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“A motorcycle accelerating to gain speed, watercolor painting” “Dog swimming in ocean”

“Two pandas discussing an academic paper.” “A person is painting in the room, Van Gogh style”

AnimateDiff

AnimateDiff + I4VGEN

LaVie

LaVie + I4VGEN

AnimateDiff

AnimateDiff + I4VGEN

LaVie

LaVie + I4VGEN

Figure 1: Example results synthesized by the proposed I4VGEN. I4VGEN is seamlessly integrated
into existing pre-trained text-to-video diffusion models without additional training, significantly im-
proving the temporal consistency (e.g., top-left and bottom-right), visual realism (e.g., top-right),
and semantic fidelity (e.g., bottom-left) of the synthesized videos.

ABSTRACT

Text-to-video generation has trailed behind text-to-image generation in terms of
quality and diversity, primarily due to the inherent complexities of spatio-temporal
modeling and the limited availability of video-text datasets. Recent text-to-video
diffusion models employ the image as an intermediate step, significantly en-
hancing overall performance but incurring high training costs. In this paper,
we present I4VGEN, a novel video diffusion inference pipeline to leverage ad-
vanced image techniques to enhance pre-trained text-to-video diffusion models,
which requires no additional training. Instead of the vanilla text-to-video infer-
ence pipeline, I4VGEN consists of two stages: anchor image synthesis and an-
chor image-augmented text-to-video synthesis. Correspondingly, a simple yet ef-
fective generation-selection strategy is employed to achieve visually-realistic and
semantically-faithful anchor image, and an innovative noise-invariant video score
distillation sampling (NI-VSDS) is developed to animate the image to a dynamic
video by distilling motion knowledge from video diffusion models, followed by
a video regeneration process to refine the video. Extensive experiments show
that the proposed method produces videos with higher visual realism and textual
fidelity. Furthermore, I4VGEN also supports being seamlessly integrated into ex-
isting image-to-video diffusion models, thereby improving overall video quality.

1 INTRODUCTION

Recent advances in large-scale text-to-image diffusion models (Esser et al., 2021; Balaji et al., 2022;
Ramesh et al., 2022; Nichol et al., 2022; Saharia et al., 2022; Feng et al., 2023; Gu et al., 2023; Xue

1
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(a) pure Gaussian noise (b) real video (c) noisy video

video 1
video 2

noise 1
noise 2

video 1
video 2

(d) sampled videos

video 1

video 2

TrainingInference

Figure 2: Illustration of non-zero terminal signal-to-noise ratio. We employ t-SNE to visualize
the distributions of pure Gaussian noise, real video, and noisy video at the timestep T , where each
data point represents an independently sampled noise point or video frame. The noise schedule of
AnimateDiff (Guo et al., 2024b) is used, and all operations are performed in the latent space of the
video autoencoder. (a) The distribution of pure Gaussian noise exhibits a disordered and diffuse
nature; (b) real videos are temporally-correlated and different videos can be clearly distinguished
from each other; (c) noisy videos preserve a certain degree of temporal correlation and maintain
separability between different videos; (d) sampled videos for visualization.

et al., 2023) have demonstrated the capability to generate diverse and high-quality images from
extensive web-scale image-text pair datasets. Efforts to extend these diffusion models to text-to-
video synthesis (Ho et al., 2022a; Zhou et al., 2022; Chen et al., 2023a; Singer et al., 2023; Wang
et al., 2023b;e; Blattmann et al., 2023a; Girdhar et al., 2023; Guo et al., 2024b; Bao et al., 2024)
have involved leveraging video-text pairs and temporal modeling. However, text-to-video generation
remains inferior to image counterpart in terms of both quality and diversity, primarily due to the
complex nature of spatio-temporal modeling and the limited size of video-text datasets, which are
often an order of magnitude smaller than image-text datasets.

This paper explores a novel video diffusion inference pipeline that leverages advanced image tech-
niques to enhance pre-trained text-to-video diffusion models, focusing on the following two insights:

Image conditioning for text-to-video generation. Recent methods (Blattmann et al., 2023a; Zhang
et al., 2023b; Girdhar et al., 2023; Chen et al., 2024a; Li et al., 2023; Hu et al., 2023) have adopted
image-guided text-to-video generation, where an initial image generation step significantly enhances
video output quality. This paradigm benefits from the strong capabilities of text-to-image models
by using the generated images as detailed references for video synthesis. While effective, these
approaches incurs additional high training costs. This paper builds on this insight but innovates by
designing a novel video diffusion inference pipeline to leverage image information, thereby enhanc-
ing text-to-video generation performance without additional training expense.

Zero terminal-SNR noise schedule. A prevalent issue in diffusion models is the non-zero termi-
nal signal-to-noise ratio (SNR) (Guttenberg; Lin et al., 2024). The mismatch between the training
phase, where residual signals persist in noisy videos at the terminal diffusion timestep T , and the
inference phase, which uses pure Gaussian noise at the timestep T , creates a gap that degrade the
model performance. As illustrated in Fig. 2, noisy videos exhibit temporal correlation that is dis-
tinctly different from the independent and identically distributed pure Gaussian noise. This paper is
dedicated to reconfiguring the inference pipeline to circumvent this issue.

Motivated by these insights, we propose a novel video diffusion inference pipeline, called I4VGEN,
which enhances pre-trained text-to-video diffusion models by incorporating image information into
the inference process. This method requires no additional learnable parameters and training costs,
and can be seamlessly integrated into existing text-to-video diffusion models, circumventing the
non-zero terminal SNR issue and improving output quality.

