s, a) denotes the i-th return observed from taking action a in state s.

For action-value estimation, we employ k-fold cross-validation to reduce overfitting bias:

Q̂(st, at) =
1

K

K∑
k=1

1

|Dk|
∑
i∈Dk

Ri(st, at) (11)

where the data is partitioned into K folds, with each fold Dk providing an independent estimate.

The complete DR-MCTS algorithm is provided in Algorithm 1 in the Appendix.

2.2 THEORETICAL ANALYSIS

Our hybrid estimator provides strong theoretical guarantees that underpin its empirical success.
Theorem 2.1 (Unbiasedness of Hybrid Estimator). The hybrid estimator Vhybrid(s) is unbiased for
estimating the value of the target policy πe.

Theorem 2.1 aims to establish that despite combining two different estimators with adaptive
weights, our hybrid estimator preserves the unbiasedness property. The key insight is that since
both VMCTS and VDR are unbiased estimators of the true value function V (s), any convex combina-
tion of them remains unbiased regardless of how β(s, a) adapts over time.
Theorem 2.2 (Variance Reduction with Optimal Weighting). The hybrid estimator with variance-
minimizing weight β∗(s, a) as defined in Equation 7 has lower variance than the standard MCTS
estimator when:

E

[
H−1∑
t=0

γ2tρ21:t(Q(st, at)− Q̂(st, at))
2

]
= o (Var(VMCTS(s))) (12)

where β∗(s, a) minimizes Var(Vhybrid(s)) by optimally balancing the contributions of MCTS and DR
estimators.

Theorem 2.2 identifies the conditions under which DR-MCTS with optimal weighting achieves
lower variance than standard MCTS. The key insight is that by choosing β(s, a) to minimize the
hybrid estimator’s variance—rather than using a fixed or heuristically-decaying weight—we can
guarantee variance reduction whenever the Q-value estimation errors are small relative to the Monte
Carlo variance.

The optimal weight β∗(s, a) from Equation 7 adapts to the relative reliability of the two estimators:
when Var(VDR) is large (indicating unreliable importance weights or poor value estimates), β∗ in-
creases to rely more on MCTS; conversely, when the DR estimator has low variance, β∗ decreases to
leverage its variance reduction benefits. This adaptive mechanism ensures that the hybrid estimator
automatically adjusts to different scenarios without manual tuning.

To analyze the variance of this optimally-weighted hybrid estimator, we introduce the difference
∆(s) = VDR(s)−VMCTS(s), which represents the correction provided by the DR estimator. This re-
formulation allows us to express the hybrid estimator as Vhybrid(s) = VMCTS(s)+(1−β∗(s, a))∆(s),
where the optimal weight β∗(s, a) minimizes the total variance by balancing the variance of ∆(s)
against its covariance with VMCTS(s).

Complete proofs are provided in Appendix B.

3 EXPERIMENTS

We evaluate DR-MCTS across three diverse domains that test different aspects of planning and
decision-making: the strategic game of Go, mathematical reasoning problems from GSM8K, and

6
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complex household tasks in the VirtualHome environment. The hyperparameter configuration is
provided in Appendix 4.

Our evaluation compares DR-MCTS against several state-of-the-art MCTS variants. The primary
baseline is standard MCTS with pure Monte Carlo rollouts, providing a direct comparison for our
variance reduction approach. We also evaluate IS-MCTS, which replaces the doubly robust esti-
mator in our hybrid formulation with step-wise importance sampling (Equation 4). We additionally
compare against three entropy-based methods: Maximum Entropy Tree Search (MENTS) Xiao et al.
(2019), Boltzmann Tree Search (BTS), and Decaying Entropy Tree Search (DENTS) Painter et al.
(2023). These methods represent the current state-of-the-art in exploration-driven MCTS improve-
ments.

Go. We evaluate our approach on 9×9 Go, a domain that combines strategic depth with compu-
tational tractability. Our implementation follows standard Go rules including stone capturing and
ko prevention through board state hashing. The state representation uses a 9×9 integer array with
Zobrist hashing for efficient state comparison and ko detection.

