
JustLogic: A Comprehensive Benchmark for
Evaluating Deductive Reasoning in LLMs

Michael K. Chen∗ Xikun Zhang Dacheng Tao

Nanyang Technological University
Singapore

Abstract

Logical reasoning is a critical component of Large Language Models (LLMs), and1

substantial research efforts in recent years have aimed to enhance their deductive2

reasoning abilities. However, existing deductive reasoning benchmarks, which are3

crucial for evaluating and advancing LLMs, suffer from significant constraints that4

restrict their utility, i.e., the lack of task complexity, the presence of prior knowledge5

as a confounder, and superficial error analysis. To address these deficiencies, we6

introduce JustLogic, a synthetically generated benchmark designed for rigorous7

evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a8

diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior9

knowledge independent, eliminating the advantage of models possessing prior10

knowledge and ensuring that only deductive reasoning is used to answer questions;11

and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning12

depth and argument form on model accuracy. Our experimental results on JustLogic13

reveal that (i) state-of-the-art (SOTA) reasoning LLMs perform on par or better14

than the human average but significantly worse than the human ceiling, and (ii)15

SOTA non-reasoning models still underperform the human average. All code and16

data are available at https://github.com/michaelchen-lab/JustLogic17

1 Introduction18

Deductive reasoning is a crucial capability for large language models (LLMs). It refers to the process19

of creating logically valid arguments, where conclusions necessarily follow from the premises.20

In other words, if an argument’s premises are true, the conclusion must also be true. Recent21

state-of-the-art (SOTA) LLMs [1; 10; 15] have exhibited outstanding performance and consistent22

improvement across various reasoning benchmarks, including HelloSwag [34], ARC Challenge [6]23

and WinoGrande [22]. However, we argue that the existing benchmarks are insufficient and often24

ineffective for evaluating LLMs’ true deductive reasoning capabilities.25

We identify three major problems with the existing benchmarks. First, they lack complexity, as26

measured on two dimensions: natural language complexity, i.e. how arguments are linguistically27

expressed, and argument complexity, i.e. the structure of the argument itself. Manually curated28

datasets, such as FOLIO [12] and LogiQA 2.0 [21; 19] exhibit high natural language complexity29

but low argument complexity, while synthetic datasets like CLUTRR [24] and ProofWriter [26]30

exhibit the opposite. Simplicity in either dimension makes these benchmarks prone to overfitting31

and memorization, thus allowing models to perform well despite underlying weaknesses in logical32

reasoning. A more detailed analysis can be found in Section 3.4. Second, existing benchmarks33

often fail to test deductive reasoning in isolation, as models can benefit from prior knowledge.34

To empirically validate this claim, we developed a novel test for prior knowledge independence,35
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which measures the influence of prior knowledge on reasoning benchmarks. As detailed in Section36

5.1, prior knowledge can substantially increase accuracy, even in datasets not intended to require37

commonsense or domain knowledge, e.g. FOLIO and LogiQA 2.0. Thus, high accuracy may not38

reflect strong reasoning capabilities. Third, many existing benchmarks provide superficial error39

analysis, leaving key questions unanswered: At what reasoning depth does the model start to fail?40

How does the model compare to humans at different argument depths? Which argument forms is the41

model particularly weak at? These insights are essential for understanding the depth and robustness42

of a model’s deductive reasoning, yet not many benchmarks provide them. Section 5.3 demonstrates43

the importance and usefulness of comprehensive error analysis.44

Paragraph:
• It is a fact that either relics are artifacts or dogs are capable of barking. [p ∨ q]
• If relics are artifacts, then fertilizers contain phosphorus. [p→ r]
• Assuming dogs are capable of barking, we know that fertilizers contain phosphorus. [q → r]

Statement: Fertilizers contain phosphorus. [r]
Question: Is the statement true, false, or uncertain?
Answer: True

Figure 1: Example of a question adapted using JustLogic’s dataset construction algorithm. Note that
the statements are intentionally factually inaccurate, which we explain and justify in Section 3.2.
Formal notations are included for illustrative purposes and are not provided to models.

Due to these issues, LLMs’ deductive reasoning abilities remain ambiguous. In response to the45

critical need for a reliable benchmark to support ongoing research efforts, we present JustLogic, a46

novel natural language deductive reasoning benchmark. The task is to determine whether a given47

statement is true, false, or uncertain, using only the given premises, which are assumed to be true. An48

example is shown in Figure 1.49

JustLogic’s construction ensures it is (i) complex, (ii) prior knowledge independent, and (iii) capable50

of in-depth error analysis. First, to achieve high argument and natural language complexity, JustLogic51

is code-generated rather than manually curated. This allows the generation of a theoretically infinite52

number of unique argument structures. Natural language sentences are then drawn from GenericsKB-53

Best [4], a database of 1M+ unique real-world sentences, and inserted into the argument structures,54

introducing high natural language complexity. Second, since sentences are randomly sampled55

from the entire GenericsKB-Best dataset, the generated arguments generally do not align with real-56

world knowledge, thereby eliminating prior knowledge as a confounder. Finally, in-depth error57

analysis is enabled by the programmatic generation process, which enables the inspection of each58

question’s properties, such as reasoning depth and argument form, to investigate their impact on59

model performance. A comparison between JustLogic and four similar logical reasoning benchmarks60

(CLUTRR, ProofWriter, LogiQA 2.0, and FOLIO) is presented in Table 1, with further details on61

dataset construction provided in Section 3.62

Using JustLogic, we conducted comprehensive experiments to evaluate the deductive reasoning63

capabilities of current LLMs. First, our novel prior knowledge independence test demonstrated64

that prior knowledge enables LLMs to bypass deductive reasoning on existing datasets, resulting65

in artificially high accuracies. This is not observed in JustLogic. Second, we benchmarked the66

performance of SOTA LLMs and human participants using JustLogic. Most SOTA LLMs performed67

significantly lower than the average human accuracy (73.0%). Only DeepSeek R1 performed68

substantially better (80.9%), but still fell short of the human ceiling (100.0%). Finally, enabled by69

JustLogic’s code-generated nature, our thorough error analysis examined the heterogeneous impact70

of argument structure and reasoning depth on model performance. These experiments show that71

the JustLogic benchmark is a reliable test of deductive reasoning and reveals significant room for72

improvement in LLMs.73

In summary, our contributions are threefold. First, we evaluate the limitations of existing benchmarks.74

Second, we introduce the JustLogic benchmark, a synthetic dataset to evaluate deductive reasoning,75

that addresses the aforementioned limitations. Third, our experiments using JustLogic demonstrate76
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Table 1: Comparison of JustLogic with other deductive reasoning datasets. The symbol ∼ suggests
the feature is present but to a limited extent.

High NL
Complexity

High Arg.
Complexity

Prior Knowledge
Independence

In-Depth
Error Analysis

CLUTRR ✗ ✓ ✓ ✓

ProofWriter ✗ ✓ ✓ ∼
LogiQA 2.0 ✓ ✗ ✗ ∼
FOLIO ✓ ✗ ✗ ∼
JustLogic ✓ ✓ ✓ ✓

that most SOTA models perform significantly worse than humans. We posit that the deductive77

reasoning capabilities of LLMs still have significant room for improvement, and hope that the78

JustLogic benchmark will assist researchers in designing and evaluating LLMs.79

2 Related Work80

2.1 Existing reasoning datasets for Large Language Models81

Reasoning benchmarks are a vital part of LLM evaluation. Some benchmarks measure deductive82

reasoning in conjunction with natural language inference (NLI), inductive reasoning, and common-83

sense knowledge: HellaSwag [34] tasks machines to select the most likely follow-up of an event84

description, WinoGrande [22] is a pronoun resolution task, and MuSR [25] tasks machines to solve85

fictional problems, such as murder mysteries. Other benchmarks measure reasoning on domain86

knowledge: AI2 Reasoning Challenge (ARC) [31] contains grade-school science questions, while87

Massive Multitask Language Understanding (MMLU) [13] contains questions across 57 subjects in88

STEM, humanities, and more. Finally, math-specific benchmarks include GSM-8K [7] and DROP89

[9].90

The aforementioned benchmarks explicitly evaluate skills beyond reasoning and do not specifically91

define the type of reasoning involved, e.g. inductive, deductive, and analogical. As such, benchmarks92

that solely test for deductive reasoning have seen a considerable increase in interest. They can be93

classified into two broad categories: synthetic and manually curated. Synthetically-generated datasets94

include (i) CLUTRR [24], where a machine must infer the relationship of two family members95

based on stories, (ii) ProofWriter [26], where a machine must deduce a statement’s truth value96

based on a set of facts and rules, and (iii) ProntoQA-OOD [23], where a machine must prove a97

statement based on a set of facts. Manually curated datasets include (i) LogiQA 2.0 [19], containing98

manually-translated logical reasoning questions from the Chinese Civil Service Exam, (ii) FOLIO99

