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Abstract

Logical reasoning is a critical component of Large Language Models (LLMs), and
substantial research efforts in recent years have aimed to enhance their deductive
reasoning abilities. However, existing deductive reasoning benchmarks, which are
crucial for evaluating and advancing LLMs, suffer from significant constraints that
restrict their utility, i.e., the lack of task complexity, the presence of prior knowledge
as a confounder, and superficial error analysis. To address these deficiencies, we
introduce JustLogic, a synthetically generated benchmark designed for rigorous
evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a
diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior
knowledge independent, eliminating the advantage of models possessing prior
knowledge and ensuring that only deductive reasoning is used to answer questions;
and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning
depth and argument form on model accuracy. Our experimental results on JustLogic
reveal that (i) state-of-the-art (SOTA) reasoning LLMs perform on par or better
than the human average but significantly worse than the human ceiling, and (ii)
SOTA non-reasoning models still underperform the human average. All code and
data are available at jhttps://github.com/michaelchen-lab/JustLogic

1 Introduction

Deductive reasoning is a crucial capability for large language models (LLMs). It refers to the process
of creating logically valid arguments, where conclusions necessarily follow from the premises.
In other words, if an argument’s premises are true, the conclusion must also be true. Recent
state-of-the-art (SOTA) LLMs [} [10; [15] have exhibited outstanding performance and consistent
improvement across various reasoning benchmarks, including HelloSwag [34]], ARC Challenge [6]]
and WinoGrande [22]. However, we argue that the existing benchmarks are insufficient and often
ineffective for evaluating LLMs’ true deductive reasoning capabilities.

We identify three major problems with the existing benchmarks. First, they lack complexity, as
measured on two dimensions: natural language complexity, i.e. how arguments are linguistically
expressed, and argument complexity, i.e. the structure of the argument itself. Manually curated
datasets, such as FOLIO [12] and LogiQA 2.0 [21} [19] exhibit high natural language complexity
but low argument complexity, while synthetic datasets like CLUTRR [24] and ProofWriter [26]]
exhibit the opposite. Simplicity in either dimension makes these benchmarks prone to overfitting
and memorization, thus allowing models to perform well despite underlying weaknesses in logical
reasoning. A more detailed analysis can be found in Section Second, existing benchmarks
often fail to test deductive reasoning in isolation, as models can benefit from prior knowledge.
To empirically validate this claim, we developed a novel test for prior knowledge independence,
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which measures the influence of prior knowledge on reasoning benchmarks. As detailed in Section
prior knowledge can substantially increase accuracy, even in datasets not intended to require
commonsense or domain knowledge, e.g. FOLIO and LogiQA 2.0. Thus, high accuracy may not
reflect strong reasoning capabilities. Third, many existing benchmarks provide superficial error
analysis, leaving key questions unanswered: At what reasoning depth does the model start to fail?
How does the model compare to humans at different argument depths? Which argument forms is the
model particularly weak at? These insights are essential for understanding the depth and robustness
of a model’s deductive reasoning, yet not many benchmarks provide them. Section [5.3]demonstrates
the importance and usefulness of comprehensive error analysis.

Paragraph:

* Itis a fact that either relics are artifacts or dogs are capable of barking. [p V q]
o If relics are artifacts, then fertilizers contain phosphorus. [p — 7]
» Assuming dogs are capable of barking, we know that fertilizers contain phosphorus. [¢ — 7]

Statement: Fertilizers contain phosphorus. [7]
Question: Is the statement true, false, or uncertain?
Answer: True

Figure 1: Example of a question adapted using JustLogic’s dataset construction algorithm. Note that
the statements are intentionally factually inaccurate, which we explain and justify in Section[3.2]
Formal notations are included for illustrative purposes and are not provided to models.

Due to these issues, LLMs’ deductive reasoning abilities remain ambiguous. In response to the
critical need for a reliable benchmark to support ongoing research efforts, we present JustLogic, a
novel natural language deductive reasoning benchmark. The task is to determine whether a given
statement is true, false, or uncertain, using only the given premises, which are assumed to be true. An
example is shown in Figure[T}

JustLogic’s construction ensures it is (i) complex, (ii) prior knowledge independent, and (iii) capable
of in-depth error analysis. First, to achieve high argument and natural language complexity, JustLogic
is code-generated rather than manually curated. This allows the generation of a theoretically infinite
number of unique argument structures. Natural language sentences are then drawn from GenericsKB-
Best [4], a database of 1M+ unique real-world sentences, and inserted into the argument structures,
introducing high natural language complexity. Second, since sentences are randomly sampled
from the entire GenericsKB-Best dataset, the generated arguments generally do not align with real-
world knowledge, thereby eliminating prior knowledge as a confounder. Finally, in-depth error
analysis is enabled by the programmatic generation process, which enables the inspection of each
question’s properties, such as reasoning depth and argument form, to investigate their impact on
model performance. A comparison between JustLogic and four similar logical reasoning benchmarks
(CLUTRR, ProofWriter, LogiQA 2.0, and FOLIO) is presented in Table E], with further details on
dataset construction provided in Section [3]

Using JustLogic, we conducted comprehensive experiments to evaluate the deductive reasoning
capabilities of current LLMs. First, our novel prior knowledge independence test demonstrated
that prior knowledge enables LL.Ms to bypass deductive reasoning on existing datasets, resulting
in artificially high accuracies. This is not observed in JustLogic. Second, we benchmarked the
performance of SOTA LLMs and human participants using JustLogic. Most SOTA LLMs performed
significantly lower than the average human accuracy (73.0%). Only DeepSeek R1 performed
substantially better (80.9%), but still fell short of the human ceiling (100.0%). Finally, enabled by
JustLogic’s code-generated nature, our thorough error analysis examined the heterogeneous impact
of argument structure and reasoning depth on model performance. These experiments show that
the JustLogic benchmark is a reliable test of deductive reasoning and reveals significant room for
improvement in LLMs.

In summary, our contributions are threefold. First, we evaluate the limitations of existing benchmarks.
Second, we introduce the JustLogic benchmark, a synthetic dataset to evaluate deductive reasoning,
that addresses the aforementioned limitations. Third, our experiments using JustLogic demonstrate
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Table 1: Comparison of JustLogic with other deductive reasoning datasets. The symbol ~ suggests
the feature is present but to a limited extent.

High NL High Arg.  Prior Knowledge In-Depth
Complexity Complexity Independence Error Analysis

CLUTRR X v v v
ProofWriter X v v ~
LogiQA 2.0 v X X ~
FOLIO v X X ~
JustLogic v v v v

that most SOTA models perform significantly worse than humans. We posit that the deductive
reasoning capabilities of LLMs still have significant room for improvement, and hope that the
JustLogic benchmark will assist researchers in designing and evaluating LLMs.

