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Abstract

We present a pioneering study on leveraging001
multilingual pre-trained generative language002
models for zero-shot cross-lingual event argu-003
ment extraction (EAE) by formulating EAE004
as a language generation task. Compared to005
previous classification-based EAE models that006
build classifiers on top of pre-trained masked007
language models, our generative model effec-008
tively encodes the event structures and better009
captures the dependencies between arguments.010
To achieve cross-lingual transfer, we design011
language-agnostic templates to encode argu-012
ment roles, and train our models on source lan-013
guages to “generate” arguments in the source014
languages to fill in the language-agnostic tem-015
plate. The trained model can then be directly016
applied to target languages to “generate” argu-017
ments in the target languages to fill in the tem-018
plate. Our experimental results demonstrate019
that the proposed model outperforms the cur-020
rent state-of-the-art results on zero-shot cross-021
lingual EAE. Comprehensive ablation study022
and error analysis are presented to better un-023
derstand the advantages and the current lim-024
itations of using multilingual generative lan-025
guage models for cross-lingual transfer.026

1 Introduction027

Event argument extraction (EAE) aims to recog-028

nize the entities serving as event arguments and029

identify their corresponding roles. As illustrated030

by the English example in Figure 1, given a trig-031

ger word “destroyed” for a Conflict:Attack event,032

an event argument extractor is expected to iden-033

tify “commando”, “Iraq”, and “post” as the event034

arguments and predict their corresponding roles.035

Zero-shot cross-lingual EAE has attracted con-036

siderable attention since it eliminates the require-037

ment of labeled data for constructing EAE models038

in low-resource languages (Subburathinam et al.,039

2019; Ahmad et al., 2021; Nguyen and Nguyen,040

2021). In this setting, the model is trained on exam-041

Attacker

Place

Target

Attacker

Target

接近高级军官的消息灵通人士

说，南斯拉夫 军队 不会离

开军营去干涉 反对派 起义。

Australian  commandos , who have been 

operating deep in    Iraq , destroyed a 

command and control post and killed a 

number of soldiers.

Figure 1: An illustration of cross-lingual event ar-
gument extraction. Given sentences in arbitrary lan-
guages and their event triggers (destroyed and 起义),
the model needs to identify arguments (commando,
Iraq and post v.s. 军队, and 反对派) and their cor-
responding roles.

ples from the source languages and directly tested 042

on instances from the target languages. 043

Recently, pre-trained generative language mod- 044

els have shown strong performances on monolin- 045

gual structured prediction tasks (Yan et al., 2021; 046

Huang et al., 2021; Paolini et al., 2021) includ- 047

ing the EAE task (Li et al., 2021; Hsu et al., 2021). 048

These works treat structured prediction problems as 049

language generation tasks and fine-tune pre-trained 050

generative language models to generate outputs 051

following designed templates such that the final 052

predictions can be easily decoded from the outputs. 053

They better capture the structures and dependen- 054

cies between entities comparing to the traditional 055

classification-based models (Wang et al., 2019; Lin 056

et al., 2020) as the templates provide additional 057

declarative information. 058

Despite the successes, the designs of templates in 059

prior works are language-dependent, which makes 060

it hard to extend them to the zero-shot cross-lingual 061

transfer setting. Naively applying such models 062

trained on the source languages to the target lan- 063

guages usually generates code-switching outputs, 064

yielding poor performance for zero-shot cross- 065

lingual transfer.1 How to design language-agnostic 066

generative models for zero-shot cross-lingual struc- 067

tured prediction problems is still an open question. 068

1We will show this empirically in Section 6.
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In this work, we present a pioneering study of069

