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Abstract

Recent advances in vision-language-action (VLA) models have shown promise
in integrating image generation with action prediction to improve generalization
and reasoning in robot manipulation. However, existing methods are limited to
challenging image-based forecasting, which suffers from redundant information
and lacks comprehensive and critical world knowledge, including dynamic, spatial
and semantic information. To address these limitations, we propose DreamVLA,
a novel VLA framework that integrates comprehensive world knowledge fore-
casting to enable inverse dynamics modeling, thereby establishing a perception-
prediction-action loop for manipulation tasks. Specifically, DreamVLA introduces
a dynamic-region-guided world knowledge prediction, integrated with the spatial
and semantic cues, which provide compact yet comprehensive representations
for action planning. This design aligns with how humans interact with the world
by first forming abstract multimodal reasoning chains before acting. To mitigate
interference among the dynamic, spatial and semantic information during training,
we adopt a block-wise structured attention mechanism that masks their mutual
attention, preventing information leakage and keeping each representation clean
and disentangled. Moreover, to model the conditional distribution over future
actions, we employ a diffusion-based transformer that disentangles action represen-
tations from shared latent features. Extensive experiments on both real-world and
simulation environments demonstrate that DreamVLA achieves 76.7 % success rate
on real robot tasks and 4.44 average length on the CALVIN ABC-D benchmarks.

1 Introduction

The evolution of robot learning has demonstrated impressive progress [1—13] in training policies
capable of performing diverse tasks across various environments [14—27]. One promising direction
is Vision-Language-Action (VLA) models, which leverage the rich understanding capabilities of
pre-trained Multimodal Large Language Models (MMLMs) [28-31] to directly map natural language
instructions and visual observations to robot actions [17, 1, 14]. Although these approaches [32—
34,15, 1, 35-44] have achieved impressive results, their direct mapping from observations to actions
lacks the closed-loop forecasting capability that humans typically possess when understanding and
reasoning about future knowledge of environments.

To incorporate future knowledge prediction into VLA, most existing methods [45, 5, 46-57] leverage

a copilot generation model to generate future frames/keypoints, then predict action sequences con-
ditioned on goal images. Several methods [58—63] integrate pixel-level image forecasting with the
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Figure 1: (a) Vanilla VLA directly maps visual observations and language instructions to actions. (b)
Models leveraging separate image/video generation or copilot models to generate future frames or
trajectories, subsequently guiding an action head. (c) VLA variants explicitly predict a subgoal image
as an intermediate visual reasoning step prior to action generation. (d) Our proposed DreamVLA,
which explicitly predicts dynamic regions, depth map, semantics (DINOv2 and SAM) knowledge,
significantly enhances the model’s action reasoning and generalization.

action prediction in a single framework, which exploits the synergy of prediction and planning and
regards the prediction as an intermediate reasoning step [60] akin to those used in large language
models (LLMs) [64]. Despite early success in incorporating dense visual forecasting, these methods
naturally exhibit limitations: (1) Redundant pixel information: There exists significant overlap be-
tween forecasted images and current observations, making the prediction less efficient and effective.
(2) Lack of spatial information: Absence of explicit 3D knowledge of environments [65-68, 24]. (3)
Lack of high-level knowledge forecasting: Missing high-level understanding of future states, e.g.,
semantics information. Therefore, we argue that existing methods (Figure 1 (a-c)) are insufficient to
forecast future states for a more comprehensive prediction-action loop in the context of world-level
future knowledge.

To address these issues, we propose DreamVLA, a novel framework that incorporates comprehen-
sive world knowledge forecasting into the vision-language-action models, thereby establishing a
perception-prediction-action loop for the manipulation task. As shown in Figure 1 (d), instead of
directly generating entire future frames, our proposed method introduces world embedding to predict
comprehensive world knowledge, which is highly relevant to robot execution, such as dynamic area,
depth, and high-level semantic features. This approach aligns with the way humans interact with the
world, emphasizing relevant changes and world knowledge. By dreaming/forecasting these targeted
aspects of the environment, we aim to provide the model with concise and relevant intermediate
representations that facilitate more effective action planning.

To obtain comprehensive world knowledge, our approach incorporates three key features: (1) Dynamic
region-based forecasting. We leverage an off-the-shelf optical flow prediction model [69, 70] to
identify dynamic regions within the scene, enabling the model to concentrate on areas of motion that
are critical for task execution instead of redundant frame reconstruction. (2) Depth-aware forecasting.
We employ depth estimation techniques [65] to generate per-frame depth maps, providing valuable
spatial context that aids in understanding the three-dimensional structure of the environment. (3)
High-level foundation features. We incorporate semantic features aligned with visual foundation
models such as DINOv2 [71] and SAM [72]. In this way, DreamVLA offers a more comprehensive
and effective pathway for the model to plan and execute. Furthermore, we adopt a block-wise
structured attention mechanism that masks their mutual attention, preventing information leakage
and keeping each representation clean and disentangled. Since the world and action embeddings
occupy the same latent space and share similar statistics, a naive MLP head cannot disentangle
modality-specific information or exploit their cross-modal correlations. We employ a diffusion-based
transformer that disentangles action representations from shared latent features to reason actions.

Through extensive experiments on public benchmarks, we find that incorporating world knowledge
prediction leads to significant performance improvements. Our method achieves state-of-the-art
performance on the CALVIN benchmark (4.44 average length), and we analyze the influence of
the ingredients of our world knowledge and find that they have improvements in different aspects.
Specifically, comprehensive ablation shows that predicting dynamic regions alone delivers the greatest
gains, while depth and semantic cues offer smaller, roughly equal benefits. Worse, when depth or
semantic prediction is used in isolation, it not only fails to help but can actually degrade performance.
Extensive experiments on both simulation and real-world demonstrate the effectiveness of our method.



The key contributions of our work are summarized as follows:

* We recast the vision—language—action model as a perception—prediction—action model and make
the model explicitly predict a compact set of dynamic, spatial and high-level semantic information,
supplying concise yet comprehensive look-ahead cues for planning.

* We introduce a block-wise structured-attention mechanism, coupled with a diffusion-transformer
decoder, to suppress representation noise from cross-type knowledge leakage and thus enable
coherent multi-step action reasoning.

* DreamVLA sets a new state of the art on the CALVIN ABC-D benchmark (4.44 average task
length), outperforming prior methods by up to 3.5% on the simulation platform, and boosts
real-world success to 76.7%. Ablation studies confirm each component’s contribution.