[12], containing questions with manually-annotated content using Wikipedia pages, and (iii) ReClor100

[33], containing reading comprehension questions from GMAT and LSAT.101

As discussed earlier, synthetic datasets are prior knowledge independent and exhibit high argument102

and low natural language complexity; manually curated datasets are the opposite. JustLogic, being103

synthetic, contains all its advantages while offering the natural language complexity of manually104

curated datasets, which we further explained in Section 3.4 and 5.1.105

2.2 Reasoning in Large Language Models106

As LLMs continue to increase in size, their performance on various reasoning-related benchmarks has107

improved dramatically. For example, in 2024, Gemini Ultra [27] achieved 90.0% on MMLU when108

the SOTA model in 2020, UnifiedQA 11B [17], achieved a mere 48.9%. In 2023, GPT-4 achieved109

96.4% on ARC when the SOTA model in 2020, GPT-3 [5], achieved 53.2%.110

The advent of prompting techniques played an important role in developing LLMs’ reasoning abilities.111

In-context learning [8] provides LLMs with instructions and examples in the input prompt to guide112

its response. Chain-of-thought prompting [29] prompts LLMs to generate a series of intermediate113

reasoning steps before arriving at the final answer. Self-consistency decoding [28] chooses the most114

consistent answer after sampling multiple chain-of-thought outputs. Least-to-most prompting [36]115

decomposes a complex problem into simpler subproblems, which are then solved sequentially.116
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Step 1
Generate a random argument structure

Step 3
Generate a random query statement and its truth value

Step 2
Add random natural language sentences to the argument structure

Modus Ponens

Disjunctive Syllogism

Statement:

Answer: 

Logical Form:

If whales are big, then
Porsche cars are not pink. Whales are big.

Porsche cars
are not pink.

Japan is in Asia.

Either Porsche cars are
pink or Japan is in Asia.

 It is not true that Japan is in Asia.

 

 False

Modus Ponens

Disjunctive Syllogism

Whales are big.

Porsche cars are pink.

Japan is in Asia.

Assignment

Figure 2: A step-by-step example of how an instance with a reasoning depth of 2 is constructed.

As mentioned above, LLMs are conventionally tested on datasets that combine reasoning with other117

skills. Moreover, existing logical reasoning-specific datasets possess major limitations that call into118

question the reliability of their evaluations. In response, JustLogic aims to robustly and accurately119

evaluate the deductive reasoning abilities of LLMs.120

3 Dataset Construction121

JustLogic is a programmatically generated dataset designed to evaluate a model’s ability of deductive122

reasoning, specifically its capability to form logically valid arguments. A logically valid argument is123

one where the conclusion necessarily follows from the premise(s); in other words, given the premises124

are true, the conclusion must also be true.125

In order to test this, JustLogic presents a model with a paragraph consisting of premises, followed126

by a query statement. Based solely on the premises and assuming they are all true, the model needs127

to determine whether the query statement is true, false, or uncertain. In line with the open-world128

assumption, the “Uncertain" answer refers to cases where the premises neither support nor contradict129

the query statement.130

The following outlines the process for generating each instance in the dataset, which is exemplified131

by Figure 2.132

1. Step 1: Generate an argument structure.133

2. Step 2: Add natural language statements to the argument structure.134

3. Step 3: Generate a query statement.135

3.1 Step 1: Generate argument structure136

Argument structures are composed of one or more valid argument forms, derived from propositional137

logic; argument forms are made up of a series of logical forms, which we define as symbolic138

representations of statements. Specifically, the seven distinct argument forms in our dataset are139

constructed with the following four logical forms: (i) basic (x), (ii) negation (¬x), (iii) conditional140

(x → y), and (iv) disjunction (x ∨ y). While there is a theoretically infinite number of possible141

argument forms, complex argument forms can be derived by combining simpler ones. Therefore, we142

explicitly define the seven most fundamental forms [16]: modus ponens, modus tollens, hypothetical143

syllogism, disjunctive syllogism, reductio ad absurdum, constructive dilemma, and disjunctive144

elimination. Table 6 in Appendix A provides the corresponding formal notations and natural language145

examples.146

The algorithm to create an argument structure (formally shown in Appendix B) accepts an intended147

argument depth as input. It first generates a random conclusion and an argument form to support it,148

which in Figure 2 is c and disjunctive syllogism. If the intended depth has not been reached, one149
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Table 2: Expressions of logical forms.

Formal Notation Sample Expression No. of Expr.
Basic x The claim that x holds true. 16
Negation ¬x The claim that x does not reflect reality. 15
Conditional x→ y Once we know that x, we also know that y. 11
Disjunction x ∨ y It is a fact that either x or y. 8

or more premises will become subconclusions, which are supported by new, randomly generated150

argument forms. In Figure 2, this is exemplified by ¬b becoming a subconclusion, supported by a151

modus ponens argument. This process continues until the desired depth is achieved.152

3.2 Step 2: Adding natural language153

Next, the symbolic statements are converted into natural language. Each statement consists of one154

or more logical forms, i.e. variable, negation, conditional, and disjunction. In natural language,155

these forms can be expressed in a variety of ways. For example, a conditional can be expressed as156

both “If x, then y." and “Given that x, y is true.", where variables x and y are simple propositions.157

To emulate the diversity of natural language, a list of expressions for each logical form is created158

using human feedback, and potentially aided by LLMs. Table 2 shows the formal notation of each159

form, alongside a sample expression and the total number of unique expressions. The variable(s)160

within each expression are ultimately replaced by randomly selected generic, real-world sentences161

from GenericsKB-Best [4]. The GenericsKB-Best dataset is chosen for its vast collection of simple162

propositions (1,020,868 sentences) without conditionals, disjunctions, etc. A complete example can163

be found in Step 2 of Figure 2.164

Notably, as shown in Figure 2, the statements are generally factually inaccurate despite being drawn165

from real-world data. This is intentional. Real-world propositions allow us to generate sentences with166

diverse grammatical structures that closely emulate human-written arguments. However, factually ac-167

curate arguments enable models to bypass deductive reasoning with their prior real-world knowledge,168

which is experimentally demonstrated in Section 5.1. By using real-world yet factually inaccurate169

statements, we combine realism and prior knowledge independence.170

There are potential concerns that factually inaccurate statements and “unnatural" synthetic language171

may confuse models and lead to artificially low performance. Appendix F.2 and F.3 empirically refute172

these concerns.173

3.3 Step 3: Generate query statement174

The LLM’s task is to determine whether the given query statement is true, false, or uncertain based175

on the premises provided. Using Figure 2 as an example, if we assign the query statement to be176

the negation of the conclusion, i.e. “It is not true that Japan is in Asia", then the answer is false. If177

the query statement is the same as the conclusion, then the answer is true. If the query statement is178

unrelated to the premises, then the answer is uncertain.179

3.4 Dataset Complexity180

In the context of deductive reasoning datasets, complexity is defined as the variety and comprehen-181

siveness of instances. It can be further divided into two dimensions: natural language complexity and182

argument complexity. In this section, we highlight the significance of both aspects and how JustLogic183

compares against other logical reasoning datasets.184

Natural language complexity. Human language is complex. Statements and arguments of similar185

meanings can be presented in a variety of ways. Therefore, it is insufficient for models to reason186

solely with symbols, e.g. x and y, and basic natural language sentences, e.g. “Some birds are yellow.”;187

they must be capable of reasoning with real-world vocabulary and diverse sentence structures to be188

useful in practical contexts.189

We measure natural language complexity with (i) reading difficulty, as measured by the Flesch-190

Kincaid Grade Level test [18], and (ii) lexical diversity, as measured by vocabulary & domain size.191
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Table 3: Statistics of dataset complexity.
Natural Language Argument

Reading Difficulty ↑ Vocab. (Domains) Reasoning Depth Arg. Structures
CLUTRR 6.67 1396 (1) 1 -∞ ∞
ProofWriter 0.96 101 (×) 1 -∞ ∞
LogiQA 2.0 17.10 10004 (>10) × ×
FOLIO 18.75 4351 (>10) 1 - 7 76
JustLogic 20.55 10557 (>10) 1 -∞ ∞

For (i), the score is presented as a U.S. grade level; the higher the score, the harder the text is to read.192