leveraging multilingual pre-trained generative mod-070

els for zero-shot cross-lingual event argument ex-071

traction and propose X-GEAR (a Cross-lingual072

Generative Event Argument extractor).X-GEAR073

enables the knowledge transfer across languages074

by using language-agnostic templates, which serve075

as unified media that can carry arguments informa-076

tion in different languages. Given an input passage077

and a carefully designed prompt that contains an078

event trigger and the language-agnostic template,079

X-GEAR is trained to generate a sentence to fill080

in the language-agnostic template with arguments.081

X-GEAR inherits the strength of generative models082

— it captures the event structures and the depen-083

dencies between entities better than classification-084

based models. In addition, the pre-trained decoder085

inherently identifies named entities as candidates086

for event arguments, and does not need an addi-087

tional module for named entity recognition.088

We conduct experiments on two multilingual089

EAE datasets: ACE-2005 (Doddington et al., 2004)090

and ERE (Song et al., 2015). The results demon-091

strate that X-GEAR outperforms the state-of-the-092

art zero-shot EAE models. We further perform093

ablation studies to justify our design and present094

comprehensive error analysis to understand the lim-095

itations of using multilingual generative language096

models for zero-shot cross-lingual transfer.097

2 Related Work098

Zero-shot cross-lingual structured prediction.099

Zero-shot cross-lingual learning becomes an emerg-100

ing research topic as it eliminates the requirement101

of labeled data for training models in low-resource102

languages. Various structured prediction tasks have103

be studied, including named entity recognition (Pan104

et al., 2017), dependency parsing (Ahmad et al.,105

2019), relation extraction (Zou et al., 2018; Ni and106

Florian, 2019), event detection (Huang et al., 2018;107

Liu et al., 2019), and event argument extraction108

(Subburathinam et al., 2019; Ahmad et al., 2021;109

Nguyen and Nguyen, 2021). Most of them are110

classification-based models that build classifiers111

on top of a multilingual pre-trained masked lan-112

guage models. To further deal with the discrepancy113

between languages, some of them require addi-114

tional information, such as bilingual dictionaries115

(Liu et al., 2019; Ni and Florian, 2019), transla-116

tion pairs (Zou et al., 2018), and dependency parse117

trees (Subburathinam et al., 2019; Ahmad et al.,118

2021; Nguyen and Nguyen, 2021). However, as 119

pointed out by previous literature (Li et al., 2021; 120

Hsu et al., 2021), classification-based models are 121

less flexible to include the structure information 122

and less powerful to model dependencies between 123

entities compared to generation-based models. 124

Generation-based structured prediction. Sev- 125

eral works have demonstrated that pre-trained gen- 126

erative language models lead to impressive per- 127

formance on monolingual structured prediction 128

tasks, including named entity recognition (Yan 129

et al., 2021), relation extraction (Huang et al., 2021; 130

Paolini et al., 2021), and event extraction (Du et al., 131

2021; Li et al., 2021; Huang et al., 2021; Hsu et al., 132

2021; Lu et al., 2021). Nevertheless, as mentioned 133

in Section 1, their designed generating targets are 134

language-dependent. Accordingly, directly apply- 135

ing their methods to the zero-shot cross-lingual 136

setting would result in bad performance. 137

3 Zero-Shot Cross-Lingual Event 138

Argument Extraction 139

In this paper, we focus on the zero-shot cross- 140

lingual EAE. Given an input passage and an 141

event trigger, an EAE model identifies arguments 142

and their corresponding roles. More specifically, 143

as illustrated by the training examples in Fig- 144

ure 2, given an input passage x and an event 145

trigger t (killed) that belongs to event type c 146

(Life:Die), an EAE model predicts a list of ar- 147

guments a = [a1, a2, ..., al] (coalition, civilians, 148

woman, missile, houses) and their correspond- 149

ing roles r = [r1, r2, .., rl] (Agent, Victim, Vic- 150

tim, Instrument, Place). In a zero-shot cross- 151

lingual setting, the training instances Xtrain = 152

{(xi, ti, ci,ai, ri)}Ni=1 belong to some source lan- 153

guages while the testing instances Xtest = 154

{(xi, ti, ci,ai, ri)}Mi=1 are in other languages. 155

Similar to monolingual EAE, zero-shot cross- 156

lingual EAE models are expected to capture the 157

dependencies between arguments and make struc- 158

tured predictions accordingly. However, unlike 159

monolingual EAE, a zero-shot cross-lingual EAE 160

model has to overcome the differences between lan- 161

guages (e.g., grammars, word orders) and learn to 162

transfer the knowledge from the source languages 163

to the target languages. 164

4 Proposed Method 165

We formulate zero-shot cross-lingual EAE as a 166

language generation task and propose X-GEAR 167
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Zero-Shot 
Cross-Lingual

Transfer

Agent coalition

Victim civilians, woman

Instrument missile

Place houses

Input Passage Prompt<SEP>

Multilingual Generative Model

Five Iraqi civilians, including a woman, were killed Monday when their 
houses were hit by a missile fired by the US - led coalition warplanes, 
witnesses said.

<Agent> coalition </Agent> <Victim> civilians [and] woman </Victim> 
<Instrument> missile </Instrument> <Place> houses </Place>

<Trigger> killed <Template>  <Agent> [None] </Agent> <Victim> [None] 
</Victim> <Instrument> [None] </Instrument> <Place> [None] </Place>

Agent 以军

Victim 青年

Instrument 催泪弹,子弹, 实弹

Place None

Input Passage Prompt<SEP>

Multilingual Generative Model

巴勒斯坦人持续以石块攻击以色列的部队，以军则是还以催泪弹、
橡皮子弹甚至是实弹，结果又造成两名巴勒斯坦青年丧生，10多人
受伤。

<Agent> 军 </Agent> <Victim> 青年 </Victim> <Instrument> 催泪弹
[and] 子弹 [and] 实弹 </Instrument> <Place> [None] </Place>

<Trigger>丧生<Template>   <Agent> [None] </Agent> <Victim> [None] 
</Victim> <Instrument> [None] </Instrument> <Place> [None] </Place>

Life:Die Event Life:Die Event

Training Testing

Figure 2: The overview of X-GEAR. Given an input passage and a carefully designed prompt containing an event
trigger and the language-agnostic template, X-GEAR fills in the language-agnostic template with event arguments.