Specifically, instead of the vanilla text-to-video inference pipeline, which fails to leverage image
reference information, I4VGEN decomposes the inference process into two stages: anchor image
synthesis and anchor image-augmented text-to-video synthesis. For the former, a simple yet ef-
fective generation-selection strategy is introduced, which involves synthesizing candidate images
and selecting the most suitable one using a reward-based mechanism, thereby obtaining a visually-
realistic anchor image that is closely aligned with the text prompt. For the latter, we develop an
innovative noise-invariant video score distillation sampling (NI-VSDS) to animate the anchor image
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to a dynamic video by extracting motion knowledge from text-to-video diffusion models, followed
by a video regeneration process, i.e., diffusion-denoising, to refine the video. This inference pipeline
avoids the issue of non-zero terminal SNR.

Extensive quantitative and qualitative analyses demonstrate that I4VGEN can be effectively applied
to various text-to-video diffusion models, significantly improving the temporal consistency, visual
realism, and semantic fidelity of the synthesized videos (see Fig. 1). Moreover, our method can
also be seamlessly integrated into existing image-to-video diffusion models, thereby enhancing the
temporal consistency and visual quality of the generated videos (see Fig. 6).

The main novelties and contributions are as follows:

• We propose a novel video diffusion inference pipeline, called I4VGEN, which enhances pre-
trained text-to-video diffusion models by incorporating image reference information into the
inference process, without requiring additional training or learnable parameters.

• We employ a simple yet effective generation-selection strategy to achieve high-quality image,
and design a novel noise-invariant video score distillation sampling for image animation.

• We comprehensively evaluate our approach with representative text-to-video diffusion models,
and demonstrate I4VGEN significantly improves the quality of generated videos. Furthermore,
I4VGEN can also be adapted to image-to-video diffusion models, leading to improved results.

2 PRELIMINARIES

Video diffusion models. Aligned with the framework of image diffusion models, Video diffusion
models (VDMs) predominantly utilize the paradigm of latent diffusion models (LDMs). Unlike
traditional methods that operate directly in the pixel space, VDMs function within the latent space
defined by a video autoencoder. Specifically, a video encoder E (·) learns the mapping from an input
video v ∈ V,v = {f1, f2, · · · , fF } to a latent code z = E (v) = {z1, z2, · · · , zf}. Subsequently,
a video decoder D(·) reconstructs the input video, aiming for D (E (v)) ≈ v. Typically, image
autoencoder is used in a frame-by-frame processing manner instead of the video one, where F = f .

Upon training the autoencoder, a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020)
is employed within the latent space to generate a denoised version of an input latent zt at each
timestep t. During denoising, the diffusion model can be conditioned on additional inputs, such as a
text embedding c = fCLIP (y) generated by a pre-trained CLIP text encoder (Radford et al., 2021),
corresponding to the input text prompt y. The DDPM model ϵθ(·), a 3D U-Net parametrized by θ,
optimizes the following loss:

L = Ez∼E(v),c=fCLIP(y),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, c, t) ∥22

]
, (1)

During inference, a latent variable zT is sampled from the standard Gaussian distribution N (0,1)
and subjected to sequential denoising procedures of the DDPM to derive a refined latent z0. This
denoised latent z0 is then fed into the decoder to synthesize the corresponding video D (z0).

Score distillation sampling. Score distillation sampling (SDS) (Poole et al., 2023; Wang et al.,
2023a) employs the priors of pre-trained text-to-image models to facilitate text-conditioned 3D gen-
eration. Specifically, given a pre-trained diffusion model ϵθ(·) and the conditioning embedding
c = fCLIP (y) corresponding to the text prompt y, SDS optimizes a set of parameters ϕ of a differ-
entiable parametric image generator G(·) (e.g., NeRF (Mildenhall et al., 2020)) using the gradient
of the SDS loss LSDS:

∇ϕLSDS = w(t) (ϵθ(zt, c, t)− ϵ)
∂x

∂ϕ
, (2)

where ϵ is sampled from N (0,1), x is an image rendered by G, zt is obtained by adding Gaussian
noise ϵ to x corresponding to the timestep t of the diffusion process, w(t) is a constant that depends
on the noising schedule. Inspired by this method, we proposes a noise-invariant video score distilla-
tion sampling (NI-VSDS) strategy to efficiently harness the motion prior learned by the text-to-video
diffusion model.

3
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Prompt: “A squirrel 
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Static videoDynamic video

Candidate images synthesis Anchor image selection

Video regeneration Static video animation
Top: (1) Anchor image synthesis Bottom: (2) Anchor image-augmented video synthesis

Figure 3: Illustration of I4VGEN. I4VGEN is a novel video diffusion inference pipeline, which
enhances pre-trained text-to-video diffusion models by incorporating image reference information
into the inference process. Instead of the vanilla text-to-video inference pipeline, I4VGEN consists
of two stages: (1) anchor image synthesis and (2) anchor image-augmented text-to-video synthesis.
Firstly, a simple yet effective generation-selection strategy is applied to synthesize candidate images
and select the most suitable image using a reward-based mechanism, thereby obtaining high-quality
anchor image. Subsequently, an innovative noise-invariant video scoring distillation sampling (NI-
VSDS) is developed, which extracts motion prior from the text-to-video diffusion model to animate
the anchor image into dynamic video, followed by a video regeneration process to refine the video.

3 I4VGEN

This section introduces I4VGEN, a novel video diffusion inference pipeline designed for enhancing
the capabilities of pre-trained text-to-video diffusion models. As illustrated in Fig. 3, we factorize
the inference process into two stages: (1) anchor image synthesis to generate the anchor image x
given the text prompt y, and (2) anchor image-augmented video synthesis to generate the video v by
leveraging the text prompt y and the anchor image x. This section provides the detailed explanations
of both stages in Sec. 3.1 and 3.2, respectively.

