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Abstract

We present a pioneering study on leveraging
multilingual pre-trained generative language
models for zero-shot cross-lingual event argu-
ment extraction (EAE) by formulating EAE
as a language generation task. Compared to
previous classification-based EAE models that
build classifiers on top of pre-trained masked
language models, our generative model effec-
tively encodes the event structures and better
captures the dependencies between arguments.
To achieve cross-lingual transfer, we design
language-agnostic templates to encode argu-
ment roles, and train our models on source lan-
guages to “generate” arguments in the source
languages to fill in the language-agnostic tem-
plate. The trained model can then be directly
applied to target languages to “generate” argu-
ments in the target languages to fill in the tem-
plate. Our experimental results demonstrate
that the proposed model outperforms the cur-
rent state-of-the-art results on zero-shot cross-
lingual EAE. Comprehensive ablation study
and error analysis are presented to better un-
derstand the advantages and the current lim-
itations of using multilingual generative lan-
guage models for cross-lingual transfer.

1 Introduction

Event argument extraction (EAE) aims to recog-
nize the entities serving as event arguments and
identify their corresponding roles. As illustrated
by the English example in Figure 1, given a trig-
ger word “destroyed” for a Conflict:Attack event,
an event argument extractor is expected to iden-
tify “commando”, “Iraq”, and “post” as the event
arguments and predict their corresponding roles.
Zero-shot cross-lingual EAE has attracted con-
siderable attention since it eliminates the require-
ment of labeled data for constructing EAE models
in low-resource languages (Subburathinam et al.,
2019; Ahmad et al., 2021; Nguyen and Nguyen,
2021). In this setting, the model is trained on exam-
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Figure 1: An illustration of cross-lingual event ar-
gument extraction. Given sentences in arbitrary lan-
guages and their event triggers (destroyed and i X)),
the model needs to identify arguments (commando,
Irag and post v.s. ZEFA, and X XfJK) and their cor-
responding roles.

ples from the source languages and directly tested
on instances from the target languages.

Recently, pre-trained generative language mod-
els have shown strong performances on monolin-
gual structured prediction tasks (Yan et al., 2021;
Huang et al., 2021; Paolini et al., 2021) includ-
ing the EAE task (Li et al., 2021; Hsu et al., 2021).
These works treat structured prediction problems as
language generation tasks and fine-tune pre-trained
generative language models to generate outputs
following designed templates such that the final
predictions can be easily decoded from the outputs.
They better capture the structures and dependen-
cies between entities comparing to the traditional
classification-based models (Wang et al., 2019; Lin
et al., 2020) as the templates provide additional
declarative information.

Despite the successes, the designs of templates in
prior works are language-dependent, which makes
it hard to extend them to the zero-shot cross-lingual
transfer setting. Naively applying such models
trained on the source languages to the target lan-
guages usually generates code-switching outputs,
yielding poor performance for zero-shot cross-
lingual transfer.! How to design language-agnostic
generative models for zero-shot cross-lingual struc-
tured prediction problems is still an open question.

"We will show this empirically in Section 6.



In this work, we present a pioneering study of
leveraging multilingual pre-trained generative mod-
els for zero-shot cross-lingual event argument ex-
traction and propose X-GEAR (a Cross-lingual
Generative Event Argument extractor). X-GEAR
enables the knowledge transfer across languages
by using language-agnostic templates, which serve
as unified media that can carry arguments informa-
tion in different languages. Given an input passage
and a carefully designed prompt that contains an
event trigger and the language-agnostic template,
X-GEAR is trained to generate a sentence to fill
in the language-agnostic template with arguments.
X-GEAR inbherits the strength of generative models
— it captures the event structures and the depen-
dencies between entities better than classification-
based models. In addition, the pre-trained decoder
inherently identifies named entities as candidates
for event arguments, and does not need an addi-
tional module for named entity recognition.

We conduct experiments on two multilingual
EAE datasets: ACE-2005 (Doddington et al., 2004)
and ERE (Song et al., 2015). The results demon-
strate that X-GEAR outperforms the state-of-the-
art zero-shot EAE models. We further perform
ablation studies to justify our design and present
comprehensive error analysis to understand the lim-
itations of using multilingual generative language
models for zero-shot cross-lingual transfer.