(Cross-lingual Generative Event Argument ex-168

tractor), which is depicted in Figure 2. There are169

two challenges raised by this formulation: (1) The170

generated output string needs to be easily decoded171

into final predictions. (2) The input language may172

vary during training and testing; therefore, the out-173

put strings have to reflect the change of the in-174

put language accordingly while remaining well-175

structured so the first point still holds.176

We address these challenges by designing177

language-agnostic templates. Specifically, given178

an input sentence x and a designed prompt that179

encodes the trigger t, its event type c, and other180

auxiliary information, X-GEAR generates an out-181

put string following a language-agnostic template.182

The language-agnostic template is designed to be183

decoded easily so that the process of extracting184

the final argument predictions a and role predic-185

tions r from the generated output string can be186

easily executed. Moreover, since the template is187

language-agnostic, our method works regardless of188

the input language.189

X-GEAR fine-tunes a multilingual pre-trained190

generative model, such as mBART-50 (Tang et al.,191

2020) or mT5 (Xue et al., 2021), while it is aug-192

mented with copy mechanism to better adapt to193

the input language change. In the following sec-194

tions, we present the details of X-GEAR, including195

the language-agnostic templates, the target output196

string, and the input format.197

4.1 Language-Agnostic Template198

We create a language-agnostic template Tc for199

every event type c. For each event type, we list200

all of its possible associated roles2 and form a 201

unique HTML-tag-style template for that event 202

type c. More precisely, in Figure 2, the Life:Die 203

event is associated with four roles: Agent, Victim, 204

Instrument, and Place. As a result, the template of 205

Life:Die event is designed as: 206

<Agent>[None]</Agent><Victim>[None]</Victim>

<Instrument>[None]</Instrument><Place>[None]</Place>.
207

208

For the ease of understanding, we use English 209

words to present the template. However, these 210

tokens ([None], <Agent>, </Agent>, <Victim>, 211

etc.) are encoded as special tokens3 that the pre- 212

trained models have never seen and thus their rep- 213

resentations need to be learned from scratch. Since 214

these special tokens are not associate with any lan- 215

guage and are not pre-trained, they are considered 216

as language-agnostic. 217

4.2 Target Output String 218

X-GEAR learns to generate target output strings 219

that follow the form of language-agnostic tem- 220

plates. Given an example (x, t, c,a, r), we first 221

pick out the language-agnostic template Tc for 222

the event type c and then replace all “[None]” 223

in Tc with the corresponding arguments in a 224

according to their roles r. If there are multiple 225

arguments for one role, we concatenate them 226

with a special token “[and]”. For instance, the 227

2The associated roles can be obtained by skimming train-
ing data or directly from the annotation guideline if provided.

3In fact , the special tokens can be replaced by any other
format, such as <–token1–> or </–token1–>. Here, we use
<Agent> and </Agent> to highlight that arguments between
these two special tokens are corresponding to the Agent role.
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training example in Figure 2 has two arguments228

(civilians and woman) for the Victim role, and229

the corresponding part of the output string would be230

<Victim> civilians [and] woman</Victim>.231

By applying this rule, the full output string for the232

training example in Figure 2 becomes233

<Agent> coalition</Agent><Victim> civilians[and]

woman</Victim><Instrument> missile</Instrument>

<Place> houses</Place>.

234

235

Since the output string is in the HTML-tag style,236

we can easily decode the argument and role predic-237

tions from the generated output string via a simple238

rule-based algorithm.239

4.3 Input Format240

As we mentioned previously, the key for the gener-241

ative formulation of zero-shot cross-lingual EAE242

is to guide the model to generate output strings in243

a desired format. To facilitate this behavior, we in-244

struct X-GEAR by feeding a prompt together with245

input sentence x to it, as shown by Figure 2. A246

prompt contains all valuable information for the247

model to make a prediction, including a trigger t248

and a language-agnostic template Tc. Notice that249

we do not explicitly include the event type c in the250

prompt because the template Tc implicitly contains251

this information. Later on, in Section 6.2, we will252

demonstrate the experiments on explicitly adding253

event type c to the prompt and discuss about how254

it influences the cross-lingual transferability.255

4.4 Training256

To enable X-GEAR to generate sentences in differ-257

ent languages, we resort multilingual pre-trained258

generative model to be our base model, which mod-259

els the conditional probability of generating a new260

token given the previous generated tokens and the261

input context to the encoder c, i.e,262

P (x|c) =
∏
i

Pgen(xi|x<i, c),263

where xi is the output of the decoder at step i.264

Copy mechanism. Although the multilingual265

pre-trained generative models can generate se-266

quences in many languages, fully relying on267

them may results in generating hallucinating ar-268

guments (Li et al., 2021). Observing that most of269

the tokens in the target output string appear in the270

input sequence4, we augment the multilingual pre-271

4Except for the special token [and].