3.1 ANCHOR IMAGE SYNTHESIS

The goal of this stage is to synthesize visually-realistic anchor images x that accurately correspond
to the given text prompts y. This image serves as a foundation to provide appearance information
for enhancing the performance of the subsequent video generation. As illustrated in Fig. 3 (Top), a
simple yet effective generation-selection pipeline is employed to produce the anchor image, which
consist of candidate images synthesis and reward-based anchor image selection.

Candidate images synthesis. Instead of generating a single image, our approach produces a set of
candidate images to ensure the selection of the best example. Utilizing a pre-trained image diffusion
model Dimg(·), we construct the candidate image set as follows:

x1,x2, · · · ,xN = Dimg (y, z1) ,Dimg (y, z2) , · · · ,Dimg (y, zN ) , (3)

where N denotes the number of candidate images, and zi represents Gaussian noise.

Reward-based anchor image selection. With the help of the image reward model R(·) (Xu et al.,
2023), a promising automatic text-to-image evaluation metric aligned with human preferences, the
candidate image with the highest reward score s is selected as the anchor image x, as defined by:

x = xi, where i = argmax
i

si = argmax
i

R (xi) . (4)

The generation-selection design facilitates the acquisition of a high-quality anchor image, partic-
ularly beneficial for complex text prompts (see Fig. 5). Notably, our method accommodates both
user-provided and retrieved images, extending its applicability to a variety of custom scenarios, as
discussed in Sec. 4.5.
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“A cute raccoon playing guitar in the park at sunrise, oil painting style” “A polar bear playing drum kit in NYC Times Square, 4k, high resolution”

LaVie + FreeInit

LaVie + I4VGen

LaVie

LaVie + FreeInit

LaVie + I4VGen

LaVie

“A person eating a burger.”“A person swimming in ocean, watercolor painting.”

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

Figure 4: Qualitative comparison. Each video is generated with the same text prompt and random
seed for all methods. Our approach significantly improves the quality of the generated videos while
showing excellent alignment with text prompts.

3.2 ANCHOR IMAGE-AUGMENTED VIDEO SYNTHESIS

Upon obtaining the anchor image x, we replicate it F times to create an initial static video v̂ ∈
V, v̂ = {x,x, · · · ,x}. The goal of this stage is to convert this static video into a high-quality video
reflecting the text prompt y. As illustrated in Fig. 3 (Bottom), we introduce static video animation
and video regeneration.

Static video animation. A straightforward approach to animate the static video involves applying
a diffusion-denoising process to transition from the static to dynamic state. However, this approach
still encounters a training-inference gap, as the text-to-video diffusion model is trained on dynamic
real-world videos but tested on static videos, leading to sub-optimal motion quality due to the intro-
duction of static priors, as discussed in Sec. 4.4.

To address this limitation, we propose a novel approach leveraging the motion prior from the pre-
trained text-to-video diffusion model to animate static videos. Drawing inspiration from score dis-
tillation sampling (SDS) as introduced in (Poole et al., 2023; Wang et al., 2023a), we develop the
noise-invariant video score distillation sampling (NI-VSDS). Unlike vanilla SDS, which optimizes
a parametric image generator, our approach directly parameterizes the static video v̂ and applies
targeted optimization to it. The NI-VSDS loss function is defined as follows:

∇v̂LNI-VSDS = w(t) (ϵθ(v̂t, c, t)− ϵ) , (5)
where v̂t represents the noisy video at timestep t perturbed by Gaussian noise ϵ. Furthermore, we
incorporate three strategic modifications:

• Instead of resampling the Gaussian noise at each iteration as in traditional SDS, we maintain a
constant noise across the optimization, enhancing convergence speed.

• Optimization is confined to the initial stages of the denoising process, where noise levels are
higher, focusing on dynamic information distillation.

• We implement a coarse-to-fine optimization strategy, evolving from high to low noise levels,
specifically from timestep T to τNI-VSDS, where T > τNI-VSDS > 0. This approach stabilizes the
optimization trajectory and yields superior motion quality.

5
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Table 1: VBench evaluation results per dimension. This table compares the performance of
I4VGEN with other counterparts across each of the 16 VBench dimensions.

Methods Subj.
Cons.

Back.
Cons.

Tem.
Flick.

Moti.
Smo.

Dyna.
Degr.

Aest.
Qual.

Imag.
Qual.

Obje.
Class

AnimateDiff 87.11% 95.22% 95.99% 93.12% 74.89% 56.07% 64.29% 83.69%
+ FreeInit 90.45% 96.57% 96.89% 95.66% 70.17% 59.25% 63.51% 87.55%
+ I4VGEN 95.17% 97.73% 98.51% 96.45% 57.72% 64.68% 66.18% 92.59%
LaVie 91.65% 96.30% 98.03% 95.73% 71.94% 59.64% 65.13% 91.25%
+ FreeInit 92.32% 96.35% 98.06% 95.83% 71.11% 59.41% 63.89% 89.13%
+ I4VGEN 94.12% 96.90% 98.55% 96.37% 70.55% 60.88% 66.55% 92.26%

Methods Mult.
Obje.

Hum.
Acti. Color Spat.

Rela. Scene Appe.
Style

Tem.
Style

Over.
Cons.