2 Related Work

Zero-shot cross-lingual structured prediction.
Zero-shot cross-lingual learning becomes an emerg-
ing research topic as it eliminates the requirement
of labeled data for training models in low-resource
languages. Various structured prediction tasks have
be studied, including named entity recognition (Pan
et al., 2017), dependency parsing (Ahmad et al.,
2019), relation extraction (Zou et al., 2018; Ni and
Florian, 2019), event detection (Huang et al., 2018;
Liu et al., 2019), and event argument extraction
(Subburathinam et al., 2019; Ahmad et al., 2021;
Nguyen and Nguyen, 2021). Most of them are
classification-based models that build classifiers
on top of a multilingual pre-trained masked lan-
guage models. To further deal with the discrepancy
between languages, some of them require addi-
tional information, such as bilingual dictionaries
(Liu et al., 2019; Ni and Florian, 2019), transla-
tion pairs (Zou et al., 2018), and dependency parse
trees (Subburathinam et al., 2019; Ahmad et al.,

2021; Nguyen and Nguyen, 2021). However, as
pointed out by previous literature (Li et al., 2021;
Hsu et al., 2021), classification-based models are
less flexible to include the structure information
and less powerful to model dependencies between
entities compared to generation-based models.

Generation-based structured prediction. Sev-
eral works have demonstrated that pre-trained gen-
erative language models lead to impressive per-
formance on monolingual structured prediction
tasks, including named entity recognition (Yan
et al., 2021), relation extraction (Huang et al., 2021;
Paolini et al., 2021), and event extraction (Du et al.,
2021; Li et al., 2021; Huang et al., 2021; Hsu et al.,
2021; Lu et al., 2021). Nevertheless, as mentioned
in Section 1, their designed generating targets are
language-dependent. Accordingly, directly apply-
ing their methods to the zero-shot cross-lingual
setting would result in bad performance.

3 Zero-Shot Cross-Lingual Event
Argument Extraction

In this paper, we focus on the zero-shot cross-
lingual EAE. Given an input passage and an
event trigger, an EAE model identifies arguments
and their corresponding roles. More specifically,
as illustrated by the training examples in Fig-
ure 2, given an input passage x and an event
trigger t (killed) that belongs to event type c
(Life:Die), an EAE model predicts a list of ar-

guments a = [ay, ag, ..., a;| (coalition, civilians,
woman, missile, houses) and their correspond-
ing roles r = [ry,79,..,71] (Agent, Victim, Vic-

tim, Instrument, Place). In a zero-shot cross-
lingual setting, the training instances Xyyqin =
{(x4, ti, ¢, a;, ri)}i]il belong to some source lan-
guages while the testing instances Xyt =
{(x4, ti, ¢, a;, ri)}f‘il are in other languages.

Similar to monolingual EAE, zero-shot cross-
lingual EAE models are expected to capture the
dependencies between arguments and make struc-
tured predictions accordingly. However, unlike
monolingual EAE, a zero-shot cross-lingual EAE
model has to overcome the differences between lan-
guages (e.g., grammars, word orders) and learn to
transfer the knowledge from the source languages
to the target languages.

4 Proposed Method

We formulate zero-shot cross-lingual EAE as a
language generation task and propose X-GEAR
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Figure 2: The overview of X-GEAR. Given an input passage and a carefully designed prompt containing an event
trigger and the language-agnostic template, X-GEAR fills in the language-agnostic template with event arguments.

(Cross-lingual Generative Event Argument ex-
tractor), which is depicted in Figure 2. There are
two challenges raised by this formulation: (1) The
generated output string needs to be easily decoded
into final predictions. (2) The input language may
vary during training and testing; therefore, the out-
put strings have to reflect the change of the in-
put language accordingly while remaining well-
structured so the first point still holds.