trained generative models with copy mechanism 272

to help X-GEAR better adapt to the cross-lingual 273

scenario. Specifically, we follow See et al. (2017) 274

to decide the conditional probability of generat- 275

ing a token t as a weighted sum of the vocabulary 276

distribution computed by multilingual pre-trained 277

generative model Pgen and copy distribution Pcopy 278

PX-GEAR(xi = t|x<i, c) =

wcopy · Pcopy(t)+(1− wcopy) · Pgen(xi = t|x<i, c)
279

where wcopy ∈ [0, 1] is the copy probability com- 280

puted by passing the decoder hidden state at time 281

step i to a linear layer. As for Pcopy, it refers to 282

the probability over input tokens5 weighted by the 283

cross-attention that the last decoder layer computed 284

(at time step i). Our model is then trained end-to- 285

end with the following loss: 286

L = − log
∑
i

PX-GEAR(xi|x<i, c). 287

5 Experimental Settings 288

5.1 Datasets 289

We consider two commonly used event extraction 290

datasets: ACE-2005 and ERE. ACE-2005 (Dod- 291

dington et al., 2004) provides entities, value, time, 292

relation, and event annotations for English, Ara- 293

bic, and Chinese. We follow the pre-processing 294

in Wadden et al. (2019) and keep 33 event types 295

and 22 argument roles. For the English split, we 296

use the split provided by Wadden et al. (2019). For 297

the Chinese portion, we follow the setting in Lin 298

et al. (2020). As for the Arabic part, we adopt 299

the setup proposed by Xu et al. (2021). Observ- 300

ing that part of the sentence breaks made from Xu 301

et al. (2021) being extremely long for pretrained 302

models to encode, we perform additional prepro- 303

cessing and postprocessing procedures for Arabic 304

data. Specifically, we split Arabic sentences into 305

several portions that any of the portion is shorter 306

than 80 tokens. Then, we map the models’ pre- 307

dictions of the split sentences back to the original 308

sentence during postprocessing. 309

ERE (Song et al., 2015) is created by the Deep 310

Exploration and Filtering of Test (DEFT) program. 311

We consider its English and Spanish annotations 312

and follow the pre-processing in Lin et al. (2020), 313

which keeps 38 event types and 21 argument roles 314

for both languages. Table1 shows more details 315

about the two datasets. 316
5If t does not appear in the input sequence, then the proba-

bility becomes zero.
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Dataset Lang. Train Dev Test
#Events #Args #Events #Args #Events #Args

ACE-2005
en 4202 4859 450 605 403 576
ar 1743 2506 117 174 198 287
zh 2926 5581 217 404 190 336

ERE en 6208 8924 525 730 551 882
es 3131 4415 204 279 255 354

Table 1: Dataset statistics of ACE-2005 and ERE.

