
A Dynamical System Perspective for Lipschitz Neural Networks

Laurent Meunier * 1 2 Blaise Delattre * 1 3 Alexandre Araujo * 4 Alexandre Allauzen 1 5

Abstract
The Lipschitz constant of neural networks has
been established as a key quantity to enforce the
robustness to adversarial examples. In this paper,
we tackle the problem of building 1-Lipschitz
Neural Networks. By studying Residual Net-
works from a continuous time dynamical sys-
tem perspective, we provide a generic method
to build 1-Lipschitz Neural Networks and show
that some previous approaches are special cases of
this framework. Then, we extend this reasoning
and show that ResNet flows derived from con-
vex potentials define 1-Lipschitz transformations,
that lead us to define the Convex Potential Layer
(CPL). A comprehensive set of experiments on
several datasets demonstrates the scalability of
our architecture and the benefits as an ℓ2-provable
defense against adversarial examples. Our
code is available at https://github.com/
MILES-PSL/Convex-Potential-Layer

1. Introduction
Modern neural networks have been known to be sensible
against small, imperceptible and adversarially-chosen per-
turbations of their inputs (Biggio et al., 2013; Szegedy et al.,
2014). This vulnerability has become a major issue as more
and more neural networks have been deployed into pro-
duction applications. Over the past decade, the research
progress plays out like a cat-and-mouse game between the
development of more and more powerful attacks (Goodfel-
low et al., 2015; Kurakin et al., 2016; Carlini et al., 2017;
Croce et al., 2020) and the design of empirical defense mech-
anisms (Madry et al., 2018; Moosavi-Dezfooli et al., 2019;
Cohen et al., 2019). Finishing the game calls for certified ad-

*Equal contribution 1Miles Team, LAMSADE, Université
Paris-Dauphine, PSL University, Paris, France 2Meta AI Re-
search, Paris, France 3Foxstream, Lyon, France 4INRIA, Ecole
Normale Supérieure, CNRS, PSL University, Paris, France 5ESPCI,
Paris, France. Correspondence to: Laurent Meunier <lau-
rent.meunier1995@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

versarial robustness (Raghunathan et al., 2018; Wong et al.,
2018). While recent work devised defenses with theoretical
guarantees against adversarial perturbations, they share the
same limitation, i.e., the tradeoffs between expressivity and
robustness, and between scalability and accuracy.

A natural approach to provide robustness guarantees on a
classifier is to enforce Lipschitzness properties. To achieve
such properties, researchers mainly focused on two different
kinds of approaches. The first one is based on randomiza-
tion (Lecuyer et al., 2018; Cohen et al., 2019; Pinot et al.,
2019) and consists in convolving the input with with a pre-
defined probability distribution. While this approach offers
some level of scalability (i.e., currently the only certified
defense on the ImageNet dataset), it suffers from significant
impossibility results (Yang et al., 2020). A second approach
consists in building 1-Lipschitz layers using specific linear
transform (Cisse et al., 2017; Li et al., 2019b; Anil et al.,
2019; Trockman et al., 2021; Singla & Feizi, 2021; Li et al.,
2019b; Singla et al., 2021a). Knowing the Lipschitz constant
of the network, it is then possible to compute a certification
radius around any points.

A large line of work explored the interpretation of residual
neural networks (He et al., 2016) as a parameter estima-
tion problem of nonlinear dynamical systems (Haber et al.,
2017; E, 2017; Lu et al., 2018). Reconsidering the ResNet
architecture as an Euler discretization of a continuous dy-
namical system yields to the trend around Neural Ordinary
Differential Equation (Chen et al., 2018). For instance, in
the seminal work of Haber et al. (2017), the continuous
formulation offers more flexibility to investigate the stabil-
ity of neural networks during inference, knowing that the
discretization will be then implemented by the architecture
design. The notion of stability, in our context, quantifies
how a small perturbation on the initial value impacts the
trajectories of the dynamical system.

From this continuous and dynamical interpretation, we an-
alyze the Lipschitzness property of Neural Networks. We
then study the discretization schemes that can preserve
the Lipschitzness properties. With this point of view, we
can readily recover several previous methods that build 1-
Lipschitz neural networks (Trockman et al., 2021; Singla
& Feizi, 2021). Therefore, the dynamical system perspec-
tive offers a general and flexible framework to build Lip-

https://github.com/MILES-PSL/Convex-Potential-Layer
https://github.com/MILES-PSL/Convex-Potential-Layer

A Dynamical System Perspective for Lipschitz Neural Networks

schitz Neural Networks facilitating the discovery of new
approaches. In this vein, we introduce convex potentials in
the design of the Residual Network flow and show that this
choice of parametrization yields to by-design 1-Lipschitz
neural networks. At the very core of our approach lies a new
1-Lipschitz non-linear operator that we call Convex Poten-
tial Layer which allows us to adapt convex potential flows
to the discretized case. These blocks enjoy the desirable
property of stabilizing the training of the neural network
by controlling the gradient norm, hence overcoming the
exploding gradient issue. We experimentally demonstrate
our approach by training large-scale neural networks on
several datasets, reaching state-of-the art results in terms of
under-attack and certified accuracy.

2. Background and Related Work
In this paper, we aim at devising certified defense mech-
anisms against adversarial attacks, in the following, we
formally define an adversarial attacks and a robustness cer-
tificate. We consider a classification task from an input space
X ⊂ Rd to a label space Y := {1, . . . ,K}. To this end,
we aim at learning a classifier function f := (f1, . . . , fK) :
X → RK such that the predicted label for an input x is
argmaxk fk(x). For a given couple input-label (x, y), we
say that x is correctly classified if argmaxk fk(x) = y.

Definition 1 (Adversarial Attacks). Let x ∈ X , y ∈ Y the
label of x and let f be a classifier. An adversarial attack at
level ε is a perturbation τ s.t. ∥τ∥ ≤ ε such that:

argmax
k

fk(x+ τ) ̸= y

Let us now define the notion of robust certification. For
x ∈ X , y ∈ Y the label of x and let f be a classifier, a
classifier f is said to be certifiably robust at radius ε ≥ 0 at
point x if for all τ such that ∥τ∥ ≤ ε :

argmax
k

fk(x+ τ) = y

The task of robust certification is then to find methods that
ensure the previous property. A key quantity in this case is
the Lipschitz constant of the classifier.

2.1. Lipschitz property of Neural Networks

The Lipschitz constant has seen a growing interest in the last
few years in the field of deep learning (Virmaux & Scaman,
2018; Fazlyab et al., 2019; Combettes & Pesquet, 2020;
Béthune et al., 2021). Indeed, numerous results have shown
that neural networks with a small Lipschitz constant exhibit
better generalization (Bartlett et al., 2017), higher robustness
to adversarial attacks (Szegedy et al., 2014; Farnia et al.,
2019; Tsuzuku et al., 2018), better training stability (Xiao
et al., 2018; Trockman et al., 2021), improved Generative

Adversarial Networks (Arjovsky et al., 2017), etc. Formally,
we define the Lipschitz constant with respect to the ℓ2 norm
of a Lipschitz continuous function f as follows:

Lip2(f) = sup
x,x′∈X
x ̸=x′

∥f(x)− f(x′)∥2
∥x− x′∥2

.

Intuitively, if a classifier is Lipschitz, one can bound the im-
pact of a given input variation on the output, hence obtaining
guarantees on the adversarial robustness. We can formally
characterize the robustness of a neural network with respect
to its Lipschitz constant with the following proposition:

Proposition 1 (Tsuzuku et al. (2018)). Let f be an L-
Lipschitz continuous classifier for the ℓ2 norm. Let ε > 0,
x ∈ X and y ∈ Y the label of x. If at point x, the margin
Mf (x) satisfies:

Mf (x) := max(0, fy(x)−max
y′ ̸=y

fy′(x)) >
√
2Lε

then we have for every τ such that ∥τ∥2 ≤ ε:

argmax
k

fk(x+ τ) = y

From Proposition 1, it is straightforward to compute a ro-
bustness certificate for a given point. Consequently, in order
to build robust neural networks the margin needs to be large
and the Lipschitz constant small to get optimal guarantees
on the robustness for neural networks.