The reward structure provides +1.0 for wins and 0.0 for losses at game termination, with small
intermediate rewards (up to 0.5) for capturing opponent stones during play. We include a standard
6.5 point komi for White to offset Black’s first-move advantage. Games terminate under three
conditions: two consecutive passes (traditional Go rule), reaching a maximum of 75 moves, or
when the board reaches 90% occupancy.

For evaluation, we conduct tournaments where each algorithm pair plays 30 games, alternating
Black and White to ensure fairness. We report win rates with 95% confidence intervals using the
Wilson score method.

GSM8K Mathematical Reasoning. The GSM8K dataset Cobbe et al. (2021) presents grade-
school mathematics problems requiring multi-step reasoning, providing a challenging domain for
tree search due to the combinatorial explosion of possible reasoning sequences. We frame each
problem as a sequential decision-making task with a discrete action space of six reasoning opera-
tions: identify key information, set up equation, perform calculation, break down problem, check in-
termediate result, and provide final answer. The state representation consists of the original problem
statement and the accumulated reasoning chain, where each step contains both the chosen action and
corresponding LLM-generated mathematical work produced by GPT-4o-mini as the world model.
To prevent trivial solutions, we enforce that provide final answer becomes available only after at
least one reasoning step has been completed. Episodes terminate when the agent provides a final
answer or after 5 reasoning steps, with rewards of +1.0 for correct solutions and 0.0 otherwise.

Our experimental evaluation uses 50 randomly selected problems from the test set, with each algo-
rithm performing 20 MCTS simulations per decision step, under a 30-hour computational budget
per algorithm to ensure fair comparison under practical resource constraints. We report accuracy
rates with 95% confidence intervals, and average steps and time needed to solve one problem per
algorithm.

VirtualHome Household Planning. VirtualHome Puig et al. (2018) provides a partially observable
3D household simulation environment that challenges agents with complex spatial reasoning and
long-horizon planning tasks involving realistic household activities. The environment features in-
teractive objects (furniture, appliances, containers) distributed across multiple rooms, where agents
must navigate and manipulate objects to achieve high-level goals such as “prepare breakfast” or
“clean the living room.” Following Zhao et al. (2023), we leverage LLMs in dual roles: GPT-4o-
mini serves as a world model providing commonsense knowledge about household object properties
and spatial relationships, while GPT-4o acts as a policy model for high-level action selection guid-
ance. The action space consists of primitive operations including navigation (walk to, run to), object
manipulation (grab, put, open, close), and interaction commands (sit on, turn on), with state repre-
sentations capturing both the agent’s current location and the status of all objects in the environment.

We evaluate across three task categories designed to test different aspects of generalization and com-
positional reasoning. Novel Simple tasks (123 total) involve rearranging familiar household objects
in new spatial configurations, testing the agent’s ability to adapt learned object manipulation skills
to novel arrangements within single rooms. Novel Objects tasks (34 total) introduce objects that
were not present during any training phase, requiring the agent to leverage commonsense reasoning

7
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about object properties and affordances to successfully interact with unfamiliar items. Novel Com-
positional tasks (23 total) combine multiple subtasks in previously unseen sequences, demanding
hierarchical planning where agents must decompose complex goals into appropriate sequences of
primitive actions while maintaining awareness of preconditions and dependencies between subtasks.

Success is measured as the percentage of tasks completed correctly within predefined step limits: 10
steps for Simple and Novel Objects categories, and 15 steps for the more complex Compositional
tasks. As with GSM8K, we impose a 30-hour computational budget for each algorithm to complete
all tasks within each category.

4 RESULTS

9×9 Go. Table 1 presents tournament results for DR-MCTS against baseline methods on 9×9 Go.
Each algorithm pair played 30 games with alternating colors.

Table 1: Win rates of DR-MCTS against baseline methods on 9×9 Go. Each entry shows the win
rate with 95% Wilson confidence intervals based on 30 games per matchup.