Notice that prior works working on zero-shot317

cross-lingual transfer of event arguments mostly318

focus on event argument role labeling (Subburathi-319

nam et al., 2019; Ahmad et al., 2021), where they320

assume ground truth entities are provided during321

both training and testing. In their experimental data322

splits, events in a sentence can be scattered in all323

training, development, and test split since they treat324

each event-entity pair as a different instance. In325

this work, we consider event argument extraction326

(Wang et al., 2019; Wadden et al., 2019; Lin et al.,327

2020), which is a more realistic setting.328

5.2 Evaluation329

We follow previous work (Lin et al., 2020; Ahmad330

et al., 2021) and consider the argument classifica-331

tion F1 score to measure the performance of mod-332

els. An argument-role pair is counted as correct if333

both the argument offsets and the role type match334

the ground truth. Given the ground truth arguments335

a, ground truth roles r, predicted arguments ã, and336

predicted roles r̃, the argument classification F1337

score is defined as the F1 score between the set338

{(ai, ri)} and the set {(ãj , r̃j)}. For every model,339

we experiment it with three different random seeds340

and report the average results.341

5.3 Compared Models342

We compare the following models and their imple-343

mentation details are listed in Appendix A.344

• OneIE (Lin et al., 2020), the state-of-the-art for345

monolingual event extraction, is a classification-346

based model trained with multitasking, includ-347

ing entity extraction, relation extraction, event348

extraction, and event argument extraction. We349

simply replace its pre-trained embedding with350

XLM-RoBERTa-large (Conneau et al., 2020) to351

fit the zero-shot cross-lingual setting. Note that352

the multi-task learning makes OneIE require ad-353

ditional annotations, such as named entity anno-354

tations and relation annotations.355

• CL-GCN (Subburathinam et al., 2019) is a356

classification-based model for cross-lingual357

event argument role labeling (EARL). It con- 358

siders dependency parsing annotations to bridge 359

different languages and use GCN layers (Kipf 360

and Welling, 2017) to encode the parsing infor- 361

mation. We follow the implementation of previ- 362

ous work (Ahmad et al., 2021) and add two GCN 363

layers on top of XLM-RoBERTa-large. Since 364

CL-GCN focuses on EARL tasks, which assume 365

the ground truth entities are available during test- 366

ing, we add one name entity recognition module 367

jointly trained with CL-GCN. 368

• GATE (Ahmad et al., 2021), the state-of-the-art 369

model for zero-shot cross-lingual EARL, is a 370

classification-based model which considers de- 371

pendency parsing annotations as well. Unlike 372

CL-GCN, it uses a Transformer layer (Vaswani 373

et al., 2017) with modified attention to encode 374

the parsing information. We follow the origi- 375

nal implementation and add two GATE layers 376

on top of XLM-RoBERTa-large. Similar to CL- 377

GCN, we add one name entity recognition mod- 378

ule jointly trained with GATE. 379

• TANL (Paolini et al., 2021) is a generative 380

model for monolingual EAE. Their predicted 381

target, augmented language, embeds labels into 382

the input passage by using brackets and verti- 383

cal bar symbols to mark the argument tokens 384

with their corresponding label. To adapt TANL 385

to zero-shot cross-lingual EAE, we replace its 386

pre-trained based model T5 (Raffel et al., 2020) 387

with mT5-base (Xue et al., 2021). 388

• X-GEAR is our proposed model. We consider 389

three different pre-trained generative language 390

models: mBART-50-large (Tang et al., 2020), 391

mT5-base, and mT5-large (Xue et al., 2021). 392

6 Experimental Results 393

6.1 Main Results 394

Table 2 and Table 3 list the results on ACE-2005 395

and ERE, respectively, with all combinations of 396

source languages and target languages. Note that 397

all the models have similar numbers of parameters 398

except for X-GEAR with mT5-large. 399

Comparison to prior generative models. We 400

first observe that TANL has poor performance 401

when transferring to different languages. The rea- 402

son is that its language-dependent template makes 403
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Model # of
parameters

en
⇓
en

en
⇓
zh

en
⇓
ar

ar
⇓
ar

ar
⇓
en

ar
⇓
zh

zh
⇓
zh

zh
⇓
en

zh
⇓
ar

avg

OneIE (XLM-R-large) (Lin et al., 2020) ∼560M 63.6 42.5 37.5 57.8 27.5 31.2 69.6 51.5 31.1 45.8
CL-GCN (XLM-R-large) (Subburathinam et al., 2019) ∼570M 59.8 29.4 25.0 47.5 25.4 19.4 62.2 40.8 23.3 37.0
GATE (XLM-R-large) (Ahmad et al., 2021) ∼630M 67.0 49.2 44.5 59.6 27.6 26.3 70.6 46.7 37.3 47.6

TANL (mT5-base) (Paolini et al., 2021) ∼560M 59.1 38.6 29.7 50.1 18.3 16.9 65.2 33.3 18.3 36.6

X-GEAR (mBART-50-large) ∼610M 68.6 50.0 37.9 60.5 30.8 30.4 65.4 46.1 31.4 46.8
X-GEAR (mT5-base) ∼580M 67.9 53.1 42.0 65.9 28.5 30.4 69.4 52.8 32.0 49.1

X-GEAR (mT5-large) ∼1200M 71.1 54.0 45.1 68.2 33.6 33.0 68.9 55.0 33.1 51.3

Table 2: Average results of ACE-2005 with three different seeds. The best is in bold and the second best is
underlined. “en⇒ zh” denotes that models transfers from en to zh. X-GEAR outperforms other baselines.