2 Related Work

2.1 Existing reasoning datasets for Large Language Models

Reasoning benchmarks are a vital part of LLM evaluation. Some benchmarks measure deductive
reasoning in conjunction with natural language inference (NLI), inductive reasoning, and common-
sense knowledge: HellaSwag [34]] tasks machines to select the most likely follow-up of an event
description, WinoGrande [22]] is a pronoun resolution task, and MuSR [235]] tasks machines to solve
fictional problems, such as murder mysteries. Other benchmarks measure reasoning on domain
knowledge: AI2 Reasoning Challenge (ARC) [31] contains grade-school science questions, while
Massive Multitask Language Understanding (MMLU) [[13]] contains questions across 57 subjects in
STEM, humanities, and more. Finally, math-specific benchmarks include GSM-8K [7] and DROP

[9].

The aforementioned benchmarks explicitly evaluate skills beyond reasoning and do not specifically
define the type of reasoning involved, e.g. inductive, deductive, and analogical. As such, benchmarks
that solely test for deductive reasoning have seen a considerable increase in interest. They can be
classified into two broad categories: synthetic and manually curated. Synthetically-generated datasets
include (i) CLUTRR [24], where a machine must infer the relationship of two family members
based on stories, (ii) ProofWriter [26], where a machine must deduce a statement’s truth value
based on a set of facts and rules, and (iii) ProntoQA-OOD [23]], where a machine must prove a
statement based on a set of facts. Manually curated datasets include (i) LogiQA 2.0 [19], containing
manually-translated logical reasoning questions from the Chinese Civil Service Exam, (ii) FOLIO
[12], containing questions with manually-annotated content using Wikipedia pages, and (iii) ReClor
[33], containing reading comprehension questions from GMAT and LSAT.

As discussed earlier, synthetic datasets are prior knowledge independent and exhibit high argument
and low natural language complexity; manually curated datasets are the opposite. JustLogic, being
synthetic, contains all its advantages while offering the natural language complexity of manually
curated datasets, which we further explained in Section @] and@

2.2 Reasoning in Large Language Models

As LLMs continue to increase in size, their performance on various reasoning-related benchmarks has
improved dramatically. For example, in 2024, Gemini Ultra [27] achieved 90.0% on MMLU when
the SOTA model in 2020, UnifiedQA 11B [17]], achieved a mere 48.9%. In 2023, GPT-4 achieved
96.4% on ARC when the SOTA model in 2020, GPT-3 [5]], achieved 53.2%.

The advent of prompting techniques played an important role in developing LLMs’ reasoning abilities.
In-context learning [8] provides LLMs with instructions and examples in the input prompt to guide
its response. Chain-of-thought prompting [29] prompts LLMs to generate a series of intermediate
reasoning steps before arriving at the final answer. Self-consistency decoding [28] chooses the most
consistent answer after sampling multiple chain-of-thought outputs. Least-to-most prompting [36]
decomposes a complex problem into simpler subproblems, which are then solved sequentially.
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Step 1 Step 2

Generate a random argument structure Add random natural language sentences to the argument structure
a— —b a )
If whales are big, then Whales are big
Modus Ponens Porsche cars are not pink. :
bve ‘ Modus Ponens ‘
Disjunctive Syllogism
Porsche cars Either Porsche cars are
are not pink. pink or Japan is in Asia.
Step 3
Generate a random query statement and its truth value Disjunctive Syllogism
Statement: It is not true that Japan is in Asia. a  Whales are big.
Logical Form: —c b Porsche cars are pink.
is in Asi Japan is in Asia.
Answer: C Japanis in Asia.

Figure 2: A step-by-step example of how an instance with a reasoning depth of 2 is constructed.

As mentioned above, LLMs are conventionally tested on datasets that combine reasoning with other
skills. Moreover, existing logical reasoning-specific datasets possess major limitations that call into
question the reliability of their evaluations. In response, JustLogic aims to robustly and accurately
evaluate the deductive reasoning abilities of LLMs.

3 Dataset Construction

JustLogic is a programmatically generated dataset designed to evaluate a model’s ability of deductive
reasoning, specifically its capability to form logically valid arguments. A logically valid argument is
one where the conclusion necessarily follows from the premise(s); in other words, given the premises
are true, the conclusion must also be true.

In order to test this, JustLogic presents a model with a paragraph consisting of premises, followed
by a query statement. Based solely on the premises and assuming they are all true, the model needs
to determine whether the query statement is true, false, or uncertain. In line with the open-world
assumption, the “Uncertain" answer refers to cases where the premises neither support nor contradict
the query statement.

The following outlines the process for generating each instance in the dataset, which is exemplified
by Figure 2]

1. Step 1: Generate an argument structure.
2. Step 2: Add natural language statements to the argument structure.
3. Step 3: Generate a query statement.

3.1 Step 1: Generate argument structure

Argument structures are composed of one or more valid argument forms, derived from propositional
logic; argument forms are made up of a series of logical forms, which we define as symbolic
representations of statements. Specifically, the seven distinct argument forms in our dataset are
constructed with the following four logical forms: (i) basic (z), (ii) negation (—x), (iii) conditional
(x — y), and (iv) disjunction (z V y). While there is a theoretically infinite number of possible
argument forms, complex argument forms can be derived by combining simpler ones. Therefore, we
explicitly define the seven most fundamental forms [[16]: modus ponens, modus tollens, hypothetical
syllogism, disjunctive syllogism, reductio ad absurdum, constructive dilemma, and disjunctive
elimination. Table[6]in Appendix [A]provides the corresponding formal notations and natural language
examples.

The algorithm to create an argument structure (formally shown in Appendix |B)) accepts an intended
argument depth as input. It first generates a random conclusion and an argument form to support it,
which in Figure 2]is ¢ and disjunctive syllogism. If the intended depth has not been reached, one
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Table 2: Expressions of logical forms.

Formal Notation ~Sample Expression No. of Expr.
Basic x The claim that = holds true. 16
Negation -z The claim that x does not reflect reality. 15
Conditional x —y Once we know that z, we also know that y. 11
Disjunction zVy It is a fact that either x or y. 8

or more premises will become subconclusions, which are supported by new, randomly generated
argument forms. In Figure [2] this is exemplified by —b becoming a subconclusion, supported by a
modus ponens argument. This process continues until the desired depth is achieved.

3.2 Step 2: Adding natural language

Next, the symbolic statements are converted into natural language. Each statement consists of one
or more logical forms, i.e. variable, negation, conditional, and disjunction. In natural language,
these forms can be expressed in a variety of ways. For example, a conditional can be expressed as
both “If z, then y." and “Given that z, y is true.", where variables x and y are simple propositions.
To emulate the diversity of natural language, a list of expressions for each logical form is created
using human feedback, and potentially aided by LLMs. Table [2|shows the formal notation of each
form, alongside a sample expression and the total number of unique expressions. The variable(s)
within each expression are ultimately replaced by randomly selected generic, real-world sentences
from GenericsKB-Best [4]. The GenericsKB-Best dataset is chosen for its vast collection of simple
propositions (1,020,868 sentences) without conditionals, disjunctions, etc. A complete example can
be found in Step 2 of Figure 2]

Notably, as shown in Figure 2, the statements are generally factually inaccurate despite being drawn
from real-world data. This is intentional. Real-world propositions allow us to generate sentences with
diverse grammatical structures that closely emulate human-written arguments. However, factually ac-
curate arguments enable models to bypass deductive reasoning with their prior real-world knowledge,
which is experimentally demonstrated in Section[5.1} By using real-world yet factually inaccurate
statements, we combine realism and prior knowledge independence.