2.2. Certified Adversarial Robustness

Mainly two kinds of methods have been developed to come
up with certified adversarial robustness. The first category
relies on randomization and consists of convolving the in-
put with a predefined probability distribution during both
training and inference phases. Several works that rely on
the method have proposed empirical (Cao & Gong, 2017;
Liu et al., 2018; Pinot et al., 2019; 2020) and certified de-
fenses (Lecuyer et al., 2018; Li et al., 2019a; Cohen et al.,
2019; Salman et al., 2019; Yang et al., 2020). These meth-
ods are model-agnostic, in the sense they do not depend on
the architecture of the classifier, and provide “high proba-
bility” certificates. In order to get non-vacuous provable
guarantees, such approaches often require to query the net-
work hundreds of times to infer the label of a single image.
This computational cost naturally limits the use of these
methods in practice.

The second approach directly exploits the Lipschitzness
property with the design of built-in 1-Lipschitz layers. Con-
trarily to previous methods, these approaches provide de-
terministic guarantees. Following this line, one can either
normalize the weight matrices by their largest singular val-
ues making the layer 1-Lipschitz, e.g. (Yoshida & Miyato,

A Dynamical System Perspective for Lipschitz Neural Networks

2017; Miyato et al., 2018; Farnia et al., 2019; Anil et al.,
2019) or project the weight matrices on the Stiefel manifold
(Li et al., 2019b; Trockman et al., 2021; Singla & Feizi,
2021). The work of Li et al. (2019b), Trockman et al. (2021)
and Singla & Feizi (2021) (denoted BCOP, Cayley and SOC
respectively) are considered the most relevant approach to
our work. Indeed, their approaches consist of projecting
the weights matrices onto an orthogonal space in order to
preserve gradient norms and enhance adversarial robustness
by guaranteeing low Lipschitz constants. While both works
have similar objectives, their execution is different. The
BCOP layer (Block Convolution Orthogonal Parameteriza-
tion) uses an iterative algorithm proposed by Björck et al.
(1971) to orthogonalize the linear transform performed by
a convolution. The SOC layer (Skew Orthogonal Convolu-
tions) uses the property that if A is a skew symmetric matrix
then Q = expA is an orthogonal matrix. To approximate
the exponential, the authors proposed to use a finite number
of terms in its Taylor series expansion. Finally, the method
proposed by Trockman et al. (2021) use the Cayley trans-
form to orthogonalize the weights matrices. Given a skew
symmetric matrix A, the Cayley transform consists in com-
puting the orthogonal matrix Q = (I −A)−1(I +A). Both
methods are well adapted to convolutional layers and are
able to reach high accuracy levels on CIFAR datasets. Also,
several works (Anil et al., 2019; Singla et al., 2021a; Huang
et al., 2021b) proposed methods leveraging the properties of
activation functions to constraints the Lipschitz of Neural
Networks. These works are usually useful to help improving
the performance of linear orthogonal layers.

2.3. Residual Networks

To prevent from gradient vanishing issues in neural networks
during the training phase (Hochreiter et al., 2001), (He et al.,
2016) proposed the Residual Network (ResNet) architec-
ture. Based on this architecture, several works (Haber et al.,
2017; E, 2017; Lu et al., 2018; Chen et al., 2018) proposed
a “continuous time” interpretation inspired by dynamical
systems that can be defined as follows.

Definition 2. Let (Ft)t∈[0,T] be a family of functions on
Rd, we define the continuous time Residual Networks flow
associated with Ft as:{

x0 = x ∈ X
dxt

dt = Ft(xt) for t ∈ [0, T]

This continuous time interpretation helps as it allows us to
consider the stability of the forward propagation through the
stability of the associated dynamical system. A dynamical
system is said to be stable if two trajectories starting from
an input and another one remain sufficiently close to each
other all along the propagation. This stability property takes
all its sense in the context of adversarial classification.

It was argued by Haber et al. (2017) that when Ft does not
depend on t or vary slowly with time1, the stability can
be characterized by the eigenvalues of the Jacobian matrix
∇xFt(xt): the dynamical system is stable if the real part of
the eigenvalues of the Jacobian stay negative throughout the
propagation. This property however only relies on intuition
and this condition might be difficult to verify in practice.
In the following, in order to derive stability properties, we
study gradient flows and convex potentials, which are sub-
classes of Residual networks.

Other works (Huang et al., 2020b; Li et al., 2020) also pro-
posed to enhance adversarial robustness using dynamical
systems interpretations of Residual Networks. Both works
argues that using particular discretization scheme would
make gradient attacks more difficult to compute due to nu-
merical stability. These works did not provide any provable
guarantees for such approaches.

3. A Framework to design Lipschitz Layers
The continuous time interpretation of Definition 2 allows
us to better investigate the robustness properties and assess
how a difference of the initial values (the inputs) impacts
the inference flow of the model. Let us consider two con-
tinuous flows xt and zt associated with Ft but differing
in their respective initial values x0 and z0. Our goal is to
characterize the time evolution of ∥xt − zt∥ by studying
its time derivative. We recall that every matrix M ∈ Rd×d

can be uniquely decomposed as the sum of a symmetric and
skew-symmetric matrix M = S(M)+A(M). By applying
this decomposition to the Jacobian matrix ∇xFt(x) of Ft,
we can show that the time derivative of ∥xt − zt∥2 only in-
volves the symmetric part S(∇xFt(x)) (see Appendix B.1
for details).

For two symmetric matrices S1, S2 ∈ Rd×d, we denote
S1 ⪯ S2 if, for all x ∈ Rd, ⟨x, (S2 − S1)x⟩ ≥ 0. By
focusing on the symmetric part of the Jacobian matrix we
can show in Appendix B.1 the following proposition.

Proposition 2. Let (Ft)t∈[0,T] be a family of differentiable
functions almost everywhere on Rd. Let us assume that
there exists two measurable functions t 7→ µt and t 7→ λt

such that
µtI ⪯ S(∇xFt(x)) ⪯ λtI

for all x ∈ Rd, and t ∈ [0, T]. Then the flow associated
with Ft satisfies for all initial conditions x0 and z0:

∥x0 − z0∥e
∫ t
0
µsds ≤ ∥xt − zt∥ ≤ ∥x0 − z0∥e

∫ t
0
λsds

The symmetric part plays even a more important role since
one can show that a twice-differentiable function whose

1This blurry definition of "vary slowly" makes the property
difficult to apply.

A Dynamical System Perspective for Lipschitz Neural Networks

Jacobian is always skew-symmetric is actually linear (see
Appendix C.1 for more details). However, constraining
S(∇xFt(x)) in the general case is technically difficult and
a solution resorts to a more intuitive parametrization of
Ft as the sum of two functions F1,t and F2,t whose Jaco-
bian matrix are respectively symmetric and skew-symmetric.
Thus, such a parametrization enforces F2,t to be linear and
skew-symmetric. For the choice of F1,t, we propose to rely
on potential functions: a function F1,t : Rd → Rd derives
from a simpler family of scalar valued function in Rd, called
the potential, via the gradient operation. Moreover, since
the Hessian of the potential is symmetric, the Jacobian for
F1,t is then also symmetric. If we add the convex prop-
erty to this potential, its Hessian has positive eigenvalues.
Therefore we introduce the following corollary. See proof
in Appendix B.2

Corollary 1. Let (ft)t∈[0,T] be a family of convex differ-
entiable functions on Rd and (At)t∈[0,T] a family of skew
symmetric matrices. Let us define

Ft(x) = −∇xft(x) +Atx,

then the flow associated with Ft satisfies for all initial con-
ditions x0 and z0:

∥xt − zt∥ ≤ ∥x0 − z0∥

This simple property suggests that if we could parameterize
Ft with convex potentials, it would be less sensitive to input
perturbations and therefore more robust to adversarial exam-
ples. We also remark that the skew symmetric part is then
norm-preserving. However, the discretization of such flow
is challenging in order to maintain this property of stability.
Note the question of the expressiveness of continuous and
discretized flow induced by this decomposition is an open
question.There is indeed no reason that this decomposition
is fully expressive. This question is left as further work.