2 Related Works

2.1 Vision-Language—Action Models

The earliest VLA [18, 73, 2, 74-76] lay the foundation by combining pretrained vision-language
representations with task-conditioned policies for manipulation and control. Inspired by the recent
advances of Large Language Models [77-80] and multimodal large language models [30, 28, 81,
67, 82] and the emergence of large-scale robot datasets [14, 83—85], VLA has become a trend
in robot learning. RT series [2, 86, 87] is the pioneer attempt to fine-tune the MLLM on robot
demonstration datasets, resulting in strong accuracy and generalization. Building on this foundation,
many advanced techniques [32, 34, 15, 1, 35, 36, 75, 37-39, 88-90, 40, 91] are developed to boost the
performance. Meanwhile, considering the advantage of the diffusion model in modeling multi-peak,
some researchers [92-96] employ different architectures to sample action from noise conditioned
on observation, task instruction, and robot prior knowledge. Given on this manner which directly
maps observation and instruction to action lacks reasoning steps like LLM [64], most existing
methods [45, 5, 46—51] leverage a copilot image/video generation model to generate future frames
then predict action sequences conditioned on goal images. However, the above methods still need an
extra generation model, which introduces inference time and computation load. Therefore, several
methods [58-63] integrate pixel-level forecasting with the action prediction in a single framework,
which exploits the synergy of prediction and planning. Despite success, these methods naturally
exhibit limitations in redundant reconstruction [97], and lack spatial and semantic information.

2.2 Knowledge Forecasting for Robotics

Learning future world knowledge for robot training has increasingly become popular to enable policies
for achieving an action-forecasting loop. Early attempts [51, 21, 16, 45, 53, 52, 98] to implement
this based on off-the-shelf video generation models [99, 55] and feed the goal images or states into
policy model to conduct inverse dynamics. This two-stage training strategy is easy to implement
but is limited by the performance and latency of video generation models. More advanced solutions
couple forecasting with control by requiring the policy to produce, in addition to actions, explicit
predictions. Concretely, these works ask the policy to output (i) high-level subtask/option sequences
or language plans that decompose long-horizon goals [100-102], (ii)latent future embeddings/latent
actions that compactly encode forthcoming motor intentions [90], (iii)whole sub-goal images or
short visual rollouts that anticipate how the scene should evolve [58, 60], and (iv) object-centric
signals (e.g., bounding boxes) that capture manipulation-relevant dynamics [85, 89]. This line of
work demonstrates better performance and generalization. However, the future states are limited to
redundant visual information [65, 66, 103, 71, 104, 68] or monotonous states [23, 50]. In contrast to
previous work, DreamVLA proposes to predict future knowledge in an efficient (dynamic region) and
effective (comprehensive knowledge) way, demonstrating strong performance and generalization.

3 Methodology

3.1 Problem Definition and Notation

We aim to improve robot execution by leveraging rich world knowledge as a guiding principle. In this
context, we formulate vision—language—action reasoning as an inverse dynamics problem [105, 58, 51],
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Figure 2: Framework Overview. Given the current robot state s;, observation o;, and language
instruction, DreamVLA encodes multimodal inputs via frozen text, visual encoders and a tunable
state encoder. These tokens, together with a learnable set of <dream> queries, are processed by a
large language model to produce world embedding. Three lightweight decoders then project each
corresponding element of this embedding into the dynamics region ft+n, monocular depth dt+n and
high-level semantics ¢;1,. A separate <action> query draws a latent action embedding, which
conditions a diffusion transformer that refines Gaussian noise into an n-step action sequence ay.¢4n—1-
The dashed box highlights prediction heads that are used only during training; inference skips these
heads and operates directly on the world embedding.

which regards the future world knowledge prediction as the intermediate reasoning for robot control,
fully unleashing the synergy of prediction and execution. At each time step ¢, the robot receives three
heterogeneous signals: a natural language instruction [, a raw visual frame o, and its proprioceptive
state s;. To inject look-ahead reasoning, we define a set of special tokens called <dream> queries [81],
and concatenate all inputs into a sequence. A unified model M maps these inputs into a compact
latent representation, which we call the world embedding:

Wiin = M (1, 0, ¢|<dream>) . )

Next, the world embedding predicts the comprehensive world knowledge that combines motion cues,
spatial details and high-level semantics. Specifically, a set of predictor P extrapolates n steps ahead,

Dttn = P(Wt+n) = [ft+na Czt+m ét+n}a ()

where fH_n marks dynamic regions, ciH_n encodes monocular depth, and ¢, optionally stores
high-level semantic feature (e.g. DINOvV2 [71], SAM [72]).

Given world embedding W, the <action> query is assigned to the latent action embedding by the
unified model M to aggregate the correlated action information. A denoising-diffusion transformer
D formulates an n-step action based on the latent feature:

atit4n—1 = D(M(L, 04, ¢, <dream>|<action>)), 3)

thus completing a perception—prediction—action loop that is identical during training and inference.
The remainder of this chapter details the system components—encoders, world-knowledge predictor,
and diffusion-based action generator—that instantiate the above formulation.

3.2 Model Architecture

As illustrated in Figure 2, our DreamVLA framework comprises three core modules operating within
a unified transformer architecture. Firstly, heterogeneous inputs—including natural language [,
visual observations o;, and proprioceptive states s;—are individually processed by modality-specific
encoders. We encode language instructions using CLIP [103] text embeddings, visual frames through
a Masked Autoencoder [106] to obtain spatiotemporal patch representations, and proprioceptive
signals via several convolutional and fully-connected layers. Following encoding, a set of learnable
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Figure 3: Visualization of dynamic regions over time. We show the static camera (left) and
wrist-mounted camera (right) observations alongside the corresponding dynamic masks generated by
our method at multiple time steps. The masks highlight dynamic regions by leveraging optical flow
trajectories extracted via CoTracker [70, 69]. Compared to the original observations, our method
effectively suppresses irrelevant background and focuses on interaction-relevant areas (e.g., moving
objects and end-effector), enabling more structured and efficient action reasoning.

queries designated as <dream> and <action> are appended to these multimodal embeddings, where
<dream> contains three subqueries (dynamic, depth and semantics), which could be used for the
prediction of specific knowledge. Subsequently, we leverage a large language model based on GPT-2
[107] to integrate and attend across modalities and queries using carefully structured causal and
non-causal attention mechanisms (Figure 4). This effectively fuses low-level perceptual signals into
compact, semantically coherent representations of the world state.

Finally, specialized light-weight output heads comprising by shallow convolutional layers decode
world embedding into explicit predictions: reconstruct anticipated dynamic region, monocular depth,
and semantic features. During inference, Dream VLA skips the decoder entirely, saving substantial
computation. Instead, the model outputs an world embedding that encapsulates predictions of
future dynamics, depth, and semantics without pixel-level reconstruction, thereby retaining the
accuracy gains from future-state reasoning while maintaining low latency. In parallel, we employ
a denoising diffusion transformer [92] to decode latent action embedding into executable robot
action sequences. Collectively, these components enable DreamVLA to perform robust, predictive
vision—language—action reasoning in an end-to-end manner.

3.3 Comprehensive World Knowledge Prediction

Predicting what will matter next is more valuable than merely reproducing the raw future frame.
DreamVLA explicitly forecasts future world knowledge that is most relevant for manipulation,
including (i) motion—centric dynamic region, (ii) 3D depth geometry, and (iii) high-level semantics.
These complementary signals provide a compact, structured surrogate for raw pixels and supply the
policy with look-ahead context for inverse dynamics planning.