There are potential concerns that factually inaccurate statements and “unnatural” synthetic language
may confuse models and lead to artificially low performance. Appendix [F2]and [F:3]empirically refute
these concerns.

3.3 Step 3: Generate query statement

The LLM’s task is to determine whether the given query statement is true, false, or uncertain based
on the premises provided. Using Figure [2| as an example, if we assign the query statement to be
the negation of the conclusion, i.e. “It is not true that Japan is in Asia", then the answer is false. If
the query statement is the same as the conclusion, then the answer is true. If the query statement is
unrelated to the premises, then the answer is uncertain.

3.4 Dataset Complexity

In the context of deductive reasoning datasets, complexity is defined as the variety and comprehen-
siveness of instances. It can be further divided into two dimensions: natural language complexity and
argument complexity. In this section, we highlight the significance of both aspects and how JustLogic
compares against other logical reasoning datasets.

Natural language complexity. Human language is complex. Statements and arguments of similar
meanings can be presented in a variety of ways. Therefore, it is insufficient for models to reason
solely with symbols, e.g. = and y, and basic natural language sentences, e.g. “Some birds are yellow.”;
they must be capable of reasoning with real-world vocabulary and diverse sentence structures to be
useful in practical contexts.

We measure natural language complexity with (i) reading difficulty, as measured by the Flesch-
Kincaid Grade Level test [[18]], and (ii) lexical diversity, as measured by vocabulary & domain size.
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Table 3: Statistics of dataset complexity.

Natural Language Argument
Reading Difficulty T Vocab. (Domains) | Reasoning Depth ~ Arg. Structures
CLUTRR 6.67 1396 (1) 1-00 00
ProofWriter 0.96 101 (x) 1-o00 00
LogiQA 2.0 17.10 10004 (>10) X X
FOLIO 18.75 4351 (>10) 1-7 76
JustLogic 20.55 10557 (>10) 1-00 00

For (i), the score is presented as a U.S. grade level; the higher the score, the harder the text is to read.
Scores greater than 12 should be used to compare the relative difficulty between benchmarks, with
higher scores indicating relatively greater textual complexity. A domain is defined as any topic of
interest, such as golf, computers, or traveling; Vocabulary size refers to the number of unique words
in the dataset. Given the difficulty of quantitatively capturing linguistic complexity, Appendix [C| also
shows text samples of each benchmark, representative of their complexity.

As shown in Table[3] existing synthetic datasets have low natural language complexity, while human-
written datasets, such as FOLIO and LogiQA 2.0, exhibit significantly higher complexity. This is
expected since synthetic datasets translate symbols in formal logic into natural language using limited
templates of sentence structures and vocabulary lists. For example, in ProofWriter, a typical sentence
follows the format “All dogs are (not) red.". The linguistic patterns of human-written datasets, in
contrast, are bound only by human creativity. Despite being synthetic, JustLogic, achieves natural
language complexity on par with manually curated datasets, due to its comprehensive selection of
expressions and the use of GenericsKB-Best as the source of sentences.

Argument complexity. Argument complexity refers to the diversity of argument structures used
in the dataset. A sufficiently high argument complexity is important because humans use a range
of argument forms to reason, beyond just conditionals and modus ponens. Moreover, a real-world
argument is typically composed of multiple argument forms, due to their inherent complexity.

A dataset’s argument complexity is evaluated based on two metrics: (i) range of reasoning depth, and
(ii) number of unique argument structures. The upper limit of both metrics is calculated based on
the theoretical maximum without any additional human input, rather than the highest depth used in
experiments in existing works. For example, CLUTRR’s dataset construction program can generate
any number of depths (referred to as relation length in the original paper), despite its experiments
only utilizing questions of up to a depth of 10. Thus, its upper limit of depth is infinite.

TableE] shows that synthetic datasets, such as CLUTRR, ProofWriter, and JustLogic, excel in this
area, as there is no upper limit to their reasoning depth and number of argument structures. Manually
curated datasets, in contrast, either lack an explicit concept of reasoning depth and argument structures
(e.g. LogiQA 2.0), or have a limited selection of both (e.g. FOLIO). While manual datasets require
significant human efforts and investment to expand their complexity, synthetic ones can scale trivially.

In summary, JustLogic combines the best of both dataset construction methods: the argument
complexity of synthetic datasets and the natural language complexity of manually curated ones.

3.5 Future-proofing JustLogic

As the reasoning abilities of LLMs continue to improve, we expect LLMs to solve the existing
JustLogic dataset eventually. To maintain JustLogic’s relevance, we leverage its synthetic nature to
increase complexity with minimal human input. Argument complexity can be adjusted by increasing
the (i) range of argument depth (empirically validated in Appendix and (ii) number of distinct
argument forms to >7. Natural language complexity can be adjusted by (i) increasing the number
of expressions for each logical form and (ii) integrating more complex knowledge bases than
GenericsKB. Importantly, these changes are programmatically achievable with minimal man-hours.

Importantly, JustLogic can also effectively tackle benchmark leakage [30]], whereby test sets are
unintentionally included in LLMs’ pertaining data, thus artificially inflating their performance through
memorization. Should JustLogic’s test set be leaked, a new test set of similar difficulty can be trivially
generated, thereby mitigating this problem.
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4 Experimental Setup

We first investigate the influence of prior knowledge on evaluating deductive reasoning with JustLogic
and other existing benchmarks using our prior knowledge independence test. Next, several SOTA
LLMs of various sizes are evaluated using JustLogic. Finally, an in-depth error analysis of the LLMs’
results is conducted.

JustLogic contains 7000 instances, equally split amongst reasoning depths ranging from 1 to 7. The
test set (15% of all instances) is used for evaluation. Note that the number of instances and range of
reasoning depths can be easily adjusted using JustLogic’s open-source dataset generation program.

4.1 Prior Knowledge Independence Test

The task for deductive reasoning benchmarks is typically framed as CQO — A: Given a context
C, consisting of n premises (P = {pi,p2, ..., pn}), a question Q, and m answer options (O =
{01, 02, ..., 0, }), determine the correct answer A. To assess the influence of prior knowledge on
determining answer A, the prior knowledge independence test is framed as QO — A. No context
C is provided, and the prompt instructs the LLM to answer the question based on prior knowledge
alone. An example is provided in Appendix [D]

If prior knowledge is not useful, the LLM should be unable to answer question () without C', and
the accuracy for the prior knowledge independence test should approximate random probability %
Benchmarks exhibiting such accuracies are deemed prior knowledge independent.

While any LLM will be suitable, we use GPT-4 for its extensive prior knowledge. Similar results are
replicated using Llama3-70B in Appendix [F.I] The test is conducted on JustLogic and other logical
reasoning benchmarks, i.e. CLUTRR, ProofWriter, LogiQA 2.0, and FOLIO.