3.1. Discretized Flows

To study the discretization of the previous flow, let t =
1, . . . , T be the discretized time steps and from now we
consider the flow defined by Ft(x) = −∇ft(x) + Atx,
with (ft)t=1,...,T a family of convex differentiable functions
on Rd and (At)t=1,...,T a family of skew symmetric matri-
ces. The most basic method is the explicit Euler scheme as
defined by:

xt+1 = xt + Ft(xt)

However, if At ̸= 0, this discretized system might not
satisfy ∥xt − zt∥ ≤ ∥x0 − z0∥. Indeed, consider the simple
example where ft = 0. We then have:

∥xt+1 − zt+1∥2 − ∥xt − zt∥2 = ∥At (xt − zt)∥2.

Thus explicit Euler scheme cannot guarantee Lipschitzness
when At ̸= 0. To overcome this difficulty, the discretization
step can be split in two parts, one for∇xft and one for At:{

xt+ 1
2

= STEP1(xt,∇xft)

xt+1 = STEP2(xt+ 1
2
, At)

This type of discretization scheme can be found for instance
from Proximal Gradient methods where one step is explicit
and the other is implicit. Then, we dissociate the Lipschitz-
ness study of both terms of the flow.

3.2. Discretization scheme for∇xft

To apply the explicit Euler scheme to ∇xft, an additional
smoothness property on the potential functions is required
to generalize the Lipschitzness guarantee to the discretized
flows. Recall that a function f is said to be L-smooth if it is
differentiable and if x 7→ ∇xf(x) is L-Lipschitz.

Proposition 3. Let t ∈ {1, · · · , T} Let us assume that ft
is Lt-smooth. We define the following discretized ResNet
gradient flow using ht as a step size:

xt+ 1
2

= xt − ht∇xft(xt)

Consider now two trajectories xt and zt with initial points
x0 = x and z0 = z respectively, if 0 ≤ ht ≤ 2

Lt
, then

∥xt+ 1
2
− zt+ 1

2
∥2 ≤ ∥xt − zt∥2

In Section 4, we describe how to parametrize a neural
network layer to implement such a discretization step by
leveraging the recent work on Input Convex Neural Net-
works (Amos et al., 2017).

Remark 1. Another solution relies on the implicit Eu-
ler scheme: xt+ 1

2
= xt − ∇xft(xt+ 1

2
). We show in Ap-

pendix C.2 that this strategy defines a 1-Lipschitz flow with-
out further assumption on ft than convexity. We propose an
implementation. However preliminary experiments did not
show competitive results and the training time is prohibitive.
We leave this solution for future work.

3.3. Discretization scheme for At

The second step of discretization involves the term with
skew-symmetric matrix At. As mentioned earlier, the chal-
lenge is that the explicit Euler discretization is not contrac-
tive. More precisely, the following property

∥xt+1 − zt+1∥ ≥ ∥xt+ 1
2
− zt+ 1

2
∥

is satisfied with equality only in the special and useless case
of xt+ 1

2
− zt+ 1

2
∈ ker(At). Moreover, the implicit Euler

discretization induces an increasing norm and hence does
not satisfy the desired property of norm preservation neither.

A Dynamical System Perspective for Lipschitz Neural Networks

Midpoint Euler method. We thus propose to use Mid-
point Euler method, defined as follows:

xt+1 = xt+ 1
2
+At

xt+1 + xt+ 1
2

2

⇐⇒ xt+1 =

(
I − At

2

)−1 (
I +

At

2

)
xt+ 1

2
.

Since At is skew-symmetric, I − At

2 is invertible. This up-
date corresponds to the Cayley Transform of At

2 that induces
an orthogonal mapping. This kind of layers was introduced
and extensively studied in Trockman et al. (2021).

Exact Flow. One can define the simple differential equa-
tion corresponding to the flow associated with At

dus

ds
= Atus, u0 = xt+ 1

2
,

There exists an exact solution exists since At is linear. By
taking the value at s = 1

2 , we obtained the following trans-
formation:

xt+1 := u 1
2
= e

A
2 xt+ 1

2
.

This step is therefore clearly norm preserving but the ma-
trix exponentiation is challenging and it requires efficient
approximations. This trend was recently investigated under
the name of Skew Orthogonal Convolution (SOC) (Singla
& Feizi, 2021).

4. Parametrizing Convex Potentials Layers
As presented in the previous section, parametrizing the skew
symmetric updates has been extensively studied by Trock-
man et al. (2021); Singla & Feizi (2021). In this paper we
focus on the parametrization of symmetric update with the
convex potentials proposed in 3. For that purpose, the In-
put Convex Neural Network (ICNN) (Amos et al., 2017)
provide a relevant starting point that we will extend.

4.1. Gradient of ICNN

We use 1-layer ICNN (Amos et al., 2017) to define an ef-
ficient computation of Convex Potentials Flows. For any
vectors w1, . . . wk ∈ Rd, and bias terms b1, . . . , bk ∈ R,
and for ϕ a convex function, the potential F defined as:

Fw,b : x ∈ Rd 7→
k∑

i=1

ϕ(w⊤
i x+ bi)

defines a convex function in x as the composition of a linear
and a convex function. Its gradient with respect to its input
x is then:

x 7→
k∑

i=1

wiϕ
′(w⊤

i x+ bi) = W⊤ϕ′(Wx+ b)

with W ∈ Rk×d and b ∈ Rk are respectively the matrix and
vector obtained by the concatenation of, respectively, w⊤

i

and bi, and ϕ′ is applied element-wise. Moreover, assuming
ϕ′ is L-Lipschitz, we have that Fw,b is L∥W∥22-smooth.
∥W∥2 denotes the spectral norm of W, i.e., the greatest
singular value of W defined as:

∥W∥2 := max
x̸=0

∥Wx∥2
∥x∥2

The reciprocal also holds: if σ : R→ R is a non-decreasing
L-Lipschitz function, W ∈ Rk×d and b ∈ Rk, there exists
a convex L∥W∥22-smooth function Fw,b such that

∇xFw,b(x) = W⊤σ(Wx+ b),

where σ is applied element-wise. The next section shows
how this property can be used to implement the building
block and training of such layers.

4.2. Convex Potential layers

From the previous section, we derive the following Convex
Potential Layer:

z = x− 2

∥W∥22
W⊤σ(Wx+ b)

Written in a matrix form, this layer can be implemented
with every linear operation W. In the context of image
classification, it is beneficial to use convolutions2 instead of
generic linear transforms represented by a dense matrix.

Remark 2. When W ∈ R1×d, b = 0 and σ = RELU, the
Convex Potential Layer is equivalent to the HouseHolder
activation function introduced in Singla et al. (2021a).

Residual Networks (He et al., 2016) are also composed of
other types of layers which increase or decrease the dimen-
sionality of the flow. Typically, in a classical setting, the
number of input channels is gradually increased, while the
size of the image is reduced with pooling layers. In order to
build a 1-Lipschitz Residual Network, all operations need
to be properly scale or normalize in order to maintain the
Lipschitz constant.