Scores greater than 12 should be used to compare the relative difficulty between benchmarks, with193

higher scores indicating relatively greater textual complexity. A domain is defined as any topic of194

interest, such as golf, computers, or traveling; Vocabulary size refers to the number of unique words195

in the dataset. Given the difficulty of quantitatively capturing linguistic complexity, Appendix C also196

shows text samples of each benchmark, representative of their complexity.197

As shown in Table 3, existing synthetic datasets have low natural language complexity, while human-198

written datasets, such as FOLIO and LogiQA 2.0, exhibit significantly higher complexity. This is199

expected since synthetic datasets translate symbols in formal logic into natural language using limited200

templates of sentence structures and vocabulary lists. For example, in ProofWriter, a typical sentence201

follows the format “All dogs are (not) red.". The linguistic patterns of human-written datasets, in202

contrast, are bound only by human creativity. Despite being synthetic, JustLogic, achieves natural203

language complexity on par with manually curated datasets, due to its comprehensive selection of204

expressions and the use of GenericsKB-Best as the source of sentences.205

Argument complexity. Argument complexity refers to the diversity of argument structures used206

in the dataset. A sufficiently high argument complexity is important because humans use a range207

of argument forms to reason, beyond just conditionals and modus ponens. Moreover, a real-world208

argument is typically composed of multiple argument forms, due to their inherent complexity.209

A dataset’s argument complexity is evaluated based on two metrics: (i) range of reasoning depth, and210

(ii) number of unique argument structures. The upper limit of both metrics is calculated based on211

the theoretical maximum without any additional human input, rather than the highest depth used in212

experiments in existing works. For example, CLUTRR’s dataset construction program can generate213

any number of depths (referred to as relation length in the original paper), despite its experiments214

only utilizing questions of up to a depth of 10. Thus, its upper limit of depth is infinite.215

Table 3 shows that synthetic datasets, such as CLUTRR, ProofWriter, and JustLogic, excel in this216

area, as there is no upper limit to their reasoning depth and number of argument structures. Manually217

curated datasets, in contrast, either lack an explicit concept of reasoning depth and argument structures218

(e.g. LogiQA 2.0), or have a limited selection of both (e.g. FOLIO). While manual datasets require219

significant human efforts and investment to expand their complexity, synthetic ones can scale trivially.220

In summary, JustLogic combines the best of both dataset construction methods: the argument221

complexity of synthetic datasets and the natural language complexity of manually curated ones.222

3.5 Future-proofing JustLogic223

As the reasoning abilities of LLMs continue to improve, we expect LLMs to solve the existing224

JustLogic dataset eventually. To maintain JustLogic’s relevance, we leverage its synthetic nature to225

increase complexity with minimal human input. Argument complexity can be adjusted by increasing226

the (i) range of argument depth (empirically validated in Appendix H.3) and (ii) number of distinct227

argument forms to >7. Natural language complexity can be adjusted by (i) increasing the number228

of expressions for each logical form and (ii) integrating more complex knowledge bases than229

GenericsKB. Importantly, these changes are programmatically achievable with minimal man-hours.230

Importantly, JustLogic can also effectively tackle benchmark leakage [30], whereby test sets are231

unintentionally included in LLMs’ pertaining data, thus artificially inflating their performance through232

memorization. Should JustLogic’s test set be leaked, a new test set of similar difficulty can be trivially233

generated, thereby mitigating this problem.234
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4 Experimental Setup235

We first investigate the influence of prior knowledge on evaluating deductive reasoning with JustLogic236

and other existing benchmarks using our prior knowledge independence test. Next, several SOTA237

LLMs of various sizes are evaluated using JustLogic. Finally, an in-depth error analysis of the LLMs’238

results is conducted.239

JustLogic contains 7000 instances, equally split amongst reasoning depths ranging from 1 to 7. The240

test set (15% of all instances) is used for evaluation. Note that the number of instances and range of241

reasoning depths can be easily adjusted using JustLogic’s open-source dataset generation program.242

4.1 Prior Knowledge Independence Test243

The task for deductive reasoning benchmarks is typically framed as CQO → A: Given a context244

C, consisting of n premises (P = {p1, p2, ..., pn}), a question Q, and m answer options (O =245

{o1, o2, ..., om}), determine the correct answer A. To assess the influence of prior knowledge on246

determining answer A, the prior knowledge independence test is framed as QO → A. No context247

C is provided, and the prompt instructs the LLM to answer the question based on prior knowledge248

alone. An example is provided in Appendix D.249

If prior knowledge is not useful, the LLM should be unable to answer question Q without C, and250

the accuracy for the prior knowledge independence test should approximate random probability 1
m .251

Benchmarks exhibiting such accuracies are deemed prior knowledge independent.252

While any LLM will be suitable, we use GPT-4 for its extensive prior knowledge. Similar results are253

replicated using Llama3-70B in Appendix F.1. The test is conducted on JustLogic and other logical254

reasoning benchmarks, i.e. CLUTRR, ProofWriter, LogiQA 2.0, and FOLIO.255

4.2 Evaluation of LLMs’ Deductive Reasoning256

Our task, as illustrated in Figure 1, follows the conventional formulation: CQO → A. Ques-257

tion Q is “Is the statement S true, false, or uncertain?"; there are 3 answer options, where258

O = {true, false, uncertain}. Prompts begin with a preamble, providing (i) the task instructions, (ii)259

a list of argument forms in propositional logic, and (iii) the available answer options.260

We evaluated both reasoning and non-reasoning models of different sizes: Llama3-8B-Instruct [10],261

Llama3-70B-Instruct, GPT-4o-mini-2024-07-18, GPT-4o-2024-05-13, DeepSeek R1 Distill Qwen262

14B, DeepSeek R1 [11], OpenAI o1-mini-2024-07-18, and OpenAI o1-2024-12-17 [14]. A range263

of prompting techniques are tested: zero-shot, few-shot, and chain-of-thought (CoT) [29]; more264

techniques are tested in Appendix H.1. Due to limited model access, 70 random samples are used for265

OpenAI o1 and 350 for the other reasoning models. To ensure fairness, the selected subset has the266

same proportion of each reasoning depth as the entire test set. Further implementation details are267

provided in Appendix E. Human performance is also measured; the experiment settings are detailed268

in Appendix G.269

Finally, we perform an error analysis of the results from the aforementioned experiments, specifically270

examining the heterogeneous effects of argument form and reasoning depth on model accuracy.271

Accuracy for each argument form is only measured using questions with a reasoning depth of 1 since272

those with a depth of >1 typically have >1 argument forms. Lastly, a qualitative analysis of failure273

modes is conducted.274

5 Results275

5.1 Prior Knowledge Independence Test276

The results of JustLogic and four other benchmarks are shown in Table 4; note that lower accuracy277

relative to the benchmark’s random probability indicates that prior knowledge is more detrimental278

to answering the question, thereby demonstrating that the benchmark is more prior knowledge279

independent. Thus, the smaller the |∆| between model accuracy and random probability, the better.280

The |∆|s of CLUTRR and ProofWriter are relatively low, while those of LogiQA 2.0 and FOLIO are281

nontrivially higher. This is because the former are synthetic datasets, while the latter are manually282
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curated. When a question is code-generated, it generally bears no correlation with reality, e.g. “Is it283

true, false, or uncertain that Gary is not red." from ProofWriter. Such questions are only answerable284

by reasoning over the context C. LogiQA 2.0 and FOLIO, on the other hand, often contain questions285

that are answerable purely using background knowledge, such as “Did the United States won the286

most medals in the last summer Olympic games?" from FOLIO. We posit that this is an unintentional287

consequence of the human bias to align the question’s truth value with reality. While human curation288

enhances the question’s realism, it compromises the test for deductive reasoning.289

Table 4: Results of Prior Knowledge Independence Test. The lower the |∆|, the better.
|∆| ↓ Accuracy (%) Random (%)

CLUTRR 2.0 8.3 6.3
ProofWriter 3.7 37.0 33.3
LogiQA 2.0 27.1 52.1 25.0
FOLIO 6.7 40.0 33.3
JustLogic 0.4 33.7 33.3

The JustLogic benchmark’s |∆| is 0.4%, given an accuracy of (33.7%) and random probability290

(33.3%), which is much lower than other benchmarks, including synthetic ones. The reason for this291

is twofold: first, JustLogic is also a synthetic dataset, which eliminates the human bias present in292

manually curated datasets. Second, while JustLogic uses real-world statements, their truth value is293

nonetheless randomly determined. For example, the statement “doors are solids" is factually true.294

However, by deducing from the paragraph, the correct answer is “False". Thus, using prior knowledge295

for many questions is not only unhelpful but also meaningfully decreases accuracy.296

5.2 Evaluation of LLMs’ Deductive Reasoning297

As shown in Table 9, the best-performing model by a large margin is DeepSeek R1 with an accuracy298

of 80.9%. Surprisingly, OpenAI o1 (72.9%) performs substantially worse than DeepSeek R1; we299

provide deeper analysis on this in Appendix H.2. Several general observations can be made from300

these results: first, while models with larger parameter sizes generally perform better, they offer301

diminishing returns, shown by the accuracy gain of just 1.0% from Llama3-70B to GPT-4o, with both302

using CoT prompting. Second, the improvements offered by increasing model size pale in comparison303

to those offered by better prompting methods. Using CoT, Llama3-8B achieved higher performance304