4.2 Evaluation of LLMs’ Deductive Reasoning

Our task, as illustrated in Figure El, follows the conventional formulation: CQO — A. Ques-
tion @ is “Is the statement S true, false, or uncertain?"; there are 3 answer options, where
O = {true, false, uncertain}. Prompts begin with a preamble, providing (i) the task instructions, (ii)
a list of argument forms in propositional logic, and (iii) the available answer options.

We evaluated both reasoning and non-reasoning models of different sizes: Llama3-8B-Instruct [10],
Llama3-70B-Instruct, GPT-40-mini-2024-07-18, GPT-40-2024-05-13, DeepSeek R1 Distill Qwen
14B, DeepSeek R1 [[11], OpenAl 01-mini-2024-07-18, and OpenAl 01-2024-12-17 [[14]. A range
of prompting techniques are tested: zero-shot, few-shot, and chain-of-thought (CoT) [29]; more
techniques are tested in Appendix [H.T] Due to limited model access, 70 random samples are used for
OpenAl ol and 350 for the other reasoning models. To ensure fairness, the selected subset has the
same proportion of each reasoning depth as the entire test set. Further implementation details are
provided in Appendix [E| Human performance is also measured; the experiment settings are detailed
in Appendix [G]

Finally, we perform an error analysis of the results from the aforementioned experiments, specifically
examining the heterogeneous effects of argument form and reasoning depth on model accuracy.
Accuracy for each argument form is only measured using questions with a reasoning depth of 1 since
those with a depth of >1 typically have >1 argument forms. Lastly, a qualitative analysis of failure
modes is conducted.

5 Results

5.1 Prior Knowledge Independence Test

The results of JustLogic and four other benchmarks are shown in Table i} note that lower accuracy
relative to the benchmark’s random probability indicates that prior knowledge is more detrimental
to answering the question, thereby demonstrating that the benchmark is more prior knowledge
independent. Thus, the smaller the |A| between model accuracy and random probability, the better.
The |A|s of CLUTRR and ProofWriter are relatively low, while those of LogiQA 2.0 and FOLIO are
nontrivially higher. This is because the former are synthetic datasets, while the latter are manually
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curated. When a question is code-generated, it generally bears no correlation with reality, e.g. “Is it
true, false, or uncertain that Gary is not red." from ProofWriter. Such questions are only answerable
by reasoning over the context C'. LogiQA 2.0 and FOLIO, on the other hand, often contain questions
that are answerable purely using background knowledge, such as “Did the United States won the
most medals in the last summer Olympic games?" from FOLIO. We posit that this is an unintentional
consequence of the human bias to align the question’s truth value with reality. While human curation
enhances the question’s realism, it compromises the test for deductive reasoning.

Table 4: Results of Prior Knowledge Independence Test. The lower the |A|, the better.
Al l  Accuracy (%) Random (%)

CLUTRR 2.0 8.3 6.3
ProofWriter 3.7 37.0 33.3
LogiQA 2.0 27.1 52.1 25.0
FOLIO 6.7 40.0 33.3
JustLogic 04 33.7 333

The JustLogic benchmark’s |A| is 0.4%, given an accuracy of (33.7%) and random probability
(33.3%), which is much lower than other benchmarks, including synthetic ones. The reason for this
is twofold: first, JustLogic is also a synthetic dataset, which eliminates the human bias present in
manually curated datasets. Second, while JustLogic uses real-world statements, their truth value is
nonetheless randomly determined. For example, the statement “doors are solids" is factually true.
However, by deducing from the paragraph, the correct answer is “False". Thus, using prior knowledge
for many questions is not only unhelpful but also meaningfully decreases accuracy.

5.2 Evaluation of LLMs’ Deductive Reasoning

As shown in Table[9] the best-performing model by a large margin is DeepSeek R1 with an accuracy
of 80.9%. Surprisingly, OpenAl ol (72.9%) performs substantially worse than DeepSeek R1; we
provide deeper analysis on this in Appendix [H.2] Several general observations can be made from
these results: first, while models with larger parameter sizes generally perform better, they offer
diminishing returns, shown by the accuracy gain of just 1.0% from Llama3-70B to GPT-40, with both
using CoT prompting. Second, the improvements offered by increasing model size pale in comparison
to those offered by better prompting methods. Using CoT, Llama3-8B achieved higher performance
(57.8%) than zero-shot Llama3-70B (53.1%). Lastly, reasoning models generally perform better
given similar model sizes: the best reasoning model (DeepSeek R1) scored 15.3% higher than the
best non-reasoning one (GPT-40).

Table 5: Model and Human Evaluation Results.
0-shot Few-shot CoT

Random Probability 333 333 333
Llama3-8B-Instruct 49.8 41.8 57.8
Llama3-70B-Instruct 53.1 57.8 64.6
GPT-40-mini 53.0 54.7 51.8
GPT-40 53.8 58.3 65.6
OpenAl ol-mini - - 62.0
OpenAl ol - - 72.9
Qwen 14B (R1 Distill) - - 61.7
DeepSeek R1 - - 80.9
Human Average 73.0 73.0 73.0
Human Ceiling 100.0 100.0 100.0

Human performance (73.0%) is higher than all models besides DeepSeek R1, while the human
ceiling (100.0%) outperforms all models. The non-trivial gap between the human ceiling and the best-
performing model (80.9%) shows that models still have significant room for improvement. Moreover,
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we believe actual human performance might be higher than 73.0%. Given the long paragraphs of
questions with high reasoning depth, participants may have predicted answers by briefly scanning the
paragraph, rather than carefully deducing based on all available premises. This is supported by the
suspiciously short time taken to complete the questions of some participants.

5.3 Error Analysis

Figure [3] illustrates the model accuracy by argument form (left) and by reasoning depth (right).
The statistics of the best models of their respective categories are chosen: (i) Llama3-8B (small,
non-reasoning model), (ii) Llama3-70B (large, non-reasoning model), (iii) OpenAl o1-mini (small,
reasoning model), and (iv) DeepSeek (large, reasoning model). To mitigate noise, especially for
models tested on smaller sample sizes, depths are grouped into low (1-3), medium (4-5), and high
(6-7) categories. The qualitative analysis of failure modes can be found in Appendix|[l]

Acc. over Argument Form (Depth=1) Accuracy over Depth
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Figure 3: How argument forrrﬂ and reasoning depth affects accuracy for various models.

While the relative accuracies of argument forms are heterogeneous across models, some forms
perform distinctly better than others. For example, hypothetical syllogism and constructive dilemma
achieve considerably higher performance than modus tollens, disjunctive syllogism, and reductio ad
absurdum. Interestingly, the former argument forms are more commonly used by humans than the
latter ones, which potentially hints at the cause of this observation.