Motion-centric dynamic-region reconstruction. Predicting dynamic regions tells the robot what
parts of the scene are about to move, allowing the model to capture the statistical link between the
current scene, the language instruction, and the actions needed to realize the predicted motion. As
shown in Figure 3, Dream VLA neither predicts dense optical flow nor synthesizes an entire future
frame. Instead, we first apply CoTracker [69, 70] to extract dynamic regions, namely pixels that
move with the robot end-effector or other movable objects, and then train DreamVLA to reconstruct
only these regions. Furthermore, generating reconstruction targets with an asymmetrical tokenizer
can further enhance performance [106]. From the perspective of discrete variational autoencoder
(dVAE) [108-111], the overall optimization is to maximize the evidence lower bound (ELBO) [112—
114, 68] of the log-likelihood P (z;|Z;). Let  denote the original image, & the masked motion region,
and z the reconstruction target. The generative modeling can be described as:

> 10gP@ili) > > (Eamayeieo [logPulailz)] — De[zPo(@l2)]), @)
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where P, (x|z) is the tokenizer decoder to recover origin data, 2; = Q,(z|Z;) denotes the masked
motion region tokens from masked data and Py(z|Z;) reconstructs masked tokens in an autoencoding



fashion. Here, the Py(z|Z;) is zero, and the dynamic region prediction loss can be formulated as:

1
Lagn = ﬁ Z E.q,(z]z:) [— long((zi)M | z)] (5)
xz; €D

Depth prediction. Predicting how the depth field will evolve tells the robot where it should
move next, steering it toward free space and away from impending obstacles. If depth sensors are
available, we supervise the DreamVLA with ground-truth maps; on low-cost platforms without
depth sensing, we instead hallucinate future geometry from a single RGB stream. To do so, we treat
Depth-Anything [65, 66] predictions as a self-supervised teacher and train a dedicated depth query to

regress the aligned future map d;4,,. The objective is a scale-normalized mean-squared error,

_ 1 5(4,5) (1,5)\2
[-:depth — HW Z(dt-i-n - adt+n) ) (6)
,J
At
a = ZL,] t+(r: 7;;n , (7)
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where o removes the global scale ambiguity that monocular methods cannot resolve. In practice, this
simple loss is sufficient: the teacher provides metrically plausible depth, and the scale-normalization
term encourages the model to preserve ordinal depth relationships, a property that is crucial for grasp
synthesis and collision checking, while ignoring any arbitrary global scale shift.

Contrastive semantic forecasting. Predicting future semantics teaches the robot which objects
or regions will matter for the task, providing a high-level context (for example, object identity and
affordances) that guides the selection of goals and grasp choice. To learn these semantics, DreamVLA
predicts future DINOv2 [71] and SAM [72] feature ¢;1, using an InfoNCE loss [115, 68]: the
ground-truth feature is the positive sample, whereas spatially shifted features act as negatives. This
encourages discriminative anticipation that the model must pick the correct object semantics among
plausible but wrong futures:

exp (étT+nct+,L/T)
>k €XP (é;nck/r) ’

where k represents the number of tokens in spatial, and 7 denotes the temperature.

Structured attention for cross-type knowledge dis-

entanglement. To preserve clear cross-type knowl- I:“:”:":”:“:“:”:“:'
edge boundaries, <dream> is decomposed into three I:“:":":”:“:“:":“:‘
sub-queries (dynamic, depth and semantics). If these o DDDDDDDDD
sub-queries could freely attend to one another, high- '

frequency flow details would contaminate depth rea- I:“:“:":”:”:”:“:“:'
soning, and semantic cues might bleed into motion I:“:":":”:“:“:":“:‘
features, producing noisy mixed representations. We Depth I:“:”:":”:“:“:”:“j
therefore mask their mutual attention: each sub-

query attends only to the shared visual, language, and ) I:“:”:":”:“:“:”:“:'
state tokens, while direct links among the three are Action [I:H:”:“:“:”:”:“:”:I
disabled, keeping their latent features disentangled quernes l:“:“:":”:”:”:“:“:‘

and free of cross-talk. As shown in Figure 4, both —
<dream> and <action> queries also employ causal '

attention restricted to past context, which preserves

temporal causality. This organized pattern mirrors the

specialist routing used in Mixture-of-Experts (MoE)  Figure 4: Block-wise structured attention.
networks [116]. By avoiding cross-modal leakage,

the structured attention supplies clean future world knowledge for action prediction, improves
robustness, and maintains temporal consistency.
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3.4 Inverse Dynamics via Denoising Diffusion Transformer

Given two ordered observations o; and 0,41, classical inverse dynamics infers the intermediate
action a;. We extend this formulation by predicting a full action sequence Gy.¢4,—1 conditioned



Table 1: CALVIN ABC-D results. We present the average success computed over 1000 rollouts
for each task and the average number of completed tasks to solve 5 instructions consecutively (Avg.
Len.). DreamVLA shows significant superiority over baselines. The best results are bolded.

| Task completed in a row

Method

| 1 2 3 4 5 | Avg. Len. 1
Roboflamingo [32] 82.4 61.9 46.6 33.1 23.5 2.47
Susie [120] 87.0 69.0 49.0 38.0 26.0 2.69
GR-1[16] 85.4 71.2 59.6 49.7 40.1 3.06
3D Diffusor Actor [95] 92.2 78.7 63.9 51.2 41.2 3.27
OpenVLA [1] 91.3 77.8 62.0 52.1 43.5 3.27
RoboDual [121] 94.4 82.7 72.1 62.4 54.4 3.66
UNIVLA [122 95.5 85.8 75.4 66.9 56.5 3.80
o [34] 93.8 85.0 76.7 68.1 59.9 3.84
CLOVER [123] 96.0 83.5 70.8 57.5 45.4 3.53
UP-VLA [59] 92.8 86.5 81.5 76.9 69.9 4.08
Robovim [39] 98.0 93.6 85.4 77.8 70.4 4.25
Seer [58] 96.3 91.6 86.1 80.3 74.0 4.28
VPP [51] 95.7 91.2 86.3 81.0 75.0 4.29
DreamVLA 98.2 94.6 89.5 834 78.1 4.44

on the current observation o; and future latent world embeddings w,,,. Specifically, DreamVLA
first aggregates this latent embedding, already enriched with predicted future dynamics, depth, and
semantics, into a compact action embedding via a dedicated action query and the model’s causal
attention. Since the world and action embeddings occupy the same latent space and share similar
statistics, a naive MLP head cannot disentangle modality-specific information or exploit their cross-
modal correlations. We therefore employ a denoising diffusion transformer (DiT) [92, 117] as the
action head. Conditioned on the action embedding, DiT employs iterative self-attention and denoising
to fuse perceptual forecasts with control priors and to transform Gaussian noise into an n-step
trajectory a;.;+n—1, yielding coherent, diverse, and physically grounded action sequences. The loss
of action prediction can be formulated as:

‘CDiT - ET,EHE - Ee(ﬁat:t+nfl + v 1-—- Q. g, T, C)| 27 (9)

where ¢ is the DiT denoiser, e ~ N (0, I), &, follows a cosine noise schedule and c is the latent
action embedding obtained from a large language model. Inference is performed by drawing a
Gaussian sample and running the learned reverse diffusion, yielding diverse yet physically plausible
trajectories that close the perception—prediction—action loop.