(57.8%) than zero-shot Llama3-70B (53.1%). Lastly, reasoning models generally perform better305

given similar model sizes: the best reasoning model (DeepSeek R1) scored 15.3% higher than the306

best non-reasoning one (GPT-4o).307

Table 5: Model and Human Evaluation Results.
0-shot Few-shot CoT

Random Probability 33.3 33.3 33.3
Llama3-8B-Instruct 49.8 41.8 57.8
Llama3-70B-Instruct 53.1 57.8 64.6
GPT-4o-mini 53.0 54.7 51.8
GPT-4o 53.8 58.3 65.6
OpenAI o1-mini - - 62.0
OpenAI o1 - - 72.9
Qwen 14B (R1 Distill) - - 61.7
DeepSeek R1 - - 80.9
Human Average 73.0 73.0 73.0
Human Ceiling 100.0 100.0 100.0

Human performance (73.0%) is higher than all models besides DeepSeek R1, while the human308

ceiling (100.0%) outperforms all models. The non-trivial gap between the human ceiling and the best-309

performing model (80.9%) shows that models still have significant room for improvement. Moreover,310
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we believe actual human performance might be higher than 73.0%. Given the long paragraphs of311

questions with high reasoning depth, participants may have predicted answers by briefly scanning the312

paragraph, rather than carefully deducing based on all available premises. This is supported by the313

suspiciously short time taken to complete the questions of some participants.314

5.3 Error Analysis315

Figure 3 illustrates the model accuracy by argument form (left) and by reasoning depth (right).316

The statistics of the best models of their respective categories are chosen: (i) Llama3-8B (small,317

non-reasoning model), (ii) Llama3-70B (large, non-reasoning model), (iii) OpenAI o1-mini (small,318

reasoning model), and (iv) DeepSeek (large, reasoning model). To mitigate noise, especially for319

models tested on smaller sample sizes, depths are grouped into low (1–3), medium (4–5), and high320

(6–7) categories. The qualitative analysis of failure modes can be found in Appendix I.321

Figure 3: How argument form2 and reasoning depth affects accuracy for various models.

While the relative accuracies of argument forms are heterogeneous across models, some forms322

perform distinctly better than others. For example, hypothetical syllogism and constructive dilemma323

achieve considerably higher performance than modus tollens, disjunctive syllogism, and reductio ad324

absurdum. Interestingly, the former argument forms are more commonly used by humans than the325

latter ones, which potentially hints at the cause of this observation.326

As for reasoning depth, model accuracies generally decrease as depth increases, consistent with327

expectations that accuracy declines as the complexity of questions increases. Interestingly, OpenAI328

o1-mini performs comparably to DeepSeek R1 at low depths, but o1-mini sees a sharp decline in329

performance once depth increases, while DeepSeek R1 only sees a moderate decline; DeepSeek330

R1’s superior performance is a result of better reasoning at higher reasoning depths. In fact, at331

medium and high depths, o1-mini no longer performs better than non-reasoning models, i.e. GPT-4o332

and Llama3-8B. These observations suggest that DeepSeek R1 supports deeper and longer lines333

of reasoning, which is crucial for deductive reasoning, and that large reasoning models perform334

drastically better than smaller ones on reasoning problems.335

6 Conclusion336

Deductive reasoning is one of the key challenges in LLM research. In response to the lack of337

reliable benchmarks, we present JustLogic, a natural language deductive reasoning dataset that is (i)338

highly complex, (ii) prior knowledge independent, and (iii) capable of in-depth error analysis. These339

qualities are enabled by JustLogic’s dataset construction method: argument structures are synthetically340

generated, and natural language is programmatically incorporated via expression templates and a341

knowledge base. We empirically justify JustLogic’s merits: most LLMs underperform the human342

average and all significantly underperform the human ceiling. We demonstrate that JustLogic is343

a highly challenging, future-proof benchmark that is reliable and insightful for evaluating logical344

reasoning in LLMs.345

2MP = Modus Ponens, MT = Modus Tollens, HS = Hypothetical Syllogism, DS = Disjunctive Syllogism,
RAA = Reductio Ad Absurdum, CD = Constructive Dilemma, DE = Disjunction Elimination
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A Argument Forms449

Table 6: An overview of the argument forms in the JustLogic dataset.
Formal Notation Example

Modus Ponens
p→ q
p
⊢ q

If the sky is blue, then the dog is happy.
The sky is blue.
Therefore, the dog is happy.

Modus Tollens
p→ q
¬q
⊢ ¬p

If the sky is blue, then the dog is happy.
The dog is not happy.
Therefore, the sky is not blue.

Hypothetical Syllogism
p→ q
q → r
⊢ p→ r

If the sky is blue, then the dog is happy.
If the dog is happy, the owner is happy.
Therefore, the owner is happy.

Disjunctive Syllogism
p ∨ q
¬p
⊢ q

Either the dog is barking or the dog is asleep.
The dog is not barking.
Therefore, the dog is asleep.

Reductio ad absurdum
p→ q
p→ ¬q
⊢ ¬p

If the dog is calm, the owner is around.
If the dog is calm, the owner is not around.
Therefore, the dog is not calm.

Constructive Dilemma

p ∨ q
p→ r
q → s
⊢ r ∨ s

Either the sky is blue or it is raining.
If the sky is blue, the race can start.
If it is raining, the race is delayed.
Therefore, either the race can start or it is delayed.

Disjunction Elimination

p ∨ q
p→ r
q → r
⊢ r

Either the sky is blue or it is raining.
If the sky is blue, the dog is cheerful.
If it is raining, the dog is cheerful.
Therefore, the dog is cheerful.

B Algorithm for Step 1 of JustLogic’s Dataset Construction450

Algorithm 1 Pseudocode for Step 1 (Generate argument structure) of JustLogic’s Dataset Construction
Process. It generates the argument structure using level-order construction until the desired number
of argument forms D is reached.

Require: D ▷ Target number of argument forms
1: ϕ0 ← SAMPLELOGICALFORM() ▷ Sample a random final conclusion
2: a0 ← SAMPLEARGUMENTFORM(ϕ0) ▷ Samples a random argument form for the final

conclusion
3: L ← [a0]
4: d← 1 ▷ Tracks the no. of argument forms
5: while d < D do
6: P ← GETALLPREMISES(L) ▷ Extract all premises of all a in L
7: k ← SAMPLEUNIFORM(1, D − d) ▷ Sample an integer from 1 to D − d
8: Psub ← SAMPLERANDOMSUBSET(P, k) ▷ Select k premises to become subconclusions
9: L′ ← [ ]

10: for all ϕ ∈ Psub do
11: a← SAMPLEARGUMENTFORM(ϕ)
12: Append a to L′

13: end for
14: L ← L′

15: d← d+ |Psub|
16: end while
17: return Argument structure rooted at ϕ0
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Table 7: Sample texts from various deductive reasoning benchmarks.
Benchmark Sample Text

CLUTRR [24] Lorraine and her brother Kevin went to see a movie. Clarence took his
granddaughter Lorraine to the movies and they enjoyed themselves.

ProofWriter [26] The bald eagle is not rough. The bear does not need the bald eagle.
The dog needs the bear. If someone is rough then they chase the bald
eagle. If someone needs the bear then they are not blue...

ProntoQA-OOD
[23]

Lempuses are bitter. Every lempus is a lorpus. Brimpuses are vum-
puses. Tumpuses are impuses. Each impus is not hot. Every numpus is
a sterpus. Each shumpus is brown. Sterpuses are fast. Every vumpus is
not small...

SimpleLogic
[35]

If messy and hypocritical and lonely, then shiny. If tame, then friendly.
If plain and shiny and homely, then nervous. If tender, then hypocritical.
If dull and impatient and plain, then tame. If spotless, then perfect. If
elegant and tender, then homely...

LogiQA 2.0 [19] In the past 10 years, the sales of personal notebook computers of a
computer company have continued to grow, but the growth rate is lower
than the growth rate of the company’s total sales of all products.

FOLIO [12] All people who regularly drink coffee are dependent on caffeine. People
regularly drink coffee, or they don’t want to be addicted to caffeine, or
both. No one who doesn’t want to be addicted to caffeine is unaware
that caffeine is a drug...

JustLogic Provided that sound travels through different kinds of matter, we know
that every soul is a candidate for immortality. It is a common miscon-
ception that every soul is a candidate for immortality.