We address these challenges by designing
language-agnostic templates. Specifically, given
an input sentence x and a designed prompt that
encodes the trigger t, its event type c, and other
auxiliary information, X-GEAR generates an out-
put string following a language-agnostic template.
The language-agnostic template is designed to be
decoded easily so that the process of extracting
the final argument predictions a and role predic-
tions r from the generated output string can be
easily executed. Moreover, since the template is
language-agnostic, our method works regardless of
the input language.

X-GEAR fine-tunes a multilingual pre-trained
generative model, such as mBART-50 (Tang et al.,
2020) or mT5 (Xue et al., 2021), while it is aug-
mented with copy mechanism to better adapt to
the input language change. In the following sec-
tions, we present the details of X-GEAR, including
the language-agnostic templates, the target output
string, and the input format.

4.1 Language-Agnostic Template

We create a language-agnostic template 7, for
every event type c. For each event type, we list

all of its possible associated roles’ and form a
unique HTML-tag-style template for that event
type c. More precisely, in Figure 2, the Life:Die
event is associated with four roles: Agent, Victim,
Instrument, and Place. As a result, the template of
Life:Die event is designed as:

<Agent> [None ] </Agent><Victim> [None ] </Victim>

<Instrument> [None ] </Instrument><Place> [None ] </Place>.

For the ease of understanding, we use English
words to present the template. However, these
tokens ([None], <Agent>, </Agent>, <Victim>,
etc.) are encoded as special tokens® that the pre-
trained models have never seen and thus their rep-
resentations need to be learned from scratch. Since
these special tokens are not associate with any lan-
guage and are not pre-trained, they are considered
as language-agnostic.

4.2 Target Output String

X-GEAR learns to generate target output strings
that follow the form of language-agnostic tem-
plates. Given an example (x,t,c,a,r), we first
pick out the language-agnostic template 7, for
the event type c and then replace all “[None]”
in T, with the corresponding arguments in a
according to their roles r. If there are multiple
arguments for one role, we concatenate them
with a special token “[and]”. For instance, the

The associated roles can be obtained by skimming train-
ing data or directly from the annotation guideline if provided.
3In fact , the special tokens can be replaced by any other
format, such as <—tokenl—> or </-tokenl—>. Here, we use
<Agent> and </Agent> to highlight that arguments between
these two special tokens are corresponding to the Agent role.



training example in Figure 2 has two arguments
(civilians and woman) for the Victim role, and
the corresponding part of the output string would be

’<Victim> civilians [and] woman </Victim>.

By applying this rule, the full output string for the
training example in Figure 2 becomes

<Agent> coalition </Agent><Victim> civilians [and]
woman </Victim><Instrument> missile </Instrument>

<Place> houses </Place>.

Since the output string is in the HTML-tag style,
we can easily decode the argument and role predic-
tions from the generated output string via a simple
rule-based algorithm.

4.3 Input Format

As we mentioned previously, the key for the gener-
ative formulation of zero-shot cross-lingual EAE
is to guide the model to generate output strings in
a desired format. To facilitate this behavior, we in-
struct X-GEAR by feeding a prompt together with
input sentence X to it, as shown by Figure 2. A
prompt contains all valuable information for the
model to make a prediction, including a trigger t
and a language-agnostic template 7. Notice that
we do not explicitly include the event type c in the
prompt because the template T, implicitly contains
this information. Later on, in Section 6.2, we will
demonstrate the experiments on explicitly adding
event type c to the prompt and discuss about how
it influences the cross-lingual transferability.

4.4 Training

To enable X-GEAR to generate sentences in differ-
ent languages, we resort multilingual pre-trained
generative model to be our base model, which mod-
els the conditional probability of generating a new
token given the previous generated tokens and the
input context to the encoder ¢, i.e,

P(z|c) = HPgen(xi|x<iuC)7
)

where x; is the output of the decoder at step 3.