4 Experiments

4.1 Implementation Details

All models are implemented in PyTorch and trained on NVIDIA 8 A800 GPUs. We use an
AdamW [1 18] optimizer with initial learning rate 103, weight decay le — 4, and a cosine learning-
rate schedule with 5% linear warm-up. Batch size is set to 64, we set the query length of each
modality 9 and diffusion steps in DiT to 10. We weight the dynamic region, depth and segmentation
prediction losses as Agyn=0.1, Ageptn=0.001, Asey=0.1, and the action loss as Apjr=1, respectively.
We first pre-train DreamVLA on the language-free split of the CALVIN [119] and on the full DROID
dataset [84]. For the LIBERO benchmark, we first pretrain DreamVLA on LIBERO-90 and then
finetune on each track. The model predicts entire frames instead of comprehensive knowledge,
keeping storage and computation requirements manageable. We then fine-tune DreamVLA on each
target dataset using the comprehensive world knowledge forecasting objective. All models are trained
for 20 epochs, and we select the checkpoint with the highest validation success rate (SR) for final
evaluation.

4.2 Simulation Benchmark Experiments

Simulation setup. We evaluate DreamVLA on CALVIN [119] and LIBERO [124] benchmark.
CALVIN is a simulated benchmark designed for learning long-horizon, language-conditioned robot
manipulation policies. It comprises four distinct manipulation environments and over six hours



Table 2: The extended LIBERO experiments. DreamVLA achieves the best or competitive
performance across all tracks compared to previous approaches. The best results are bolded.

Methods | Scores (%) |

Average
|  Spatial Object Goal Long |

Diffusion Policy [92] 78.3 92.5 68.3 50.5 72.4
Octo [15] 78.9 85.7 84.6 51.1 75.1
OpenVLA [1] 84.7 88.4 79.2 53.7 76.5
Spatial VLA [38] 88.2 89.9 78.6 55.5 78.1
CoT-VLA [60] 87.5 91.6 87.6 69.0 81.1
DreamVLA 97.5 94.0 89.5 89.5 92.6

of teleoperated play data per environment, captured from multiple sensors including static and
gripper-mounted RGB-D cameras, tactile images, and proprioceptive readings. We report the success
rate of every track and the average length of 5 tasks. Additionally, evaluations are also conducted on
LIBERO [124], a simulated benchmark spanning four suites (LIBERO-Spatial/-Object/-Goal/-Long).
Each suite contains 10 tasks supported by 50 human-teleoperated demonstrations, targeting spatial
reasoning, object-centric manipulation, and goal completion.

Results. As shown in Table 1, DreamVLA achieves the highest performance on ABC-D tasks,
Our method surpasses Roboflamingo [32], 3D Diffusor Actor [95], OpenVLA [1], RoboDual [121],
UNIVLA [122], Robovim [39] and GR1 [16], which directly projects the RGB/depth image to action
signals as shown in Figure 1(a) in the manuscripts. Compared to methods that use a copilot model
to generate sub-goal images as input, like Susie [120] and CLOVER [123] as shown in Figure 1(b)
in manuscripts, our model significantly achieves more accurate control. DreamVLA outperforms
approaches like UP-VLA [59], Seer [58], and VPP [51] as shown in Figure 1(c), which merge whole
sub-goal image foresight into one VLA to take benefits from a more integrated design and joint
optimization. indicating that our method has better multi-task learning and generalization capabilities
in simulation tasks. For the LIBERO benchmark [124], Dream VLA exhibits better or comparable
ability across all tracks compared to previous approaches by future world knowledge prediction as
shown in Table 2.

4.3 Real World Experiments

To evaluate the effectiveness of our method in the
real-world, we use the Franka Panda arm to conduct
real-world experiments on gripper grasping. In our
setups, two RealSense D415 cameras capture RGB
images. One is in a third-person view, and the other
is at the end of the robotic arm, as shown in Fig-
ure 5. We collect four categories of objects for two
tasks: pick and place. Additionally, we conduct ex-
periments on drawer opening and closing tasks, as
shown in the supplementary. Follow [58], we pretrain
DreamVLA on the DROID [84] contains large-scale
trajectories of Franka robots in varied scenes. For
fair comparison, we fine-tune Diffusion Policy [92],
Octo-Base [15], OpenVLA [1] and DreamVLA on
collected demonstration datasets containing 100 tra-
jectories for each task.

. . . Figure 5: Real-world experiment setup.
In the experimental setup, each trial permits a max-

imum of 20 consecutive attempts. For the grasping experiments, objects are randomly positioned
on the table surface. A trial is deemed successful if the robotic arm successfully grasps the target
object within the predefined attempt limit. In the placement experiments, the robot is required to
transfer the grasped object into a designated basket. Success is recorded only if both the grasping
and placement operations are completed within the allowed attempts. For the drawer manipulation
tasks, the drawer is placed randomly in front of the robotic arm. The experiment is considered
successful if the drawer displacement exceeds 10 centimeters, indicating effective interaction. The
results, presented in Table 3, demonstrate that our method performs better than other methods. More
real-world experiment visualizations are shown in the supplementary section.



Table 3: Real-world evaluation with the Franka Robot across three tasks.

| Pick | Place | Drawer | Task (All)
| Bottle Doll Avg. | Banana Chili Avg. | Open Close Avg. | Avg.
Diffusion Policy [92] | 50.0 70.0 60.0 65.0 450 550 | 15.0 60.0 375 50.8

Method

Octo-Base [15] 500 600 550 40.0 500 45.0 | 200 500 350 45.0
OpenVLA [1] 50.0 40.0 45.0 20.0 300 250 | 400 300 350 35.0
DreamVLA 85.0 80.0 825 80.0 80.0 80.0 | 70.0 65.0 67.5 76.7

Table 4: Performance comparison between predicting the optical flow and the dynamic region.
Notably, the * denotes that this result is from [58].

‘ Task completed in a row

Method
| 1 2 3 4 5 | Avg. Len. t
Vanilla VLA* 93.0 82.4 72.3 62.6 533 3.64
+ dynamic region 97.6 92.6 87.5 80.4 73.7 4.32
+ depth 98.3 94.3 88.5 82.0 772 4.40
+ semantics 98.2 94.6 89.5 834 78.1 4.44

4.4 Ablation Study

In this section, we design the experiments to investigate the following questions.
Q1: What is the contribution of each modal characteristic?