AnimateDiff 22.61% 90.40% 81.73% 31.55% 45.61% 24.40% 24.49% 25.71%
+ FreeInit 26.92% 93.00% 86.39% 30.71% 44.61% 23.98% 25.03% 25.61%
+ I4VGEN 57.22% 95.80% 91.98% 45.20% 54.67% 25.07% 26.11% 28.01%
LaVie 24.02% 94.80% 83.64% 26.27% 52.89% 23.67% 24.94% 27.25%
+ FreeInit 22.59% 94.20% 84.34% 27.46% 52.70% 23.61% 24.85% 26.89%
+ I4VGEN 32.77% 96.20% 88.59% 33.81% 55.64% 24.35% 25.62% 27.68%

Algorithm 1: NI-VSDS
Input: T2V diffusion model ϵθ(·), text

prompt y, static video v̂, timestep
τNI-VSDS.

Output: Dynamic video.
1 Sampling ϵ ∼ N (0,1); c = fCLIP (y)
2 for t = T, · · · , τNI-VSDS do
3 v̂t ← AddNoise (v̂, ϵ, t)
4 ∇v̂LNI-VSDS ← w(t) (ϵθ(v̂t, c, t)− ϵ)
5 v̂← v̂ − α · ∇v̂LNI-VSDS

6 return v̂

The implementation of noise-invariant video
score distillation sampling (NI-VSDS) algorithm
is detailed in Algorithm 1, which outlines the pro-
cess of converting a static video into a dynamic
video using the defined NI-VSDS loss. Notably,
we only perform a single update from timestep
T to τNI-VSDS, requiring fewer than 50 iterations,
this is a significant reduction compared to the
thousands of iterations typically required for text-
to-3D synthesis in SDS. α is a scalar that defines
the step size of the gradient update. We empiri-
cally set τNI-VSDS = Int(T × pNI-VSDS).

Video regeneration. After animating the static video, we further enhance the appearance detail
quality of the video through a diffusion-denoising process. This stage is not affected by the afore-
mentioned training-inference gap, thereby achieving more refined generation results.

Notably, we can flexibly add noise up to any timestep τre, calculated as τre = Int(T × pre), followed
by the corresponding denoising process. This strategy not only preserves the fine appearance tex-
tures but also reduces the required denoising steps, thus streamlining the video synthesis process
and elevating the overall quality of the resulting video.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation details. I4VGEN a novel video diffusion inference pipeline that leverages ad-
vanced image techniques to enhance pre-trained text-to-video diffusion models without requiring
additional training, and can be seamlessly integrated into existing text-to-video diffusion models. To
ascertain the efficacy and adaptability of I4VGEN, we apply it to two well-regarded text-to-video
diffusion models: AnimateDiff (Guo et al., 2024b) and LaVie (Wang et al., 2023e).

For AnimateDiff, the mm-sd-v15-v2motion module1, alongside Stable Diffusion v1.5, is utilized
to synthesize 16 consecutive frames at a resolution of 512×512 pixels for evaluation. For LaVie, the

1https://github.com/guoyww/AnimateDiff
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Table 2: Ablation study. Orange highlights generation-selection, while yellow highlights NI-VSDS.

Methods Subj.
Cons.

Back.
Cons.

Tem.
Flick.

Moti.
Smo.

Dyna.
Degr.

Aest.
Qual.

Imag.
Qual.

Obje.
Class

AnimateDiff 87.11% 95.22% 95.99% 93.12% 74.89% 56.07% 64.29% 83.69%

+ I4VGEN (w/o gen.-sel.) 94.89% 97.80% 98.28% 96.99% 55.91% 62.23% 64.18% 90.95%
+ I4VGEN (w/o NI-VSDS) 96.47% 98.82% 98.99% 97.56% 28.24% 65.17% 65.52% 92.66%
+ I4VGEN 95.17% 97.73% 98.51% 96.45% 57.72% 64.68% 66.18% 92.59%

Methods Mult.
Obje.

Hum.
Acti. Color Spat.

Rela. Scene Appe.
Style

Tem.
Style

Over.
Cons.

AnimateDiff 22.61% 90.40% 81.73% 31.55% 45.61% 24.40% 24.49% 25.71%

+ I4VGEN (w/o gen.-sel.) 40.68% 94.40% 90.55% 37.79% 53.72% 24.76% 26.03% 26.62%
+ I4VGEN (w/o NI-VSDS) 62.84% 94.80% 91.95% 47.57% 55.80% 24.88% 25.72% 27.91%

+ I4VGEN 57.22% 95.80% 91.98% 45.20% 54.67% 25.07% 26.11% 28.01%

base-version2 is employed to generate 16 consecutive frames at 320×512 pixels for evaluation.
All other inference details adhere to the original settings described in Guo et al. (2024b) and Wang
et al. (2023e), respectively. Notably, both AnimateDiff and LaVie possess inherent text-to-image
generation capabilities when excluding the motion module. To avoid introducing additional GPU
storage requirements, we leverage their corresponding image versions for text-to-image generation
in I4VGEN. For AnimteDiff, we empirically set N = 16, pNI-VSDS = 0.4, α = 1, and pre = 1.
For LaVie, we empirically set N = 16, pNI-VSDS = 0.4, α = 1, and pre = 0.8. All experiments are
conducted on a single NVIDIA V100 GPU (32 GB).

Benchmark. I4VGEN is assessed using VBench (Huang et al., 2024), a comprehensive bench-
mark that evaluates video generation models across 16 disentangled dimensions, which is more
authoritative than FVD. These dimensions provide a detailed analysis of generation quality from
two overarching perspectives: video quality3, focusing on the perceptual quality of the generated
videos, and video-condition consistency4, assessing how well the generated videos align with the
provided conditions.

