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Abstract—Autism spectrum disorder (ASD) is a neuro-
developmental disorder that affects social and communication
abilities. There are no confirmed causative factors for the
spectrum of symptoms that occur in ASD children. Currently,
the gold standard for an ASD diagnosis is based on clinical
testing. In particular, brain imaging modalities are believed to
hold discriminant information for an ASD diagnosis. Recently, it
has been proposed that altered functional connectivity patterns in
the resting state functional MRI (RfMRI) coupled with machine
learning may hold promise for an ASD diagnosis. However,
algorithms that extract these patterns generate a large number
of connectivity features, leading to high dimensional data. To
address this problem, we propose a novel efficient feature selec-
tion algorithm called Iterative Permutation Sampling–Recursive
Feature Elimination (IPS–RFE). Only a limited number of infor-
mative discriminating features are fed to a deep neural network
classifier. We have investigated this approach for classifying
ASD in the ABIDE 1 dataset which contains approximately
1000 subjects. The proposed feature selection and classification
approach outperforms other state-of-the-art alternatives with an
accuracy of 75%, sensitivity of 73.5%, specificity of 76.5% and
area under ROC curve of 0.803. A high percentage of the features
selected by the IPS-RFE algorithm belong to the default mode,
limbic, and visual brain networks, which have been reported to
be abnormal among ASD children.

Index Terms—RfMRI, ASD, IPS-RFE, ABIDE I

I. INTRODUCTION

Autism spectrum disorder (ASD) is a neuro-developmental
disorder associated with impaired social functionality, im-
paired language abilities, and restricted or repetitive behaviors
[1]. Currently, there are no known causes for ASD. ASD is
clinically diagnosed using the Autism Diagnosis Observation
Schedule (ADOS) [2]. Brain imaging researchers are currently
using multiple neuro-imaging modalities to develop more ob-
jective methods for ASD diagnosis. The frequently employed
modalities include structural MRI (sMRI) for characterizing
anatomical and morphological abnormalities [3], diffusion ten-
sor imaging (DTI) for white matter connectivity abnormalities
[4], [5], and functional MRI (fMRI) for measuring functional
connectivity abnormalities. Two types of fMRI scans have
been used for ASD diagnosis; task-based fMRI [6]–[8], and
resting state functional MRI (RfMRI) [9]–[11] which we
employ in this study.

Many researchers have utilized brain functional connectivi-
ties derived from RfMRI to differentiate between ASD and

typically developed subjects (TDs) [12]–[16]. In 2014, the
Autism Brain Imaging Data Exchange (ABIDE) was formed
using data from more than 1000 subjects which was collected
from 17 different sites [17]. Demographic details of the
ABIDE 1 cohort are provided in the following section (II-A).
In [18], the authors utilized features selected from ROI-based
RfMRI to identify subjects with ASD. They used a support
vector machine (SVM) classifier, achieving a classification
accuracy of 67%. Another study [19] combined a denoising au-
toencoder followed by a multi–layer perceptron neural network
for the classification of ASD using functional connectivity
features. Although they achieved very high accuracies on each
individual site on the ABIDE 1 dataset, a global accuracy they
achieved when combining all the sites was 70%. Additionally,
the tracking of the original features in the reduced feature
space is not an easy task so this also limits the ability to
interpret the used features.

A recent study [20] applied volumetric convolutional neural
networks to utilize the 3D RfMRI volumes directly. This
approach recorded an accuracy of 73% when tested on the
ABIDE 1 dataset. Another study [21] utilized features ex-
tracted from functional connectivity matrices to identify ASD
subjects. They employed various classifiers, with a modified
version of a Gaussian radial basis function–SVM achieving the
highest classification accuracy of 69.4% for the whole ABIDE
1 dataset. In [22], a subset of the ABIDE 1 dataset was used
to extract different graph theoretical features, which were then
fed to a Gaussian–SVM classifier. The accuracies reported in
this article were divided per age group and varied from 69%
to 95%. However, no results were reported for this algorithm
when tested on the entire ABIDE 1 cohort. In [23], a subset
of the ABIDE 1 dataset only with subject ages less than 20
years old was selected. In this way, the total number of the
used subjects in the study was 312 ASDs and 328 TDs. This
study applied an empirical threshold to connectivity feature
values. These features were then fed to a probabilistic neural
network for classification. The accuracy achieved in this study
was 90%, but again, there were no reported results for the
entire ABIDE 1 dataset. In [24], an accuracy of 91% was
reported on a different dataset containing 126 ASDs and 126
TDs, using a random forest (RF) classifier with connectivity
features.