Copy mechanism. Although the multilingual
pre-trained generative models can generate se-
quences in many languages, fully relying on
them may results in generating hallucinating ar-
guments (Li et al., 2021). Observing that most of
the tokens in the target output string appear in the
input sequence*, we augment the multilingual pre-

“Except for the special token [and].

trained generative models with copy mechanism
to help X-GEAR better adapt to the cross-lingual
scenario. Specifically, we follow See et al. (2017)
to decide the conditional probability of generat-
ing a token t as a weighted sum of the vocabulary
distribution computed by multilingual pre-trained
generative model Py, and copy distribution P,

PX-GEAR(xi = t|~73<i7 C) =

Weopy * Peopy (t)+(1 — Weopy) - Pgen (i = t|r<s; )

where weopy € [0, 1] is the copy probability com-
puted by passing the decoder hidden state at time
step ¢ to a linear layer. As for Py, it refers to
the probability over input tokens® weighted by the
cross-attention that the last decoder layer computed
(at time step ¢). Our model is then trained end-to-
end with the following loss:

L=— logz Px_Gear (Ti|T<i, €).
7

5 Experimental Settings

5.1 Datasets

We consider two commonly used event extraction
datasets: ACE-2005 and ERE. ACE-2005 (Dod-
dington et al., 2004) provides entities, value, time,
relation, and event annotations for English, Ara-
bic, and Chinese. We follow the pre-processing
in Wadden et al. (2019) and keep 33 event types
and 22 argument roles. For the English split, we
use the split provided by Wadden et al. (2019). For
the Chinese portion, we follow the setting in Lin
et al. (2020). As for the Arabic part, we adopt
the setup proposed by Xu et al. (2021). Observ-
ing that part of the sentence breaks made from Xu
et al. (2021) being extremely long for pretrained
models to encode, we perform additional prepro-
cessing and postprocessing procedures for Arabic
data. Specifically, we split Arabic sentences into
several portions that any of the portion is shorter
than 80 tokens. Then, we map the models’ pre-
dictions of the split sentences back to the original
sentence during postprocessing.

ERE (Song et al., 2015) is created by the Deep
Exploration and Filtering of Test (DEFT) program.
We consider its English and Spanish annotations
and follow the pre-processing in Lin et al. (2020),
which keeps 38 event types and 21 argument roles
for both languages. Tablel shows more details
about the two datasets.

SIf ¢ does not appear in the input sequence, then the proba-
bility becomes zero.



Dataset Lan Train Dev Test
2 | #Events #Args | #Events #Args | #Events #Args
en 4202 4859 | 450 605 403 576
ACE-2005| ar 1743 2506 117 174 198 287
zh 2926 5581 217 404 190 336
ERE en 6208 8924 | 525 730 551 882
es 3131 4415 | 204 279 255 354

Table 1: Dataset statistics of ACE-2005 and ERE.

Notice that prior works working on zero-shot
cross-lingual transfer of event arguments mostly
focus on event argument role labeling (Subburathi-
nam et al., 2019; Ahmad et al., 2021), where they
assume ground truth entities are provided during
both training and testing. In their experimental data
splits, events in a sentence can be scattered in all
training, development, and test split since they treat
each event-entity pair as a different instance. In
this work, we consider event argument extraction
(Wang et al., 2019; Wadden et al., 2019; Lin et al.,
2020), which is a more realistic setting.

5.2 Evaluation

We follow previous work (Lin et al., 2020; Ahmad
et al., 2021) and consider the argument classifica-
tion F1 score to measure the performance of mod-
els. An argument-role pair is counted as correct if
both the argument offsets and the role type match
the ground truth. Given the ground truth arguments
a, ground truth roles r, predicted arguments a, and
predicted roles r, the argument classification F1
score is defined as the F1 score between the set
{(aj,r;)} and the set {(a;,T;)}. For every model,
we experiment it with three different random seeds
and report the average results.

5.3 Compared Models

We compare the following models and their imple-
mentation details are listed in Appendix A.

¢ OnelE (Lin et al., 2020), the state-of-the-art for
monolingual event extraction, is a classification-
based model trained with multitasking, includ-
ing entity extraction, relation extraction, event
extraction, and event argument extraction. We
simply replace its pre-trained embedding with
XLM-RoBERTa-large (Conneau et al., 2020) to
fit the zero-shot cross-lingual setting. Note that
the multi-task learning makes OnelE require ad-
ditional annotations, such as named entity anno-
tations and relation annotations.