Increasing dimensionsionality. To increase the number
of channels in a convolutional Convex Potential Layer, a
zero-padding operation can be easily performed: an input
x of size c × h × w can be extended to some x′ of size
c′ × h × w, where c′ > c, which equals x on the c first
channels and 0 on the c′ − c other channels.

2For instance, one can leverage the Conv2D and
Conv2D_transpose functions of the PyTorch frame-
work (Paszke et al., 2019)

A Dynamical System Perspective for Lipschitz Neural Networks

Algorithm 1 Computation of a Convex Potential Layer

Require: Input: x, vector: u, weights: W, b
Ensure: Compute the layer z and return u
v ←Wu/∥Wu∥2
u←W⊤v/∥W⊤v∥2

 1 iter. for training
100 iter. for inference

h← 2/ (
∑

i(Wu · v)i)2
return x− h

[
W⊤σ(Wx+ b)

]
, u

Reducing dimensionsionality. Dimensionality reduction
is another essential operation in neural networks. On one
hand, its goal is to reduce the number of parameters and
thus the amount of computation required to build the net-
work. On the other hand it allows the model to progressively
map the input space on the output dimension, which corre-
sponds in many cases to the number of different labels K.
In this context, several operations exist: pooling layers are
used to extract information present in a region of the fea-
ture map generated by a convolution layer. One can easily
adapt pooling layers (e.g. max and average) to make them
1-Lipschitz (Bartlett et al., 2017). Finally, a simple method
to reduce the dimension is the product with a non-square
matrix. In this paper, we simply implement it as the trunca-
tion of the output. This obviously maintains the Lipschitz
constant.

4.3. Computing spectral norms

Our Convex Potential Layer, described in Equation 4.2, can
be adapted to any kind of linear transformations (i.e. Dense
or Convolutional) but requires the computation of the spec-
tral norm for these transformations. Given that computation
of the spectral norm of a linear operator is known to be
NP-hard (Steinberg, 2005), an efficient approximate method
is required during training to keep the complexity tractable.

Many techniques exist to approximate the spectral norm
(or the largest singular value), and most of them exhibit a
trade-off between efficiency and accuracy. Several meth-
ods exploit the structure of convolutional layers to build an
upper bound on the spectral norm of the linear transform
performed by the convolution (Jia et al., 2017; Singla et al.,
2021b; Araujo et al., 2021). While these methods are gener-
ally efficient, they can less relevant and adapted to certain
settings. For instance in our context, using a loose upper
bound of the spectral norm will hinder the expressive power
of the layer and make it too contracting.

For these reasons we rely on the Power Iteration Method
(PM). This method converges at a geometric rate towards
the largest singular value of a matrix. More precisely the
convergence rate for a given matrix W is O((λ2

λ1
)k) after

k iterations, independently from the choice for the starting
vector, where λ1 > λ2 are the two largest singular values of
W. While it can appear to be computationally expensive due

S M L XL

Conv. Layers 20 30 50 70
Channels 45 60 90 120

Lin. Layers 7 10 10 15
Lin. Features 2048 2048 4096 4096

Table 1. Architectures description for our Convex Potential Layers
(CPL) neural networks with different capacities. We vary the
number of Convolutional Convex Potential Layers, the number of
Linear Convex Potential Layers, the number of channels in the
convolutional layers and the width of fully connected layers. In
the paper, they will be reported respectively as CPL-S, CPL-M,
CPL-L and CPL-XL.

to the large number of required iterations for convergence,
it is possible to drastically reduce the number of iterations
during training. Indeed, as in (Miyato et al., 2018), by
considering that the weights’ matrices W change slowly
during training, one can perform only one iteration of the
PM for each step of the training and let the algorithm slowly
converges along with the training process3. We describe
with more details in Algorithm 1, the operations performed
during a forward pass with a Convex Potential Layer. In
order to keep the computation tractable in terms of time and
memory, u and v are detached from graph computation for
backpropagation.

However for evaluation purpose, we need to compute the
certified adversarial robustness, and this requires to ensure
the convergence of the PM. Therefore, we perform 100
iterations for each layer4 at inference time. Also note that at
inference time, the computation of the spectral norm only
needs to be performed once for each layer.

5. Experiments
To evaluate our new 1-Lipschitz Convex Potential Layers,
we carry out an extensive set of experiments. In this section,
we first describe the details of our experimental setup. We
then recall the concurrent approaches that build 1-Lipschitz
Neural Networks and stress their limitations. Our experi-
mental results are finally summarized in Section 5.1. By
computing the certified and empirical adversarial accuracy
of our networks on CIFAR10 and CIFAR100 classification
tasks (Krizhevsky et al., 2009), we show that our archi-
tecture is competitive with state-of-the-art methods (Sec-
tions 5.3). In Appendix D, we also study the influence of
some hyperparameters and demonstrate the stability and
the scalability of our approach by training very deep neural

3Note that a typical training requires approximately 200K steps
where 100 steps of PM is usually enough for convergence

4100 iterations of Power Method is sufficient to converge with
a geometric rate.

A Dynamical System Perspective for Lipschitz Neural Networks

networks up to 1000 layers without normalization tricks
or gradient clipping. In Appendix D.6, we experimented
different activation functions for our CPL layers, it turns out
that the ReLU activation max(0, x) is the best performing
one. In the following, all reported CPL models use ReLU
activation functions.

In this section, we only stacked CPL layers: we do not alter-
nate CPL layers and convolution layers. In Appendix D.3,
we provide experiments on alternation of layers but the per-
formances are quite poor. In our opinion, there are two main
reasons for that. (1) The setting used in SOC (optimizer,
losses, etc.) is different from the one used in CPL layers.
We tried to fit CPL (resp. SOC) with their setting (resp.
ours), but the performances were weaker. Alternating SOC
layers and CPL layers did not improve the performance.
(2) Even though Cayley has the same setting as ours, the
regime of high performance is different for Orthogonal Lay-
ers (SOC and Cayley) and CPL layers. Small CPL nets are
very fast to train but the performance is quite low in compar-
ison with Orthogonal nets. When increasing the number of
layers, Orthogonal Layers performances saturate and even
decrease for a large number of layers, while the performance
of CPL nets increases. Moreover, the training time of Deep
Orthogonal nets is often prohibitive.

5.1. Training and Architectural Details

We demonstrate the effectiveness of our approach on
a classification task with CIFAR10 and CIFAR100
datasets (Krizhevsky et al., 2009). We use a similar training
configuration to the one proposed in (Trockman et al., 2021)
We trained our networks with a batch size of 256 over 200
epochs. We use standard data augmentation (i.e., random
cropping and flipping), a learning rate of 0.001 with Adam
optimizer (Diederik P. Kingma, 2014) without weight decay
and a piecewise triangular learning rate scheduler. We used
a margin loss5 with margin parameter set to 0.7. Note that
the margin parameter is a crucial parameter as described in
Appendix D.5.

As other usual convolutional neural networks, we first stack
few Convolutional CPLs and then stack some Linear CPLs
for classification tasks. To validate the performance and the
scalability of our layers, we will evaluate four different vari-
ations of different hyperparameters as described in Table 1,
respectively named CPL-S, CPL-M, CPL-L and CPL-XL,
ranked according to the number of parameters they have.
In all our experiments, we made 3 independent trainings to
evaluate accurately the models. All reported results are the
average of these 3 runs.

5This procedure is also referred as Lipschitz Margin Training.