Fig. 1. The framework of the proposed system. The proposed pipeline includes five steps: 1) preprocessing step using the conectome computation system
(CCS) pipeline, 2) brain ROIs extraction based on the anatomical atlas labeling (AAL) and Yeo atlases, 3) features extraction for each brain ROI, 4) features
reduction using the Iterative Permutation Sampling- Recursive Feature Elimination (IPS-RFE) algorithm, and 5) classification using a deep neural network.

Fig. 2. Illustration of the calculation steps for the functional connectivity
matrix using RfMRI and AAL atlas.

One of the major problems facing medical applications of
machine learning is the imbalance between the large number
of features and the limited number of subjects [25], [26].
This problem leads to overfitting, increased model complexity,
and poor generalization of any machine learning model [27],
[28]. Due to the difficulty or even impossibility of adding new
subjects to the training data, there is usually a need to reduce
the number of features instead [29]. In the literature, various
techniques have been proposed to reduce the dimensionality of
the feature space and they can be grouped into unsupervised
or supervised techniques. The review in [30] provides a
comprehensive summary of many of these techniques. Authors
concluded that for predictive modeling tasks where the goal
is to maximize the accuracy of predictions, supervised tech-
niques often provide a significant advantage over unsupervised
approaches. To that end, we developed a novel algorithm based
on a supervised feature reduction method called recursive
feature elimination (RFE). The RFE algorithm [31] was first
introduced for selecting genes relevant to cancer classification.
The main idea of the RFE is to first fit a model with all the
features, rank the feature importance, then start a backward
elimination process for the least important features. In the
original study, a SVM classifier was used to fit the RFE model.
Another variant of RFE was introduced in [32], where a RF
classifier was used.

In the current work, we introduce a novel feature selection
algorithm for ASD classification that achieves improved ac-
curacy on the ABIDE 1 dataset (Figure 1). Our algorithm
is called Iterative Permutation Sampling–Recursive Feature
Elimination (IPS–RFE) and followed by a deep neural network
for classification of the entire ABIDE 1 dataset. More details
about data description and the proposed methods are provided
in the following section.

II. MATERIALS AND METHODS

A. Data description

The entire cohort of the ABIDE 1 dataset was used in this
study*. This dataset was collected from 17 different sites and
includes a total of 1,035 subjects with RfMRI scans [33]. The
TD group has 95 females and 435 males, while the ASD group
has 62 females and 443 males. The proportions of subject
genders are not significantly different (χ2 = 6.4, p = 0.11).
Regarding age distribution, the mean age for TDs subjects is
16.8 ± 7.4 years. For ASD subjects, the mean age is 17.2 ±
8.5 years. The mean ages are also not significantly different
(t = −5.8, p = 0.54). More information about the scanning
parameters for each site are available at the ABIDE dataset
website*.

B. Data preprocessing and ROI extraction

In this study, we used data available from the ABIDE
website, which were preprocessed following the connectome
computation system (CCS) pipeline [34], consisting of the
following steps: (i) removing first four volumes of the input
RfMRI scan, (ii) slice–timing correction, (iii) within–subject
motion correction, (iv) intensity normalization, and finally, (v)
standard space registration. To register the fMRI volumes to
the MNI152 standard space, a two stage registration is applied,
where the subject is first registered to its high resolution T1-
weighted structural scan, then registered to the standard space
[34].

The regions of interest (ROIs) in this study are defined
according to the anatomical atlas labeling (AAL) [35]. AAL
contains 116 anatomical areas. The mean activation time
course for each ROI was calculated as the average of the
activation time courses of all corresponding voxels in the
ROI. For better feature interpretation, a mapping between the
AAL atlas and the Yeo functional atlas [36] was performed.
The Yeo atlas defines seven human brain functional networks:
visual, somatomotor, dorsal attention, ventral attention, limbic,
frontoparietal and default mode networks. The mapping was
done by assigning a Yeo network label to each AAL area
based on the highest number of intersecting voxels between
the functional networks and the anatomical areas.