As for reasoning depth, model accuracies generally decrease as depth increases, consistent with
expectations that accuracy declines as the complexity of questions increases. Interestingly, OpenAl
ol-mini performs comparably to DeepSeek R1 at low depths, but o1-mini sees a sharp decline in
performance once depth increases, while DeepSeek R1 only sees a moderate decline; DeepSeek
R1’s superior performance is a result of better reasoning at higher reasoning depths. In fact, at
medium and high depths, o1-mini no longer performs better than non-reasoning models, i.e. GPT-40
and Llama3-8B. These observations suggest that DeepSeek R1 supports deeper and longer lines
of reasoning, which is crucial for deductive reasoning, and that large reasoning models perform
drastically better than smaller ones on reasoning problems.

6 Conclusion

Deductive reasoning is one of the key challenges in LLM research. In response to the lack of
reliable benchmarks, we present JustLogic, a natural language deductive reasoning dataset that is (i)
highly complex, (ii) prior knowledge independent, and (iii) capable of in-depth error analysis. These
qualities are enabled by JustLogic’s dataset construction method: argument structures are synthetically
generated, and natural language is programmatically incorporated via expression templates and a
knowledge base. We empirically justify JustLogic’s merits: most LLMs underperform the human
average and all significantly underperform the human ceiling. We demonstrate that JustLogic is
a highly challenging, future-proof benchmark that is reliable and insightful for evaluating logical
reasoning in LLMs.

2MP = Modus Ponens, MT = Modus Tollens, HS = Hypothetical Syllogism, DS = Disjunctive Syllogism,
RAA = Reductio Ad Absurdum, CD = Constructive Dilemma, DE = Disjunction Elimination
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ss A Argument Forms

Table 6: An overview of the argument forms in the JustLogic dataset.

Formal Notation ~Example

pP—q If the sky is blue, then the dog is happy.
Modus Ponens D The sky is blue.

Faq Therefore, the dog is happy.

p—q If the sky is blue, then the dog is happy.
Modus Tollens —q The dog is not happy.

F-p Therefore, the sky is not blue.

p—q If the sky is blue, then the dog is happy.
Hypothetical Syllogism q — 7 If the dog is happy, the owner is happy.

Fp—r Therefore, the owner is happy.

pVq Either the dog is barking or the dog is asleep.
Disjunctive Syllogism -p The dog is not barking.

Faq Therefore, the dog is asleep.

pD—q If the dog is calm, the owner is around.
Reductio ad absurdum p— —q If the dog is calm, the owner is not around.

F-p Therefore, the dog is not calm.

pVgq Either the sky is blue or it is raining.

. . p—=T If the sky is blue, the race can start.

Constructive Dilemma oL .

q—s If it is raining, the race is delayed.

Frvs Therefore, either the race can start or it is delayed.

pVyq Either the sky is blue or it is raining.

.. . . p—=r If the sky is blue, the dog is cheerful.

Disjunction Elimination q—r Ifitis ra}i/ning, the dog isg cheerful.

Fr Therefore, the dog is cheerful.

0 B Algorithm for Step 1 of JustLogic’s Dataset Construction

Algorithm 1 Pseudocode for Step 1 (Generate argument structure) of JustLogic’s Dataset Construction
Process. It generates the argument structure using level-order construction until the desired number
of argument forms D is reached.

Require: D > Target number of argument forms
1: ¢ < SAMPLELOGICALFORM() > Sample a random final conclusion
2: ap + SAMPLEARGUMENTFORM(¢y) > Samples a random argument form for the final

conclusion
3. L+ [ao]
4: d<+1 > Tracks the no. of argument forms
5: whiled < D do
6: P < GETALLPREMISES(L) > Extract all premises of all a in £
7 k < SAMPLEUNIFORM(1, D — d) > Sample an integer from 1 to D — d
8: Py + SAMPLERANDOMSUBSET(P, k) > Select k premises to become subconclusions
9: L+ ]

10: for all ¢ € Py, do

11: a < SAMPLEARGUMENTFORM(¢)

12: Append a to L’

13: end for

14: L« L

15: d < d+ | Py
16: end while
17: return Argument structure rooted at ¢g
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Table 7: Sample texts from various deductive reasoning benchmarks.
Benchmark Sample Text

CLUTRR [24]] Lorraine and her brother Kevin went to see a movie. Clarence took his
granddaughter Lorraine to the movies and they enjoyed themselves.

ProofWriter [26]] The bald eagle is not rough. The bear does not need the bald eagle.
The dog needs the bear. If someone is rough then they chase the bald
eagle. If someone needs the bear then they are not blue...

ProntoQA-OOD  Lempuses are bitter. Every lempus is a lorpus. Brimpuses are vum-
[23] puses. Tumpuses are impuses. Each impus is not hot. Every numpus is
a sterpus. Each shumpus is brown. Sterpuses are fast. Every vumpus is

not small...

SimpleLogic If messy and hypocritical and lonely, then shiny. If tame, then friendly.
[35] If plain and shiny and homely, then nervous. If tender, then hypocritical.
If dull and impatient and plain, then tame. If spotless, then perfect. If

elegant and tender, then homely...

LogiQA 2.0 [19] In the past 10 years, the sales of personal notebook computers of a
computer company have continued to grow, but the growth rate is lower
than the growth rate of the company’s total sales of all products.

FOLIO [12] All people who regularly drink coffee are dependent on caffeine. People
regularly drink coffee, or they don’t want to be addicted to caffeine, or
both. No one who doesn’t want to be addicted to caffeine is unaware
that caffeine is a drug...

JustLogic Provided that sound travels through different kinds of matter, we know
that every soul is a candidate for immortality. It is a common miscon-
ception that every soul is a candidate for immortality.

C Sample texts from deductive reasoning benchmarks

Beyond metrics like vocabulary size and number of domains, the degree of natural language com-
plexity can be straightforwardly determined by manually inspecting the linguistic patterns of a given
benchmark. Table shows sample texts from CLUTRR, ProofWriter, ProntoQA-OOD, SimpleLogic,
LogiQA 2.0, FOLIO, and JustLogic.

Evidently, JustLogic exhibits significantly greater natural language complexity than CLUTRR,
ProofWriter, ProntoQA-OOQOD, and SimpleLogic, because the latter benchmarks programmatically
generate every sentence, while JustLogic extracts its sentences from GenericsKB, a natural language
text database. Thus, the former benchmarks rely on a limited number of grammar templates, reducing
their linguistic complexity. JustLogic exhibits similar levels of complexity to FOLIO. LogiQA 2.0
is more complex because it is human-curated and not backed by a formal logic system (unlike how
JustLogic is backed by propositional logic). Without a formal logic system, LogiQA 2.0’s argument
complexity suffers, as shown in Table[3] which compromises its ability to evaluate deductive reasoning
in LLMs.

D Prior Knowledge Independence Test

A sample prompt for the prior knowledge independence test, based on the example in Figure [T} is
shown below in Figure ] Note that the answer options vary depending on the benchmark. For
example, the options for LogiQA are A, B, C, and D, while those of CLUTRR are 16 possible family
relations.

E Experiment Implementation Details

The hyperparameters for the Llama3 models are decided largely based on the recommendations
in the original paper Dubey et al. [10], which are as follows: temperature of 0.6, top p of 0.9,
presence penalty of 1.15, length penalty of 1. For DeepSeek R1 and Qwen-14B (R1 Distill), the
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Instructions:

» Use the knowledge you currently have to answer as accurately as possible.
* You have 3 answer options: True, False, and Uncertain.