Opponent Win Rate 95% CI
MCTS 0.567 [0.392, 0.726]
IS-MCTS 0.633 [0.455, 0.781]
MENTS 0.600 [0.423, 0.754]
BTS 0.667 [0.488, 0.808]
DENTS 0.533 [0.361, 0.698]

DR-MCTS achieved positive win rates against all baselines, with the strongest performance against
BTS (66.7%), followed by IS-MCTS (63.3%) and MENTS (60.0%). The method maintained a
competitive edge against DENTS (53.3%) and standard MCTS (56.7%). The improvement over IS-
MCTS indicates that the doubly robust estimator provides better variance reduction than importance
sampling alone in this domain.

GSM8K Mathematical Reasoning. Table 2 shows performance on 50 GSM8K problems under
a 30-hour computational budget.

Table 2: Performance on GSM8K. Accuracy shows correctly solved problems with 95% Wilson
confidence intervals. Statistics computed over attempted problems.

Method Accuracy (%) 95% CI Avg. Steps Time/Problem
DR-MCTS 86.0 [73.1, 93.5] 2.5 22m 41s
MCTS1 82.4 [66.1, 91.9] 4.6 52m 00s
IS-MCTS2 80.6 [64.8, 90.3] 4.6 50m 01s

DR-MCTS completed all 50 problems while achieving the highest accuracy (86.0%) with 45% fewer
reasoning steps and 56% less computation time per problem compared to MCTS. Standard MCTS
and IS-MCTS exhausted the time budget after 34 and 36 problems respectively. It is important to
note that our experimental setup constrains each algorithm to 20 MCTS simulations per decision step
to evaluate sample efficiency under limited computational budgets—a setting distinct from special-
ized GSM8K methods that may use extensive prompt engineering or fine-tuning to achieve higher
absolute accuracy. The focus here is on comparing tree search algorithms’ ability to efficiently ex-
plore the solution space when each simulation requires expensive LLM calls, rather than achieving
state-of-the-art performance on the benchmark itself. The entropy-based methods failed to solve
any problems within the time constraint, suggesting their exploration strategies are incompatible
with the large action spaces in LLM-based reasoning.

1Completed 34/50 problems within 30-hour budget.
2Completed 36/50 problems within 30-hour budget.
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VirtualHome Household Planning. Table 3 presents success rates across three task categories
under 30-hour computational budgets.

Table 3: Success rates on VirtualHome tasks. DR-MCTS shows best performance across βbase
configurations. 95% Wilson confidence intervals provided.

Task Category MCTS IS-MCTS DR-MCTS
Novel Simple (123 tasks) 85.4% 95.1% 95.9%

[78.2, 90.6] [89.6, 97.8] [90.7, 98.3]
Novel Objects (34 tasks) 23.5% 38.2% 41.2%

[12.5, 39.9] [23.9, 54.9] [26.3, 57.9]
Novel Compositional (23 tasks) 19.0% 34.8% 56.5%

[7.7, 39.5] [18.8, 55.1] [36.8, 74.4]

DR-MCTS achieved the highest success rates across all categories. Performance gains were modest
for Novel Simple tasks (0.8% over IS-MCTS) but increased substantially for Novel Objects (3.0%
improvement) and Novel Compositional tasks (21.7% improvement). The latter represents a 62%
relative improvement over IS-MCTS and nearly triple the performance of standard MCTS. As with
GSM8K, entropy-based methods failed to complete any tasks within the time constraint.

5 CONCLUSION AND DISCUSSION

This work introduced DR-MCTS, a novel algorithm that integrates doubly robust off-policy estima-
tion into Monte Carlo Tree Search through an adaptive variance-minimizing hybrid estimator. Our
theoretical analysis established the unbiasedness of the hybrid estimator and identified conditions
for variance reduction relative to standard MCTS. The core contribution demonstrates that princi-
pled variance reduction through doubly robust estimation improves MCTS performance, particularly
when simulations are computationally expensive or rewards are sparse.