C Sample texts from deductive reasoning benchmarks451

Beyond metrics like vocabulary size and number of domains, the degree of natural language com-452

plexity can be straightforwardly determined by manually inspecting the linguistic patterns of a given453

benchmark. Table 7 shows sample texts from CLUTRR, ProofWriter, ProntoQA-OOD, SimpleLogic,454

LogiQA 2.0, FOLIO, and JustLogic.455

Evidently, JustLogic exhibits significantly greater natural language complexity than CLUTRR,456

ProofWriter, ProntoQA-OOD, and SimpleLogic, because the latter benchmarks programmatically457

generate every sentence, while JustLogic extracts its sentences from GenericsKB, a natural language458

text database. Thus, the former benchmarks rely on a limited number of grammar templates, reducing459

their linguistic complexity. JustLogic exhibits similar levels of complexity to FOLIO. LogiQA 2.0460

is more complex because it is human-curated and not backed by a formal logic system (unlike how461

JustLogic is backed by propositional logic). Without a formal logic system, LogiQA 2.0’s argument462

complexity suffers, as shown in Table 3, which compromises its ability to evaluate deductive reasoning463

in LLMs.464

D Prior Knowledge Independence Test465

A sample prompt for the prior knowledge independence test, based on the example in Figure 1, is466

shown below in Figure 4. Note that the answer options vary depending on the benchmark. For467

example, the options for LogiQA are A, B, C, and D, while those of CLUTRR are 16 possible family468

relations.469

E Experiment Implementation Details470

The hyperparameters for the Llama3 models are decided largely based on the recommendations471

in the original paper Dubey et al. [10], which are as follows: temperature of 0.6, top p of 0.9,472

presence penalty of 1.15, length penalty of 1. For DeepSeek R1 and Qwen-14B (R1 Distill), the473
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Instructions:
• Use the knowledge you currently have to answer as accurately as possible.
• You have 3 answer options: True, False, and Uncertain.
• There should be roughly an equal proportion of each option.
• Add 5-10 examples here

Question: Is the following statement true, false, or uncertain?
Statement: Doors are solids.
Answer: True.

Figure 4: Example of a prior knowledge independence test prompt.

recommended temperature of 0.6 is used. Finally, for OpenAI models, the default temperature is used.474

All evaluations are conducted using the OpenAI and OpenRouter APIs, with model costs ranging475

from $0.0003 per question for Llama3-8B-Instruct to $0.14 for OpenAI o1.476

With regards to prompting methods, 3-shot prompting is chosen for few-shot experiments because477

it produces the highest accuracies compared to 6 and 9-shot. Chain-of-thought prompts also con-478

tain three examples. In the interest of fairness, all prompting techniques contain similar general479

instructions, which are as follows:480

You are given a paragraph of facts/premises, followed by a statement. Perform logical
reasoning with propositional logic on the paragraph to determine the truth value of the
statement.

Here is the list of argument forms:

• Modus Ponens
• Modus Tollens
• Hypothetical Syllogism
• Disjunctive Syllogism
• Reductio ad absurdum
• Constructive Dilemma
• Disjunction Elimination

You must answer with either one of the 3 options:
• TRUE: When the premises in the paragraph lead to the statement
• FALSE: When the premises in the paragraph directly contradict the statement
• UNCERTAIN: When the premises in the paragraph neither support nor contradict the

statement
Do not use your prior knowledge; your answer must be solely determined by the information
within the paragraph. Assume that all premises in the paragraph are true.

Question: Is the statement true, false, or uncertain?
481

As for the additional prompting techniques are explored in Appendix H.1, the tree-of-thought482

framework contains two prompts at each step: candidate generation and candidate evaluation. In483

addition to the general instructions above, the candidates generation prompt is shown below.484

Let’s reason step by step. Generate 3 alternative possible next steps, based on the question
and the answer so far. Each step consists of a single argument form, e.g. modus ponens. The
question takes 1 or more steps to solve.

485

15



Note that these 3 steps are NOT sequential. They must be alternatives to the same step.
486

As for candidate evaluation, the prompt is shown below. Note that the model may terminate the487

exploration prematurely by indicating a final answer. A practical consideration is that models tend488

to conclude too early; the prompt should be designed to emphasize exploration and instruct not to489

conclude unless sufficiently certain.490

Of the possible next steps, choose the one that **most directly advances the reasoning
process** toward determining the truth value of the statement. Select the best next step to
continue reasoning toward the answer. Do not conclude with TRUE, FALSE, or UNCERTAIN
yet — unless:

• All relevant reasoning paths have been explored, and
• No further logical deduction is possible or necessary.

Otherwise, output only the next reasoning step, using one valid argument form. Your goal is
to build a full reasoning chain, not jump to conclusions.

Only if this step logically completes the reasoning chain and no further analysis is needed,
then conclude with one of: TRUE, FALSE, or UNCERTAIN.

491

F Additional Experimental Validations of the JustLogic Benchmark492

F.1 Prior Knowledge Independence Test using Other Models493

To ensure that the results of the prior knowledge independence test, conducted with GPT-4 in494

Section 5.1, are replicable, we conduct the same test using Llama3-70B-Instruct. The results495

are shown in Table 8. Similar to Section 5.1, JustLogic has a high degree of prior knowledge496

independence, on par with other synthetically generated benchmarks, i.e. CLUTRR and ProofWriter,497

and substantially greater independence than the human-curated ones. Interestingly, ProofWriter’s498

accuracy is significantly lower than random, which is potentially problematic since models may be499

biased against statements whose truth-value aligns with reality.500

Table 8: Results of Prior Knowledge Independence Test using Llama3-70B-Instruct. The lower the
|∆|, the better.

|∆| ↓ Accuracy (%) Random (%)
CLUTRR 5.4 11.7 6.3
ProofWriter 8.6 24.7 33.3
LogiQA 2.0 23.3 48.3 25.0
FOLIO 10.0 43.3 33.3
JustLogic 6.4 39.0 33.3

F.2 Impact of Factual Accuracy on Model Performance501

Given that JustLogic randomly chooses sentences from GenericsKB to add to each instance’s502

argument structure, the final conclusion may be factually accurate or inaccurate in the real world. For503

example, if the conclusion is “It is not true that Japan is in Asia.", then the conclusion is factually504

inaccurate. Thus, there is a concern that models underperform due to confusion arising from factually505

inaccurate conclusions. Moreover, since some conclusions are factually accurate, such instances may506

exhibit artificially high performance.507

To study these concerns, we conducted the following empirical study. If the above concerns are true,508

we expect factually inaccurate conclusions to perform worse than factually accurate ones. Because509

all GenericsKB sentences are factually accurate, we can straightforwardly deduce each conclusion’s510

factual accuracy. For example, x ∨ y is factually accurate while ¬x is not.511
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Figure 5 shows the comparison of accuracies for five models: DeepSeek R1, OpenAI o1-mini,512

GPT-4o, Llama3-70B, and Llama3-8B; the left represents when reasoning depth is 1, while the right513

represents when depth is 7 or less.514

Figure 5: How factual accuracy of conclusions affects model accuracy.

These results reject the hypothesis that factually inaccurate conclusions perform worse than factually515

accurate ones; there is no consistent trend between both conclusion types. In fact, when depth=1,516

factually inaccurate conclusions exhibit higher performance for some models! At depths of 7 or517

less, GPT-4o and Llama3-70B saw a decrease in relative accuracy of factually inaccurate state-518

ments, DeepSeek R1 and Llama3-8B maintained similar accuracies, while OpenAI o1-mini saw an519

improvement.520

There are two reasons for these results. First, our prompt explicitly instructs models to answer the521

question only using the paragraph provided and without using prior knowledge. The full prompt is522

shown in Appendix E. Moreover, in few-shot prompts, the examples provided include conclusions523

where their factual accuracy does not match the correct answer. These measures encourage models to524

ignore prior knowledge and answer questions without considering the factual accuracy of conclusions525

in the real world.526

Second, how LLMs treat factual accuracy when reasoning deductively depends on the LLM’s527

training: specifically, the model’s ability to follow prompt instructions to ignore prior knowledge. For528

example, DeepSeek R1 biases toward factually inaccurate conclusions when deductively reasoning,529

while OpenAI o1-mini exhibits little difference in performance. Should an LLM exhibit significant530

differences in performance between factually accurate and inaccurate conclusions, it suggests the531

LLM has room for improvement in instruction following.532

Importantly, the ability to deduce whether premises lead to a conclusion without using prior knowledge533

is a fundamental human skill: we use it to evaluate whether a debater’s speech or journalist’s article534

supports their position. The inclusion of both factually accurate and inaccurate instances in JustLogic535

is a feature, not a bug.536

F.3 Impact of Language “Unnaturalness" on Model Performance537

Given that JustLogic is synthetically generated, there is a concern that its natural language may538

be highly unnatural to models, potentially hindering their ability to reason deductively. To study539

this concern, we compare the model perplexity of JustLogic, two other human-curated benchmarks540

(FOLIO and LogiQA), and two other synthetic benchmarks (CLUTRR and ProofWriter). Llama3-8B-541

Instruct (a non-reasoning model) and DeepSeek R1 Distill Qwen 14B (a reasoning model) are used.542

If JustLogic’s language is indeed highly unnatural, we expect its model perplexity to be significantly543

higher than other benchmarks.544

The results, as shown in Figure 6, reject the aforementioned hypothesis. JustLogic’s model perplexities545

are comparable to FOLIO and lower than the rest. This shows that despite JustLogic’s higher546

linguistic complexity (Table 3), its syntactic patterns are well understood by models. CLUTRR’s and547

ProofWriter’s higher perplexities are likely due to their unnatural symbolic-like language; LogiQA’s548

higher perplexities are likely because its questions are originally in Chinese and did not shed their549

foreign syntactic patterns when translated into English. Examples can be found in Appendix C.550
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Figure 6: Model perplexities of various logical reasoning benchmarks.