C. Feature extraction

For each subject, a functional connectivity matrix was calcu-
lated. The functional connectivity between a pair of AAL ROIs

*http://fcon 1000.projects.nitrc.org/indi/abide/abide I.html



Fig. 3. The distribution of the selected features over the seven functional networks (left panel), and the cross sectional view of the seven functional networks
(right panel) based on Yeo functional atlas.

in the brain is defined as the Pearson correlation coefficient
between the average time courses of these two ROIs (Figure 2).
The connectivity matrix is of size 116x116. The dimensional-
ity of the features after removing symmetric redundancies (i.e.
after discarding the upper triangle and the diagonal elements of
the output matrix) is given by n = N∗(N−1)

2 , where N = 116,
which gives n = 6670. The number of features is much higher
than the number of subjects, which introduces complications
in the learning task. To solve this problem, we propose the
IPS-RFE algorithm.

In this study, an RF classifier was used to first fit the
RFE model. RF is an ensemble machine learning algorithm
combining multiple decision trees using bootstrap aggregation
[37]. Each decision tree is fed with a bootstrap of the data.
In order to perform feature selection with an RF model, GINI
impurity was adopted. The GINI impurity is used to define the
probability of incorrect classification of a new instance of the
data if this instance is classified according to the distribution
of the labels in the used subset in the training phase [38]. It
is given by:

IG = 1−
c∑

j=1

p2j (1)

Where pj is the probability of each of the c classes. The RFE
output is a binary vector of the same length as the feature
vector to indicate whether the feature should be included or
not. However, applying RFE to the whole data leads to two
main problems: (i) overfitting the features on the used data
which reduces the generalization ability, and (ii) extracting
false–positive, noisy features that should not be included in
the selection. To overcome such problems, we combine RFE
with an iterative permutation sampling (IPS) algorithm.

As shown in Algorithm 1, each iteration in the IPS–RFE
algorithm is summarized into the following steps: (i) creating
a vector of zeros of the same length as the features vector,
called the accumulator which will hold the number of times
a feature is selected over the iterations, (ii) shuffling the data,
(iii) randomly sampling a fraction f of the data, where f is
set to 0.8 in our case, (iv) running the RFE using a K-fold
cross validation on the selected partition, (v) for each selected

feature, incrementing its count in the accumulator by one, and
(vi) thresholding over the accumulator value to select the top
p percentile of the features, where p is empirically selected to
be 15% in this study.

Algorithm 1 IPS-RFE feature selection algorithm
Result: The accumlator array that show how many times a feature

was selected
//initialization
n features = 6670
accumaltor = zeros(n features, 1)
counter = 0
while counter <1000 do

1 - Randomly shuffle the data
2- Select 0.8 of the data
3- Run the RFE using random forest on the selected data
4- RFE output = Extract the prominent features of the
selected data
5- i = 0
6- while i <n features do

if RFE output[i] == True then
accumaltor[i] = accumaltor[i] + 1

end
i++

end
counter ++

end
return accumaltor

D. Classification of the selected features

Using the top selected features, a deep neural network was
then used for the classification task. To find the optimal set of
hyperparameters for the neural network, a heuristic grid search
was applied. The hyperparameters are: (i) the number of layers
in the network, (ii) the number of nodes in each layer, (iii) the
L2 regularization term, and (iv) the learning rate. To verify the
statistical significance of the proposed classifier, a permutation
test was conducted. More details about the structure of the
adopted network and its hyperparamters are shown in section
III. Here, the classification labels were randomly shuffled to
simulate a random uninformative dataset. This shuffling was
repeated 1000 times, and each time it was fed to the classifier
to evaluate the classification accuracy.