* There should be roughly an equal proportion of each option.

* Add 5-10 examples here

Question: Is the following statement true, false, or uncertain?
Statement: Doors are solids.
Answer: True.

Figure 4: Example of a prior knowledge independence test prompt.

recommended temperature of 0.6 is used. Finally, for OpenAl models, the default temperature is used.
All evaluations are conducted using the OpenAl and OpenRouter APIs, with model costs ranging
from $0.0003 per question for Llama3-8B-Instruct to $0.14 for OpenAl ol.

With regards to prompting methods, 3-shot prompting is chosen for few-shot experiments because
it produces the highest accuracies compared to 6 and 9-shot. Chain-of-thought prompts also con-
tain three examples. In the interest of fairness, all prompting techniques contain similar general
instructions, which are as follows:

You are given a paragraph of facts/premises, followed by a statement. Perform logical
reasoning with propositional logic on the paragraph to determine the truth value of the
statement.

Here is the list of argument forms:

* Modus Ponens
* Modus Tollens
* Hypothetical Syllogism
¢ Disjunctive Syllogism
* Reductio ad absurdum
 Constructive Dilemma
* Disjunction Elimination
You must answer with either one of the 3 options:
e TRUE: When the premises in the paragraph lead to the statement

* FALSE: When the premises in the paragraph directly contradict the statement

* UNCERTAIN: When the premises in the paragraph neither support nor contradict the
statement

Do not use your prior knowledge; your answer must be solely determined by the information
within the paragraph. Assume that all premises in the paragraph are true.

Question: Is the statement true, false, or uncertain?

As for the additional prompting techniques are explored in Appendix [H.I] the tree-of-thought
framework contains two prompts at each step: candidate generation and candidate evaluation. In
addition to the general instructions above, the candidates generation prompt is shown below.

Let’s reason step by step. Generate 3 alternative possible next steps, based on the question
and the answer so far. Each step consists of a single argument form, e.g. modus ponens. The
question takes 1 or more steps to solve.
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Note that these 3 steps are NOT sequential. They must be alternatives to the same step.

As for candidate evaluation, the prompt is shown below. Note that the model may terminate the
exploration prematurely by indicating a final answer. A practical consideration is that models tend
to conclude foo early; the prompt should be designed to emphasize exploration and instruct not to
conclude unless sufficiently certain.

Of the possible next steps, choose the one that **most directly advances the reasoning
process** toward determining the truth value of the statement. Select the best next step to
continue reasoning toward the answer. Do not conclude with TRUE, FALSE, or UNCERTAIN
yet — unless:

» All relevant reasoning paths have been explored, and
 No further logical deduction is possible or necessary.

Otherwise, output only the next reasoning step, using one valid argument form. Your goal is
to build a full reasoning chain, not jump to conclusions.

Only if this step logically completes the reasoning chain and no further analysis is needed,
then conclude with one of: TRUE, FALSE, or UNCERTAIN.

F Additional Experimental Validations of the JustLogic Benchmark

F.1 Prior Knowledge Independence Test using Other Models

To ensure that the results of the prior knowledge independence test, conducted with GPT-4 in
Section [5.1] are replicable, we conduct the same test using Llama3-70B-Instruct. The results
are shown in Table Similar to Section JustLogic has a high degree of prior knowledge
independence, on par with other synthetically generated benchmarks, i.e. CLUTRR and ProofWriter,
and substantially greater independence than the human-curated ones. Interestingly, ProofWriter’s
accuracy is significantly lower than random, which is potentially problematic since models may be
biased against statements whose truth-value aligns with reality.

Table 8: Results of Prior Knowledge Independence Test using Llama3-70B-Instruct. The lower the
|Al, the better.

Al ]l Accuracy (%) Random (%)

CLUTRR 54 11.7 6.3
ProofWriter 8.6 24.7 333
LogiQA 2.0 233 48.3 25.0
FOLIO 10.0 433 33.3
JustLogic 6.4 39.0 333

F.2 TImpact of Factual Accuracy on Model Performance

Given that JustLogic randomly chooses sentences from GenericsKB to add to each instance’s
argument structure, the final conclusion may be factually accurate or inaccurate in the real world. For
example, if the conclusion is “It is not true that Japan is in Asia.", then the conclusion is factually
inaccurate. Thus, there is a concern that models underperform due to confusion arising from factually
inaccurate conclusions. Moreover, since some conclusions are factually accurate, such instances may
exhibit artificially high performance.

To study these concerns, we conducted the following empirical study. If the above concerns are true,
we expect factually inaccurate conclusions to perform worse than factually accurate ones. Because
all GenericsKB sentences are factually accurate, we can straightforwardly deduce each conclusion’s
factual accuracy. For example, = V y is factually accurate while —z is not.
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Figure [5] shows the comparison of accuracies for five models: DeepSeek R1, OpenAl ol-mini,
GPT-40, Llama3-70B, and Llama3-8B; the left represents when reasoning depth is 1, while the right
represents when depth is 7 or less.

Acc. over Conclusion Type (Depth=1) Acc. over Conclusion Type (Depth=7)
- A - A
o - FlA 101 - FiA
0.8 0.8
> >
306 306
5 5
g g
< <
0.41 0.4
0.2 0.2
0.0+ 0.0
DeepSeek R10penAl o1-mini  GPT-40 Llama3-70B  Llama3-8B DeepSeek R10penAl o1-mini  GPT-40 Llama3-70B  Llama3-8B
Model Model

Figure 5: How factual accuracy of conclusions affects model accuracy.

These results reject the hypothesis that factually inaccurate conclusions perform worse than factually
accurate ones; there is no consistent trend between both conclusion types. In fact, when depth=1,
factually inaccurate conclusions exhibit higher performance for some models! At depths of 7 or
less, GPT-40 and Llama3-70B saw a decrease in relative accuracy of factually inaccurate state-
ments, DeepSeek R1 and Llama3-8B maintained similar accuracies, while OpenAl ol-mini saw an
improvement.

There are two reasons for these results. First, our prompt explicitly instructs models to answer the
question only using the paragraph provided and without using prior knowledge. The full prompt is
shown in Appendix [E] Moreover, in few-shot prompts, the examples provided include conclusions
where their factual accuracy does not match the correct answer. These measures encourage models to
ignore prior knowledge and answer questions without considering the factual accuracy of conclusions
in the real world.

Second, how LLMs treat factual accuracy when reasoning deductively depends on the LLM’s
training: specifically, the model’s ability to follow prompt instructions to ignore prior knowledge. For
example, DeepSeek R1 biases toward factually inaccurate conclusions when deductively reasoning,
while OpenAl ol-mini exhibits little difference in performance. Should an LLM exhibit significant
differences in performance between factually accurate and inaccurate conclusions, it suggests the
LLM has room for improvement in instruction following.

Importantly, the ability to deduce whether premises lead to a conclusion without using prior knowledge
is a fundamental human skill: we use it to evaluate whether a debater’s speech or journalist’s article
supports their position. The inclusion of both factually accurate and inaccurate instances in JustLogic
is a feature, not a bug.