Model
en
⇓
en

en
⇓
es

es
⇓
es

es
⇓
en

avg

OneIE (XLM-R-large) 64.4 56.8 64.8 56.9 60.7
CL-GCN (XLM-R-large) 61.9 51.9 62.9 48.5 55.9
GATE (XLM-R-large) 66.4 61.5 63.0 56.5 61.9

TANL (mT5-base) 65.9 40.3 58.6 47.4 53.1

X-GEAR (mBART-50-large) 69.5 57.3 63.9 58.9 62.4
X-GEAR (mT5-base) 69.8 57.9 66.1 59.0 63.2

X-GEAR (mT5-large) 72.9 59.7 67.4 64.1 66.0

Table 3: Average results of ERE with three different
seeds. The best is in bold and the second best is under-
lined. “en⇒ es” denotes that models transfers from en
to es. X-GEAR outperforms other baselines.

TANL easily generate code-switching outputs6,404

which is a case that pretrained generative model405

rarely seen, leading to the poor performance. In406

contrast, X-GEAR considers the language-agnostic407

templates and achieve better performance for zero-408

shot cross-lingual transfer.409

Comparison to classification models. X-GEAR410

with mT5-base outperforms OneIE, CL-GCN, and411

GATE on almost all the combinations of the source412

language and the target language. Especially,413

the improvement becomes much larger when the414

source language is Arabic. This suggests that lan-415

guage generation framework is indeed a promising416

approach for zero-shot cross-lingual EAE.417

It is worth noting that OneIE, CL-GCN, and418

GATE require additional pipeline named entity419

recognition module to make predictions. Moreover,420

CL-GCN and GATE needs additional dependency421

parsing annotations to align the representations of422

different languages. On the contrary, X-GEAR is423

able to leverage the learned knowledge from the424

pre-trained generative models and therefore no ad-425

ditional modules or annotations are needed.426

6The output text contains predictions written in the target
language and templated tokens representing in the source
language.

Comparison to different pre-trained generative 427

language models. Interestingly, using mT5-base 428

is more effective than using mBART-50-large, even 429

if they have similar amount of parameters. We 430

conjecture that the use of special tokens leads to 431

this difference. mBART-50 has different begin- 432

of-sequence (BOS) tokens for different languages. 433

During generation, we have to specify which BOS 434

token we would like to use as the start token. We 435

guess that this language specific BOS token makes 436

mBART-50 harder to transfer the knowledge from 437

the source language to the target language. Unlike 438

mBART-50, mT5 does not have such language spe- 439

cific BOS tokens. During generation, mT5 uses 440

the padding token as the start token to generate 441

sequence. This design is more general and benefit 442

zero-shot cross-lingual transfer. 443

Larger pre-trained models are better. Finally, 444

we demonstrate that the performance of X-GEAR 445

can be further boosted with a larger pre-trained 446

generative language models. As shown by Table 2 447

and Table3, X-GEAR with mT5-large achieves the 448

best scores on most of the cases. 449

6.2 Ablation Study 450

Copy mechanism. We first study the effect of 451

copy mechanism. Table 4 lists the performance 452

of X-GEAR with and without copy mechanism. It 453

shows improvements of adding copy mechanism 454

when using mT5-large and mT-base. However, in- 455

terestingly, adding copy mechanism is not effective 456

to mBART-50. We conjecture that this is because 457

the pre-trained objective of mBART-50 is denois- 458

ing and reconstructing the original sentence (Liu 459

et al., 2020), hence, mBART-50 has already learn 460

to copy tokens from the input. Therefore, adding 461

copy mechanism is less useful. On the other hand, 462

the pre-trained objective of mT5 is various NLP 463

tasks which are far away from copying input. The 464
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Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

mT5-large 56.8 44.9 52.3 53.2 48.8 52.0 51.3
- w/o copy 55.1 45.0 51.5 52.0 46.3 53.2 50.5

mT5-base 54.3 41.6 51.4 49.7 46.6 51.0 49.1
- w/o copy 52.1 39.5 47.6 48.1 42.7 48.5 46.4

mBART-50-large 52.2 40.6 47.6 48.5 43.3 48.6 46.8
- w/o copy 50.9 42.2 49.6 50.6 43.5 48.7 47.6

Table 4: Ablation study on copy mechanism for ACE-
2005. “en ⇒ xx” indicates the average of “en ⇒ en”,
“en⇒ zh”, and “en⇒ ar”.