5.2. Concurrent Approaches

We compare our networks with SOC (Singla & Feizi, 2021)
and Cayley (Trockman et al., 2021) networks which are to
our knowledge the best performing approaches for deter-
ministic 1-Lipschitz Neural Networks. Since our layers are
fundamentally different from these ones, we cannot compare
with the same architectures. We reproduced SOC results
for with 10 and 20 layers, that we call respectively SOC-10
and SOC-20 in the same training setting, i.e. normalized
inputs, cross entropy loss, SGD optimizer with learning rate
0.1 and multi-step learning rate scheduler. For Cayley lay-
ers networks, we reproduced their best reported model, i.e.
KWLarge with width factor of 3.

The work of Singla et al. (2021a) propose three methods
to improve certifiable accuracies from SOC layers: a new
HouseHolder activation function (HH), last layer normaliza-
tion (LLN), and certificate regularization (CR). The code
associated with this paper is not open-sourced yet, so we
just reported the results from their paper in ours results (Ta-
bles 2 and 3) under the name SOC+. We were being able
to implement the LLN method in all models. This method
largely improve the result of all methods on CIFAR100,
so we used it for all networks we compared on CIFAR100
(ours and concurrent approaches).

5.3. Results

In this section, we present our results on adversarial ro-
bustness. We provide results on provable ℓ2 robustness as
well as empirical robustness on CIFAR10 and CIFAR100
datasets for all our models and the concurrent ones

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Certified Accuracy CIFAR10
CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Certified Accuracy CIFAR100
CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

Figure 1. Certifiably robust accuracy in function of the perturbation
ε for our CPL networks and its concurrent approaches (SOC and
Cayley models) on CIFAR10 and CIFAR100 datasets.

Certified Adversarial Robustness. Results on CIFAR10
and CIFAR100 dataset are reported respectively in Tables 2
and 3. We also plotted certified accuracy in function of ε
on Figure 1. On CIFAR10, our method outperforms the
concurrent approaches in terms of standard and certified
accuracies for every level of ε except SOC+ that uses ad-
ditional tricks we did not use. On CIFAR100, our method
performs slightly under the SOC networks but better than
Cayley networks. Overall, our methods reach competitive
results with SOC and Cayley layers.

A Dynamical System Perspective for Lipschitz Neural Networks

Clean Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S 75.6 62.3 46.9 32.2 21.9
CPL-M 76.8 63.3 47.5 32.5 40.0
CPL-L 77.7 63.9 48.1 32.9 93.4
CPL-XL 78.5 64.4 48.0 33.0 163

Cayley (KW3) 74.6 61.4 46.4 32.1 30.8

SOC-10 77.6 62.0 45.0 29.5 33.4
SOC-20 78.0 62.7 46.0 30.3 52.2

SOC+-10 76.2 62.6 47.7 34.2 N/A
SOC+-20 76.3 62.6 48.7 36.0 N/A

Table 2. Results on the CIFAR10 dataset on standard and provably certifiable accuracies for different values of perturbations ε on CPL
(ours), SOC and Cayley models. The average time per epoch in seconds is also reported in the last column. None of these networks uses
Last Layer Normalization.

Clean Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S 44.0 29.9 19.1 11.0 22.4
CPL-M 45.6 31.1 19.3 11.3 40.7
CPL-L 46.7 31.8 20.1 11.7 93.8
CPL-XL 47.8 33.4 20.9 12.6 164

Cayley (KW3) 43.3 29.2 18.8 11.0 31.3

SOC-10 48.2 34.3 22.7 14.0 33.8
SOC-20 48.3 34.4 22.7 14.2 52.7

SOC+-10 47.1 34.5 23.5 15.7 N/A
SOC+-20 47.8 34.8 23.7 15.8 N/A

Table 3. Results on the CIFAR100 dataset on standard and provably certifiable accuracies for different values of perturbations ε on CPL
(ours), SOC and Cayley models. The average time per epoch in seconds is also reported in the last column. All the reported networks use
Last Layer Normalization.

Note that we observe a small gain using larger and deeper
architectures for our models. This gain is less important
as ε increases but the gain is non negligible for standard
accuracies. In term of training time, our small architecture
(CPL-S) trains very fast compared to other methods, while
larger ones are longer to train.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

PGD Accuracy CIFAR10

CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

PGD Accuracy CIFAR100

CPL-S
CPL-M
CPL-L
CPL-XL
SOC-10
SOC-20
Cayley

Figure 2. Accuracy against PGD attack with 10 iterations in func-
tion of the perturbation ε for our CPL networks and its concurrent
approaches on CIFAR10 and CIFAR100 datasets.

Empirical Adversarial Robustness. We also reported in
Figure 2 the accuracy of all the models against PGD ℓ2-
attack (Kurakin et al., 2016; Madry et al., 2018) for various
levels of ϵ. We used 10 iterations for this attack. We remark
here that our methods brings a large gain of robust accuracy
over all other methods. On CIFAR10 for ε = 0.8, the
gain of CPL-S over SOC-10 approach is more than 10%.
For CIFAR100, the gain is about 10% too for ε = 0.6.
We remark that using larger architectures lead in a more
substantial gain in empirical robustness.

Our layers only provide an upper bound on the Lipschitz
constant, while orthonormal layers as Cayley and SOC are
built to exactly preserve the norms. This might negatively
influence the certified accuracy since the effective Lipschitz
constant is smaller than the theoretical one, hence leading to
suboptimal certificates. This might explain why our method
performs so well of empirical robustness task.

A Dynamical System Perspective for Lipschitz Neural Networks

6. Conclusion
In this paper, we presented a new generic method to build
1-Lipschitz layers. We leverage the continuous time dy-
namical system interpretation of Residual Networks and
show that using convex potential flows naturally defines
1-Lipschitz neural networks. After proposing a parametriza-
tion based on Input Convex Neural Networks (Amos et al.,
2017), we show that our models reach competitive results
in classification and robustness in comparison which other
existing 1-Lipschitz approaches. We also experimentally
show that our layers provide scalable approaches without
further regularization tricks to train very deep architectures.

Exploiting the ResNet architecture for devising flows
have been an important research topic. For example,
in the context of generative modeling, Invertible Neu-
ral Networks (Behrmann et al., 2019) and Normalizing
Flows (Rezende & Mohamed, 2015; Verine et al., 2021)
are both import research topic. More recently, Sylvester
Normalizing Flows (van den Berg et al., 2018) or Convex
Potential Flows (Huang et al., 2021a) have had similar ideas
to this present work but for a very different setting and
applications. In particular, they did not have interest in
the contraction property of convex flows and the link with
adversarial robustness have been under-exploited.

Further work. Propoisition 2 suggests to constraint the
symmetric part of the Jacobian of Ft. We proposed to de-
compose Ft as a sum of potential gradient and skew symmet-
ric matrix. Finding other parametrizations is an open chal-
lenge. Our models may not express all 1-Lipschitz functions.
Knowing which functions can be approximated by our CPL
layers is difficult even in the linear case (see Appendix C.3).
This is an important question that requires further investiga-
tion. One can also think of extending our work by the study
of other dynamical systems. Recent architectures such as
Hamiltonian Networks (Greydanus et al., 2019) and Mo-
mentum Networks (Sander et al., 2021) exhibit interesting
properties. Finally, we hope to use similar approaches to
build robust Recurrent Neural Networks (Sherstinsky, 2020)
and Transformers (Vaswani et al., 2017).

References
Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-

works. In International Conference on Machine Learning,
2017.

Anil, C., Lucas, J., and Grosse, R. Sorting out lipschitz
function approximation. In International Conference on
Machine Learning, 2019.

Araujo, A., Negrevergne, B., Chevaleyre, Y., and Atif, J.
On lipschitz regularization of convolutional layers using
toeplitz matrix theory. Thirty-Fifth AAAI Conference on
Artificial Intelligence, 2021.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, pp. 214–223. PMLR, 2017.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. In Ad-
vances in Neural Information Processing Systems, 2017.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,
and Jacobsen, J.-H. Invertible residual networks. In
International Conference on Machine Learning, 2019.