¢ CL-GCN (Subburathinam et al., 2019) is a
classification-based model for cross-lingual

event argument role labeling (EARL). It con-
siders dependency parsing annotations to bridge
different languages and use GCN layers (Kipf
and Welling, 2017) to encode the parsing infor-
mation. We follow the implementation of previ-
ous work (Ahmad et al., 2021) and add two GCN
layers on top of XLM-RoBERTa-large. Since
CL-GCN focuses on EARL tasks, which assume
the ground truth entities are available during test-
ing, we add one name entity recognition module
jointly trained with CL-GCN.

* GATE (Ahmad et al., 2021), the state-of-the-art
model for zero-shot cross-lingual EARL, is a
classification-based model which considers de-
pendency parsing annotations as well. Unlike
CL-GCN, it uses a Transformer layer (Vaswani
et al., 2017) with modified attention to encode
the parsing information. We follow the origi-
nal implementation and add two GATE layers
on top of XLLM-RoBERTa-large. Similar to CL-
GCN, we add one name entity recognition mod-
ule jointly trained with GATE.

* TANL (Paolini et al., 2021) is a generative
model for monolingual EAE. Their predicted
target, augmented language, embeds labels into
the input passage by using brackets and verti-
cal bar symbols to mark the argument tokens
with their corresponding label. To adapt TANL
to zero-shot cross-lingual EAE, we replace its
pre-trained based model T5 (Raffel et al., 2020)
with mT5-base (Xue et al., 2021).

* X-GEAR is our proposed model. We consider
three different pre-trained generative language
models: mBART-50-large (Tang et al., 2020),
mT5-base, and mT5-large (Xue et al., 2021).

6 Experimental Results

6.1 Main Results

Table 2 and Table 3 list the results on ACE-2005
and ERE, respectively, with all combinations of
source languages and target languages. Note that
all the models have similar numbers of parameters
except for X-GEAR with mT5-large.

Comparison to prior generative models. We
first observe that TANL has poor performance
when transferring to different languages. The rea-
son is that its language-dependent template makes



#of en en en ar ar ar zh zh zh
Model A I N A
en zh ar ar en zh zh en ar
OnelE (XLM-R-large) (Lin et al., 2020) ~560M 63.6 425 375|578 275 31.2]69.6 515 31.1 458
CL-GCN (XLM-R-large) (Subburathinam et al., 2019) ~570M 59.8 294 250|475 254 194|622 408 233 |37.0
GATE (XLM-R-large) (Ahmad et al., 2021) ~630M 67.0 492 445 ]59.6 276 263|706 46.7 373|476
TANL (mT5-base) (Paolini et al., 2021) \ ~560M \ 59.1 38.6 29.7 \ 50.1 183 169 \ 65.2 333 183 \ 36.6
X-GEAR (mBART-50-large) ~610M 68.6 50.0 379|605 30.8 304|654 46.1 314 | 46.8
X-GEAR (mT5-base) ~580M 679 53.1 420|659 285 304|694 528 32.0|49.1
X-GEAR (mT5-large) \ ~1200M \ 71.1 54.0 45.1 \ 68.2 33.6 33.0 \ 68.9 55.0 33.1 \ 51.3

Table 2: Average results of ACE-2005 with three different seeds. The best is in bold and the second best is
underlined. “en = zh” denotes that models transfers from en to zh. X-GEAR outperforms other baselines.

en en es es
Model (3 (3 J 4 avg

en es es en
OnelE (XLM-R-large) 644 568 | 64.8 569 | 60.7
CL-GCN (XLM-R-large) 61.9 519|629 485|559
GATE (XLM-R-large) 66.4 61.5| 63.0 56.5]|61.9
TANL (mTS5-base) \ 65.9 40.3 \ 58.6 474 \ 53.1
X-GEAR (mBART-50-large) | 69.5 57.3 | 63.9 589 | 62.4
X-GEAR (mT5-base) 69.8 579 | 66.1 59.0 | 63.2
X-GEAR (mT5-large) \ 729 59.7 \ 674 64.1 \ 66.0

Table 3: Average results of ERE with three different
seeds. The best is in bold and the second best is under-
lined. “en = es” denotes that models transfers from en
to es. X-GEAR outperforms other baselines.