F.3 Impact of Language “Unnaturalness' on Model Performance

Given that JustLogic is synthetically generated, there is a concern that its natural language may
be highly unnatural to models, potentially hindering their ability to reason deductively. To study
this concern, we compare the model perplexity of JustLogic, two other human-curated benchmarks
(FOLIO and LogiQA), and two other synthetic benchmarks (CLUTRR and ProofWriter). Llama3-8B-
Instruct (a non-reasoning model) and DeepSeek R1 Distill Qwen 14B (a reasoning model) are used.
If JustLogic’s language is indeed highly unnatural, we expect its model perplexity to be significantly
higher than other benchmarks.

The results, as shown in Figure[d] reject the aforementioned hypothesis. JustLogic’s model perplexities
are comparable to FOLIO and lower than the rest. This shows that despite JustLogic’s higher
linguistic complexity (Table[3), its syntactic patterns are well understood by models. CLUTRR’s and
ProofWriter’s higher perplexities are likely due to their unnatural symbolic-like language; LogiQA’s
higher perplexities are likely because its questions are originally in Chinese and did not shed their
foreign syntactic patterns when translated into English. Examples can be found in Appendix [C]
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Figure 6: Model perplexities of various logical reasoning benchmarks.

Therefore, while JustLogic’s natural language may seem unnatural to human readers, their syntactic
patterns are highly intuitive to LLMs compared to other reasoning benchmarks. JustLogic’s language
likely does not hinder LLMs’ understanding of the questions.

G Details on Human Participants

18 anonymous participants are given a random subset of questions. This is because deductive
reasoning questions, especially those at high reasoning depths, are cognitively demanding and time-
consuming; it is impractical to expect humans to complete 1050 questions. To ensure fairness,
both models and participants are provided similar prompts and are given the same proportion of
each reasoning depth. To ensure that participants understand the requirements of the task, a simple
verification question is added. If they answer incorrectly, their subsequent responses are voided.

Participants are recruited from Amazon Mechanical Turk [2] and are paid $24 per hour. Participation
is entirely voluntary, and the survey posed no foreseeable risks to participants. As reflected in Figure
to create a sample representative of the human average, the participants possess a diverse range of
educational qualifications and familiarity with propositional logic.

What is your highest level of education? Are you familiar with propositional logic?

Bachelor's Degree —\

[Samenmat}

I— Postgraduate Degree

Figure 7: Participants’ highest level of education and familiarity with proposition logic.

H Additional Model Evaluations

H.1 Additional Evaluations on Various Prompting Techniques
While reasoning models do not require specific prompting techniques due to their reasoning-specific

training, non-reasoning models observe significant deltas in accuracy based on the choice of prompts.
Thus, we evaluate the best small and large non-reasoning models, Llama3-8B-Instruct and GPT-4o,
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on additional prompting techniques: (i) the self-consistency decoding (SC) [28]], where the answer is
derived through majority voting over 5 sampled paths, and (ii) the tree-of-thought (ToT) framework
[32], where each step generates 3 candidates and ultimately chooses 1; the maximum steps allowed is
depth + 2, but the model may terminate the search earlier. Finally, we also test (iii) a CoT prompt
that does not mention propositional logic. Explicit mentions of technical terms in propositional logic,
e.g. reductio ad absurdum, may hinder the reasoning ability of models that are less familiar with
them. This prompts tests the aforementioned hypothesis.

Table 9: Model and Human Evaluation Results.
0-shot Few-shot CoT SC-CoT ToT CoT (w/o prop. logic)

Llama3-8B-Instruct 49.8 41.8 57.8 54.6 38.6 54.0
Llama3-70B-Instruct ~ 53.1 57.8 64.6 58.6 60.6 58.3
GPT-40-mini 53.0 54.7 51.8 50.3 48.6 50.0
GPT-40 53.8 58.3 65.6 67.1 71.4 67.4

The relative performance of the prompting techniques is heterogeneous across models. However,
besides GPT-40, we find that prompting techniques that are more expensive than vanilla CoT offer
little to no performance advantage. Self-consistency CoT achieves similar performance to CoT; the
former may require significantly higher sampled paths to reap its benefits. Tree-of-thought is too
complex for most models to utilize, often hallucinating across prompts and failing to break down the
problem into coherent steps. Lastly, we find that the explicit mention of propositional logic in the
prompt is generally helpful towards model performance.

H.2 Understanding the Performance of OpenAl ol vs. DeepSeek R1

OpenAl ol (72.9%) performs substantially worse than DeepSeek R1 on JustLogic, despite other
benchmarks suggesting their performance should be comparable. To rule out any human errors
during testing and to seek an explanation for these results, we performed a qualitative analysis of
OpenAl ol’s responses (all of which can be found in our GitHub repository). First, we find that ol’s
response to questions of depth >= 5 are significantly shorter than that of depth = 3 or 4, which is
counterintuitive. Second, ol prematurely answers “Uncertain" for 90% of questions of depth = 7
without faithfully engaging with the question. Figure[§] showing OpenAl ol’s and DeepSeek R1’s
accuracy over various difficulty levels based on argument depth, reinforces our analysis. Both models
have identical accuracies for low and medium difficulty problems, but ol struggles at high difficulty
problems, performing close to random probability.

These observations suggest that OpenAl ol’s test-time compute may have been artificially limited,
reducing its ability to solve deep, challenging questions. Importantly, this case study reflects
JustLogic’s ability to flexibly probe models at various levels of difficulty.

H.3 Futureproofing JustLogic

As LLMs improve, we expect their performance on JustLogic to rise, which necessitates increasing
JustLogic’s difficulty. One way is to increase the argument depth: specifically, we extended JustLogic
to incorporate questions of very high depth (8 to 11), and evaluated them on the current SOTA
reasoning and non-reasoning models, i.e. DeepSeek R1 and GPT-40, using CoT prompt.

Additionally, two other benchmarks, LogiQA 2.0 and FOLIO, are also evaluated to compare their
difficulty. The results, as shown in Table [I0] suggest that (i) as JustLogic’s question difficulty
increases, model accuracy decreases, and (ii) hard JustLogic questions yield significantly lower
accuracies than LogiQA 2.0 and FOLIO. This indicates that JustLogic is already more challenging
than other benchmarks and is likely to remain so due to its reduced risk of performance saturation.

I Qualitative Analysis of Failure Modes

To identify exactly how JustLogic is challenging for existing LLMs, we conducted a qualitative
analysis to identify the 4 major failure modes of various models’ responses to JustLogic questions.
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Figure 8: How reasoning depth affects accuracy for OpenAl ol and DeepSeek R1.

Table 10: SOTA Model Performance on various JustLogic difficulty levels and other benchmarks.
JustLogic

LogiQA 2.0 FOLIO
Easy Medium Hard Very Hard

GPT-4o 71.3 63.3 57.3 53.0 64.5 76.3

DeepSeek R1 ~ 90.0 83.3 68.0 65.0 87.6 86.2

We primarily rely on analyzing the chain-of-thought responses to investigate how they produced the
wrong answers. High-level explanations and abbreviated examples are provided for the failure modes.