III. EXPERIMENTAL RESULTS

A. IPS-RFE results

In this experiment, the top 15% of the features in the accu-
mulator vector were selected. The number of selected features
was 1002. Figure 3 shows the distribution of the selected
features over the seven functional networks. In addition, it
shows the coronal, axial, and sagittal cross section views of
the functional networks. From this figure, it is apparent that
the functional networks with the most number of selected
features are the default mode network, the limbic network,
and the visual network. Figure 4 shows a heat map of the
correlation matrix of the AAL atlas ROIs with corresponding
labels to the seven Yeo functional networks. This color coded
map shows the number of times a feature was selected over the
1000 iterations. For better visualization, only the 1002 selected
features are displayed and the rest of features are mapped to
dark blue.

Fig. 4. A color coded representation of the number of times a feature was
selected over the 1000 iterations. Only the top 15th percentiles features are
displayed and the rest of features are mapped to dark blue.

Previously reported findings in the literatures about the
altered connectivity patterns of autistic subjects relate to both
the visual and default networks. In [24], which analyzed 302
subjects from the ABIDE 1 dataset, the three main networks
containing discriminant features were the default mode, visual,
and somatosensory networks, which overlap with our findings.
Impaired connectivities of the default mode network were also
reported in [39], where a statistically significant finding was
reported on a data set of 57 ASD and 57 TD subjects. In
[40], the visual network showed significance in both statistical
testing and classification ability when using a dataset of 817
subjects in the ABIDE I dataset.

In order to study the separability of the data based on our
proposed feature selection algorithm, the t-SNE dimensionality
reduction technique was utilized [41]. T-SNE allows for visu-
alization of high dimensional data through projection on a 2D
plane. Moreover, to quantitatively evaluate the class separation,
we calculated the Silhouette Score (SC) [42] between ASDs
and TDs classes in the t-SNE space. This metric measures

TABLE I
THE ACHIEVED ACCURACY, SENSITIVITY, SPECIFICITY AND AREA UNDER
ROC. ON THE RIGHT COLUMN THE CONFUSION MATRIX IS DISPLAYED.

TABLE II
THE SIX MODEL HYPERPARAMETERS USED IN THE GRID SEARCH FINE

TUNING, THEIR SEARCH RANGES AND THE SELECTED VALUES.

Hyperparameter Search range Selected value
RFE number of trees 100-1000 500

RFE Maximum depth per tree 2-100 20

DL

Neural network number of hidden layers 1-5 2

Number of nodes per layers 5-1000
499 for layer 1
150 for layer 2

L2 regularization parameter 0.000001-0.001 0.000489
Learning rate 0.00001-0.01 0.001

how similar an object is to its own class compared to other
classes. The SC ranges from -1 to 1, where higher values
indicate better-defined clusters. Figure 5 shows the two class
data points when using all features (mean SC = -0.0132), the
top 50% of the features (mean SC = -0.0038), the top 25% of
the features (mean SC = 0.0241), the top 15% of the features
(mean SC = 0.0820), the top 10% of the features (mean SC =
0.0192), and the top 5% of the features (mean SC = -0.0557).
It is visually and quantitatively apparent that using the top
15% of the input features increases the class separability of
the data points.

B. Classification results

In this study, we used a 4-fold cross validation for clas-
sification evaluation. The calculated metrics were accuracy,
sensitivity, and specificity. To evaluate the classifier robustness,
we also calculated the area under the receiver operating
characteristic (ROC) curve and generated a confusion matrix.
Table I lists these metrics. To find the optimal set of hyperpa-
rameters, a heuristic grid search was performed. For fitting the
RFE model with the RF classifier, the two hyperparameters
to be tuned were the number of trees and the maximum
depth per tree. The ADAM optimizer [43] was used for the
neural network. Table II presents the search ranges of each
hyperparameter and the selected value.

To show that our system outperforms other state-of-the-
art techniques reported using the same dataset with the
same experimental design and validation techniques, Table III
presents the accuracy of the proposed system and the accura-
cies reported in the literature [19]–[21], [44]. Our proposed
system outperforms other alternatives with an accuracy of
75%, sensitivity of 73.5%, specificity of 76.5% and area under
ROC curve of 0.803.