Therefore, while JustLogic’s natural language may seem unnatural to human readers, their syntactic551

patterns are highly intuitive to LLMs compared to other reasoning benchmarks. JustLogic’s language552

likely does not hinder LLMs’ understanding of the questions.553

G Details on Human Participants554

18 anonymous participants are given a random subset of questions. This is because deductive555

reasoning questions, especially those at high reasoning depths, are cognitively demanding and time-556

consuming; it is impractical to expect humans to complete 1050 questions. To ensure fairness,557

both models and participants are provided similar prompts and are given the same proportion of558

each reasoning depth. To ensure that participants understand the requirements of the task, a simple559

verification question is added. If they answer incorrectly, their subsequent responses are voided.560

Participants are recruited from Amazon Mechanical Turk [2] and are paid $24 per hour. Participation561

is entirely voluntary, and the survey posed no foreseeable risks to participants. As reflected in Figure562

7, to create a sample representative of the human average, the participants possess a diverse range of563

educational qualifications and familiarity with propositional logic.564

Figure 7: Participants’ highest level of education and familiarity with proposition logic.

H Additional Model Evaluations565

H.1 Additional Evaluations on Various Prompting Techniques566

While reasoning models do not require specific prompting techniques due to their reasoning-specific567

training, non-reasoning models observe significant deltas in accuracy based on the choice of prompts.568

Thus, we evaluate the best small and large non-reasoning models, Llama3-8B-Instruct and GPT-4o,569
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on additional prompting techniques: (i) the self-consistency decoding (SC) [28], where the answer is570

derived through majority voting over 5 sampled paths, and (ii) the tree-of-thought (ToT) framework571

[32], where each step generates 3 candidates and ultimately chooses 1; the maximum steps allowed is572

depth+ 2, but the model may terminate the search earlier. Finally, we also test (iii) a CoT prompt573

that does not mention propositional logic. Explicit mentions of technical terms in propositional logic,574

e.g. reductio ad absurdum, may hinder the reasoning ability of models that are less familiar with575

them. This prompts tests the aforementioned hypothesis.576

Table 9: Model and Human Evaluation Results.
0-shot Few-shot CoT SC-CoT ToT CoT (w/o prop. logic)

Llama3-8B-Instruct 49.8 41.8 57.8 54.6 38.6 54.0
Llama3-70B-Instruct 53.1 57.8 64.6 58.6 60.6 58.3
GPT-4o-mini 53.0 54.7 51.8 50.3 48.6 50.0
GPT-4o 53.8 58.3 65.6 67.1 71.4 67.4

The relative performance of the prompting techniques is heterogeneous across models. However,577

besides GPT-4o, we find that prompting techniques that are more expensive than vanilla CoT offer578

little to no performance advantage. Self-consistency CoT achieves similar performance to CoT; the579

former may require significantly higher sampled paths to reap its benefits. Tree-of-thought is too580

complex for most models to utilize, often hallucinating across prompts and failing to break down the581

problem into coherent steps. Lastly, we find that the explicit mention of propositional logic in the582

prompt is generally helpful towards model performance.583

H.2 Understanding the Performance of OpenAI o1 vs. DeepSeek R1584

OpenAI o1 (72.9%) performs substantially worse than DeepSeek R1 on JustLogic, despite other585

benchmarks suggesting their performance should be comparable. To rule out any human errors586

during testing and to seek an explanation for these results, we performed a qualitative analysis of587

OpenAI o1’s responses (all of which can be found in our GitHub repository). First, we find that o1’s588

response to questions of depth >= 5 are significantly shorter than that of depth = 3 or 4, which is589

counterintuitive. Second, o1 prematurely answers “Uncertain" for 90% of questions of depth = 7590

without faithfully engaging with the question. Figure 8, showing OpenAI o1’s and DeepSeek R1’s591

accuracy over various difficulty levels based on argument depth, reinforces our analysis. Both models592

have identical accuracies for low and medium difficulty problems, but o1 struggles at high difficulty593

problems, performing close to random probability.594

These observations suggest that OpenAI o1’s test-time compute may have been artificially limited,595

reducing its ability to solve deep, challenging questions. Importantly, this case study reflects596

JustLogic’s ability to flexibly probe models at various levels of difficulty.597

H.3 Futureproofing JustLogic598

As LLMs improve, we expect their performance on JustLogic to rise, which necessitates increasing599

JustLogic’s difficulty. One way is to increase the argument depth: specifically, we extended JustLogic600

to incorporate questions of very high depth (8 to 11), and evaluated them on the current SOTA601

reasoning and non-reasoning models, i.e. DeepSeek R1 and GPT-4o, using CoT prompt.602

Additionally, two other benchmarks, LogiQA 2.0 and FOLIO, are also evaluated to compare their603

difficulty. The results, as shown in Table 10, suggest that (i) as JustLogic’s question difficulty604

increases, model accuracy decreases, and (ii) hard JustLogic questions yield significantly lower605

accuracies than LogiQA 2.0 and FOLIO. This indicates that JustLogic is already more challenging606

than other benchmarks and is likely to remain so due to its reduced risk of performance saturation.607

I Qualitative Analysis of Failure Modes608

To identify exactly how JustLogic is challenging for existing LLMs, we conducted a qualitative609

analysis to identify the 4 major failure modes of various models’ responses to JustLogic questions.610
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Figure 8: How reasoning depth affects accuracy for OpenAI o1 and DeepSeek R1.

Table 10: SOTA Model Performance on various JustLogic difficulty levels and other benchmarks.
JustLogic

LogiQA 2.0 FOLIO
Easy Medium Hard Very Hard

GPT-4o 77.3 63.3 57.3 53.0 64.5 76.3
DeepSeek R1 90.0 83.3 68.0 65.0 87.6 86.2

We primarily rely on analyzing the chain-of-thought responses to investigate how they produced the611

wrong answers. High-level explanations and abbreviated examples are provided for the failure modes.612

(1) Logical inconsistency. Models sometimes produce arguments that rely on premises, implicit or613

otherwise, that contradicts earlier parts of their chain-of-thought. This causes models to generate614

incoherent arguments, and ultimately arrive at the wrong conclusion. For example, the following is a615

truncated response from OpenAI o1:616

While R implies that researchers are observing data,
without specific information, we cannot definitively
state R → S.
...
Since M ∨ R is true and M ∨ S is the statement we
are evaluating, and we have established M is true if
N is true, we can conclude:

• M ∨ S is true.
617

This line of reasoning suggests that M ∨R implies M ∨ S. For this to be the case, R→ S must be618

true. However, earlier in the reasoning chain, o1 says “we cannot definitively state R → S”. This619

argument is therefore logically inconsistent.620

(2) Wrong application of argument forms. Models sometimes identify the correct argument form621

to solve the question. However, mistakes are made when applying the form to the specific question622

context. In the truncated response below by Llama3-70B, disjunctive syllogism is, in fact, the623

appropriate argument form, but the opposite conclusion should have been made: the statement, pain624

can be severe and make a person unable to perform normal activities, does not hold.625

Premise 1: Either condensation is water vapor
changing to liquid water or the statement, pain
can be severe and make a person unable to perform
normal activities, does not hold.

626
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Premise 2: The claim that condensation is water
vapor changing to liquid water does not correspond
with reality.

Using disjunctive syllogism with premises 1 and
2, we conclude that the statement, pain can be
severe and make a person unable to perform normal
activities, holds.

627

(3) Using the wrong argument form. Sometimes, models attempt to use argument forms that628

logically cannot be applied to the context. Such mistakes often derail the response, making it entirely629

incoherent. In the following example of an output by Llama3-70B, modus tollens simply cannot be630

applied here; reductio ad absurdum should have been used instead.631

Premise 1: One may reasonably assume that if the
statement that ’football is a memory-making machine’
is incorrect, then fairways are lawns. Premise
2: Assuming the statement that ’football is a
memory-making machine’ is incorrect, we know that
it is not the case that fairways are lawns.

Using modus tollens with premise 1 and 2...
632

(4) False interpretation of facts. Models sometimes misinterpret the natural language facts entirely.633

This is most clearly seen when models translate sentences into the wrong logical form. While some634

of these translations seem trivially simple, especially for LLMs, such mistakes are as common as the635

other failure modes. In the example below, GPT-4o’s interpretation of Premise 2 is incorrect: Premise636

2 does in fact imply that the statement “most roses grow fairly rapidly” is false because of the word637

“mistakenly.”638

Premise 2: Some people mistakenly believe that most
roses grow fairly rapidly.