TANL easily generate code-switching outputs®,
which is a case that pretrained generative model
rarely seen, leading to the poor performance. In
contrast, X-GEAR considers the language-agnostic
templates and achieve better performance for zero-
shot cross-lingual transfer.

Comparison to classification models. X-GEAR
with mT5-base outperforms OnelE, CL-GCN, and
GATE on almost all the combinations of the source
language and the target language. Especially,
the improvement becomes much larger when the
source language is Arabic. This suggests that lan-
guage generation framework is indeed a promising
approach for zero-shot cross-lingual EAE.

It is worth noting that OnelE, CL-GCN, and
GATE require additional pipeline named entity
recognition module to make predictions. Moreover,
CL-GCN and GATE needs additional dependency
parsing annotations to align the representations of
different languages. On the contrary, X-GEAR is
able to leverage the learned knowledge from the
pre-trained generative models and therefore no ad-
ditional modules or annotations are needed.

®The output text contains predictions written in the target
language and templated tokens representing in the source
language.

Comparison to different pre-trained generative
language models. Interestingly, using mT5-base
is more effective than using mBART-50-large, even
if they have similar amount of parameters. We
conjecture that the use of special tokens leads to
this difference. mBART-50 has different begin-
of-sequence (BOS) tokens for different languages.
During generation, we have to specify which BOS
token we would like to use as the start token. We
guess that this language specific BOS token makes
mBART-50 harder to transfer the knowledge from
the source language to the target language. Unlike
mBART-50, mT5 does not have such language spe-
cific BOS tokens. During generation, mT5 uses
the padding token as the start token to generate
sequence. This design is more general and benefit
zero-shot cross-lingual transfer.

Larger pre-trained models are better. Finally,
we demonstrate that the performance of X-GEAR
can be further boosted with a larger pre-trained
generative language models. As shown by Table 2
and Table3, X-GEAR with mT5-large achieves the
best scores on most of the cases.

6.2 Ablation Study

Copy mechanism. We first study the effect of
copy mechanism. Table 4 lists the performance
of X-GEAR with and without copy mechanism. It
shows improvements of adding copy mechanism
when using mT5-large and mT-base. However, in-
terestingly, adding copy mechanism is not effective
to mBART-50. We conjecture that this is because
the pre-trained objective of mBART-50 is denois-
ing and reconstructing the original sentence (Liu
et al., 2020), hence, mBART-50 has already learn
to copy tokens from the input. Therefore, adding
copy mechanism is less useful. On the other hand,
the pre-trained objective of mT5 is various NLP
tasks which are far away from copying input. The



en ar zh XX XX XX en ar zh XX XX XX
Model J U U Y U I | avg Model J U U U J I | avg
XX XX XX en ar zh XX XX XX | en ar zh
mT5-large 56.8 449 523|532 48.8 52.0|51.3 X-GEAR 543 41.6 51.4(49.7 46.6 51.0|49.1
- w/o copy 55.1 45.0 515|520 463 53.2|50.5 w/ English Tokens 53.3 39.3 52.3|49.2 46.5 49.2 1483
w/ Translated Tokens | 51.7 40.4 522 |49.8 45.6 48.8|48.1
mT>-base 543 4L6 514497 46.6 5101 49.1 w/ Special Tokens | 52.3 39.7 51.8|49.0 45.4 493 |47.9
- w/o copy 52.1 39.5 47.6|48.1 427 485|464
BART-50-1c 522 40.6 47.6|48.5 433 48.6 | 46.8 . . . .
Iflw/o copy arge 500 422 49.6 ‘ 50.6 43.5 487 ‘ 476 Table 5: Ablation study on including event type infor-

Table 4: Ablation study on copy mechanism for ACE-
2005. “en = xx” indicates the average of “en = en”,
“en = zh”, and “en = ar”.

copy mechanism thus becomes beneficial to mTS5.