Our empirical evaluation reveals consistent improvements across three distinct domains with vary-
ing characteristics. In 9×9 Go, DR-MCTS achieved positive win rates against all baselines, with
its advantage over IS-MCTS confirming that the doubly robust formulation provides stability be-
yond importance sampling alone. For GSM8K mathematical reasoning, DR-MCTS demonstrated
superior sample efficiency: achieving 86.0% accuracy while requiring 45% fewer reasoning steps
and 56% less computation time per problem, compared to standard MCTS which achieved 82.4%
accuracy before exhausting the computational budget. The VirtualHome results revealed an inter-
esting pattern where performance gains scaled with task complexity—from 10.5% improvement on
Novel Simple tasks to nearly 3× improvement on Novel Compositional tasks. This scaling suggests
that variance reduction compounds its benefits in deeper search trees where estimation errors accu-
mulate. The inability of entropy-based methods (MENTS, BTS, DENTS) to complete tasks within
computational budgets in LLM-augmented domains highlights a key insight: when node expansions
are expensive, reducing value estimation variance provides greater practical benefit than exploration
bonuses.

Several limitations merit consideration. The variance-minimizing weight relies on empirical esti-
mates that may be unreliable early in the search, necessitating our fallback heuristic. Additionally,
the theoretical variance reduction condition assumes Q-value approximation accuracy that may not
hold initially. Future work could address these limitations through more robust online variance
estimation methods and investigation of alternative baseline functions. The particular success of
DR-MCTS in LLM-augmented environments suggests potential for developing variance reduction
techniques tailored to the specific characteristics of language model planning, where the cost struc-
ture and error patterns differ from traditional domains. By providing an adaptive, domain-agnostic
approach to balancing different value estimation sources, DR-MCTS offers a practical enhancement
to MCTS that becomes increasingly valuable as applications move toward more computationally
intensive simulation models.

9
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6 REPRODUCIBILITY

Hyperparameters used to reproduce experiment results are detailed in Appendix E. Computational
resources, training time, and hardware specifications needed for replication are detailed in Ap-
pendix F.1. All code and data will be made publicly available upon publication.

7 USE OF LLM

Large Language Models were only used to correct grammar errors and polish writing in this
manuscript. No LLMs were used for data generation, analysis, interpretation of results, or writ-
ing of scientific content. All experimental design, methodology, and conclusions are the original
work of the authors.
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A APPENDIX

B THEORETICAL ANALYSIS OF DR-MCTS

B.1 UNBIASEDNESS OF THE HYBRID ESTIMATOR

Theorem B.1 (Unbiasedness of Hybrid Estimator). The hybrid estimator is unbiased for estimating
the value of the target policy πe.

Proof. We know that VMCTS(s) is unbiased due to the properties of Monte Carlo estimation. For
VDR(s), we can express it as:

VDR(s) = V̂ (s) +

H−1∑
t=0

γtρ1:t(rt + γV̂ (st+1)− Q̂(st, at)) (13)

where ρ1:t =
∏t

k=1
πe(ak|sk)
πb(ak|sk) is the cumulative importance ratio.

Taking the expectation with respect to the behavior policy πb:

Eπb
[VDR(s)] = Eπb

[V̂ (s)] + Eπb

[
H−1∑
t=0

γtρ1:t(rt + γV̂ (st+1)− Q̂(st, at))

]
(14)

= V̂ (s) +

H−1∑
t=0

γtEπb
[ρ1:t(rt + γV̂ (st+1)− Q̂(st, at))] (15)

= V̂ (s) +

H−1∑
t=0

γt(Q(st, at)− Eπe [Q̂(st, at)]) (16)

= V (s) (17)

The last step follows from the fact that Eπe [Q̂(st, at)] = Q(st, at) when Q̂ is an unbiased estimator
of Q.

Therefore, both VMCTS(s) and VDR(s) are unbiased estimators of V (s). Since Vhybrid(s) is a linear
combination of these unbiased estimators, it is also unbiased:

E[Vhybrid(s)] = E[β(s, a)VMCTS(s) + (1− β(s, a))VDR(s)] (18)
= β(s, a)E[VMCTS(s)] + (1− β(s, a))E[VDR(s)] (19)
= β(s, a)V (s) + (1− β(s, a))V (s) (20)
= V (s) (21)

Thus, the hybrid estimator remains unbiased in the DR-MCTS context.