4.2 QUALITATIVE COMPARISON

Fig. 4 presents a comparative analysis of our results against state-of-the-art counterparts using iden-
tical text prompts and random seeds. I4VGEN excels in enhancing both the temporal consistency
and the frame-wise quality, alongside superior alignment with the text prompts. For instance, in the
case of “playing guitar”, AnimateDiff suffers from poor video quality, and FreeInit encounters an
incomplete guitar in the middle of the video. In contrast, our method effectively addresses these
issues, maintaining stable temporal consistency. Furthermore, while baseline methods struggle with
accurate synthesis of all text-described components, e.g., “NYC Times Square”, I4VGEN generates
videos that are visually realistic and closely aligned with the text prompts by utilizing anchor images
obtained by the generation-selection strategy.

4.3 QUANTITATIVE COMPARISON

Objective evaluation. Following the protocols established by VBench, we evaluate I4VGEN in
terms of both video quality and video-text consistency. As detailed in Table 1, I4VGEN outperforms
all other approaches in temporal quality (higher background and subject consistency, less flickering,
and better smoothness), frame-wise quality (higher aesthetic and imaging quality), and video-text

2https://github.com/Vchitect/LaVie
3Video quality includes 7 evaluation dimensions: Subject Consistency, Background Consistency, Temporal

Flickering, Motion Smoothness, Dynamic Degree, Aesthetic Quality, and Imaging Quality. The first 5 evaluate
temporal quality, and the last 2 evaluate frame-wise quality.

4Video-condition consistency includes 9 evaluation dimensions: Object Class, Multiple Objects, Human
Action, Color, Spatial Relationship, Scene, Appearance Style, Temporal Style, Overall Consistency. The first
6 evaluate semantics, the 7 and 8-th evaluate style, and the 9-th evaluates overall consistency.
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Prompt: “A drone view of celebration with Christmas tree and fireworks, starry sky background”
Image 2 Image 3 Image 4Image 1

Score: 1.38 Score: -1.95 Score: 1.12 Score: -0.15

Dynamic video Generated video (Ours)

Generated video (using image 2)

Figure 5: Intermediate results visualization. We provide visualizations of the candidate images
with reward scores, the dynamic video, and the corresponding generated video.

consistency (greater semantics, style, and overall consistency). Although counterparts occasion-
ally produce videos with more dynamic motion, they are often linked to inappropriate or excessive
movements. I4VGEN strikes a more effective balance between motion intensity and overall video
quality, which is further verified in the user study.

Table 3: User study.

Method Video
Quality

Vid.-Cond.
Consistency

Overall
score

AnimateDiff 6.00% 10.67% 6.33%
+ FreeInit 27.67% 15.67% 25.00%
+ I4VGEN 66.33% 73.67% 68.67%

LaVie 27.67% 21.33% 22.33%
+ FreeInit 22.67% 18.33% 19.67%
+ I4VGEN 49.67% 60.33% 58.00%

User study. We conduct a subjective user
study involving 20 volunteers with expertise
in image and video processing, with each par-
ticipant answering 15 questions. Specifically,
participants are asked to select the video with
the highest quality across three dimensions:
video quality, video-condition consistency,
and overall score. As shown in Table 3, our
approach outperforms the other methods fa-
vorably.

Table 4: Inference time.

Method Time

AnimateDiff 21.73s
AnimateDiff + FreeInit 113.67s
AnimateDiff + I4VGEN 53.78s

Inference time. We define the time cost of a single de-
noising iteration for a video in a video diffusion model
as c. For AnimateDiff (Guo et al., 2024b), following the
original inference setting, the time cost to generate a sin-
gle 16-frame video is 25c. FreeInit requires 5 rounds of
diffusion-denoising to generate a single video, taking a time
of 5 × 25c = 125c. The time cost for I4VGEN to generate
a single video is: < 25c (for synthesizing 16 candidate im-
ages) + 0.6× 25c (for NI-VSDS) + ≤ 25c (for video regeneration) = < 65c (total cost), making it
more efficient compared to FreeInit. LaVie (Wang et al., 2023e) shares the same conclusion.

We also provide the inference time for a single video in Table 4, evaluated on a single NVIDIA
V100 GPU (32 GB), where 50 videos are randomly generated to obtain an average inference time.
Our method performs better than FreeInit.

4.4 ABLATION STUDY

On generation-selection strategy. We adopt a generation-selection strategy to create visually-
realistic and semantically-faithful anchor images, which serve as a foundation for providing ap-
pearance information to enhance subsequent video generation performance. As shown in Table 2,
highlighted in orange, compared to randomly synthesizing a single anchor image, the generation-
selection strategy significantly improves the quality of the generated videos in terms of frame-wise
quality and consistency with the text. Fig. 5 provides a visualization of the candidate images, where
the reward-based selection strategy eliminates unsatisfactory images, leading to better results.

On NI-VSDS. Directly applying the video regeneration process to static videos introduces static pri-
ors, resulting in suboptimal motion quality. As shown in Table 2, highlighted in yellow, while direct
diffusion-denoising improves the temporal consistency of the generated videos, it severely sacrifices
the motion dynamics, adversely affecting the motion style. In contrast, our method achieves an
effective balance between motion intensity and overall video quality.
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Prompt: “A panda standing on a surfboard, in the ocean in sunset”

SparseCtrl SparseCtrl + I4VGENInput image

Prompt: “A woman is talking”

SparseCtrl SparseCtrl + I4VGENInput image

Figure 6: Adaptation on SparseCtrl. I4VGEN can be seamlessly integrated into SparseCtrl by
replacing the anchor image with the provided image, leading to improved results.

On video regeneration. Fig. 5 visualizes the intermediate results, demonstrating that the video
regeneration process is essential for refining appearance details.

4.5 MORE APPLICATIONS

Prompt: “A panda drinking coffee in a cafe in Paris”

Real image Generated video

Prompt: “A person giving a presentation to a room full of colleagues”

Real image Generated video

Figure 7: Adaptation on real image.