We cannot directly use Premise 2 to confirm or deny
(¬Q), as it only mentions a mistaken belief rather
than the truth value. Therefore, we do not have
sufficient information to directly negate (Q).

639

Nonetheless, some sentences are more complex and therefore more prone to false interpretations. In640

the example below, also by GPT-4o, Premise 2’s logical form should be ¬(A→ B)→ ¬C instead.641

Premises:
...
2. "Given that the claim that if police sergeants
receive calls, then good nutrition helps reduce
low birth weight, miscarriage and anemia does not
reflect reality, it can be inferred that some people
mistakenly believe that oil is simply a liquid form
of fat."

From Premise 2: (¬(A→B))
642

J Limitations & Future Works643

While JustLogic already achieves higher or similar natural language complexity to existing deductive644

reasoning benchmarks, as shown in Section 3.4, linguistic complexity can be further enhanced to645

emulate human-written prose, e.g. news articles and fiction stories. Notably, LLMs can be introduced646

in Step 2 of JustLogic’s dataset construction process, whereby instead of randomly selecting sentences647
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from GenericsKB, an LLM can generate fictional statements and scenarios, e.g. “John’s favorite648

food is hamburgers.". While LLM generation has been successful in datasets involving inductive649

reasoning and commonsense knowledge, e.g. MuSR [25], it is currently too unreliable for deductive650

reasoning due to several common mistakes, e.g. ignoring instructions, hallucination, and invalid logic.651

Nonetheless, as LLMs become more reliable, LLM generation is a promising approach worthy of652

further exploration.653

Error analysis using JustLogic can also be further explored. Interesting research questions include:654

Are models able to use argument forms appropriately? At which step of the argument chain does the655

model usually fail? What are the most common reasons for failure? These insights may be useful for656

fine-tuning models for logical reasoning tasks [20] and model guidance [3].657

JustLogic can be scaled to incorporate more question types related to logical reasoning, such as658

multiple-choice questions, identifying missing premises in arguments, identifying logical fallacies in659

arguments, and natural language sentence to formal logic translation. [20] provides a comprehensive660

taxonomy. JustLogic’s program can be adapted to accommodate each question type while maintaining661

its key advantages. By measuring deductive reasoning across multiple modalities using a single662

dataset construction method, JustLogic can provide more comprehensive and controlled evaluations663

and error analysis.664
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NeurIPS Paper Checklist665

1. Claims666

Question: Do the main claims made in the abstract and introduction accurately reflect the667

paper’s contributions and scope?668

Answer: [Yes]669

Justification: The claims on JustLogic’s dataset construction method and evaluation results670

accurately reflect the paper’s contributions and scope.671

Guidelines:672

• The answer NA means that the abstract and introduction do not include the claims made673

in the paper.674

• The abstract and/or introduction should clearly state the claims made, including the675

contributions made in the paper and important assumptions and limitations. A No or676

NA answer to this question will not be perceived well by the reviewers.677

• The claims made should match theoretical and experimental results, and reflect how678

much the results can be expected to generalize to other settings.679

• It is fine to include aspirational goals as motivation as long as it is clear that these goals680

are not attained by the paper.681

2. Limitations682

Question: Does the paper discuss the limitations of the work performed by the authors?683

Answer: [Yes]684

Justification: The limitations can be found in Appendix J.685

Guidelines:686

• The answer NA means that the paper has no limitation while the answer No means that687

the paper has limitations, but those are not discussed in the paper.688

• The authors are encouraged to create a separate "Limitations" section in their paper.689

• The paper should point out any strong assumptions and how robust the results are to690

violations of these assumptions (e.g., independence assumptions, noiseless settings,691

model well-specification, asymptotic approximations only holding locally). The authors692

should reflect on how these assumptions might be violated in practice and what the693

implications would be.694

• The authors should reflect on the scope of the claims made, e.g., if the approach was695

only tested on a few datasets or with a few runs. In general, empirical results often696

depend on implicit assumptions, which should be articulated.697

• The authors should reflect on the factors that influence the performance of the approach.698

For example, a facial recognition algorithm may perform poorly when image resolution699

is low or images are taken in low lighting. Or a speech-to-text system might not be used700

reliably to provide closed captions for online lectures because it fails to handle technical701

jargon.702

• The authors should discuss the computational efficiency of the proposed algorithms and703

how they scale with dataset size.704

• If applicable, the authors should discuss possible limitations of their approach to address705

problems of privacy and fairness.706

• While the authors might fear that complete honesty about limitations might be used by707

reviewers as grounds for rejection, a worse outcome might be that reviewers discover708

limitations that aren’t acknowledged in the paper. The authors should use their best709

judgment and recognize that individual actions in favor of transparency play an important710

role in developing norms that preserve the integrity of the community. Reviewers will711

be specifically instructed to not penalize honesty concerning limitations.712

3. Theory assumptions and proofs713

Question: For each theoretical result, does the paper provide the full set of assumptions and714

a complete (and correct) proof?715

Answer: [NA]716
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Justification: The JustLogic dataset and evaluation does not involve theoretical results.717

Guidelines:718

• The answer NA means that the paper does not include theoretical results.719

• All the theorems, formulas, and proofs in the paper should be numbered and cross-720

referenced.721

• All assumptions should be clearly stated or referenced in the statement of any theorems.722

• The proofs can either appear in the main paper or the supplemental material, but if they723

appear in the supplemental material, the authors are encouraged to provide a short proof724

sketch to provide intuition.725

• Inversely, any informal proof provided in the core of the paper should be complemented726

by formal proofs provided in appendix or supplemental material.727

• Theorems and Lemmas that the proof relies upon should be properly referenced.728

4. Experimental result reproducibility729

Question: Does the paper fully disclose all the information needed to reproduce the main ex-730

perimental results of the paper to the extent that it affects the main claims and/or conclusions731

of the paper (regardless of whether the code and data are provided or not)?732

Answer: [Yes]733

Justification: The experiment settings can be found in Section 4 and Appendix E.734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• If the paper includes experiments, a No answer to this question will not be perceived737

well by the reviewers: Making the paper reproducible is important, regardless of whether738

the code and data are provided or not.739

• If the contribution is a dataset and/or model, the authors should describe the steps taken740

to make their results reproducible or verifiable.741

• Depending on the contribution, reproducibility can be accomplished in various ways.742

For example, if the contribution is a novel architecture, describing the architecture fully743

might suffice, or if the contribution is a specific model and empirical evaluation, it may744

be necessary to either make it possible for others to replicate the model with the same745

dataset, or provide access to the model. In general. releasing code and data is often746

one good way to accomplish this, but reproducibility can also be provided via detailed747

instructions for how to replicate the results, access to a hosted model (e.g., in the case748

of a large language model), releasing of a model checkpoint, or other means that are749

appropriate to the research performed.750

• While NeurIPS does not require releasing code, the conference does require all submis-751

sions to provide some reasonable avenue for reproducibility, which may depend on the752

nature of the contribution. For example753

(a) If the contribution is primarily a new algorithm, the paper should make it clear how754

to reproduce that algorithm.755

(b) If the contribution is primarily a new model architecture, the paper should describe756

the architecture clearly and fully.757

(c) If the contribution is a new model (e.g., a large language model), then there should758

either be a way to access this model for reproducing the results or a way to reproduce759

the model (e.g., with an open-source dataset or instructions for how to construct the760

dataset).761

(d) We recognize that reproducibility may be tricky in some cases, in which case authors762

are welcome to describe the particular way they provide for reproducibility. In the763

case of closed-source models, it may be that access to the model is limited in some764

way (e.g., to registered users), but it should be possible for other researchers to have765

some path to reproducing or verifying the results.766

5. Open access to data and code767

Question: Does the paper provide open access to the data and code, with sufficient instruc-768

tions to faithfully reproduce the main experimental results, as described in supplemental769

material?770

24



Answer: [Yes]771

Justification: All code to reproduce the data, evaluations, and statistics in the paper can be772

found in the Github link in the abstract.773

Guidelines:774

• The answer NA means that paper does not include experiments requiring code.775

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/776

public/guides/CodeSubmissionPolicy) for more details.777

• While we encourage the release of code and data, we understand that this might not778

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not779

including code, unless this is central to the contribution (e.g., for a new open-source780

benchmark).781

• The instructions should contain the exact command and environment needed to run to782

reproduce the results. See the NeurIPS code and data submission guidelines (https:783

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.784

• The authors should provide instructions on data access and preparation, including how785

to access the raw data, preprocessed data, intermediate data, and generated data, etc.786

• The authors should provide scripts to reproduce all experimental results for the new787

proposed method and baselines. If only a subset of experiments are reproducible, they788

should state which ones are omitted from the script and why.789

• At submission time, to preserve anonymity, the authors should release anonymized790

versions (if applicable).791

• Providing as much information as possible in supplemental material (appended to the792

paper) is recommended, but including URLs to data and code is permitted.793

6. Experimental setting/details794

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-795

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the796

results?797

Answer: [Yes]798

Justification: The experiment settings can be found in Section 4 and Appendix E.799