Including event type in prompts. In Section 4,
we mentioned that the designed prompt for X-
GEAR consists of only the input sentence and the
language-agnostic template. In this section, we
discuss whether explicitly including the event type
information in the prompt is helpful. We consider
three ways to include the event type information:

* English tokens. We put the English version
of the event type in the prompt even if we are
training or testing on non-English languages, for
example, Attack stands for the event type Attack.

Translated tokens. For each event type, we pre-
pare the translated version of that event type to-
ken. For example, we use Z{ifi to represent the
Attack event type. During training or testing, we
decide the language according to the language
of the input passage. Notice that all the event
types are written in English in the ACE-2005
and ERE. Hence, we use off-the-self machine
translation tool to perform the translation.

Special tokens. We create a special token for
every event type and let the model to learn
the representations of the special tokens from
scratch. For instance, we use <—attack-> to
represent the Attack event type.

Table 5 shows the ablation study. In most cases,
including event type information in the prompt
drops the performance. One crucial reason is that
one word in a language can be mapped to several
words in another language. For example, the Life
event type is related to Marry, Divorce, Born, and
Die four sub-event types. In English, we can use
just one word Life to cover all four sub-event types.
However, In Chinese, when talking about Marry
and Divorce, Life should be translated to “AE7&”;
when talking about Born and Die, Life should be

translated to “4=#”. This mismatch causes the

mation in prompts for ACE-2005. “en = xx” indicates

LLINT3

the average of “en =- en”, “en = zh”, and “en = ar”.

performance drop when considering event types in
prompts. Currently, we conclude that it is hard to
utilize the information of event types in an appro-
priate way for all languages. How to resolve this
challenge is considered as our future work.

7 Analysis

In this section, we perform error analysis of X-
GEAR when transferring from Arabic to English
and transferring from Chinese to English. For each
case, we sample 30 failed examples and present the
distribution of various error types in Figure 3. We
discuss some of the categories as follows:

Errors on both monolingual and cross-lingual
model. We compare the predicted results from
X-GEAR(ar = en) with X-GEAR(en = en), or
from X-GEAR(zh = en) with X-GEAR(en = en).
If their predictions are similar and both of them
are wrong when compared to the gold output, we
classify the error to this category. To overcome the
errors in this category, the potential solution is to
improve monolingual models for EAE tasks.

Over generate. Errors in this category happen
more often in X-GEAR(ar = en). It is likely be-
cause the entities in Arabic are usually much longer
than that in English, when measuring by the num-
ber of sub-words. Based on our statistics, the av-
erage entity span length is 2.85 for Arabic, and is
2.00 for English (length of sub-words). This leads
to the natural for our X-GEAR(ar = En) to overly
generate some tokens even though they have cap-
tured the correct concept. An example is that the
model predicts “The EU foreign ministers”, while
the ground truth is “ministers”.

Label disagreement on different language split.
The annotations for the ACE dataset in different
language split contain some ambiguity. For exam-
ple, given sentence “He now also advocates letting
in U.S. troops for a war against Iraq even though
it is a fellow Muslim state.” and the queried trigger
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Figure 3: Distribution of errors that made by X-GEAR. Left: The distribution for our model that transfers from
Arabic to English; Right: The distribution for our model trained on Chinese and tested on English.

“war”, the annotations in English tends to label Irag
as the Place where the event happen, while similar
situations in other languages will mark /raq as the
Target for the war.

Grammar difference between languages. An
example for this category is “... Blackstone Group
would buy Vivendi’s theme park division, including
Universal Studios Hollywood ...” and the queried
trigger “buy”. We observe that X-GEAR(ar = en)
predicts Videndi as the Artifact been sold and di-
vision is the Seller, while X-GEAR(en = en) can
correctly understand that Videndi are the Seller and
division is the Artifact. We hypothesize the reason
being the differences between the grammar in Ara-
bic and English. The word order of the sentence
“Vivendi’s theme park division” in Arabic is reversed
with its English counterpart, that is, “theme park di-
vision” will be written before “Vivendi” in Arabic.
Such difference leads to the errors in this category.