The core motivation of DreamVLA is to enable the model to predict comprehensive visual knowledge
of the future to enhance action reasoning. However, not all types of knowledge contribute equally
to subsequent execution. We consider four types of predictive knowledge: dynamic region, depth,
and semantic segmentation features derived from SAM and DINO. As shown in Figure 6, we first
train the model with each knowledge forecasting independently. The green dashed line denotes
the performance of the Vanilla VLA baseline, which uses no knowledge prediction. Among all,
predicting dynamic regions proves to be the most beneficial, because these masks explicitly flag
the pixels that are about to change and therefore align almost perfectly with the policy’s action
semantics. By contrast, supervising the network with depth map, DINO or SAM features alone not
only fails to help but often degrades performance. We analyze that this gap stems from how closely
each auxiliary target matches the downstream objective: dynamic-region labels supply gradients
that reinforce the action head, whereas depth regression and high-dimensional feature matching
(DINO/SAM) inject large, noisy losses that dominate optimization. With the limited model attention
budget, these competing gradients dilute the task-relevant features and push the backbone toward
suboptimal optima, producing the observed drop below the dashed baseline.

Next, we train the model with all five knowledge heads simultaneously (All) and perform an ablation
study (All-X), where we remove one knowledge signal at a time to evaluate its contribution. Removing
F leads to the most significant performance drop, confirming its essential role. Interestingly, removing
DINO results in similar or even better performance, suggesting that not all semantic signals are
equally helpful or stable in predicting outcomes, so we only use semantic features from SAM in the
subsequent ablations. Table 4 reveals a clear and decreasing return pattern in all ablations.

Q2: Auxiliary Tasks vs. Future Knowledge Prediction: which drives improvement?

Table 5 contrasts two training regimes: predicting complete world knowledge and performing
auxiliary reconstructions, showing that the former is decisively superior. In our ablation, every
prediction strategy is individually replaced by its reconstruction counterpart, yet each substitution
consistently lowers performance: VLA trained only to redraw the current RGB, depth, semantics, or
DINOV?2 features can handle the first few actions but soon loses coherence, whereas a network trained
to forecast the next dynamic region, depth map, and semantics preserves accuracy throughout the
trajectory and carries tasks much farther before failure. The reason is that prediction provides a richer,
action-oriented signal, directing learning toward the pixels that will drive the upcoming decision,
while reconstruction merely revisits background detail that the control policy never actually needs.

Q3: Why do we use the optical flow as the mask instead of directly forecasting it?

To justify our choice of employing motion-centric dynamic regions over direct flow forecasting,
we implement both variants under identical settings (Table 6). In the optical flow setup, the model
must predict the full future flow field along with the subgoal image, which significantly increases
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Figure 6: CALVIN ABC-D performance with respect to different combinations of knowledge
prediction. All=all of five models, and All-X=taking X out of All.

Table 5: Performance comparison between co- Table 6: Performance comparison between pre-
training with auxiliary tasks and predicting the  dicting the optical flow and dynamic region.
comprehensive world knowledge.

Task completed in a row Task completed in a row

Method ‘ Method ‘

1 2 3 4 5 | Avg. Len. | 1 2 3 4 5 | Avg. Len.
Auxiliary | 97.7 923 856 795 742| 4.14 Optical | 97.6 924 868 817 754| 423
Prediction | 98.2 94.6 89.5 834 78.1 4.44 Dynamic| 98.2 94.6 89.5 834 78.1 4.44
Table 7: Performance comparison between Table 8: Performance comparison between
vanilla causal and our structured attention. shared and seprated queries.
Method ‘ Task completed in a row Method ‘ Task completed in a row
1 2 3 4 5 |AvgLen | 12 3 4 5 |AvgLen.
Causal | 942 865 784 713 627| 375 Shared | 955 90.1 83.8 769 704| 4.17
Structure | 98.2 94.6 89.5 834 781  4.44 Separated | 98.2 94.6 89.5 834 78.1| 4.44

the training complexity. This extra burden manifests in markedly lower multi-step success rates. By
contrast, our dynamic region approach merely employs the pretrained flow model to obtain a binary
mask, focusing the model on “where” relevant motion occurs, bringing a significant improvement.

Q4: The effectiveness of structured attention in DreamVLA.

To demonstrate the effectiveness of our proposed structure attention mechanism in Figure 4, we swap
it for a vanilla causal mask while keeping everything else fixed. In this setting, every <dream> query,
including the one meant to capture semantics, can also read the flow and depth tokens produced in the
same step; the extra cross-peek mixes unrelated signals, adds gradient noise, and quickly degrades
long-horizon control. Our mask removes all query-to-query edges, so <action> query consults only
past language, state and multimodal predictions, never their siblings. Table 7 shows the payoff: the
causal variant brings a marginal improvement for Vanilla VLA, whereas the block-sparse version
keeps success high throughout, confirming that blocking intra-step leakage is important.

QS5: Can we use the shared query to predict the comprehensive world knowledge?

Instead of assigning separate queries to dynamic region, depth, and semantics features, one might let
a single set of shared queries predict all signals. To test this idea, we split each world-embedding
vector into four equal sub-spaces, with each quarter intended to carry a different modality. Table 8
shows that the shared-query design hurts action performance: mixing modalities in the same query
introduces cross-talk, so the diffusion head receives noisy features. In contrast, giving each modality
its query keeps the representations disentangled and yields a clear performance gain.

5 Conclusion

We present Dream VLA, a novel Visual-Language-Action framework that enables inverse dynamics
modeling through comprehensive world knowledge prediction, supporting the perception-prediction-
action loop for manipulation tasks. DreamVLA leverages dynamic-region-guided knowledge fore-
casting, combining spatial and semantic cues to generate compact and informative representations
for action planning. We introduce a block-wise structured-attention mechanism, coupled with a
diffusion-transformer decoder, to suppress representation noise from cross-type knowledge leakage
and thus enable coherent multi-step action reasoning. Extensive experiments in both real and simu-
lated environments demonstrate the effectiveness of Dream VLA, achieving a 76.7% success rate on
real-world robot tasks and outperforming prior methods on the CALVIN ABC-D benchmark.
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as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: This work does not include theoretical results or proofs, similar to previous VLA studies.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details for reproducibility in Section 4.1, and the project
will be open-sourced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

¢ While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We attach the core script and data preparation to the supplemental material. The
complete code will be released in the camera-ready version, accompanied by detailed instructions for
reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
¢ Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide the training and test details in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: We set a fixed time seed to achieve controlled generation while ensuring the reproduction
of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in the supplementary.
Guidelines:

¢ The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

¢ The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts of this work in the supplementary material.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: To enhance safety, we suggest incorporating fail-safe mechanisms to halt actions under
uncertainty, and using semantic filters to block ambiguous or harmful commands. Human oversight
and deployment in controlled environments are also recommended to reduce potential misuse or
unintended behaviors.