copy mechanism thus becomes beneficial to mT5.465

Including event type in prompts. In Section 4,466

we mentioned that the designed prompt for X-467

GEAR consists of only the input sentence and the468

language-agnostic template. In this section, we469

discuss whether explicitly including the event type470

information in the prompt is helpful. We consider471

three ways to include the event type information:472

• English tokens. We put the English version473

of the event type in the prompt even if we are474

training or testing on non-English languages, for475

example, Attack stands for the event type Attack.476

• Translated tokens. For each event type, we pre-477

pare the translated version of that event type to-478

ken. For example, we use攻击 to represent the479

Attack event type. During training or testing, we480

decide the language according to the language481

of the input passage. Notice that all the event482

types are written in English in the ACE-2005483

and ERE. Hence, we use off-the-self machine484

translation tool to perform the translation.485

• Special tokens. We create a special token for486

every event type and let the model to learn487

the representations of the special tokens from488

scratch. For instance, we use <-attack-> to489

represent the Attack event type.490

Table 5 shows the ablation study. In most cases,491

including event type information in the prompt492

drops the performance. One crucial reason is that493

one word in a language can be mapped to several494

words in another language. For example, the Life495

event type is related to Marry, Divorce, Born, and496

Die four sub-event types. In English, we can use497

just one word Life to cover all four sub-event types.498

However, In Chinese, when talking about Marry499

and Divorce, Life should be translated to “生活”;500

when talking about Born and Die, Life should be501

translated to “生命”. This mismatch causes the502

Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

X-GEAR 54.3 41.6 51.4 49.7 46.6 51.0 49.1
w/ English Tokens 53.3 39.3 52.3 49.2 46.5 49.2 48.3
w/ Translated Tokens 51.7 40.4 52.2 49.8 45.6 48.8 48.1
w/ Special Tokens 52.3 39.7 51.8 49.0 45.4 49.3 47.9

Table 5: Ablation study on including event type infor-
mation in prompts for ACE-2005. “en⇒ xx” indicates
the average of “en⇒ en”, “en⇒ zh”, and “en⇒ ar”.

performance drop when considering event types in 503

prompts. Currently, we conclude that it is hard to 504

utilize the information of event types in an appro- 505

priate way for all languages. How to resolve this 506

challenge is considered as our future work. 507

7 Analysis 508

In this section, we perform error analysis of X- 509

GEAR when transferring from Arabic to English 510

and transferring from Chinese to English. For each 511

case, we sample 30 failed examples and present the 512

distribution of various error types in Figure 3. We 513

discuss some of the categories as follows: 514

Errors on both monolingual and cross-lingual 515

model. We compare the predicted results from 516

X-GEAR(ar ⇒ en) with X-GEAR(en ⇒ en), or 517

from X-GEAR(zh⇒ en) with X-GEAR(en⇒ en). 518

If their predictions are similar and both of them 519

are wrong when compared to the gold output, we 520

classify the error to this category. To overcome the 521

errors in this category, the potential solution is to 522

improve monolingual models for EAE tasks. 523

Over generate. Errors in this category happen 524

more often in X-GEAR(ar⇒ en). It is likely be- 525

cause the entities in Arabic are usually much longer 526

than that in English, when measuring by the num- 527

ber of sub-words. Based on our statistics, the av- 528

erage entity span length is 2.85 for Arabic, and is 529

2.00 for English (length of sub-words). This leads 530

to the natural for our X-GEAR(ar⇒ En) to overly 531

generate some tokens even though they have cap- 532

tured the correct concept. An example is that the 533

model predicts “The EU foreign ministers”, while 534

the ground truth is “ministers”. 535

Label disagreement on different language split. 536

The annotations for the ACE dataset in different 537

language split contain some ambiguity. For exam- 538

ple, given sentence “He now also advocates letting 539

in U.S. troops for a war against Iraq even though 540

it is a fellow Muslim state.” and the queried trigger 541
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33%

27%

13%

10%
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Error Distribution for X-GEAR (ar ⇒ en)

Errors on both monolingual and cross-lingual model

Over Generate

Others

Annotation Error

Label Disagreement on Different Language Split

Grammar Difference between Languages

40%

23%

10%

10%

10%
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Error Distribution for X-GEAR (zh⇒ en)

Errors on both monolingual and cross-lingual model
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Others
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Annotatoin Error

Label Disagreement on Different Language Split

Figure 3: Distribution of errors that made by X-GEAR. Left: The distribution for our model that transfers from
Arabic to English; Right: The distribution for our model trained on Chinese and tested on English.