Béthune, L., González-Sanz, A., Mamalet, F., and Serrurier,
M. The many faces of 1-lipschitz neural networks. arXiv
preprint arXiv:2104.05097, 2021.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery
in databases, 2013.

Björck, Å. et al. An iterative algorithm for computing the
best estimate of an orthogonal matrix. SIAM Journal on
Numerical Analysis, 1971.

Cao, X. and Gong, N. Z. Mitigating evasion attacks to
deep neural networks via region-based classification. In
Proceedings of the 33rd Annual Computer Security Ap-
plications Conference, pp. 278–287, 2017.

Carlini, N. et al. Adversarial examples are not easily de-
tected: Bypassing ten detection methods. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and
Security, 2017.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems, 2018.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness
to adversarial examples. In International Conference on
Machine Learning, 2017.

A Dynamical System Perspective for Lipschitz Neural Networks

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In International
Conference on Machine Learning, 2019.

Combettes, P. L. and Pesquet, J.-C. Lipschitz certificates for
layered network structures driven by averaged activation
operators. SIAM Journal on Mathematics of Data Science,
2020.

Croce, F. et al. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In
International Conference on Machine Learning, 2020.

Diederik P. Kingma, J. B. Adam: A method for stochastic
optimization. In International Conference for Learning
Representations, 2014.

E, W. A proposal on machine learning via dynamical sys-
tems. Communications in Mathematics and Statistics,
2017.

Farnia, F., Zhang, J., and Tse, D. Generalizable adversar-
ial training via spectral normalization. In International
Conference on Learning Representations, 2019.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of lipschitz
constants for deep neural networks. In Advances in Neu-
ral Information Processing Systems, 2019.

Golub, G. H. et al. Eigenvalue computation in the 20th cen-
tury. Journal of Computational and Applied Mathematics,
2000.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. Regu-
larisation of neural networks by enforcing lipschitz conti-
nuity. Machine Learning, 2021.

Greydanus, S. J., Dzumba, M., and Yosinski, J. Hamiltonian
neural networks. 2019.

Haber, E. et al. Stable architectures for deep neural networks.
Inverse problems, 2017.

Hayou, S., Clerico, E., He, B., Deligiannidis, G., Doucet,
A., and Rousseau, J. Stable resnet. In Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.,
et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies, 2001.

Huang, C.-W., Chen, R. T. Q., Tsirigotis, C., and Courville,
A. Convex potential flows: Universal probability distribu-
tions with optimal transport and convex optimization. In
International Conference on Learning Representations,
2021a.

Huang, L., Liu, L., Zhu, F., Wan, D., Yuan, Z., Li, B., and
Shao, L. Controllable orthogonalization in training dnns.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020a.

Huang, Y., Yu, Y., Zhang, H., Ma, Y., and Yao, Y. Ad-
versarial robustness of stabilized neuralodes might be
from obfuscated gradients. Mathematical and Scientific
Machine Learning, 2020b.

Huang, Y., Zhang, H., Shi, Y., Kolter, J. Z., and Anandku-
mar, A. Training certifiably robust neural networks with
efficient local lipschitz bounds. 2021b.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
Machine Learning, 2015.

Jia, K., Tao, D., Gao, S., and Xu, X. Improving training
of deep neural networks via singular value bounding. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversar-
ial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 2018.

Li, B., Chen, C., Wang, W., and Carin, L. Certified adversar-
ial robustness with additive noise. In Advances in Neural
Information Processing Systems, 2019a.

Li, M., He, L., and Lin, Z. Implicit euler skip connections:
Enhancing adversarial robustness via numerical stability.
In International Conference on Machine Learning, pp.
5874–5883. PMLR, 2020.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R. B., and
Jacobsen, J.-H. Preventing gradient attenuation in lips-
chitz constrained convolutional networks. In Advances in
Neural Information Processing Systems. 2019b.

Liu, X., Cheng, M., Zhang, H., and Hsieh, C.-J. Towards
robust neural networks via random self-ensemble. In

A Dynamical System Perspective for Lipschitz Neural Networks

Proceedings of the European Conference on Computer
Vision, 2018.

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond finite layer
neural networks: Bridging deep architectures and numer-
ical differential equations. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018.

Moosavi-Dezfooli, S.-M., Fawzi, A., Uesato, J., and
Frossard, P. Robustness via curvature regularization, and
vice versa. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Pinot, R., Meunier, L., Araujo, A., Kashima, H., Yger, F.,
Gouy-Pailler, C., and Atif, J. Theoretical evidence for ad-
versarial robustness through randomization. In Advances
in Neural Information Processing Systems, 2019.

Pinot, R., Ettedgui, R., Rizk, G., Chevaleyre, Y., and Atif, J.
Randomization matters how to defend against strong ad-
versarial attacks. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified
defenses against adversarial examples. In International
Conference on Learning Representations, 2018.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, 2015.

Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H.,
Bubeck, S., and Yang, G. Provably robust deep learning
via adversarially trained smoothed classifiers. In Ad-
vances in Neural Information Processing Systems, 2019.

Sander, M. E., Ablin, P., Blondel, M., and Peyré, G. Mo-
mentum residual neural networks. 2021.

Sedghi, H., Gupta, V., and Long, P. The singular values
of convolutional layers. In International Conference on
Learning Representations, 2018.

Sherstinsky, A. Fundamentals of recurrent neural network
(rnn) and long short-term memory (lstm) network. Phys-
ica D: Nonlinear Phenomena, 404:132306, 2020.

Singla, S. and Feizi, S. Skew orthogonal convolutions.
In Proceedings of the 38th International Conference on
Machine Learning, 2021.

Singla, S., Singla, S., and Feizi, S. Householder activations
for provable robustness against adversarial attacks. arXiv
preprint arXiv:2108.04062, 2021a.

Singla, S. et al. Fantastic four: Differentiable and effi-
cient bounds on singular values of convolution layers. In
International Conference on Learning Representations,
2021b.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 2014.

Steinberg, D. Computation of matrix norms with applica-
tions to robust optimization. Research thesis, Technion-
Israel University of Technology, 2005.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference on
Learning Representations, 2014.

Trockman, A. et al. Orthogonalizing convolutional layers
with the cayley transform. In International Conference
on Learning Representations, 2021.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In Advances in Neural Infor-
mation Processing Systems, 2018.

van den Berg, R., Hasenclever, L., Tomczak, J., and Welling,
M. Sylvester normalizing flows for variational inference.
In proceedings of the Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

A Dynamical System Perspective for Lipschitz Neural Networks

Verine, A., Chevaleyre, Y., Rossi, F., and benjamin ne-
grevergne. On the expressivity of bi-lipschitz normal-
izing flows. In ICML Workshop on Invertible Neural
Networks, Normalizing Flows, and Explicit Likelihood
Models, 2021.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. In Ad-
vances in Neural Information Processing Systems. 2018.

Wang, J., Chen, Y., Chakraborty, R., and Yu, S. X. Orthog-
onal convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. In Advances in
Neural Information Processing Systems, 2018.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning, 2018.

Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I.,
and Li, J. Randomized smoothing of all shapes and sizes.
In International Conference on Machine Learning, 2020.

Yoshida, Y. and Miyato, T. Spectral norm regularization for
improving the generalizability of deep learning. arXiv
preprint arXiv:1705.10941, 2017.