Guidelines:

¢ The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We properly provide these information in Section 4.
Guidelines:

¢ The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: The assets introduced in the paper are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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Appendix

A Implementation Details

A.1 DreamVLA Architecture

Text Encoder. We use the CLIP ViT-B/32 text encoder [103] to process natural language task instructions.
The encoder transforms each instruction into a fixed-length embedding that captures semantic intent. These
embeddings are then projected into the shared latent space and used to condition the subsequent modules,
enabling effective grounding of language into perception and action.

Visual Encoder. We employ an MAE-pretrained ViT-B [106] as the vision encoder. At each timestep, images
are captured from two views: eye-on-hand and eye-on-base. Each image is processed by the vision encoder to
produce 196 latent vectors, which represent local patch information, along with a [CLS] token that encodes the
global representation of the image. Directly inputting all 197 tokens into the transformer backbone would create
a significant computational burden, particularly when processing long histories. Moreover, many image details
are redundant for accomplishing manipulation tasks. To address this, we utilize the Perceiver Resampler [125]
to condense the image representations and extract task-relevant features. The Perceiver Resampler employs
learnable latent vectors with a shape of (num latents, dim), where num latents is significantly smaller than the
number of image tokens. Through Perceiver Attention, these latent vectors condense the input image features,
along with the [CLS] token, to form the final image tokens.

Robot State. The robot state consists of the arm and gripper state. The arm state includes the end-effector
position and its rotation in Euler angles, resulting in a six-dimensional representation. The gripper state is
a binary value indicating whether the gripper is open or closed. We tokenize the robot state using an MLP.
Specifically, the gripper state is first converted into a one-hot encoding. The one-hot encoding of the gripper
state and the arm state are then each passed through separate linear layers. The outputs are concatenated and
passed through a final linear layer to produce the state token.

Learnable Queries. We introduce two sets of learnable query tokens, denoted as <dream> and <action>,
to extract and integrate information from multimodal inputs for joint prediction.

The <dream> queries provide structured supervision through comprehensive knowledge prediction tasks and
consist of 64 tokens in total, organized as 9 queries for each of the three modalities: dynamic motion, depth
estimation and semantic features. These queries guide the model in reconstructing rich visual representations,
enhancing the quality of the learned latent space.

The <action> query is dedicated to action sequence prediction. Their length is determined by the temporal
prediction horizon, as defined in the action chunking strategy from [74].

Large Language Model. We adopt GPT-2 Medium [107] as our language backbone. GPT-2 Medium is a
24-layer, 16-head Transformer decoder with a hidden size of 1,024 and a total of approximately 345 million
parameters. It was pretrained on the WebText corpus (~8 million documents, 40 GB of text) using autoregressive
language modeling to predict the next token with a byte-pair encoding vocabulary of 50,257 tokens.

Output Heads. To decode the world embedding into comprehensive world knowledge, we incorporate
multiple task-specific output heads that predict dynamic motion regions, depth maps, and high-level semantics,
including DINOV2 [71] and SAM-style segmentation features [72].

Each prediction head is implemented using a lightweight Vision Transformer (ViT) decoder, which operates on
two types of tokens produced by the multimodal backbone: the latent embeddings associated with a specific
modality and a set of learnable mask tokens used for reconstruction.

To retain spatial correspondence, we inject fixed sine—cosine positional encodings into the token embeddings.
These tokens are then processed through several Transformer encoder layers, followed by a modality-specific
linear projection head that maps each patch token to its output space, such as per-pixel depth values or semantic
logits—thereby reconstructing the expected visual signals of future observations. Concrete details of each
module are shown in Table 9.

Action Prediction with Diffusion Transformer To generate future actions conditioned on latent action
embeddigns, we adopt a diffusion-based Transformer architecture, DiT-B [117], as our action decoder. DiT
enables flexible modeling of complex action distributions by progressively denoising a sequence of latent action
tokens through a series of Transformer layers, allowing the model to capture multimodal uncertainty in robot
control.
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Table 9: The parameters of the each module in DreamVLA.

Hidden size Number of layers Number of heads
image encoder 768 12 12
perceiver resampler 768 3 8
LLM 1024 24 16
image decoder 1024 2 16
depth decoder 1024 2 16
semantic decoder 1024 2 16

We configure the DiT model with the base variant (DiT-B), using an action token embedding size equal to
the hidden dimension of the fusion Transformer. The model predicts K future actions, where each action is a
7-dimensional vector that encodes the displacement of the pose and gripper state of the end effector. In our
experiments, we set K = 2, corresponding to a 3-frame prediction window (current + 2 future steps). The model
does not utilize past action context during generation (i.e., past window size is 0), focusing solely on predictive
synthesis.

During training, Gaussian noise is added to the future action trajectories, and the model learns to reverse this
corruption process step by step. This module operates on top of the aggregated representation via <action>
query, enabling temporally coherent and semantically grounded action generation. The concrete detail of DiT is
shown in Table 10.

Table 10: Configuration of the DiT-B model used for action prediction.

Parameter Value

Model type DiT-B

Token size 1024

Action prediction window 2 future steps (3-frame chunk)
Past context steps 0

Number of Transformer layers 12

Number of attention heads 12

Positional encoding Learned (1D for time)
Diffusion timesteps (Train) 8

Diffusion timesteps (Inference) 10

Noise schedule Linear

Loss function Denoising Score Matching (L2 loss)
Precision float32

A.2 Feature Extraction

To facilitate dynamic region prediction, we adopt a motion-based heuristic to generate coarse binary masks that
highlight regions of interest. Given a sequence of consecutive RGB frames of resolution H x W, we uniformly
sample one keypoint every 8 pixels in both spatial dimensions, resulting in N = | H/8] x |W/8] sampled
locations per frame. For each sampled location, we compute inter-frame displacements (Ax, Ay) by tracking
its position across adjacent frames using CoTracker [69]. The magnitude of displacement is converted into a
scalar speed value:

sij = V/(Azij)? + (Ayi;)?,

where (i, 7) denotes the spatial coordinates of each sampled patch. We then apply a speed threshold 7 (e.g., 7 = 1
pixel/frame) to obtain a binary motion mask. To account for small motions and ensure spatial connectivity, we
perform a single-pixel morphological dilation, expanding each positive location to its eight-connected neighbors.

The resulting mask is flattened and reshaped into the form (B, 1, L), where L = |H/8] - |IW/8] and B is
the batch size. We apply this binary mask element-wise to both predicted patch embeddings {p;} and their
corresponding ground-truth embeddings {p; } during loss computation, encouraging accurate representation in
dynamic regions.
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For depth supervision, we use the ground-truth depth maps provided by datasets when available. In cases where
depth annotations are not provided—such as in certain real-world robot datasets—we use monocular depth
estimators, specifically Depth-Anything v2 [66], to generate pseudo-ground-truth depth labels.