Adaptation on real image. Our method
adapts to user-provided images, as shown
in Fig. 7, where we use real images as
anchor images, resulting in high-fidelity
videos that are semantically consistent
with the real images. Notably, our ap-
proach differs from vanilla image-to-video
generation, as the synthesized videos are
not completely aligned with the provided
images. NI-VSDS is designed to ani-
mate static videos and is implemented as
a spatio-temporal co-optimization.

Adaptation on image-to-video diffusion models. I4VGEN can be seamlessly integrated into ex-
isting image-to-video diffusion models by replacing the anchor images with the provided images,
thereby enhancing the overall video quality. As shown in Fig. 6, integrating I4VGEN into SparseC-
trl (Guo et al., 2023) significantly improves the quality of the generated videos in terms of temporal
consistency and appearance fidelity.

5 CONCLUSION

The paper introduces I4VGEN, a novel video diffusion inference pipeline to leverage advanced im-
age techniques to enhance pre-trained text-to-video diffusion models, which requires no additional
learnable parameters and training costs. I4VGEN decomposes the text-to-video inference process
into anchor image synthesis and anchor image-augmented video synthesis. Correspondingly, a sim-
ple yet effective generation-selection strategy is applied to produce a high-quality anchor image, and
an innovative noise-invariant video score distillation sampling (NI-VSDS) is designed to animate the
image, followed by a video regeneration process to enhance the final output. I4VGEN effectively
alleviates non-zero terminal signal-to-noise ratio issues and demonstrates improved visual realism
and textual fidelity when integrated with existing video diffusion models.

Limitation and discussion. I4VGEN improves the video diffusion model but requires more in-
ference cost. As discussed in Sec. 4.3, the inference time of I4VGEN is over double the baseline.
Enhancing inference efficiency remains a future goal, with distillation techniques as a potential ap-
proach. Furthermore, removing the generation-selection strategy can reduce inference costs to some
extent. As shown in Table 2, our method still significantly outperforms the baseline under this set-
ting. Additionally, although our method and FreeInit are orthogonal, integrating both by replacing
video regeneration with FreeInit fails to produce notable benefits.
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This appendix is structured as follows:

• In Appendix A, we provide a discussion of related work.
• In Appendix B, we provide additional experiment results and analysis.
• In Appendix C, we provide the code for I4VGEN.

A RELATED WORK

Video Generative Models. The domain of video generation has seen significant advancements
through the use of Generative Adversarial Networks (GANs) (Vondrick et al., 2016; Saito et al.,
2017; Tulyakov et al., 2018; Wang et al., 2020; Saito et al., 2020; Tian et al., 2021; Fox et al.,
2021; Yu et al., 2022; Skorokhodov et al., 2022; Brooks et al., 2022; Shen et al., 2023; Wang et al.,
2023f), Variational Autoencoders (VAEs) (Mittal et al., 2017; Li et al., 2018; He et al., 2018), and
Autoregressive models (ARs) (Yan et al., 2021; Ge et al., 2022; Wu et al., 2022; Hong et al., 2023;
Villegas et al., 2023; Fu et al., 2023; Yoo et al., 2023; Yu et al., 2023b). Despite these developments,
synthesizing videos from text prompts remains challenging due to the complexities of modeling
spatio-temporal dynamics. Recent innovations driven by the successes of diffusion models (Ho
et al., 2020; Dhariwal & Nichol, 2021; Song et al., 2021), which have been applied effectively in
image generation (Rombach et al., 2022; Nichol et al., 2022; Ramesh et al., 2022; Saharia et al.,
2022; Gu et al., 2023; Balaji et al., 2022; Xue et al., 2023; Meng et al., 2022; Guo et al., 2024a) and
audio synthesis (Kong et al., 2021; Chen et al., 2021; Popov et al., 2021; Leng et al., 2022; Liu et al.,
2022), and underscore the emergence of substantial headway (Ho et al., 2022b;a; He et al., 2022;
Singer et al., 2023; Blattmann et al., 2023b; Yu et al., 2023c; Ruan et al., 2023; Wu et al., 2023a;
Chen et al., 2023a;b; Esser et al., 2023; Ge et al., 2023; Chen et al., 2024a; Geyer et al., 2024; Ma
et al., 2023; Wang et al., 2023e; Zhang et al., 2023a;b; Hu et al., 2023; Wang et al., 2023d; Feng
et al., 2023; Guo et al., 2024b; Girdhar et al., 2023; Blattmann et al., 2023a; Gupta et al., 2023;
Wang et al., 2023b;c; Luo et al., 2023) in research endeavors devoted to video synthesis from text
input.

The foundational contributions of the Video Diffusion Model (VDM) (Ho et al., 2022b) represents a
milestone in leveraging diffusion models for video generation by adapting the 2D U-Net architecture
used in image generation to a 3D U-Net capable of temporal modeling. Successive researches, such
as Make-A-Video (Singer et al., 2023) and Imagen Video (Ho et al., 2022a), expand video generation
capabilities significantly. To enhance efficiency, subsequent models have transitioned the diffusion
process from pixel to latent space (He et al., 2022; Zhou et al., 2022; Wang et al., 2023b; Blattmann
et al., 2023b;a; Guo et al., 2024b; Wang et al., 2023e), paralleling advancements in latent diffusion
for images (Rombach et al., 2022).

However, the direct generation of videos from text prompts remains intrinsically challenging. Recent
approaches (Blattmann et al., 2023a; Zhang et al., 2023b; Girdhar et al., 2023; Chen et al., 2023a;
2024a; Li et al., 2023; Hu et al., 2023; Yu et al., 2023a; Ren et al., 2024) have employed text-to-image
synthesis as an intermediary step, enhancing overall performance. Despite these advancements,
these methods still face the challenge of high computational training costs. In this study, we explore
a novel training-free methodology aimed at bridging the existing gap in the field.