A Dynamical System Perspective for Lipschitz Neural Networks

A. Further Related Work
Lipschitz Regularization for Robustness. Based on the insight that Lipschitz Neural Networks are more robust to
adversarial attacks, researchers have developed several techniques to regularize and constrain the Lipschitz constant of neural
networks. However the computation of the Lipschitz constant of neural networks has been shown to be NP-hard (Virmaux &
Scaman, 2018). Most methods therefore tackle the problem by reducing or constraining the Lipschitz constant at the layer
level. For instance, the work of Cisse et al. (2017); Huang et al. (2020a) and Wang et al. (2020) exploit the orthogonality of
the weights matrices to build Lipschitz layers. Other approaches (Gouk et al., 2021; Jia et al., 2017; Sedghi et al., 2018;
Singla et al., 2021b; Araujo et al., 2021) proposed to estimate or upper-bound the spectral norm of convolutional and dense
layers using for instance the power iteration method (Golub et al., 2000). While these methods have shown interesting
results in terms of accuracy, empirical robustness and efficiency, they can not provide provable guarantees since the Lipschitz
constant of the trained networks remains unknown or vacuous.

Reshaped Kernel Methods. It has been shown by Cisse et al. (2017) and Tsuzuku et al. (2018) that the spectral norm of a
convolution can be upper-bounded by the norm of a reshaped kernel matrix. Consequently, orthogonalizing directly this
matrix upper-bound the spectral norm of the convolution by 1. While this method is more computationally efficient than
orthogonalizing the whole convolution, it lacks expressivity as the other singular values of the convolution are certainly too
constrained.

B. Proofs
B.1. Proof of Proposition 2

Proof. Consider the time derivative of the square difference between the two flows xt and zt associated with the function Ft

and following the definition 2:

d

dt
∥xt − zt∥22 = 2

〈
xt − zt,

d

dt
(xt − zt)

〉
= 2

〈
xt − zt, Fθt(xt)− Fθt(zt)

〉
= 2

〈
xt − zt,

∫ 1

0

∇xFθt(xt + s(zt − zt))(xt − zt)ds
〉
, by Taylorn-Lagrange formula

= 2

∫ 1

0

〈
xt − zt,∇xFθt(xt + s(zt − zt))(xt − zt)

〉
ds

= 2

∫ 1

0

〈
xt − zt, S(∇xFθt(xt + s(zt − zt)))(xt − zt)

〉
ds

In the last step, we used that for every skew-symmetric matrix A and vector x, ∥x,Ax∥ = 0. Since µtI ⪯ S(∇xFθt(xt +
s(zt − yt))) ⪯ λtI , we get

2µt∥xt − zt∥22 ≤
d

dt
∥xt − zt∥22 ≤ 2λt∥xt − zt∥22

Then by Gronwall Lemma, we have

∥x0 − y0∥e
∫ t
0
µsds ≤ ∥xt − yt∥ ≤ ∥x0 − y0∥e

∫ t
0
λsds

which concludes the proof.

B.2. Proof of Corollary 1

Proof. For all t, x, we have Ft(x) = −∇xft(x)+Atx so ∇xFt(x) = −∇2
xft(x)+At. Then S(∇xFt(x)) = −∇2

xft(x).
Since f is convex, we have ∇2

xft(x) ⪰ 0. So by application of Proposition 2, we deduce ∥xt − yt∥ ≤ ∥x0 − y0∥ for all
trajectories starting from x0 and y0.

A Dynamical System Perspective for Lipschitz Neural Networks

B.3. Proof of Proposition 3

Proof. With ct = ∥xt − zt∥22, we can write:

ct+ 1
2
− ct =− 2ht

〈
xt − zt,∇xFθt(xt)−∇xFθt(zt)

〉
+ h2

t∥∇xFθt(zt)−∇xFθt(zt)∥22
This equality allows us to derive the equivalence between ct+1 ≤ ct and:

ht

2
∥∇Fθt(xt)−∇Fθt(zt)∥22 ≤ ⟨xt − zt,∇Fθt(zt)−∇Fθt(zt)⟩

Moreover, assuming that Fθt being that:

1

Lt
∥∇xFθt(xt)−∇xFθt(zt)∥22 ≤

〈
xt − zt,∇xFθt(xt)−∇xFθt(zt)

〉
We can see with this last inequality that if we enforce ht ≤ 2

Lt
, we get ct+ 1

2
≤ ct which concludes the proof.

C. Additional Results
C.1. Functions whose gradient is skew-symmetric everywhere

Let F := (F1, . . . , Fd) : Rd → Rd be a twice differentiable function such that ∇F (x) is skew-symmetric for all x ∈ Rd.
Then we have for all i, j, k:

∂i∂jFk = −∂i∂kFj = −∂k∂iFj = ∂k∂jFi = ∂j∂kFi = −∂j∂iFk = −∂i∂jFk

So we have ∂i∂jFk = 0 and then F is linear: there exists a skew-symmetric matrix A such that F (x) = Ax

C.2. Implicit discrete convex potential flows

Let us define the implicit update xt+ 1
2
= xt −∇xft(xt+ 1

2
). Let us remark that xt+ 1

2
is uniquely defined as:

xt+ 1
2
= argmin

x∈Rd

1

2
∥x− xt∥2 + ft(x)

We recognized here the proximal operator of ft that is uniquely defined since ft is convex. Moreover we have for two
trajectories xt and zt:

∥xt − zt∥22 = ∥xt+ 1
2
− zt+ 1

2
+∇xft(xt+ 1

2
)−∇xft(zt+ 1

2
)∥22

= ∥xt+ 1
2
− zt+ 1

2
∥2 + 2⟨xt − zt,∇xft(xt+ 1

2
)−∇xft(zt+ 1

2
)⟩+ ∥∇xft(xt+ 1

2
)−∇xft(zt+ 1

2
)∥22

≥ ∥xt+ 1
2
− zt+ 1

2
∥2

where the last inequality is deduced from the convexity of ft. So, without any further assumption on ft, the discretized
implicit convex potential flow is 1-Lipschitz.

To compute such a layer, one could solve the proximal operator strongly convex-minimization optimization problem. This
strategy is not computationally efficient and not scalable.

C.3. Expressivity of discretized convex potential flows

Let us define S1(Rd×d) the space of real symmetric matrices with singular values bounded by 1. Let us also define
M1(Rd×d) the space of real matrices with singular values bounded by 1 in absolute value. Let P(Rd×d) = {A ∈
Rd×d|∃n ∈ N, S1, . . . , Sn ∈ S1(Rd × d) s.t. A = S1 . . . Sn}. Then one can prove6 that P(Rd×d) ̸=M1(Rd×d). Thus
there exists A ∈M1(Rd×d) such that for all matrices n, for all matrices S1, . . . , Sn ∈ S1(Rd×d) such that M ̸= S1, ..., Sn.

Applied to the expressivity of discretized convex potential flows, the previous result means that there exists a 1-Lipschitz
linear function that cannot be approximated as a discretized flow of any depth of convex linear 1-smooth potential flows as
in Proposition 3. Indeed such a flow would write: x 7→

∏
i(1− 2Si)x where Si are symmetric matrices whose eigenvalues

are in [0, 1], in other words such transformations are exactly described by x 7→Mx for some M ∈ P(Rd×d).

6A proof and justification of this result can be found here: https://mathoverflow.net/questions/60174/
factorization-of-a-real-matrix-into-hermitian-x-hermitian-is-it-stable

https://mathoverflow.net/questions/60174/factorization-of-a-real-matrix-into-hermitian-x-hermitian-is-it-stable
https://mathoverflow.net/questions/60174/factorization-of-a-real-matrix-into-hermitian-x-hermitian-is-it-stable

A Dynamical System Perspective for Lipschitz Neural Networks

D. Additional experiments
D.1. Training stability: scaling up to 1000 layers

100 101 102

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Depth = 100
Depth = 300
Depth = 500
Depth = 700
Depth = 1000

Figure 3. Standard test accuracy in function of the number of epochs (log-scale) for various depths for our neural networks
(100, 300, 500, 700, 1000).