In addition to depth and dynamic signals, we include high-level feature supervision. For DINOv2 [71], we
extract features from the final transformer layer, capturing global semantic and structural representations. For
SAM [72], we utilize the output of its image encoder as dense segmentation-aware features. These diverse
modalities collectively provide comprehensive supervision signals to improve the quality and generalizability of
our learned visual representations.

A.3 Training Detail

The total loss can be formulated as:
L= Adyrpcdyn + )\deplh»cdeplh + )\sem»csem + )\DiT»CDiT (10)
where )\dyn = 0.1, )\depth = 0.001, )\Sem = 0.1, )\DiT =1.

We train DreamVLA on 8 NVIDIA A800 GPUs. The main bottleneck is the memory bandwidth to load large
spatial feature tensors, for example, of 256x64x64 for SAM. We pre-compute the features from off-the-shelf
models instead of conducting inference on the fly. This approach requires extra storage space to save all the
features extracted from the above foundation models, but significantly saves on training time and avoids loading
models with high GPU memory usage during training. All training configurations are listed in Table 11.

Table 11: DreamVLA Training Configuration

Hyperparameters Value

# GPUs 8

Batch size 8 / GPU (64 effective)
Learning rate (LR) le-3

LR Schedule Constant

Weight decay 0.01

Optimizer AdamW

Betas [0.9, 0.999]

Epochs 20

Warm-up epochs 1

Warm-up LR schedule Linear (le-2 * LR)

B Experiments

B.1 Simulation Benchmark and Settings

We evaluate DreamVLA on the CALVIN benchmark [119], a simulated robotic manipulation suite designed for
studying long-horizon, language-conditioned tasks. CALVIN aims to facilitate the development of agents that
operate solely based on onboard sensor inputs and free-form human instructions, without access to privileged
information or external supervision. The tasks in CALVIN require agents to execute long sequences of low-level
control commands in response to complex language goals, reflecting realistic robotic interaction scenarios.

The benchmark includes four structurally similar but visually distinct environments, referred to as Env A, B, C,
and D. Each environment features a Franka Emika Panda arm with a parallel gripper and a tabletop workspace
containing manipulable elements such as a sliding door, a drawer, and a light button. The textures, object
placements, and scene layouts vary across environments to encourage generalization and robustness.

Observations consist of RGB images from both fixed and gripper-mounted cameras (resized to 224x224), as
well as low-dimensional robot state inputs that include the end-effector’s position, orientation, and gripper status.
The agent outputs a 7-dimensional continuous action vector: 6 dimensions control the spatial displacement of
the gripper, and the final dimension governs the open/close state of the gripper.

The dataset contains approximately 2.4 million interaction steps and 40 million short-horizon action windows.
Environments A, B, and C provide language-free demonstrations for large-scale pretraining, while annotated
instructions are available in a subset of the data for downstream policy learning. We hold out Env D for evaluation
to assess zero-shot generalization to unseen combinations of instructions and environment variations.

Following standard protocol [119, 58], we evaluate performance on a set of 34 diverse tasks that include object
pushing, placing, rotating, and other dexterous operations. In contrast to prior work, DreamVLA not only predicts
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actions conditioned on visual-language observations but also simultaneously learns to infer comprehensive
future world knowledge, including depth maps, dynamic saliency regions, DINOv?2 features, and SAM-based
segmentation maps. This multi-task supervision enables richer scene understanding and improves policy
generalization. We report success rate (SR) as our primary evaluation metric, measuring whether the instructed
task was completed correctly based on the final state of the environment.

B.2 Simulation Results

We evaluate our approach on the CALVIN ABC-D benchmark, where training is conducted on environments A,
B, and C, and testing is performed exclusively in Environment D. This evaluation setting poses a strong challenge
for generalization, as Environment D features novel textures, object arrangements, and visual configurations not
seen during training. As reported in Table 1 in the main manuscript, DreamVLA achieves superior performance
across all tasks, substantially outperforming previous state-of-the-art methods.

In particular, our model significantly outperforms two-stage inverse dynamics approaches such as Susie [120],
demonstrating the effectiveness of our end-to-end architecture that unifies multimodal prediction and action
generation. Compared to CLOVER [123], UP-VLA [59], Seer [58], which also incorporates visual foresight,
DreamVLA benefits from a more integrated design and joint optimization, resulting in consistently stronger
execution accuracy. Furthermore, our method surpasses video generation-based pretraining approaches like
GR-1 [16], highlighting the advantage of coupling vision prediction with action planning in a single framework.

Notably, DreamVLA, achieves an average episode length of 4.44 on the ABC-D split, establishing a new
state-of-the-art on the CALVIN benchmark and validating the benefits of predicting future knowledge. The
qualitative results as shown in Figure 7.

B.3 Visualization

As shown in Figure 8 and Figure 9, we visualize the model’s predictions of dynamic regions and depth maps.
Although supervision is applied only to dynamic regions, DreamVLA is able to reconstruct semantically
meaningful representations of the entire scene. This surprising generalization ability can be attributed to two
factors. First, in long-horizon manipulation sequences, the robot arm is in constant motion and frequently
interacts with various objects, causing most task-relevant regions to become dynamic at some point in time. This
ensures that a large portion of the scene is eventually observed under dynamic supervision. Second, although
static regions are not explicitly supervised, the input frames inherently contain global visual context—including
background structures, object appearances, and spatial layout—which the model can leverage to hallucinate and
complete missing details. As a result, DreamVLA implicitly learns to integrate temporal dynamics with static
priors, leading to coherent and accurate predictions beyond the explicitly labeled regions.

Although the predicted depth maps are relatively coarse due to the patch-level reconstruction inherent in MAE-
style decoders [106], they still provide valuable guidance for downstream tasks. In particular, the model benefits
from anticipating future depth, which helps refine action decisions and improves spatial awareness.

B.4 Additional Ablation Study

Q6: Effect of the query count per modality inside <dream> queries.

Each <dream> query contains three Table 12: Performance comparison between different num-
groups of elements: dynamic, depth, and  perg of <dream> queries.

semantics, each assigned K queries. We
vary K € {4, 9, 16} to examine its influ-

Number | Task completed in a row

ence. When K = 4, the limited capacity 1 2 3 1 5 | Ave Len.
prevents theT model from encoding ﬁpe— 7 972 926 sd 507 751 e
grained motion, geometry, and semantics, 9 982 946 895 834 781 444
so accuracy drops even though memory us- 16 981 930 869 810 739 4.33

age is lowest. With K = 9, each modality

has sufficient bandwidth without overload-

ing the backbone, yielding the best success rate and the longest uninterrupted task execution. Increasing to
K = 16 introduces redundant tokens that compete for attention and raise GPU memory, bringing no extra gain
and slightly lower generalization.