B.2 VARIANCE REDUCTION WITH OPTIMAL BETA

Theorem B.2 (Variance Reduction with Variance-Minimizing Beta). Let Vhybrid(s) be the hybrid
estimator as defined in Equation 6, with β(s, a) chosen to minimize variance as in Equation 7. The
hybrid estimator with optimal β∗(s, a) has lower variance than the standard MCTS estimator when:

E

[
H−1∑
t=0

γ2tρ21:t(Q(st, at)− Q̂(st, at))
2

]
= o (Var(VMCTS(s))) (22)
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where the optimal weight is:

β∗(s, a) =
Var(VDR(s))− Cov(VMCTS(s), VDR(s))

Var(VMCTS(s)) + Var(VDR(s))− 2Cov(VMCTS(s), VDR(s))
(23)

Proof. We begin by deriving the optimal β that minimizes the variance of the hybrid estimator. The
variance of Vhybrid(s) is:

Var(Vhybrid(s)) = Var(βVMCTS(s) + (1− β)VDR(s)) (24)

= β2Var(VMCTS(s)) + (1− β)2Var(VDR(s)) (25)
+ 2β(1− β)Cov(VMCTS(s), VDR(s)) (26)

To find the variance-minimizing β∗, we take the derivative with respect to β and set it to zero:

∂

∂β
Var(Vhybrid(s)) = 2βVar(VMCTS(s))− 2(1− β)Var(VDR(s)) (27)

+ 2(1− 2β)Cov(VMCTS(s), VDR(s)) = 0 (28)

Solving for β∗:

β∗Var(VMCTS(s)) + β∗Var(VDR(s))− 2β∗Cov(VMCTS(s), VDR(s)) (29)
= Var(VDR(s))− Cov(VMCTS(s), VDR(s)) (30)

Therefore:

β∗(s, a) =
Var(VDR(s))− Cov(VMCTS(s), VDR(s))

Var(VMCTS(s)) + Var(VDR(s))− 2Cov(VMCTS(s), VDR(s))
(31)

Now, substituting this optimal β∗ back into the variance expression. Let σ2
M = Var(VMCTS(s)),

σ2
D = Var(VDR(s)), and σMD = Cov(VMCTS(s), VDR(s)) for notational simplicity. The minimized

variance is:

Var(V ∗
hybrid(s)) =

σ2
Mσ2

D − σ2
MD

σ2
M + σ2

D − 2σMD
(32)

=
σ2
Mσ2

D − σ2
MD

(
√

σ2
M −

√
σ2
D)2 + 2

√
σ2
M

√
σ2
D − 2σMD

(33)

For the hybrid estimator to have lower variance than standard MCTS, we require:

Var(V ∗
hybrid(s)) < Var(VMCTS(s)) (34)

This is equivalent to:

σ2
Mσ2

D − σ2
MD

σ2
M + σ2

D − 2σMD
< σ2

M (35)

Cross-multiplying and simplifying:

σ2
Mσ2

D − σ2
MD < σ2

M (σ2
M + σ2

D − 2σMD) (36)

σ2
Mσ2

D − σ2
MD < σ4

M + σ2
Mσ2

D − 2σ2
MσMD (37)

−σ2
MD + 2σ2

MσMD < σ4
M (38)

σMD(2σ2
M − σMD) < σ4

M (39)
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Now, from the doubly robust estimator structure, we know that:

VDR(s) = V̂ (s) +

H−1∑
t=0

γtρ1:t(rt + γV̂ (st+1)− Q̂(st, at)) (40)

The variance of VDR(s) can be bounded by:

Var(VDR(s)) ≤ E

[
H−1∑
t=0

γ2tρ21:t(rt + γV̂ (st+1)− Q̂(st, at))
2

]
(41)

When the Q-value approximation is accurate, i.e., Q̂(st, at) ≈ Q(st, at), and defining:

ϵ = E

[
H−1∑
t=0

γ2tρ21:t(Q(st, at)− Q̂(st, at))
2

]
(42)

The variance reduction condition becomes:

ϵ = o(Var(VMCTS(s))) (43)

This means that when the Q-value estimation error (weighted by importance ratios and discount
factors) is small relative to the Monte Carlo variance, the variance-minimizing hybrid estimator
achieves lower variance than standard MCTS.