Fig. 5. The t-SNE visualization and the mean silhouette score of the data when: (a) using all the features, (b) using the top 50% of the features, (c) using the
top 25% of the features, (d) using the top 15% of the features, (e) using the top 10% of the features, and (f) using the top 5% of the features. It is obvious
that by selecting the top 15% of the features, the data becomes more separable (highest mean SC).

TABLE III
A COMPARISON BETWEEN OUR PROPOSED APPROACH AND THE TOP 4

STATE-OF-THE-ART APPROACHES REPORTED IN THE LITERATURE.
ACCUARCY , SENSITIVITY AND SPECIFICITY ARE IN %

Research Algorithm Acc. Sens. Spec. AUC
Heinsfeld et al. [19] Denoising autoencoder + NN 70.0 74 63 0.73
Chaitra et al. [44] Recursive-clustering SVM 70.1 – – –
Khosla et al. [20] Convolutional neural network 73.3 72.5 74.2 0.75
Yang et al. [21] Kernel-based SVM 69.4 64.6 73.6 0.75

Proposed approach IPS-RFE + Deep NN 74.9 73.5 76.5 0.80

On the other hand, the mean accuracy of a permutation
test by creating 1000 iterations of random label shuffling and
feeding them to the classification model is 52%. It can be
inferred that the proposed system significantly performs better
than random guessing. This also shows evidence that there are
no sources of data leakage between training and testing data.
Such leakage will lead to higher accuracies with random label
shuffling, which is not the case in this study.

To study sex-based differences in the prevalence of ASD, we
evaluated the performance of the proposed system using only
the males scans from ABIDE 1 dataset (in total 878 subjects)
and compared it with the performance of our system when the
whole dataset is used, as shown in Figure 6. The accuracy for
males only was 76%, sensitivity = 74.1%, specificity = 77.7%,
and area under ROC curve = 0.819. These results indicated

that the performance of the proposed system is nearly identical
whether using only male scans or both male and female scans,
likely due to the significantly lower number of female subjects
in this dataset.

Fig. 6. The ROC curve (with the AUC values) comparison illustrating the
classification performance difference between using data from males only
versus combining data from males and females.



IV. CONCLUSION AND FUTURE WORK

In this work, we propose a feature selection and classifica-
tion system for autism diagnosis using functional connectivity
features extracted from RfMRI. The dataset used in this study
is the ABIDE 1 dataset with 1035 subjects. The main idea of
the proposed system is to select the most significant features
in identifying autistic subjects from typically developed peers.
Due to the high number of features, it is crucial to find a
way for denoising the features by keeping discriminant ones.
This is done by combining an iterative permutation sampling
algorithm with a recursive feature elimination algorithm. Sub-
sequently, only 1002 significant features are fed into a deep
neural network for ASD diagnosis. We evaluated the perfor-
mance of the proposed system by assessing the classification
accuracy. The proposed system outperforms other alternatives,
achieving a classification accuracy of 75%. In addition, we
also provide a map with the most prominent features. This
map is defined on the AAL atlas and also mapped to the Yeo
atlas which defines seven functional networks. We show that
the default mode network, the limbic network, and the visual
network contain the most number of discriminating features,
which agrees well with previous literatures [24], [40].

Although this model outperforms other state-of-the-art mod-
els in overall accuracy for the whole ABIDE 1 RfMRI dataset,
we believe that there is room for more improvements. One
possible future direction is to adopt a multi-modal approach
to further improve classification accuracy [38]. This approach
might include modalities such as the transcriptome, DTI,
and structural MRI. Combining evidence from these MRI
modalities with genomic data and early clinical behavioral
assessments in larger sample sizes would allow for more
precise quantifications of ASD subgroups.

Despite the widely recognized sex-based differences in ASD
[45], we could not find any performance differences between
the males and females in our experiments likely due to the
significantly lower number of female subjects in the ABIDE
1 dataset. To deeply study the sex-based differences in ASD
using RfMRI, a more balanced dataset with a higher number
of female subjects is needed. Another approach is to consider
how these systems could be integrated with personalized
medicine. This means that the output of the system will not
only be a binary prediction on whether the subject is autistic
or not, but will also include a detailed report about the affected
areas of the brain and to what extent they are affected. This
would allow physicians to design a personalized treatment plan
depending on each individual patient’s needs.
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