Generate a word that is not in the passage. In
X-GEAR(zh = en), we observe several errors re-
garding generating a word that is not in the passage.
There are two typical situations. The first case is
that X-GEAR(zh = en) presents difficulty under-
standing singular and plural nouns. For example,
the model will generate “studios” as prediction
while only “studio” appear in the passage. This
is because the concept regarding the differences
between singular and plural nouns are less empha-
sized in Chinese. The second cases is that X-GEAR
will generate some random predictions in Chinese,
leading to false positives.

Generate a correct prediction, but in Chinese.
This is a special case of “Generate a word that is

not in the passage”. In this category, we observe
that although the prediction is in Chinese (hence, a
wrong prediction), it is correct if we translate the
prediction into English.

From these examples, we highlight two remain-
ing challenges for future studies. First, there are
several errors raising because of the discrepancies
between the source language and the target lan-
guage, such as the output length distribution mis-
matching or the grammar differences. This induces
the research question on how we can mitigate this
discrepancy without the help of using additional
labels. Second, we demonstrate that even though
we have already incorporated copy mechanism to
facilitate the generation in target language, it is still
challenging for the model to be fully controlled
when adapting to cross-lingual cases. To cope with
this issue, a potential solution is to use constrained
decoding (Cao et al., 2021) to force all the gen-
erated tokens appearing in input. However, it is
still an open question on how can we enforce this
controlled generation more flexibly yet reliably.

8 Conclusion

We present a pioneering study on leveraging multi-
lingual pre-trained generative language models for
zero-shot cross-lingual event argument extraction.
We design language-agnostic templates to over-
come the discrepancy between languages and pro-
pose X-GEAR, a generative zero-shot cross-lingual
event argument extractor. Our experimental results
show that X-GEAR outperforms the current state-
of-the-art models, which demonstrates the potential
of using language generation framework to solve
zero-shot cross-lingual structured prediction tasks.
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A Implementation Details three different pre-trained generative language
models: mBART-50-large (Tang et al., 2020),
mT5-base, and mT5-large (Xue et al., 2021).

' . . When fine-tune the pre-trained models, we set
* OnelE (Lin et al., 2020). We use their provided the learning rate to 10~%. The batch size is set

code’ to train the model with the provided de- to 8. The number of epochs is 60.
fault settings. It is worth mention that for the

Arabic split in the ACE-2005 dataset, OnelE is

trained with only entity extraction, event extrac-

tion, and event argument extraction since there

is no relation labels in Xu et al. (2021)’s prepro-

cessing script. All other parameters are set to

the default values.

¢ CL-GCN (Subburathinam et al., 2019). We re-
fer the released code from Ahmad et al. (2021)3
to re-implement the CL-GCN method. Specifi-
cally, we adapt the baseline framework that de-
scribed and implemented in OnelE’s code (Lin
et al., 2020), but we remove its relation extrac-
tion module and add two layers of GCN on top
of XLM-RoBERTa-large. The pos-tag and de-
pendency parsing annotations are obtained by
applying Stanza (Qi et al., 2020). All other pa-
rameters are set to the be the same as the training
of OnelE.

¢ GATE (Ahmad et al., 2021). We refer the offi-
cial released code from Ahmad et al. (2021)°
to re-implement GATE. Similar to CL-GCN,
we adapt the baseline framework that described
and implemented in OnelE’s code (Lin et al.,
2020), but we remove its relation extraction
module and add two layers of GATE on top
of XLM-RoBERTa-large. The pos-tag and de-
pendency parsing annotations are also obtained
by applying Stanza (Qi et al., 2020). The hyper-
parameter of ¢ in GATE is set to be [2, 2, 4, 4,
00, 00, 00, 00]. All other parameters are set to
the be the same as the training of OnelE.

e TANL (Paolini et al., 2021). To adapt TANL
to zero-shot cross-lingual EAE, we adapt the
public code!” and replace its pre-trained based
model TS5 (Raffel et al., 2020) with mT5-base
(Xue et al., 2021). All other parameters are set
to their default values.

We describe the implementation details for all the
models as follows:

* X-GEAR is our proposed model. We consider

"http://blender.cs.illinois.edu/
software/oneie/

$https://github.com/wasiahmad/GATE

*https://github.com/wasiahmad/GATE

Yhttps://github.com/amazon-research/
tanl
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