(1) Logical inconsistency. Models sometimes produce arguments that rely on premises, implicit or
otherwise, that contradicts earlier parts of their chain-of-thought. This causes models to generate
incoherent arguments, and ultimately arrive at the wrong conclusion. For example, the following is a
truncated response from OpenAl ol:

While R implies that researchers are observing data,
without specific information, we cannot definitively
state R — S.

Since M V R is true and M V S is the statement we
are evaluating, and we have established M is true if
N is true, we can conclude:

* MV S is true.

This line of reasoning suggests that M/ VV R implies M V S. For this to be the case, R — S must be
true. However, earlier in the reasoning chain, ol says “we cannot definitively state R — S”. This
argument is therefore logically inconsistent.

(2) Wrong application of argument forms. Models sometimes identify the correct argument form
to solve the question. However, mistakes are made when applying the form to the specific question
context. In the truncated response below by Llama3-70B, disjunctive syllogism is, in fact, the
appropriate argument form, but the opposite conclusion should have been made: the statement, pain
can be severe and make a person unable to perform normal activities, does not hold.

Premise 1: Either condensation is water vapor
changing to liquid water or the statement, pain
can be severe and make a person unable to perform
normal activities, does not hold.
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Premise 2: The claim that condensation is water
vapor changing to liquid water does not correspond
with reality.

Using disjunctive syllogism with premises 1 and
2, we conclude that the statement, pain can be
severe and make a person unable to perform normal
activities, holds.

(3) Using the wrong argument form. Sometimes, models attempt to use argument forms that
logically cannot be applied to the context. Such mistakes often derail the response, making it entirely
incoherent. In the following example of an output by Llama3-70B, modus tollens simply cannot be
applied here; reductio ad absurdum should have been used instead.

Premise 1: One may reasonably assume that if the
statement that ’football is a memory-making machine’
is incorrect, then fairways are lawns. Premise

2: Assuming the statement that ’football is a
memory-making machine’ is incorrect, we know that

it is not the case that fairways are lawns.

Using modus tollens with premise 1 and 2...

(4) False interpretation of facts. Models sometimes misinterpret the natural language facts entirely.
This is most clearly seen when models translate sentences into the wrong logical form. While some
of these translations seem trivially simple, especially for LLMs, such mistakes are as common as the
other failure modes. In the example below, GPT-40’s interpretation of Premise 2 is incorrect: Premise
2 does in fact imply that the statement “most roses grow fairly rapidly” is false because of the word
“mistakenly.”

Premise 2: Some people mistakenly believe that most
roses grow fairly rapidly.

We cannot directly use Premise 2 to confirm or deny
(mQ), as it only mentions a mistaken belief rather
than the truth value. Therefore, we do not have
sufficient information to directly negate (Q).

Nonetheless, some sentences are more complex and therefore more prone to false interpretations. In
the example below, also by GPT-40, Premise 2’s logical form should be =(A — B) — —C instead.

Premises:

2. "Given that the claim that if police sergeants
receive calls, then good nutrition helps reduce

low birth weight, miscarriage and anemia does not
reflect reality, it can be inferred that some people
mistakenly believe that oil is simply a liquid form
of fat."

From Premise 2: (- (A—B))

J Limitations & Future Works

While JustLogic already achieves higher or similar natural language complexity to existing deductive
reasoning benchmarks, as shown in Section [3.4] linguistic complexity can be further enhanced to
emulate human-written prose, e.g. news articles and fiction stories. Notably, LLMs can be introduced
in Step 2 of JustLogic’s dataset construction process, whereby instead of randomly selecting sentences
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from GenericsKB, an LLM can generate fictional statements and scenarios, e.g. “John’s favorite
food is hamburgers.". While LLM generation has been successful in datasets involving inductive
reasoning and commonsense knowledge, e.g. MuSR [25], it is currently too unreliable for deductive
reasoning due to several common mistakes, e.g. ignoring instructions, hallucination, and invalid logic.
Nonetheless, as LLMs become more reliable, LLM generation is a promising approach worthy of
further exploration.

Error analysis using JustLogic can also be further explored. Interesting research questions include:
Are models able to use argument forms appropriately? At which step of the argument chain does the
model usually fail? What are the most common reasons for failure? These insights may be useful for
fine-tuning models for logical reasoning tasks [20] and model guidance [3].

JustLogic can be scaled to incorporate more question types related to logical reasoning, such as
multiple-choice questions, identifying missing premises in arguments, identifying logical fallacies in
arguments, and natural language sentence to formal logic translation. [20] provides a comprehensive
taxonomy. JustLogic’s program can be adapted to accommodate each question type while maintaining
its key advantages. By measuring deductive reasoning across multiple modalities using a single
dataset construction method, JustLogic can provide more comprehensive and controlled evaluations
and error analysis.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims on JustLogic’s dataset construction method and evaluation results
accurately reflect the paper’s contributions and scope.

Guidelines:
» The answer NA means that the abstract and introduction do not include the claims made
in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations can be found in Appendix I}

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The JustLogic dataset and evaluation does not involve theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment settings can be found in Sectiond]and Appendix [E]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All code to reproduce the data, evaluations, and statistics in the paper can be
found in the Github link in the abstract.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

 Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings can be found in Section 4] and Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported due to the significant computational cost of evaluat-
ing 8 models across 6 prompting methods (Section and Appendix [H). The evaluation of
reasoning models is also particularly costly. Nonetheless, we do not expect the inclusion of
error bars to have any significant effect on our key claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiment details can be found in Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper aligns with every point of the NeurIPS Code of Ethnics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no foreseeable societal impact beyond machine learning
research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The JustLogic dataset has no foreseeable risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and codes used in this paper are appropriately acknowledged and
the terms of use are properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The JustLogic dataset is well-documented in Section [3]and the Github repo
(provided in the Abstract).

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The survey with human participants in documented in Appendix
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The survey with human participants in documented in Appendix [G] There are
no foreseeable risks to the anonymous participants.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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972 * Depending on the country in which research is conducted, IRB approval (or equivalent)

973 may be required for any human subjects research. If you obtained IRB approval, you
974 should clearly state this in the paper.

975 * We recognize that the procedures for this may vary significantly between institutions
976 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
977 guidelines for their institution.

978 * For initial submissions, do not include any information that would break anonymity (if
979 applicable), such as the institution conducting the review.

980 16. Declaration of LLLM usage

981 Question: Does the paper describe the usage of LLMs if it is an important, original, or
982 non-standard component of the core methods in this research? Note that if the LLM is used
983 only for writing, editing, or formatting purposes and does not impact the core methodology,
984 scientific rigorousness, or originality of the research, declaration is not required.

985 Answer:

986 Justification: LLMs are not an important part of the JustLogic dataset construction method.
987 Guidelines:

988 * The answer NA means that the core method development in this research does not
989 involve LLMs as any important, original, or non-standard components.

990 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
991 for what should or should not be described.
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