Furthermore, the optimal β∗ automatically adapts to the relative reliability of the two estimators:
when Var(VDR(s)) is large, β∗ increases (favoring MCTS); when Var(VDR(s)) is small, β∗ decreases
(favoring DR). This adaptive property ensures robust performance across different scenarios.

C BEHAVIOR POLICIES

C.1 GO AND GSM8K BEHAVIOR POLICY

For Go and GSM8K, we implement a uniform behavior policy over all available actions:

πb(a|s) =
1

|A(s)|
(44)

where A(s) represents the set of legal actions available in state s. This uniform distribution ensures
comprehensive exploration across the action space while serving as a simple baseline for off-policy
evaluation.

C.2 VIRTUALHOME BEHAVIOR POLICY

For the VirtualHome environment, we adapt the approach of Zhao et al. Zhao et al. (2023) to
leverage Large Language Models (LLMs) as a heuristic policy. Specifically, we use GPT-4o to
generate the behavior policy, guiding action selection in the simulation procedure.

The LLM takes as input:

• K-shot examples from the dataset

• Goal description

• Current observation

• History of actions

15
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All inputs are translated into English sentences. The LLM then outputs a suggested action plan. To
approximate the policy distribution, we sample the LLM M times, querying it with the prompt and
trajectory history h:

αi ∼ LLM(s, prompt) (45)

where αi is the first action of the LLM’s answer.

The prompt examples are selected based on their similarity to the current language instruction ℓ.
We use sentence embeddings to calculate the cosine similarity between the current instruction and
instructions ℓi in the dataset D:

similarity = CosineSim(ℓi, ℓ) (46)

We select the top K similar instructions and use their corresponding expert trajectories as the K-shot
prompt.

To ensure executability, we represent both the LLM’s suggested actions and the admissible actions as
embeddings and evaluate their cosine similarity. The empirical policy distribution is then formulated
as:

π̂b(a|s) = λ
1

|A|
+ (1− λ)Softmax

{
M∑
i=1

CosineSim(αi, a)− η

}
(47)

where η is the average value of
∑

i CosineSim(αi, a), |A| is the size of the admissible action space,
and λ is a hyperparameter that adds randomness to the policy. This results in a mixture of the
approximated policy from the LLM and a uniform distribution.

D DR-MCTS ALGORITHM

Algorithm 1 presents our DR-MCTS approach. The algorithm initializes a search tree with the root
node representing the initial state and history. For a specified number of iterations, it traverses the
tree using the PUCT selection strategy (Equation 2), balancing exploration and exploitation. When
a new node is reached, it’s added to the tree, and a simulation estimates its value VMCTS. If the DR
estimator is used, VDR is calculated (Equation 5).

The hybrid estimator (Equation 6) combines these estimates using the variance-minimizing weight
β∗(s, a) from Equation 7. This weight is computed online by tracking empirical variances of both
estimators and their covariance through a sliding window of recent samples. When insufficient
samples are available for reliable variance estimation (typically during early visits), the algorithm
falls back to the heuristic weight βbase · exp(−λ ·N(s, a)) as specified in Equation 8.

The resulting value is backpropagated, updating node statistics. After all iterations, the algorithm
returns the action with the highest estimated value at the root node.

E EXPERIMENTAL SETTINGS AND DETAILS

E.1 9 × 9 GO

E.1.1 EXPERIMENTAL SETTINGS

We evaluate DR-MCTS on 9×9 Go, a domain that balances computational tractability with strategic
complexity. Table 4 provides complete specifications of all hyperparameters used.