B.5 Real-world Settings
In our real-world training setup, we use a history length of 7, with the model jointly predicting the next 3 future

visual representations and action steps. The visual backbone is initialized with a ViT-B model pre-trained using
MAE [106], and inference is accelerated using bfloat16 mixed-precision without any observed degradation in
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Figure 7: Qualitative results of the CALVIN long horizon task.

task performance. This configuration strikes a balance between computational efficiency and policy stability in
manipulation tasks.

For pretraining, we leverage a large-scale dataset such as DROID [84], which contains approximately 76,000
successful robot trajectories collected in diverse settings. For downstream adaptation, we fine-tune the model
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Figure 8: Visualization results of the dynamic region predictions.

using 100 task-specific demonstrations for each task collected with SoFar [24]. As shown in Figure 10, we
present the qualitative results of real-world experiments.

B.6 Inference latency

model part inference time

image, text and state encoders 12 ms
observation forward pass w/dream query 19 ms
w/o dream query 16 ms

action forward pass (10 step) 60 ms

total 91 ms
w/o dream query 88 ms

Table 13: Inference time of our model on a NVIDIA GeForce RTX 4090 GPU, we test 5 times and
take average time.

Table 13 reports end-to-end latency for processing two camera images on an NVIDIA GeForce RTX 4090. At
inference time, no explicit image decoding is required, and the system runs at 11 Hz. The results show: (i)
Aucxiliary cues incur minimal overhead. Our “dream queries” are token-level predictions (no explicit image
decoding and no external models). The incremental cost is 3 ms (3.4%), i.e., 91 ms vs. 88 ms without dream
queries. (ii) Latency is dominated by the action head rather than the auxiliary cues. A 10-step action head
contributes about 60 ms. This cost scales with the number of sampling steps and model size; it can be reduced
by using fewer steps, a smaller DiT variant, faster samplers. (iii) For latency-critical applications, we can prune
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Figure 9: Visualization results of the depth maps.

dream queries (e.g., keep only dynamic regions, or dynamic+depth) and/or increase action chunking or run the
action head asynchronously to amortize computation, without changing the observation pathway.

C Additional Related Works

C.1 Language-Grounded Robot Manipulation

Language-grounded robot Manipulation adopts the human language as a general instruction interface. Existing
works can be categorized into two groups: i) End-to-end models like RT-series [2, 86, 87] built upon unified
cross-modal Transformers with tokenized actions [74, 126—128, 32, 129], large vision-language-action (VLA)
models built from VLMs [1], or 3D representations [130, 46, 131]. Training on robot data such as Open
X-Embodiment [14] and DROID [84], a remarkable process has been made. However, the data scale is still
limited compared to in-the-wild data for training VLMs. ii) Decoupled high-level reasoning and low-level
actions in large vision-language models and small off-the-shelf policy models, primitives [132—138, 24], or
articulated priors [139, 140].

D Limitation & Future Works

While DreamVLA demonstrates solid vision-language-action and achieves state-of-the-art performance on
CALVIN [119], its current scope is still narrow: it practises mainly parallel-gripper manipulation, relies on
RGB-centric data, and is trained on scenes with limited geometric and material diversity. We therefore plan
to (i) add dexterous-hand demonstrations with rich contact annotations [141, 142], (ii) introduce 3D point
clouds [143, 144, 104, 68, 145, 146, 67, 147] and spatial information [24, 148], tactile—and fuse them into
volumetric world states, and (iii) extend data collection and on-policy fine-tuning to bolster generalization and
long-horizon robustness.
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Figure 10: Qualitative results of real world language-grounded manipulation.

E Additional Discussions and Future Work

i. Scaling Laws. A promising direction for future exploration involves investigating scaling behavior in
DreamVLA. In particular, we plan to study how increasing the capacity of key components—such as the
backbone visual encoder or the size of the language model—affects model performance. This includes replacing
the current text encoder with larger-scale language models (e.g., LLaMA-2 or GPT variants) to assess the impact
of richer linguistic understanding on multimodal reasoning and action generation.

ii. Integration with Additional Baselines. We also aim to evaluate DreamVLA in conjunction with more recent
and diverse baselines. For example, RoboVLMs [39] incorporate a wide range of vision-language backbones
and offer a unified framework for robotic policy learning. Combining DreamVLA with these baselines can help
standardize performance comparisons and reveal architectural synergies between pretrained vision-language
models and action-centric transformers.

iii. Contribution of Multi-View Observations. Our current framework leverages both fixed and egocentric
camera views. In future work, we plan to conduct a detailed ablation study to quantify the contribution of
each view modality to task performance. This analysis will provide insights into how multi-view information
improves spatial reasoning and robustness, especially in occluded or ambiguous scenarios.

iv. Extension to More Complex and Long-Horizon Tasks. While DreamVLA demonstrates strong perfor-
mance on the CALVIN benchmark, we are interested in extending the framework to more complex, long-horizon
tasks that involve extended temporal dependencies, delayed rewards, and multi-stage subgoals. This includes
evaluating on benchmarks that require sustained interaction, sequential tool use, or high-level planning. Ad-
dressing these challenges will require not only more powerful temporal modeling but also better integration of
memory, goal abstraction, and hierarchical reasoning mechanisms.
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v. Application to Robotic Navigation and Humanoid. Beyond tabletop manipulation, DreamVLA could be
adapted to robot navigation tasks in indoor or semi-structured environments. By learning to predict dynamic
regions, obstacles, and semantic scene components, the model could support instruction-driven navigation and
path planning under multimodal supervision, especially in settings where map-based planning is infeasible.

Furthermore, another compelling extension is applying DreamVLA to humanoid robots, which require reasoning
over whole-body motion, balance, and physically grounded interactions. The modularity of our framework
allows for integration with additional proprioceptive inputs and more complex action spaces. This line of work
would explore how multimodal predictive learning can scale to full-body motor control and human-like task
execution.

F Broader Impacts

DreamVLA proposes a new training paradigm for vision-language-action (VLA) modeling, going beyond
the conventional mapping from visual observations and language to actions. Instead of directly predicting
actions from high-dimensional input, our framework first encourages the model to predict comprehensive world
knowledge, including depth, dynamic motion, segmentation, and semantic features, before generating actions.
This intermediate representation improves action grounding and generalization.

A key strength of DreamVLA lies in its simplicity and efficiency: by adding only a lightweight decoder and a
set of learnable queries, we significantly enhance the performance of existing VLA backbones with minimal
parameter overhead. This makes the method both scalable and compatible with current VLM-based architectures,
paving the way for more robust and transferable policies.

Practically, this design can benefit the development of assistive robots’ navigation and humanoid robots, where
it is essential for agents to generalize across novel environments and language goals. Furthermore, since our
method leverages unlabeled perceptual signals during training, it reduces reliance on curated language-instruction
datasets, which are often expensive and domain-specific.

Overall, DreamVLA offers a practical, extensible, and training-efficient framework for improving VLA systems,
and we hope it inspires further research into multimodal abstraction and low-cost robot learning.
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