In addition, (Chen et al., 2024b) (contemporary researches) introduces additional operations in the
attention layer, i.e., cross-frame self-attention control, to enhance the video model. However, this
necessitates modifications to the model architecture, whereas our method does not.

Signal-Leak Bias. Diffusion models are designed to generate high-quality visuals from noise
through a sequential denoising process, which is consistent in both image and video diffusion mod-
els. During training, Gaussian noise corrupts the visual content, challenging the model to restore it
to its original form. In the inference phase, the model operates on pure Gaussian noise, transforming
it into a realistic visual content step-by-step.

Unfortunately, most existing diffusion models exhibit a disparity between the corrupted image dur-
ing training and the pure Gaussian noise during inference. Commencing denoising from pure Gaus-
sian noise in the inference phase deviates from the training process, potentially introducing signal-
leak bias. For image diffusion models, (Guttenberg; Lin et al., 2024; Li et al., 2024) point out flaws
in common diffusion noise schedules and sample steps, and propose to fine-tune the diffusion model
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to mitigate or eliminate the signal-leak bias during training, leading to improved results. (Everaert
et al., 2024) attempts to exploit signal-leak bias to achieve more control over the generated images.
For video diffusion models, this issue becomes more pronounced. (Wu et al., 2023b; Ma et al.,
2023) invert the retrieved video or generated low-quality to construct initial noise to alleviate the
problem of signal-leak, improving inference quality. However, they suffer from limited diversity
and cumbersome inference. At the same time, first-round inference of FreeInit (Wu et al., 2023b)
still exhibits a training-inference gap.

In contrast to existing methods, our approach utilizes images as the stepping stone for text-to-
video generation. This novel pathway aims to produce visually-realistic and semantically-reasonable
videos while maintaining manageable computational overheads, as detailed in Sec. 4.

B EXPERIMENTS

B.1 QUALITATIVE COMPARISON

We provide more visualization results in Fig. 8, it can be seen that our method generates more
semantically plausible and photo-realistic results than its counterparts. We provide the videos shown
in the main paper and appendix in mp4 format in the Supplementary material.

B.2 QUANTITATIVE COMPARISON

On hyperparameters. I4VGEN is a training-free method that improves video generation perfor-
mance by correcting the inference process. It is obvious that I4VGEN is also a case-wise method,
where different cases correspond to different optimal hyperparameters. In this paper, we provide an
empirical setting that is mild for most instances, serving as a performance lower bound for I4VGEN,
and facilitating large-scale quantitative comparisons. Furthermore, we also provide a visualization
of the impact of hyperparameters in Fig. 9, which shows that carefully tuned hyperparameters can
achieve higher-quality videos.

B.3 FAILURE CASES AND DISCUSSIONS

We provide the failure cases in Fig. 10, I4VGEN is designed to fully unleash the potential of ex-
isting video diffusion models, but it still fails to synthesize high-quality videos that are out of the
distribution.

C CODE

We also provide the code for I4VGEN in the Supplementary material.
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“Happy rabbit wearing a yellow turtleneck, studio, portrait, facing camera” “A shark swimming in clear Carribean ocean, 2k, high quality”

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

“A drone flying over a snowy forest” “A boat sailing leisurely along the Seine River with the Eiffel Tower in background, Van Gogh style”

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

AnimateDiff

AnimateDiff + FreeInit

AnimateDiff + I4VGEN

LaVie + FreeInit

LaVie + I4VGen

LaVie

LaVie + FreeInit

LaVie + I4VGen

LaVie

“A raccoon dressed in suit playing the trumpet, stage background”“A cup and a couch”

LaVie + FreeInit

LaVie + I4VGen

LaVie

LaVie + FreeInit

LaVie + I4VGen

LaVie

“A koala bear playing piano in the forest.”“A horse galloping across an open field”

Figure 8: Qualitative comparison. Each video is generated with the same text prompt and random
seed for all methods. Our approach significantly improves the quality of the generated videos while
showing excellent alignment with text prompts.
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“A shark swimming in clear Carribean ocean, 2k, high quality” “A squirrel eating a burger, high quality”

AnimateDiff

AnimateDiff + I4VGEN - 𝑝!"#$%&% = 0.6, 𝑝'( = 1.0

AnimateDiff + I4VGEN - 𝑝!"#$%&% = 1.0, 𝑝'( = 1.0

AnimateDiff + I4VGEN - 𝑝!"#$%&% = 0.6, 𝑝'( = 0.6

Figure 9: Impact of hyperparameters. For different texts, the optimal parameter settings are
different, and the sensitivity to parameters also varies. However, they all significantly outperform
the baseline. In this paper, we provide an empirical setting that is mild for most cases, serving as a
performance lower bound for I4VGEN. I4VGEN supports fine-tuning parameters on a per-example,
achieving higher-quality videos.

Prompt: “A cat and a dog reading books on the street, 4k, high resolution”

Prompt: “A red cup and a white sofa”

Figure 10: Failure cases. I4VGEN is designed to fully unleash the potential of existing video
diffusion models, but it still cannot synthesize high-quality videos that are out of the distribution.
For example, the text marked in red.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL VISUAL RESULTS ON DYNAMICRAFTER

We integrate I4VGEN into DynamiCrafter (Xing et al., 2024), which exhibits state-of-the-art per-
formance on the VBench Image-to-Video Leaderboard. As shown in Fig. 11, the beginnings and
endings of videos generated by DynamiCrafter suffer from low quality. For example, the front part
of the face video generated by DynamiCrafter exhibits serious artifacts, and the face in the latter
part are deformed. Our method alleviates these issues, which demonstrates that I4VGEN can signif-
icantly improve the quality of videos synthesized by DynamiCrafter.