Guidelines:800

• The answer NA means that the paper does not include experiments.801

• The experimental setting should be presented in the core of the paper to a level of detail802

that is necessary to appreciate the results and make sense of them.803

• The full details can be provided either with the code, in appendix, or as supplemental804

material.805

7. Experiment statistical significance806

Question: Does the paper report error bars suitably and correctly defined or other appropriate807

information about the statistical significance of the experiments?808

Answer: [No]809

Justification: Error bars are not reported due to the significant computational cost of evaluat-810

ing 8 models across 6 prompting methods (Section 5.2 and Appendix H). The evaluation of811

reasoning models is also particularly costly. Nonetheless, we do not expect the inclusion of812

error bars to have any significant effect on our key claims.813

Guidelines:814

• The answer NA means that the paper does not include experiments.815

• The authors should answer "Yes" if the results are accompanied by error bars, confidence816

intervals, or statistical significance tests, at least for the experiments that support the817

main claims of the paper.818

• The factors of variability that the error bars are capturing should be clearly stated (for819

example, train/test split, initialization, random drawing of some parameter, or overall820

run with given experimental conditions).821
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• The method for calculating the error bars should be explained (closed form formula, call822

to a library function, bootstrap, etc.)823

• The assumptions made should be given (e.g., Normally distributed errors).824

• It should be clear whether the error bar is the standard deviation or the standard error of825

the mean.826

• It is OK to report 1-sigma error bars, but one should state it. The authors should827

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis828

of Normality of errors is not verified.829

• For asymmetric distributions, the authors should be careful not to show in tables or830

figures symmetric error bars that would yield results that are out of range (e.g. negative831

error rates).832

• If error bars are reported in tables or plots, The authors should explain in the text how833

they were calculated and reference the corresponding figures or tables in the text.834

8. Experiments compute resources835

Question: For each experiment, does the paper provide sufficient information on the com-836

puter resources (type of compute workers, memory, time of execution) needed to reproduce837

the experiments?838

Answer: [Yes]839

Justification: The experiment details can be found in Appendix E.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or843

cloud provider, including relevant memory and storage.844

• The paper should provide the amount of compute required for each of the individual845

experimental runs as well as estimate the total compute.846

• The paper should disclose whether the full research project required more compute than847

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t848

make it into the paper).849

9. Code of ethics850

Question: Does the research conducted in the paper conform, in every respect, with the851

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?852

Answer: [Yes]853

Justification: This paper aligns with every point of the NeurIPS Code of Ethnics.854

Guidelines:855

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.856

• If the authors answer No, they should explain the special circumstances that require a857

deviation from the Code of Ethics.858

• The authors should make sure to preserve anonymity (e.g., if there is a special consider-859

ation due to laws or regulations in their jurisdiction).860

10. Broader impacts861

Question: Does the paper discuss both potential positive societal impacts and negative862

societal impacts of the work performed?863

Answer: [NA]864

Justification: This paper has no foreseeable societal impact beyond machine learning865

research.866

Guidelines:867

• The answer NA means that there is no societal impact of the work performed.868

• If the authors answer NA or No, they should explain why their work has no societal869

impact or why the paper does not address societal impact.870
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• Examples of negative societal impacts include potential malicious or unintended uses871

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations872

(e.g., deployment of technologies that could make decisions that unfairly impact specific873

groups), privacy considerations, and security considerations.874

• The conference expects that many papers will be foundational research and not tied875

to particular applications, let alone deployments. However, if there is a direct path to876

any negative applications, the authors should point it out. For example, it is legitimate877

to point out that an improvement in the quality of generative models could be used to878

generate deepfakes for disinformation. On the other hand, it is not needed to point out879

that a generic algorithm for optimizing neural networks could enable people to train880

models that generate Deepfakes faster.881

• The authors should consider possible harms that could arise when the technology is882

being used as intended and functioning correctly, harms that could arise when the883

technology is being used as intended but gives incorrect results, and harms following884

from (intentional or unintentional) misuse of the technology.885

• If there are negative societal impacts, the authors could also discuss possible mitigation886

strategies (e.g., gated release of models, providing defenses in addition to attacks,887

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from888

feedback over time, improving the efficiency and accessibility of ML).889

11. Safeguards890

Question: Does the paper describe safeguards that have been put in place for responsible891

release of data or models that have a high risk for misuse (e.g., pretrained language models,892

image generators, or scraped datasets)?893

Answer: [NA]894

Justification: The JustLogic dataset has no foreseeable risk for misuse.895

Guidelines:896

• The answer NA means that the paper poses no such risks.897

• Released models that have a high risk for misuse or dual-use should be released with898

necessary safeguards to allow for controlled use of the model, for example by requiring899

that users adhere to usage guidelines or restrictions to access the model or implementing900

safety filters.901

• Datasets that have been scraped from the Internet could pose safety risks. The authors902

should describe how they avoided releasing unsafe images.903

• We recognize that providing effective safeguards is challenging, and many papers do not904

require this, but we encourage authors to take this into account and make a best faith905

effort.906

12. Licenses for existing assets907

Question: Are the creators or original owners of assets (e.g., code, data, models), used in908

the paper, properly credited and are the license and terms of use explicitly mentioned and909

properly respected?910

Answer: [Yes]911

Justification: All datasets and codes used in this paper are appropriately acknowledged and912

the terms of use are properly respected.913

Guidelines:914

• The answer NA means that the paper does not use existing assets.915

• The authors should cite the original paper that produced the code package or dataset.916

• The authors should state which version of the asset is used and, if possible, include a917

URL.918

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.919

• For scraped data from a particular source (e.g., website), the copyright and terms of920

service of that source should be provided.921
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• If assets are released, the license, copyright information, and terms of use in the pack-922

age should be provided. For popular datasets, paperswithcode.com/datasets has923

curated licenses for some datasets. Their licensing guide can help determine the license924

of a dataset.925

• For existing datasets that are re-packaged, both the original license and the license of926

the derived asset (if it has changed) should be provided.927

• If this information is not available online, the authors are encouraged to reach out to the928

asset’s creators.929

13. New assets930

Question: Are new assets introduced in the paper well documented and is the documentation931

provided alongside the assets?932

Answer: [Yes]933

Justification: The JustLogic dataset is well-documented in Section 3 and the Github repo934

(provided in the Abstract).935

Guidelines:936

• The answer NA means that the paper does not release new assets.937

• Researchers should communicate the details of the dataset/code/model as part of their938

submissions via structured templates. This includes details about training, license,939

limitations, etc.940

• The paper should discuss whether and how consent was obtained from people whose941

asset is used.942

• At submission time, remember to anonymize your assets (if applicable). You can either943

create an anonymized URL or include an anonymized zip file.944

14. Crowdsourcing and research with human subjects945

Question: For crowdsourcing experiments and research with human subjects, does the paper946

include the full text of instructions given to participants and screenshots, if applicable, as947

well as details about compensation (if any)?948

Answer: [Yes]949

Justification: The survey with human participants in documented in Appendix G.950

Guidelines:951

• The answer NA means that the paper does not involve crowdsourcing nor research with952

human subjects.953

• Including this information in the supplemental material is fine, but if the main contri-954

bution of the paper involves human subjects, then as much detail as possible should be955

included in the main paper.956

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,957

or other labor should be paid at least the minimum wage in the country of the data958

collector.959

15. Institutional review board (IRB) approvals or equivalent for research with human960

subjects961

Question: Does the paper describe potential risks incurred by study participants, whether962

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)963

approvals (or an equivalent approval/review based on the requirements of your country or964

institution) were obtained?965

Answer: [Yes]966

Justification: The survey with human participants in documented in Appendix G. There are967

no foreseeable risks to the anonymous participants.968

Guidelines:969

• The answer NA means that the paper does not involve crowdsourcing nor research with970

human subjects.971
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• Depending on the country in which research is conducted, IRB approval (or equivalent)972

may be required for any human subjects research. If you obtained IRB approval, you973

should clearly state this in the paper.974

• We recognize that the procedures for this may vary significantly between institutions975

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the976

guidelines for their institution.977

• For initial submissions, do not include any information that would break anonymity (if978

applicable), such as the institution conducting the review.979

16. Declaration of LLM usage980

Question: Does the paper describe the usage of LLMs if it is an important, original, or981

non-standard component of the core methods in this research? Note that if the LLM is used982

only for writing, editing, or formatting purposes and does not impact the core methodology,983

scientific rigorousness, or originality of the research, declaration is not required.984

Answer: [No]985

Justification: LLMs are not an important part of the JustLogic dataset construction method.986

Guidelines:987

• The answer NA means that the core method development in this research does not988

involve LLMs as any important, original, or non-standard components.989

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)990

for what should or should not be described.991
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