E.1.2 IMPLEMENTATION DETAILS

• State representation: 81-element array for 9×9 board positions
• Action space: Empty intersections plus pass move (maximum 82 actions)
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Algorithm 1 DR-MCTS Algorithm
Input: state s0, history h0, iterations N
Initialize tree T with root (s0, h0)
Initialize variance trackers for each node
for i = 1 to N do
(s, h)← (s0, h0)
while (s, h) is not terminal and (s, h) is in T do
a← argmaxa′PUCT((s, h), a′)
s, h← Apply(s, a), h+ a

end while
if (s, h) is not terminal then

Add (s, h) to T
vMCTS ← Simulate(s, h)
vDR ← ComputeDR(s, h, πe, πb, Q̂, V̂ )
Update variance statistics: Var(VMCTS), Var(VDR), Cov(VMCTS, VDR)
if N(s, a) ≥ min samples then

β ← Var(VDR)−Cov(VMCTS,VDR)
Var(VMCTS)+Var(VDR)−2Cov(VMCTS,VDR)

{Variance-min}
else
β ← βbase · exp(−λ ·N(s, a)) {Fallback heuristic}

end if
v ← βvMCTS + (1− β)vDR {Hybrid value}

else
v ← Reward(s)

end if
while (s, h) is not (s0, h0) do

Update statistics for (s, h) in T with v
(s, h)← Parent(s, h)

end while
end for
Return: argmaxaQ((s0, h0), a)

• Reward structure: +1.0 for wins, 0.0 for losses at game termination, with small interme-
diate rewards (up to 0.5) for capturing opponent stones

• Scoring: Area scoring with 6.5 point komi for White

• Termination conditions:

– Two consecutive passes (traditional Go rule)

– Maximum of 75 moves

– Board reaches 90% occupancy

• Special rules: Ko prevention implemented through Zobrist hashing

E.1.3 EVALUATION PROTOCOL

Tournament evaluation follows these principles:

1. Each algorithm pair plays 30 games, alternating Black and White to ensure fairness

2. Actions selected by highest Q-value at root node after search completion

3. Performance measured by win rate with 95% Wilson score confidence intervals

4. All experiments conducted on identical hardware for fair comparison
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Table 4: Hyperparameter configuration for all experimental domains
Parameter 9×9 Go GSM8K VirtualHome
Experimental Settings
Games/Problems per evaluation 30 50 180 total tasks
Random seed 42 42 42
Computational budget - 30 hours 30 hours/category

MCTS Parameters
Rollouts/Simulations per move 5 20 100
Maximum depth 15 10 15 (compositional)

10 (others)
Tree policy PUCT PUCT PUCT
PUCT exploration constant c 1.414 2.0 2.0
Discount factor γ 1.0 0.95 0.95

Hybrid Estimator Parameters
Base hybrid weight βbase {0.25, 0.5, 0.75} {0.25, 0.5, 0.75} {0.25, 0.5, 0.75}
Adaptive decay parameter λ 0.01 0.05 0.01
Cross-validation folds K 2 2 2

Policy and Behavior Settings
Behavior policy Uniform Uniform LLM-guided
World model - GPT-4o-mini GPT-4o-mini
Policy model - - GPT-4o
Few-shot examples - - 3-shot

Domain-Specific Parameters
Board/State space size 9×9 - -
Maximum steps per episode 75 moves 5 reasoning steps Task-dependent
Komi (Go scoring) 6.5 - -
Action space size ≤ 81 6 operations Primitive actions

E.2 GSM8K MATHEMATICAL REASONING

E.2.1 EXPERIMENTAL SETTINGS

GSM8K Cobbe et al. (2021) provides grade-school mathematics problems requiring multi-step rea-
soning. We frame each problem as a sequential decision-making task suitable for tree search. Com-
plete hyperparameters are specified in Table 4.