D.2 ADDITIONAL VISUAL RESULTS ON SPARSECTRL

We conduct experiments on action instructions. As shown in Fig. 12, we explore two prompt-based
motion enhancement strategies:

• By providing static descriptions in negative prompt, the dynamic intensity of the synthesized
videos can be further enhanced.

• By providing specific action instruction in the prompt, such as “waving its hands”, the synthe-
sized video accurately renders this action.

These findings indicate that I4VGEN does not compromise the dynamic nature of the synthesized
videos but rather depicts more reasonable and accurate motion.

D.3 ADDITIONAL VISUAL RESULTS USING FLUX

We provide the visual results of I4VGEN adapted on FLUX in the Fig. 13. Despite the detailed
and realistic images synthesized by FLUX, AnimateDiff + I4VGEN is still constrained by the video
baseline, i.e., AnimateDiff, in rendering image details and is unable to synthesize realistic videos.
Evidently, the distribution of images synthesized by FLUX exceeds what AnimateDiff can handle,
which relies on SD 1.5. However, the layout and composition information of images synthesized by
FLUX still provide strong support for video synthesis, resulting in promising outcomes.

D.4 ADDITIONAL VISUAL RESULTS ON ANIMATEDIFF

We provide the visual results on AnimateDiff using the Realistic Vision V5.1 LoRA in the
Fig. 14. Our method still significantly improves the quality of the generated videos while showing
excellent temporal consistency.

D.5 ADDITIONAL INTERMEDIATE RESULTS VISUALIZATION

We provide additional intermediate results in the Fig. 17.

D.6 ADDITIONAL VISUAL RESULTS ON LARGE CAMERA POSE CHANGE

We provide more visual results involving significant changes in camera poses in Fig. 16, which
demonstrate that our method can handle this scenario, improving the temporal consistency and
smoothness of the synthesized videos.
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Dynamicrafter

Dynamicrafter 
+ I4VGEN

“A panda standing on a surfboard, in the ocean in sunset”

Dynamicrafter

Dynamicrafter 
+ I4VGEN

“A woman is talking”

Figure 11: Additional visual results on DynamiCrafter. We provide the videos in mp4 format in
the supplementary material for better viewing.
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“A panda standing on a surfboard, in the ocean in sunset”

Negative prompt: “still frame”

SparseCtrl

SparseCtrl + 
I4VGEN

Input image

“A panda standing on a surfboard, in the ocean in sunset”

SparseCtrl

SparseCtrl + 
I4VGEN

Input image

“A panda standing on a surfboard, waving its hands, in the ocean in sunset”

SparseCtrl

SparseCtrl + 
I4VGEN

Input image

Figure 12: Additional visual results on SparseCtrl. We provide the videos in mp4 format in the
supplementary material for better viewing.
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“A boat sailing leisurely along the Seine River with the Eiffel Tower in background, Van Gogh style”

Dynamic video 

Generated video

“An orange cat”

Dynamic video 

Generated video

Figure 13: Adaptation on image generated by FLUX. We provide the videos in mp4 format in the
supplementary material for better viewing.

“A person playing guitar”

AnimateDiff

AnimateDiff +
I4VGEN

“An orange cat”

AnimateDiff

AnimateDiff +
I4VGEN

Figure 14: Additional visual results on AnimateDiff using LoRA. We provide the videos in mp4
format in the supplementary material for better viewing.
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“An orange cat”

AnimateDiff

Score: -1.51 Score: 1.53 Score: 0.62 Score: 0.48 Score: 0.20 Score: 0.77 Score: 1.62 Score: 0.70

Dynamic video 
(using image 1)

Generated video 
(using image 1)

Dynamic video 
(using image 7)

Ours

Generated video 
(using image 7)

Ours

“A boat sailing leisurely along the Seine River with the Eiffel Tower in background, Van Gogh style”

AnimateDiff

Score: 0.64 Score: 0.46 Score: -1.30 Score: 0.92 Score: 1.35 Score: 0.75 Score: -0.09 Score: -0.93

Dynamic video 
(using image 1)

Generated video 
(using image 1)

Dynamic video 
(using image 5)

Ours

Generated video 
(using image 5)

Ours

Figure 15: Additional intermediate results visualization. We provide the videos in mp4 format in
the supplementary material for better viewing.
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LaVie

LaVie 
+ I4VGEN

“A drone camera circles around a beautiful historic church built on a rocky outcropping along the Amalfi Coast, the view showcases historic and magnificent architectural 
details and tiered pathways and patios, waves are seen crashing against the rocks below as the view overlooks the horizon of the coastal waters and hilly landscapes of the 
Amalfi Coast Italy, several distant people are seen walking and enjoying vistas on patios of the dramatic ocean views, the warm glow of the afternoon sun creates a 
magical and romantic feeling to the scene, the view is stunning captured with beautiful photography.”

LaVie

LaVie 
+ I4VGEN

“The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up 
from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no 
other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the 
curve with ease, making it seem as if it is on a rugged drive through the rugged terrain.”

Figure 16: Additional visual results on large camera pose change. We provide the videos in mp4
format in the supplementary material for better viewing.

Pre = 0.2

Pre = 0.4

Pre = 0.6

Pre = 0.8

Pre = 1.0

“A panda standing on a surfboard in the ocean in sunset.” “Iron Man flying in the sky”

LaVie

Figure 17: Impact of pre. We provide the videos in mp4 format in the supplementary material for
better viewing.
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