While the Residual Network architecture limits, by design, gradient vanishing issues, it still suffers from exploding gradients
in many cases (Hayou et al., 2021). To prevent such scenarii, batch normalization layers (Ioffe & Szegedy, 2015) are used in
most Residual Networks to stabilize the training.

Recently, several works (Miyato et al., 2018; Farnia et al., 2019) have proposed to normalize the linear transformation of
each layer by their spectral norm. Such a method would limit exploding gradients but would again suffer from gradient
vanishing issues. Indeed, spectral normalization might be too restrictive: dividing by the spectral norm can make other
singular values vanishingly small. While more computationally expensive (spectral normalization can be done with 1 Power
Method iteration), orthogonal projections prevent both exploding and vanishing issues.

On the contrary the architecture proposed in this paper has the advantage to naturally control the gradient norm of the output
with respect to a given layer. Therefore, our architecture can get the best of both worlds: limiting exploding and vanishing
issues while maintaining scalability. To demonstrate the scalability of our approach, we experiment the ability to scale
our architecture to very high depth (up to 1000 layers) without any additional normalization/regularization tricks, such as
Dropout (Srivastava et al., 2014), Batch Normalization (Ioffe & Szegedy, 2015) or gradient clipping (Pascanu et al., 2013).
With the work done by (Xiao et al., 2018), which leverage Dynamical Isometry and a Mean Field Theory to train a 10000
layers neural network, we believe, to the best of our knowledge, to be the second to perform such training. For sake of
computation efficiency, we limit this experiment to architecture with 30 feature maps. We report the accuracy in terms of
epochs for our architecture in Figure 3 for a varying number of convolutional layers. It is worth noting that for the deepest
networks, it may take a few epochs before the start of convergence. As (Xiao et al., 2018), we remark there is no gain in
using very deep architecture for this task.

D.2. Relaxing linear layers

h = 1.0 h = 0.1 h = 0.01

Clean 85.10 82.23 78.53
PGD (ε = 36/255) 61.45 62.99 60.98

The table above shows the result of the relaxed training on the CIFAR10 dataset of our StableBlock architecture, i.e. we
fixed the step ht in the discretized convex potential flow of Proposition 3. Increasing the constant h allows for an important
improvement in the clean accuracy, but we loose in robust empirical accuracy. While computing the certified accuracy is not
possible in this case due to the unknown value of the Lipschitz constant, we can still notice that the training of the network
are still stable without normalization tricks, and offer a non-negligible level of robustness.

A Dynamical System Perspective for Lipschitz Neural Networks

D.3. Mixing CPL and Orthogonal Convolutions layers

CPL&SOC-20 CPL&Cayley (KW3) SOC-20 Cayley(KW3)

Clean 71.06 74.89 77.1 74.6
Provable (ε = 36/255) 53.03 61.69 62.5 61.4

The table above shows the result of the training on the CIFAR10 dataset of SOC-20 and KWLarge architecture mixed with
Convex Potential Layers : respectively each orthogonal convolution, linear layer is followed respectively by a convolutional,
linear CPL. We notice that mixing the layer is difficult to train and at stakes as we do not recover the best performance of
SOC-20 and improves slightly the performance of KWLarge architectures.

D.4. Effect of Batch Size in Training

Batch size Clean Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S
64 76.5 62.9 47.3 32.0 48
128 76.1 62.8 47.1 32.3 31
256 75.6 62.3 46.9 32.2 22

CPL-M
64 77.4 63.6 47.4 32.1 77
128 77.2 63.5 47.5 32.1 50
256 76.8 63.2 47.4 32.4 40

CPL-L
64 78.4 64.2 47.8 32.2 162
128 78.2 64.3 47.9 32.5 109
256 77.6 63.9 48.1 32.7 93

CPL-XL
64 78.9 64.2 47.2 31.2 271
128 78.9 64.2 47.5 31.8 198
256 78.5 64.4 47.8 32.4 163

Table 4. Results on the CIFAR10 dataset on standard and provably certifiable accuracies for different values of perturbations ε on CPL
(ours) models with various batch sizes. The average time per epoch in seconds is also reported in the last column. All the reported
networks use Last Layer Normalization.

Batch size Clean Accuracy Provable Accuracy (ε) Time per epoch (s)

36/255 72/255 108/255

CPL-S
64 45.6 30.8 19.3 11.2 47
128 44.9 30.7 19.2 11.0 31
256 44.0 29.9 19.1 10.9 23

CPL-M
64 46.6 31.6 19.6 11.6 78
128 46.3 31.1 19.7 11.5 55
256 45.6 31.1 19.3 11.3 41

CPL-L
64 48.1 32.7 20.3 11.7 163
128 47.4 32.3 20.0 11.8 116
256 46.8 31.8 20.1 11.7 95

CPL-XL
64 49.0 33.7 21.1 12.0 293
128 48.0 33.7 21.0 12.1 209
256 47.8 33.4 20.9 12.6 164

Table 5. Results on the CIFAR100 dataset on standard and provably certifiable accuracies for different values of perturbations ε on CPL
(ours) models with various batch sizes. The average time per epoch in seconds is also reported in the last column. All the reported
networks use Last Layer Normalization.

In Tables 4 and 5, we tried three different batch sizes (64, 128 and 256) for training our networks on CIFAR10 and CIFAR100
datasets, we remark a gain in standard accuracy in reducing the batch size for all settings. As the perturbation becomes
larger, the gain in accuracy is reduced and can even in some cases we may loose some points in robustness.

A Dynamical System Perspective for Lipschitz Neural Networks

D.5. Effect of the Margin Parameter

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Certified Accuracy CIFAR10
Margin = 0.1
Margin = 0.4
Margin = 0.7
Margin = 1.0
Margin = 1.5
Margin = 2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Certified Accuracy CIFAR100
Margin = 0.1
Margin = 0.4
Margin = 0.7
Margin = 1.0
Margin = 1.5
Margin = 2.0

(a) Certifiably robust accuracy in function of the perturbation ε for our CPL-S network with different margin parameters on CIFAR10 and
CIFAR100 datasets.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

PGD Accuracy CIFAR10

Margin = 0.1
Margin = 0.4
Margin = 0.7
Margin = 1.0
Margin = 1.5
Margin = 2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

PGD Accuracy CIFAR100
Margin = 0.1
Margin = 0.4
Margin = 0.7
Margin = 1.0
Margin = 1.5
Margin = 2.0

(b) Certifiably robust accuracy in function of the perturbation ε for our CPL-S network with different margin parameters on CIFAR10 and
CIFAR100 datasets.

In these experiments we varied the margin parameter in the margin loss in Figures 4a and 4b. It clearly exhibits a tradeoff
between standard and robust accuracy. When the margin is large, the standard accuracy is low, but the level of robustness
remain high even for “large” perturbations. On the opposite, when the margin is small, we get a high standard accuracy but
we are unable to keep a good robustness level as the perturbation increases. It is verified both on certified and empirical
robustness.

D.6. Effect of Different Convex Activation: ReLU, Sigmoid, Tanh

Dataset Activation Acc. Certified Acc. AutoAttack PGD Attack

CIFAR10
ReLU 0.7682 0.6314 0.7129 0.7260
Tanh 0.5663 0.4223 0.5003 0.5145

Sigmoid 0.5239 0.3741 0.4519 0.4715

CIFAR100
ReLU 0.4546 0.3072 0.3910 0.4143
Tanh 0.2790 0.1766 0.2289 0.2477

Sigmoid 0.2436 0.1568 0.2033 0.2200

Table 6. Results on the CIFAR10 and CIFAR100 dataset on standard and provably certifiable accuracies as well as Auto and PGD attack
for different nonlinear activations.

In Tables 6, we tried three different nonlinear convex activation for our Convex Potential Layer: ReLU, Tanh and Sigmoid.
We can observe that models trained with ReLU activation offer much higher accuracies than the other two non-linear
activations.