E.2.2 ACTION SPACE DESIGN

We define six reasoning operations that capture common problem-solving strategies:

• identify key information: Extract relevant numbers and relationships from the problem
statement

• set up equation: Formulate mathematical equations based on identified relationships

• perform calculation: Execute arithmetic operations and algebraic manipulations

• break down problem: Decompose complex problems into manageable sub-problems

• check intermediate result: Verify the reasonableness of intermediate calculations

• provide final answer: State the numerical answer to the problem

To encourage meaningful reasoning, provide final answer becomes available only after at least one
reasoning step has been completed.
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E.2.3 LLM INTEGRATION

• World Model (GPT-4o-mini): Generates mathematical work for each reasoning action,
maintaining context across the solution trajectory

• Temperature: Set to 0.1 for deterministic reasoning while allowing minor variations
• Token tracking: Input and output tokens monitored for cost analysis

E.2.4 EVALUATION PROTOCOL

• Dataset: 50 randomly selected problems from GSM8K test set
• Success criterion: Predicted numerical answer matches ground truth (tolerance 10−6)
• Episode termination: Maximum 5 reasoning steps or when final answer provided
• Reward structure:

– +10.0 for correct final answer
– -1.0 for incorrect final answer
– -0.1 step penalty to encourage efficiency

• Computational budget: 30 hours total per algorithm
• Metrics: Accuracy rate, average reasoning steps, total computation time, cost per problem

E.3 VIRTUALHOME HOUSEHOLD PLANNING

E.3.1 DATA GENERATION AND TASK DESIGN

Following the methodology of Zhao et al. (2023), we create a comprehensive dataset for evaluation:

• Training data: 2,000 tasks with randomly initialized scenes and expert trajectories
• Expert agent: Oracle agent with full environment knowledge, using regression planning

with handcrafted heuristics
• Total trajectories: 10,000 expert demonstrations for baseline training
• Few-shot prompts: 200 instances randomly sampled for LLM prompting (no fine-tuning)
• Evaluation set: 180 tasks across three complexity categories

E.3.2 MODEL CONFIGURATION

Complete hyperparameters are provided in Table 4. Key configuration details include:

• World Model (GPT-4o-mini): Provides commonsense knowledge about household envi-
ronments, object locations, and likely state transitions

• Policy Model (GPT-4o): Generates action proposals based on current observations and
task goals

• Prompt selection: 3 most similar examples selected based on instruction embedding sim-
ilarity

• Action selection: Highest Q-value at root after 100 MCTS rollouts

E.3.3 EVALUATION PROTOCOL

• Success criterion: Task completion within the specified step limit
• Step limits:

– 10 steps for Novel Simple and Novel Objects categories
– 15 steps for Novel Compositional category

• Computational budget: 30 hours per task category
• Metrics: Success rate per category
• Baselines: Standard MCTS and IS-MCTS with identical LLM configurations
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F CODE AVAILABILITY AND LICENSE

We commit to releasing our full implementation upon acceptance, which will include:

• Complete implementations of DR-MCTS, IS-MCTS, and baseline MCTS algorithms
• Environment wrappers for Go (9× 9), GSM8K, and VirtualHome
• Reproduction scripts for all experiments
• Hyperparameter configurations and random seeds for reproducibility
• Detailed documentation and usage instructions

Our implementation builds upon the following open-source resources:

• VirtualHome Environment: Based on Watch-and-Help1 (CC BY-NC-SA 4.0 license) for train-
ing/test data generation

• LLM-MCTS Integration: Adapted from Zhao et al.’s codebase2 (CC BY-NC-SA 4.0 license) for
LLM-guided tree search

All code will be released under the MIT license to facilitate broader adoption. We acknowledge that
our experiments utilized GPT-4o and GPT-4o-mini APIs; users will need their own API credentials
to reproduce VirtualHome results.

F.1 REPRODUCIBILITY GUIDELINES

To reproduce our experiments:

• 9 × 9 Go: Any modern CPU with at least 1GB RAM
• GSM8K: GPU GPU with minimum 16GB memory (A100 recommended for exact timing

replication)
• VirtualHome: GPU with minimum 16GB memory (A100 recommended for exact timing

replication)
• Software requirements: Python 3.8+, PyTorch 1.10+, and API access to GPT-4o and

GPT-4o-mini
• Estimated total compute time:

– 9 × 9 Go: up to 3 hour for all experiments
– GSM8K: Up to 30 hours
– VirtualHome: Up to 30 hours for each task category

1https://github.com/xavierpuigf/virtualhome/tree/master
2https://github.com/1989Ryan/llm-mcts
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