“war”, the annotations in English tends to label Iraq542

as the Place where the event happen, while similar543

situations in other languages will mark Iraq as the544

Target for the war.545

Grammar difference between languages. An546

example for this category is “... Blackstone Group547

would buy Vivendi’s theme park division, including548

Universal Studios Hollywood ...” and the queried549

trigger “buy”. We observe that X-GEAR(ar⇒ en)550

predicts Videndi as the Artifact been sold and di-551

vision is the Seller, while X-GEAR(en⇒ en) can552

correctly understand that Videndi are the Seller and553

division is the Artifact. We hypothesize the reason554

being the differences between the grammar in Ara-555

bic and English. The word order of the sentence556

“Vivendi’s theme park division” in Arabic is reversed557

with its English counterpart, that is, “theme park di-558

vision” will be written before “Vivendi” in Arabic.559

Such difference leads to the errors in this category.560

Generate a word that is not in the passage. In561

X-GEAR(zh⇒ en), we observe several errors re-562

garding generating a word that is not in the passage.563

There are two typical situations. The first case is564

that X-GEAR(zh⇒ en) presents difficulty under-565

standing singular and plural nouns. For example,566

the model will generate “studios” as prediction567

while only “studio” appear in the passage. This568

is because the concept regarding the differences569

between singular and plural nouns are less empha-570

sized in Chinese. The second cases is that X-GEAR571

will generate some random predictions in Chinese,572

leading to false positives.573

Generate a correct prediction, but in Chinese.574

This is a special case of “Generate a word that is575

not in the passage”. In this category, we observe 576

that although the prediction is in Chinese (hence, a 577

wrong prediction), it is correct if we translate the 578

prediction into English. 579

From these examples, we highlight two remain- 580

ing challenges for future studies. First, there are 581

several errors raising because of the discrepancies 582

between the source language and the target lan- 583

guage, such as the output length distribution mis- 584

matching or the grammar differences. This induces 585

the research question on how we can mitigate this 586

discrepancy without the help of using additional 587

labels. Second, we demonstrate that even though 588

we have already incorporated copy mechanism to 589

facilitate the generation in target language, it is still 590

challenging for the model to be fully controlled 591

when adapting to cross-lingual cases. To cope with 592

this issue, a potential solution is to use constrained 593

decoding (Cao et al., 2021) to force all the gen- 594

erated tokens appearing in input. However, it is 595

still an open question on how can we enforce this 596

controlled generation more flexibly yet reliably. 597

8 Conclusion 598

We present a pioneering study on leveraging multi- 599

lingual pre-trained generative language models for 600

zero-shot cross-lingual event argument extraction. 601

We design language-agnostic templates to over- 602

come the discrepancy between languages and pro- 603

pose X-GEAR, a generative zero-shot cross-lingual 604

event argument extractor. Our experimental results 605

show that X-GEAR outperforms the current state- 606

of-the-art models, which demonstrates the potential 607

of using language generation framework to solve 608

zero-shot cross-lingual structured prediction tasks. 609
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A Implementation Details809

We describe the implementation details for all the810

models as follows:811

• OneIE (Lin et al., 2020). We use their provided812

code7 to train the model with the provided de-813

fault settings. It is worth mention that for the814

Arabic split in the ACE-2005 dataset, OneIE is815

trained with only entity extraction, event extrac-816

tion, and event argument extraction since there817

is no relation labels in Xu et al. (2021)’s prepro-818

cessing script. All other parameters are set to819

the default values.820

• CL-GCN (Subburathinam et al., 2019). We re-821

fer the released code from Ahmad et al. (2021)8822

to re-implement the CL-GCN method. Specifi-823

cally, we adapt the baseline framework that de-824

scribed and implemented in OneIE’s code (Lin825

et al., 2020), but we remove its relation extrac-826

tion module and add two layers of GCN on top827

of XLM-RoBERTa-large. The pos-tag and de-828

pendency parsing annotations are obtained by829

applying Stanza (Qi et al., 2020). All other pa-830

rameters are set to the be the same as the training831

of OneIE.832

• GATE (Ahmad et al., 2021). We refer the offi-833

cial released code from Ahmad et al. (2021)9834

to re-implement GATE. Similar to CL-GCN,835

we adapt the baseline framework that described836

and implemented in OneIE’s code (Lin et al.,837

2020), but we remove its relation extraction838

module and add two layers of GATE on top839

of XLM-RoBERTa-large. The pos-tag and de-840

pendency parsing annotations are also obtained841

by applying Stanza (Qi et al., 2020). The hyper-842

parameter of δ in GATE is set to be [2, 2, 4, 4,843

∞,∞,∞,∞]. All other parameters are set to844

the be the same as the training of OneIE.845

• TANL (Paolini et al., 2021). To adapt TANL846

to zero-shot cross-lingual EAE, we adapt the847

public code10 and replace its pre-trained based848

model T5 (Raffel et al., 2020) with mT5-base849

(Xue et al., 2021). All other parameters are set850

to their default values.851

• X-GEAR is our proposed model. We consider852

7http://blender.cs.illinois.edu/
software/oneie/

8https://github.com/wasiahmad/GATE
9https://github.com/wasiahmad/GATE

10https://github.com/amazon-research/
tanl

three different pre-trained generative language 853

models: mBART-50-large (Tang et al., 2020), 854

mT5-base, and mT5-large (Xue et al., 2021). 855

When fine-tune the pre-trained models, we set 856

the learning rate to 10−4. The batch size is set 857

to 8. The number of epochs is 60. 858
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